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It is shown that a Banach space E has type p if and only for some (all) d � 1 the Besov space B

�
1
p
− 1

2

�
d

p,p

�
Rd; E

�

embeds into the space γ
�
L2

�
R

d
�
, E

�
of γ-radonifying operators L2

�
R

d
� → E. A similar result characterizing

cotype q is obtained. These results may be viewed as E-valued extensions of the classical Sobolev embedding
theorems.
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1 Introduction

Let E be a real or complex Banach space and denote by S
(
Rd;E

)
the Schwartz space of smooth, rapidly

decreasing functions f : Rd → E. For a function f ∈ S
(
Rd;E

)
we consider the linear mapping If : L2

(
Rd
)→

E defined by

Ifg =
∫

Rd

f(x)g(x) dx.

The aim of this paper is to prove the following characterization of Banach spaces E with type p in terms of the
embeddability of certainE-valued Besov spaces into spaces of γ-radonifying operators with values in E and vice

versa. The precise definitions of the spaces B
( 1

p− 1
2 )d

p,p

(
Rd;E

)
and γ

(
L2
(
Rd
)
, E
)

are recalled below.

Theorem 1.1 Let E be a Banach space and let 1 � p � 2 � q � ∞.
1. E has type p if and only if for some (all) d � 1 the mapping I : f �→ If extends to a continuous embedding

B
( 1

p− 1
2 )d

p,p

(
Rd;E

)
↪→ γ

(
L2
(
Rd
)
, E
)
;

2. E has cotype q if and only if for some (all) d � 1 the mapping I−1 : If �→ f extends to a continuous
embedding

γ
(
L2
(
Rd
)
, E
)
↪→ B

( 1
q − 1

2 )d
q,q

(
Rd;E

)
.

A version of this result for bounded open domains in Rd is obtained as well.
As is well-known [8, 19], see also [17], that E has type 2 if and only if the mapping f �→ If extends to
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a continuous embedding L2
(
Rd;E

)
↪→ γ

(
L2
(
Rd
)
, E
)
, and E has cotype 2 if and only if γ

(
L2
(
Rd
)
, E
)
↪→

L2
(
Rd;E

)
. Thus in some sense, Theorem 1.1 may be viewed as an extension of these results for general values

of p and q.
If dimE = 1, then γ

(
L2
(
Rd
)
;E
)

= L2
(
Rd
)

and the embeddings of Theorem 1.1 reduce to the well-known
Sobolev embeddings

B
( 1

p− 1
2 )d

p,p

(
Rd
)
↪→ L2

(
Rd
)
↪→ B

( 1
q − 1

2 )d
q,q

(
Rd
)
, 1 � p � 2 � q � ∞.

Vector-valued Besov spaces have attracted recent attention in the theory of parabolic evolution equations
in Banach spaces as a tool for establishing optimal regularity results; see for instance [1, 4]. In [7], Fourier
multiplier theorems with optimal exponents are established for operator-valued multipliers on Besov spaces of
functions taking values in Banach spaces with Fourier type p.

On the other hand, the spaces γ
(
L2
(
Rd
)
, E
)

have recently played an important role in the theory of H∞-
functional calculus for sectorial operators [6, 10, 11] and the theory of wavelet decompositions [7]. Furthermore,
the spaces γ

(
L2
(
Rd
)
, E
)

have been characterized in terms of stochastic integrals with respect to (cylindrical)
Brownian motions [15, 16, 19]. Therefore, our results allow to compare various square functions and they also
give conditions for the stochastic integrability of E-valued functions. These applications, which motivated our
results, will be detailed in a forthcoming paper.

Throughout this paper, H is a Hilbert space and E is a Banach space, which may be taken both real or both
complex. Furthermore, (rn)n�1 denotes a Rademacher sequence and (γn)n�1 a Gaussian sequence.

1.1 Type and cotype

Let p ∈ [1, 2] and let q ∈ [2,∞]. A Banach space E is said to have type p if there exists a constant C � 0 such
that for all finite subsets {x1, . . . , xN} of E we have⎛⎝E

∥∥∥∥∥
N∑

n=1

rnxn

∥∥∥∥∥
2
⎞⎠ 1

2

� C

(
N∑

n=1

‖xn‖p

) 1
p

.

The least possible constant C is called the type p constant of E and is denoted by Tp(E). A Banach space E is
said to have cotype q if there exists a constant C � 0 such that for all finite subsets {x1, . . . , xN} of E we have

(
N∑

n=1

‖xn‖q

) 1
q

� C

⎛⎝E

∥∥∥∥∥
N∑

n=1

rnxn

∥∥∥∥∥
2
⎞⎠

1
2

,

with the obvious modification in the case q = ∞. The least possible constant C is called the cotype q constant
of E and is denoted by Cp(E). As is well-known, in both definitions the rôle of the Rademacher variables may
be replaced by Gaussian variables without altering the class of spaces under consideration. The least constants
arising from these equivalent definitions are called the Gaussian type p constant and the Gaussian cotype q
constant of E respectively, notation T γ

p (E) and Cγ
q (E).

Every Banach space has type 1 and cotype ∞. The Lp-spaces have type min{p, 2} and cotype max{p, 2} for
1 � p <∞. Every Hilbert space has both type 2 and cotype 2, and a famous result of Kwapień asserts that up to
isomorphism this property characterizes the class of Hilbert spaces.

For more information we refer to Maurey’s survey article [12] and the references given therein.

1.2 Besov spaces

Next we recall the definition of Besov spaces using the so-called Littlewood–Paley decomposition. We follow
the approach of Peetre; see [21, Section 2.3.2] (where the scalar-valued case is considered) and [1, 7, 20]. The
Fourier transform of a function f ∈ L1

(
Rd;E

)
will be normalized as

f̂(ξ) =
1

(2π)d/2

∫
Rd

f(x)e−ix·ξ dx, ξ ∈ Rd.
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Let φ ∈ S
(
Rd
)

be a fixed Schwartz function whose Fourier transform φ̂ is nonnegative and has support in{
ξ ∈ Rd : 1

2 � |ξ| � 2
}

and which satisfies∑
k∈Z

φ̂
(
2−kξ

)
= 1 for ξ ∈ Rd \ {0}.

Define the sequence (ϕk)k�0 in S
(
Rd
)

by

ϕ̂k(ξ) = φ̂
(
2−kξ

)
for k = 1, 2, . . . , and ϕ̂0(ξ) = 1 −

∑
k�1

ϕ̂k(ξ), ξ ∈ Rd.

For 1 � p, q � ∞ and s ∈ R the Besov space Bs
p,q

(
Rd;E

)
is defined as the space of all E-valued tempered

distributions f ∈ S ′(Rd;E
)

for which

‖f‖Bs
p,q(R

d;E) :=
∥∥∥(2ksϕk ∗ f)

k�0

∥∥∥
lq(Lp(Rd;E))

is finite. Endowed with this norm, Bs
p,q

(
Rd;E

)
is a Banach space, and up to an equivalent norm this space is

independent of the choice of the initial function φ. The sequence (ϕk ∗ f)k�0 is called the Littlewood–Paley
decomposition of f associated with the function φ.

The following continuous inclusions hold:

Bs
p,q1

(
Rd;E

)
↪→ Bs

p,q2

(
Rd;E

)
, Bs1

p,q

(
Rd;E

)
↪→ Bs2

p,q

(
Rd;E

)
for all s, s1, s2 ∈ R, p, q, q1, q2 ∈ [1,∞] with q1 � q2, s2 � s1. Also note that

B0
p,1

(
Rd;E

)
↪→ Lp

(
Rd;E

)
↪→ B0

p,∞
(
Rd;E

)
.

If 1 � p, q <∞, then Bs
p,q

(
Rd;E

)
contains the Schwartz space S

(
Rd;E

)
as a dense subspace.

In Section 3 we shall need the following lemma. For λ > 0 let fλ(x) := f(λx).
Lemma 1.2 Let p, q ∈ [1,∞] and let s ∈ R, s �= 0.
1. If s > 0, there exists a constant C > 0 such that for all λ = 2n, n � 1, and f ∈ Bs

p,q

(
Rd;E

)
we have

‖fλ‖Bs
p,q(Rd;E) � Cλs− d

p ‖f‖Bs
p,q(R

d;E).

2. If s < 0, there exists a constant C > 0 such that for all λ = 2n, n � −1, and f ∈ Bs
p,q

(
Rd;E

)
we have

‖fλ‖Bs
p,q(Rd;E) � Cλs− d

p ‖f‖Bs
p,q(R

d;E).

P r o o f. We only prove (1), the proof of (2) being similar. The proofs are patterned after [22, Proposition
3.4.1].

Let φ and ϕk, k = 0, 1, 2, . . . , be as in Subsection 1.2. Define, for m ∈ Z, the functions ψm by ψ̂m(ξ) :=
φ̂(2−mξ). Then ψm = ϕm for m = 1, 2, . . . and

(
ψ̂m

)
λ

= ψ̂m−n for m ∈ Z and λ = 2n, n ∈ Z. For s > 0 we
have (∑

k�0

2ksq‖ϕk ∗ fλ‖q
Lp(Rd;E)

) 1
q

= λ−
d
p

(∑
k�0

2ksq
∥∥F−1

(
(ϕ̂k)λf̂

)∥∥q

Lp(Rd;E)

) 1
q

� λ−
d
p

∥∥F−1
(
(ϕ̂0)λf̂

)∥∥
Lp(Rd;E)

+ λ−
d
p

(
n∑

k=1

2ksq
∥∥F−1

(
ψ̂k−nf̂

)∥∥q

Lp(Rd;E)

) 1
q

+ λs− d
p

(∑
l�1

2lsq
∥∥F−1

(
ψ̂lf̂

)∥∥q

Lp(Rd;E)

) 1
q

=: (I) + (II) + (III).
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Since ϕ̂0 = 1 on (0, 1] and (ϕ̂0)λ has support in (0, 2−n] ⊆ (0, 1
2

]
, by Young’s inequality we have∥∥F−1

(
(ϕ̂0)λf̂

)∥∥
Lp(Rd;E)

=
∥∥F−1

(
(ϕ̂0)λϕ̂0f̂

)‖Lp(Rd;E) � ‖ϕ0‖L1(Rd)‖ϕ0 ∗ f‖Lp(Rd;E).

Hence,

(I) � λ−
d
p ‖ϕ0‖L1(Rd)‖f‖Bs

p,p(Rd;E) � λs− d
p ‖ϕ0‖L1(Rd)‖f‖Bs

p,q(Rd;E).

To estimate (II) we note that for k = 1, . . . , n− 1 the functions ψ̂k−n have support in (0, 1]. Therefore,∥∥∥F−1
(
ψ̂k−nf̂

)
‖Lp(Rd;E) � ‖ψk−n‖L1(Rd)‖ϕ0 ∗ f‖Lp(Rd;E)

= ‖φ‖L1(Rd)‖ϕ0 ∗ f‖Lp(Rd;E).

Similarly, for k = n,∥∥F−1
((
ψ̂n

)
λ
f̂
)∥∥

Lp(Rd;E)
� ‖φ‖L1(Rd)

(‖ϕ0 ∗ f‖Lp(Rd;E) + ‖ϕ1 ∗ f‖Lp(Rd;E)

)
.

Summing these terms and using that s > 0 we obtain

(II) � Cs,qλ
s− d

p ‖ϕ‖L1(Rd)‖f‖Bs
p,q(Rd;E)

with a constant Cq,s depending only of q and s. Obviously,

(III) � λs− d
p ‖f‖Bs

p,q(Rd;E).

By putting these estimates together the desired inequality follows.

1.3 γ-Radonifying operators

For a finite rank operatorR : H → E of the form

Rh =
N∑

n=1

[h, hn]H xn (1.1)

with h1, . . . , hN orthonormal in H , we define

‖R‖2
γ(H,E) := E

∥∥∥∥∥
N∑

n=1

γnRhn

∥∥∥∥∥
2

.

Note that ‖R‖γ(H,E) does not depend on the particular representation of R as in (1.1). The completion of the
space of finite rank operators with respect to the norm ‖ · ‖γ(H,E) defines a two-sided operator ideal γ(H,E) in
L (H,E). IfH is separable, an operatorR ∈ L (H,E) belongs to γ(H,E) if and only if for some (equivalently,
for every) orthonormal basis (hn)n�1 of H the Gaussian sum

∑
n�1 γnRhn converges in L2(Ω;E), in which

case we have

‖R‖2
γ(H,E) = E

∥∥∥∥∥∑
n�1

γnRhn

∥∥∥∥∥
2

.

We refer to [5, Chapter 12] for more information.
The following elementary convergence result, cf. [15, Proposition 2.4], will be useful. If the T1, T2, . . . ∈

L (H) and T ∈ L (H) satisfy supn�1 ‖Tn‖ < ∞ and limn→∞ T ∗h = T ∗
nh for all h ∈ H , then for all

R ∈ γ(H,E) we have

lim
n→∞ ‖R ◦ Tn −R ◦ T ‖γ(H,E) = 0. (1.2)
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If H1 and H2 are Hilbert spaces, then every bounded operator T : H1 → H2 induces a bounded operator
T̃ : γ(H1, E) → γ(H2, E) by the formula

T̃R := R ◦ T ∗

and we have∥∥T̃∥∥
L (γ(H1,E),γ(H2,E))

� ‖T ‖L (H1,H2). (1.3)

This extension procedure is introduced in [11] and will be useful below.
If (S,Σ, µ) is a σ-finite measure space, we denote by γ(S;E) the vector space of all strongly µ-measurable

functions f : S → E for which 〈f, x∗〉 belongs to L2(S) for all x∗ ∈ E∗ and the associated Pettis operator
If : L2(S) → E,

Ifg =
∫

S

fg dµ

belongs to γ(L2(S), E). We identify functions defining the same operator. An easy approximation argument
shows that the simple functions in γ(S;E) form a dense subspace of γ(L2(S), E). We shall write

‖f‖γ(S;E) := ‖If‖γ(L2(S),E).

2 Embedding results for Rd

The proof of Theorem 1.1 is based on two lemmas.

Lemma 2.1 1. Let E have type p ∈ [1, 2]. If f ∈ S
(
Rd;E

)
satisfies supp f̂ ⊆ [−π, π]d, then f ∈ γ

(
Rd;E

)
and

‖f‖γ(Rd;E) � T γ
p (E)‖f‖Lp(Rd;E),

where T γ
p (E) denotes the Gaussian type p constant of E.

2. Let E have cotype q ∈ [2,∞]. If f ∈ S
(
Rd;E

)
satisfies supp f̂ ⊆ [−π, π]d, then

‖f‖γ(Rd;E) � Cγ
q (E)−1‖f‖Lq(Rd;E),

where Cγ
q (E) denotes the Gaussian cotype q constant of E.

P r o o f. Let Q := [−π, π]d. We consider the functions hn(x) = (2π)−d/2ein·x with n ∈ Zd, x ∈ Q, which
define an orthonormal basis for L2(Q).

(1) Define the bounded operators If : L2
(
Rd
)→ E and I

�f : L2
(
Rd
)→ E by

Ifg :=
∫

Rd

f(x)g(x) dx, I
�fg :=

∫
Rd

f̂(x)g(x) dx.

In the case when E is a real Banach space we consider its complexification in the second definition. By the
assumption on the support of f̂ we may identify I

�f with a bounded operator from L2(Q) to E of the same norm.

Since I
�fhn = f(n), for any finite subset F ⊆ Zd we have⎛⎝E

∥∥∥∥∥∑
n∈F

γnI�fhn

∥∥∥∥∥
2
⎞⎠

1
2

=

⎛⎝E

∥∥∥∥∥∑
n∈F

γnf(n)

∥∥∥∥∥
2
⎞⎠

1
2

� T γ
p (E)

(∑
n∈F

‖f(n)‖p

) 1
p

.

It follows that I
�f ∈ γ

(
L2(Q), E

)
. By the identification made above it follows that I

�f ∈ γ
(
L2(R), E

)
and

∥∥I
�f

∥∥
γ(L2(Rd),E)

=
∥∥I

�f

∥∥
γ(L2(Q),E)

� T γ
p (E)

( ∑
n∈Zd

‖f(n)‖p

) 1
p

.
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From (1.3) it follows that

‖f‖γ(Rd;E) =
∥∥If∥∥γ(L2(Rd),E)

=
∥∥I

�f

∥∥
γ(L2(Rd),E)

� T γ
p (E)

( ∑
n∈Zd

‖f(n)‖p

) 1
p

.

For t ∈ R := [0, 1]d put ft(s) = f(s+ t). Then supp f̂t ⊆ Q and

‖f‖γ(Rd;E) = ‖ft‖γ(Rd;E) � T γ
p (E)

( ∑
n∈Zd

‖ft(n)‖p

) 1
p

.

By raising both sides to the power p and integrating over R we obtain

‖f‖γ(Rd;E) � T γ
p (E)

(∫
R

∑
n∈Zd

‖ft(n)‖p dt

) 1
p

= T γ
p (E)

(∫
Rd

‖f(s)‖p ds

) 1
p

.

(2) This is proved similarly. Note that by part (1) (with p = 1) we have f ∈ γ
(
Rd;E

)
.

Let (S,Σ, µ) be a measure space. For a bounded operator R : L2(S) → E and a set S0 ∈ Σ we define
R|S0 : L2(S) → E by

R|S0g := R(1S0g).

Note that if R ∈ γ
(
L2(S), E

)
, then R|S0 ∈ γ

(
L2(S), E

)
and

‖R|S0‖γ(L2(S),E) � ‖R‖γ(L2(S),E)

by the operator ideal property of γ(L2(S), E).
In the following lemma we use the well known fact that if E has type p (cotype q), then the same is true for

the space L2(Ω;E) and we have

Tp

(
L2(Ω;E)

)
= Tp(E), Cq

(
L2(Ω;E)

)
= Cq(E).

Lemma 2.2 Let (S,Σ, µ) be a measure space and let (Sj)j�1 ⊆ Σ be a partition of S.
1. Let E have type p ∈ [1, 2]. Then for all R ∈ γ

(
L2(S), E

)
we have

‖R‖γ(L2(S),E) � Tp(E)

(∑
j�1

∥∥R|Sj

∥∥p

γ(L2(S),E)

) 1
p

.

2. Let E have cotype q ∈ [2,∞]. Then for all R ∈ γ
(
L2(S), E

)
we have

‖R‖γ(L2(S),E) � Cq(E)−1

(∑
j�1

∥∥R|Sj

∥∥q

γ(L2(S),E)

) 1
q

.

P r o o f. (1) We may assume that µ(Sj) > 0 for all j. Fixing R, we may also assume that Σ is countably
generated. As a result, L2(S) is separable and we may choose an orthonormal basis (hjk)j,k�1 for L2(S) in
such a way that for each j the sequence (hjk)k�1 is an orthonormal basis for L2(Sj). Let (γjk)j,k�1 and (r′j)j�1

be a doubly-indexed Gaussian sequence and a Rademacher sequence on probability spaces (Ω,P) and (Ω′,P′),
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respectively. By a standard randomization argument,

‖R‖γ(L2(S),E) =

⎛⎝E

∥∥∥∥∥ ∑
j,k�1

γjkRhjk

∥∥∥∥∥
2
⎞⎠

1
2

=

⎛⎝E

∥∥∥∥∥ ∑
j,k�1

γjkR|Sjhjk

∥∥∥∥∥
2
⎞⎠ 1

2

=

⎛⎝E′
∥∥∥∥∥∑

j�1

r′j
∑
k�1

γjkR|Sjhjk

∥∥∥∥∥
2

L2(Ω;E)

⎞⎠
1
2

� Tp

(
L2(Ω;E)

)⎛⎝∑
j�1

∥∥∥∥∥∑
k�1

γjkR|Sjhjk

∥∥∥∥∥
p

L2(Ω;E)

⎞⎠ 1
p

= Tp(E)

⎛⎝∑
j�1

‖R|Sj‖p
γ(L2(S),E)

⎞⎠
1
p

.

(2) This is proved similarly.

We are now prepared for the proof of Theorem 1.1. Recall that the Schwartz functions φ and ϕk , k � 1, has
been defined in Subsection 1.2.

Proof of Theorem 1.1. (1) First we prove the “only if” part and assume thatE has type p. Let f ∈ S
(
Rd;E

)
and let fk := ϕk ∗ f . Putting gk(x) := fk

(
2−kx

)
we have gk ∈ S

(
Rd;E

)
and

supp ĝk ⊆ {ξ ∈ Rd : |ξ| � 2
} ⊆ [−π, π]d.

Hence from Lemma 2.1 we obtain fk ∈ γ
(
Rd;E

)
and

‖fk‖γ(Rd;E) = 2−kd/2‖gk‖γ(Rd;E) � 2−kd/2T γ
p (E)‖gk‖Lp(Rd;E) = 2

kd
p − kd

2 T γ
p (E)‖fk‖Lp(Rd;E).

By using Lemma 2.2, applied to the decompositions (S2k)k∈Z and (S2k+1)k∈Z of Rd \ {0}, we obtain, for all
n � m � 0, ∥∥∥∥∥

2n∑
k=2m

fk

∥∥∥∥∥
γ(Rd;E)

� T γ
p (E)Tp(E)

(
n∑

j=m

2( 2jd
p − 2jd

2 )p‖f2j‖p
Lp(Rd;E)

) 1
p

+ T γ
p (E)Tp(E)

(
n−1∑
j=m

2( (2j+1)d
p − (2j+1)d

2 )p‖f2j+1‖p
Lp(Rd;E)

) 1
p

.

Estimating sums of the form
∑2n+1

k=2m,
∑2n

k=2m+1, and
∑2n+1

k=2m+1 in a similar way, it follows that f ∈ γ
(
Rd;E

)
and

‖f‖γ(Rd;E) � 2T γ
p (E)Tp(E)‖f‖

B
( 1

p
− 1

2 )d

p,p (Rd;E)

.

Since S
(
Rd;E

)
is dense inB

( 1
p− 1

2 )d
p,p

(
Rd;E

)
it follows that the mapping f �→ If extends to a bounded operator

I from B
( 1

p− 1
2 )d

p,p

(
Rd;E

)
into γ

(
Rd;E

)
of norm ‖I‖ � 2T γ

p (E)Tp(E). The simple proof that I is injective is
left to the reader.
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Next we prove the “if” part. For n � 1, let ψn ∈ S
(
Rd
)

be defined as

ψ̂n(ξ) = c2−nd/2φ̂(2−nξ),

where c := ‖φ‖−1
L2(Rd)

. Then (ψ3n)n�1 is an orthonormal system in L2
(
Rd
)
. For any finite sequence (xn)N

n=1 in

E we then have, with f :=
∑N

n=1 ψ3n ⊗ xn,

‖f‖2
γ(Rd;E) = E

∥∥∥∥∥
N∑

n=1

γnxn

∥∥∥∥∥
2

.

Notice that for k � 1,

‖ϕk ∗ ϕk‖Lp(Rd) = 2kd− 1
p kd‖φ ∗ φ‖Lp(Rd)

and

‖ϕk+1 ∗ ϕk‖Lp(Rd) = 2kd− 1
p kd‖ϕ1 ∗ φ‖Lp(Rd).

Therefore, for n = 1, . . . , N ,

‖ϕ3n ∗ f‖Lp(Rd;E) = c 2−
3
2 nd‖ϕ3n ∗ ϕ3n‖Lp(Rd)‖xn‖ = c 2( 1

2− 1
p )3nd‖φ ∗ φ‖Lp(Rd)‖xn‖

and similarly,

‖ϕ3n−1 ∗ f‖Lp(Rd;E) = c 2( 1
2− 1

p)3nd−(1− 1
p )d‖ϕ1 ∗ φ‖Lp(Rd)‖xn‖

and

‖ϕ3n+1 ∗ f‖Lp(Rd;E) = c 2( 1
2− 1

p)3nd‖ϕ1 ∗ φ‖Lp(Rd)‖xn‖.
Finally, for k � 3N + 2 we have ϕk ∗ f = 0. Summing up, it follows that there exists a constant C, depending
only on p, d and φ such that

‖f‖
B
( 1

p
− 1

2 )d

p,p (Rd;E)

� C

(
N∑

n=1

‖xn‖p

) 1
p

.

By putting things together we see that E has type p, with Gaussian type p constant T γ
p (E) � C ‖I‖, where

I : B
( 1

p− 1
2 )d

p,p

(
Rd;E

)
↪→ γ

(
Rd;E

)
is the embedding.

(2) This is proved similarly.

As a special case of Theorem 1.1, note that for every Banach space E we obtain continuous embeddings

B
1
2 d
1,1

(
Rd;E

)
↪→ γ

(
L2
(
Rd
)
, E
)
↪→ B

− 1
2 d

∞,∞
(
Rd;E

)
.

As is easily checked by going through the proofs, these embeddings are contractive.
Let Hα,p

(
Rd;E

)
, with α ∈ R and 1 � p <∞, denote the usual E-valued Lebesgue–Bessel potential spaces

[3, Section 6.2] and [21, Section 2.33]. In [10] the γ-Sobolev spaces γ
(
Hα,2

(
Rd
)
, E
)

are introduced and their
basic properties are studied. From Theorem 1.1 we obtain the following γ-analogue of the Sobolev embedding
theorem.

Corollary 2.3 1. If E has type p ∈ [1, 2], we have continuous embeddings

Hα,p
(
Rd;E

)
↪→ B

β+( 1
p− 1

2 )d
p,p

(
Rd;E

)
↪→ γ

(
H−β,2

(
Rd
)
, E
)

for all α, β ∈ R satisfying α > β +
(

1
p − 1

2

)
d.

2. If E has cotype q ∈ [2,∞], we have continuous embeddings

γ
(
H−β,2

(
Rd
)
, E
)
↪→ B

β+( 1
q − 1

2 )d
q,q

(
Rd;E

)
↪→ Hα,q

(
Rd;E

)
for all α, β ∈ R satisfying α < β +

(
1
q − 1

2

)
d.
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Remark 2.4 Taking q = ∞ in (2) we obtain the embedding γ
(
H−β,2

(
Rd
)
, E
)
↪→ B

β− d
2∞,∞
(
Rd;E

)
as a special

case. If β − d
2 is strictly positive and not an integer, the latter space can be identified, up to an equivalent norm,

with the Hölder space (BUC)β− d
2 (Rd;E) [1, Equation (5.8)] and we thus obtain a continuous embedding

γ
(
H−β,2

(
Rd
)
;E
)
↪→ (BUC)β− d

2
(
Rd;E

)
. (2.1)

P r o o f. The second embedding in (1) and the first embedding in (2) are immediate from Theorem 1.1 com-

bined with the fact that (I − ∆)−β/2 acts as an isomorphism from B
( 1

p− 1
2 )d

p,p

(
Rd;E

)
onto B

β+( 1
p− 1

2 )d
p,p

(
Rd;E

)
[1, Theorem 6.1] and from γ

(
L2
(
Rd
)
, E
)

onto γ
(
H−β,2

(
Rd
)
, E
)
. The first embedding in (1) and the second

embedding in (2) follow from the E-valued analogues of [3, Theorem 6.2.4].

Note that (2) can be combined with the classical Sobolev embedding theorem to yield an inclusion result
which is slightly weaker than (2.1).

If we combine Theorem 1.1 with the boundedness of the Fourier transform on γ
(
L2
(
Rd
)
;E
)

we obtain the
following result for the Fourier transform on Rd.

Corollary 2.5 Let E be a Banach space with type p ∈ [1, 2] and cotype q ∈ [2,∞]. Then the Fourier

transform is a bounded operator from B
( 1

p− 1
2 )d

p,p (Rd;E) into B
( 1

q − 1
2 )d

q,q

(
Rd;E

)
.

3 Embedding results for bounded domains

Let D be a nonempty bounded open domain in Rd. For 1 � p, q � ∞ and s ∈ R we define

Bs
p,q(D;E) =

{
f |D : f ∈ Bs

p,q

(
Rd;E

)}
.

This space is a Banach space endowed with the norm

‖g‖Bs
p,q(D;E) = inf

f |D=g
‖f‖Bs

p,q(Rd;E).

See [22, Section 3.2.2] (where the scalar case is considered) and [2].
In Theorem 3.2 below we shall obtain a version of Theorem 1.1 for bounded domains. We need the following

lemma, where for r > 0 we denote Br := {x ∈ E : ‖x‖ < r}.

Lemma 3.1 Let 1 � p, q � ∞ and let s ∈ R. There exists a constant C such that for every r � 1 and for all
f ∈ Bs

p,q

(
Rd;E

)
with supp(f) ⊆ Br,

‖f‖Bs
p,q(R

d;E) � C ‖f |B2r‖Bs
p,q(B2r ;E).

P r o o f. Choose ψ ∈ S
(
Rd
)

such that ψ ≡ 1 on B1 and ψ ≡ 0 outside B2.
Fix an integer k > max

{
s, d

p − s
}

.

Notice that for the 1
r -dilation ψ 1

r
(x) := ψ

(
1
rx
)

we have
∥∥ψ 1

r

∥∥
W k,∞(Rd)

� ‖ψ‖W k,∞(Rd). Choose g ∈
Bs

p,q

(
Rd;E

)
such that g ≡ f on B2r and

‖g‖Bs
p,q(R

d;E) � 2 ‖f |B2r‖Bs
p,q(B2r;E).

Then it follows from the vector-valued generalization of [22, Theorem 2.8.2] that

‖f‖Bs
p,q(R

d;E) =
∥∥ψ 1

r
f
∥∥

Bs
p,q(Rd;E)

=
∥∥ψ 1

r
g
∥∥

Bs
p,q(Rd;E)

� c ‖ψ‖W k,∞(Rd)‖g‖Bs
p,q(Rd;E) � C ‖f |B2r‖Bs

p,q(B2r ;E),

where C = 2c‖ψ‖W k,∞(Rd).
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Theorem 3.2 Let 1 � p � 2 � q � ∞ and let D ⊆ Rd be a nonempty bounded open domain.
1. E has type p if and only if we have a continuous embedding

B
( 1

p− 1
2 )d

p,p (D;E) ↪→ γ
(
L2(D), E

)
.

2. E has cotype q if and only if we have a continuous embedding

γ
(
L2(D), E

)
↪→ B

( 1
q− 1

2 )d
q,q (D;E).

In both cases, the norm of the embedding does not exceed the norm of the corresponding embedding with D
replaced by Rd.

Note again the special cases corresponding to p = 1 and q = ∞, which hold for arbitrary Banach spaces E.
Corollary 2.3 admits a version for bounded domains as well.

P r o o f. The “only if” parts in (1) and (2) and the final remark follow directly from the definition.
For the proofs of the “if” parts in (1) and (2), there is no loss of generality in assuming that 0 ∈ D. Let

Dn = 2nD and note that 1Dn → 1 point-wise. The idea is to “dilate” the embedding forD toDn and pass to the
limit n→ ∞ to obtain the corresponding embedding for Rd. ThatE has type p or cotype q is then a consequence
of Theorem 1.1.

(1): The result being trivial for p = 1 we shall assume that p ∈ (1, 2]. Fix a function f ∈ S
(
Rd;E

)
and

note that by Lemma 2.1 (applied with p = 1) that f ∈ γ
(
Rd;E

)
. Fix n � 1 arbitrary and put fn := f |Dn . Let

gn : D → E be defined by

gn(x) := fn(2nx), x ∈ D.

Then gn ∈ γ(D;E) and

‖gn‖γ(D;E) = 2−
1
2 nd‖fn‖γ(Dn;E).

Also, gn = g(n)
∣∣
D

, where g(n)(x) = f(2nx) for x ∈ Rd. By Lemma 1.2 there exists a constant C > 0,
independent of n, such that

‖gn‖
B
( 1

p
− 1

2 )d

p,p (D;E)

�
∥∥g(n)

∥∥
B
( 1

p
− 1

2 )d

p,p (Rd;E)

� C 2−
1
2 nd‖f‖

B
( 1

p
− 1

2 )d

p,p (Rd;E)

.

Denoting by I : B
( 1

p− 1
2 )d

p,p (D;E) ↪→ γ(D;E) the embedding, it follows that

‖fn‖γ(Dn;E) = 2
1
2 nd‖gn‖γ(D;E) � 2

1
2 nd‖I‖ ‖gn‖

B
( 1

p
− 1

2 )d

p,p (D;E)

� C ‖I‖ ‖f‖
B
( 1

p
− 1

2 )d

p,p (Rd;E)

.

Passing to the limit n→ ∞ we obtain, by virtue of (1.2),

‖f‖γ(Rd;E) � C ‖I‖ ‖f‖
B
( 1

p
− 1

2 )d

p,p (Rd;E)

.

An application of Theorem 1.1 finishes the proof.
(2): It suffices to consider the case q ∈ [2,∞). Fix f ∈ C∞

c

(
Rd;E

)
and let r � 1 be so large that supp(f) ⊆

Br. With the same arguments as in (1) one can show that

‖fn‖
B
( 1

q
− 1

2 )d

q,q (Dn;E)

� C ‖f‖γ(Rd;E),

where fn = f |Dn as before and C is a constant not depending on f and n. It follows from Lemma 3.1 that there
is a constant C ′, independent of f and r, such that

‖f‖
B
( 1

q
− 1

2 )d

q,q (Rd;E)

� C′ ∥∥f |B2r

∥∥
B
( 1

q
− 1

2 )d

q,q (B2r ;E)

.
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Choosing n so large that B2r ⊆ Dn, we may conclude that

‖f‖
B
( 1

q
− 1

2 )d

q,q (Rd;E)

� C′ ‖fn‖
B
( 1

q
− 1

2 )d

q,q (Dn;E)

� C′C ‖f‖γ(Rd;E).

Since C∞
c

(
Rd;E

)
is dense in γ

(
Rd;E

)
the result follows from Theorem 1.1.

It is an interesting fact that at least in dimension d = 1, the “if part” of Theorem 3.2 (1) can be improved as
follows.

Theorem 3.3 If p ∈ [1, 2) is such that we have a continuous embedding

B
1
p− 1

2
p,1 ((0, 1);E) ↪→ γ

(
L2(0, 1), E

)
,

then E has type p.

P r o o f. We may assume that p ∈ (1, 2).
First, for s > 0 we introduce an equivalent norm on Bs

p,q(R;E) which does not involve the Fourier transform
and can be handled quite easily from the computational point of view.

For h ∈ R and a function f : R → E we define the function T (h)f : R → E as the translate of f over h, i.e.,

(T (h)f)(t) := f(t+ h).

For f ∈ Lp(R;E) and t > 0 let

�p(f, t) := sup
|h|�t

‖T (h)f − f‖Lp(R;E).

Then

‖f‖∗Bs
p,q(R;E) := ‖f‖Lp(R;E) +

(∫ 1

0

(
t−s�p(f, t)

)q dt
t

) 1
q

(with the obvious modification for q = ∞) defines an equivalent norm on Bs
p,q(R;E) (see [18, Proposition 3.1]

or [20, Theorem 4.3.3]).
With these preliminaries out of the way we turn to the proof of the theorem. Since every Banach space has type

1 we may assume that p ∈ (1, 2). Let n � 1 and x0, . . . , xn−1 ∈ E be arbitrary and fixed. For j = 0, . . . , 2n−1,
let tj = j

2n . Define f : R → E as

f =
n−1∑
k=0

1(t2k,t2k+1]xk.

Then ‖f‖Lp(R;E) = (2n)−
1
p
(∑n−1

k=0 ‖xk‖p
) 1

p . Let 0 < t < (2n)−1 and take 0 < |h| � t. If h > 0, then

T (h)f − f =
n−1∑
k=0

(
1(t2k−h,t2k] − 1(t2k+1−h,t2k+1]

)
xk.

If h < 0, then

T (h)f − f =
n−1∑
k=0

(− 1(t2k,t2k+h] + 1(t2k+1,t2k+1+h]

)
xk.

In both cases we find that

‖T (h)f − f‖p
Lp(R;E) � 2 |h|

n−1∑
k=0

‖xk‖p � 2t
n−1∑
k=0

‖xk‖p.
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This shows that �p(f, t) � 2
1
p t

1
p
(∑n−1

k=0 ‖xk‖p
) 1

p for all 0 < t < (2n)−1. It follows that

∫ (2n)−1

0

t−
1
p + 1

2 �p(f, t)
dt

t
� 2

1
p

(
n−1∑
k=0

‖xk‖p

) 1
p ∫ (2n)−1

0

t
1
2
dt

t

= 2
1
p +1(2n)−

1
2

(
n−1∑
k=0

‖xk‖p

) 1
p

.

If t > (2n)−1, then �p(f, t) � 2‖f‖p = 2(2n)−
1
p
(∑n−1

k=0 ‖xk‖p
) 1

p . It follows that

∫ 1

(2n)−1
t−

1
p + 1

2 �p(f, t)
dt

t
� 2(2n)−

1
p

(
n−1∑
k=0

‖xk‖p

) 1
p ∫ 1

(2n)−1
t−

1
p + 1

2
dt

t

= 2(2n)−
1
p

(
n−1∑
k=0

‖xk‖p

) 1
p 1

1
p − 1

2

(
(2n)

1
p− 1

2 − 1
)

� 2(2n)−
1
2

1
1
p − 1

2

(
n−1∑
k=0

‖xk‖p

) 1
p

.

It follows that f ∈ B
1
p− 1

2
p,1 (R;E) and by restricting to (0, 1) we obtain

‖f‖
B

1
p
− 1

2
p,1 ((0,1);E)

� ‖f‖
B

1
p
− 1

2
p,1 (R;E)

� Cp(2n)−
1
2

(
n−1∑
k=0

‖xk‖p

) 1
p

,

where Cp depends only on p. On the other hand,

‖If‖γ(L2(0,1),E) = (2n)−
1
2

∥∥∥∥∥
n−1∑
k=0

γkxk

∥∥∥∥∥
L2(Ω;E)

.

From the boundedness of the embedding I : B
1
p− 1

2
p,1 ((0, 1);E) ↪→ γ

(
L2(0, 1), E

)
we conclude that

(2n)−
1
2

∥∥∥∥∥
n−1∑
k=0

γkxk

∥∥∥∥∥
L2(Ω;E)

� Cp(2n)−
1
2 ‖I‖

(
n−1∑
k=0

‖xk‖p

) 1
p

.

Hence E has type p, with Gaussian type p constant of at most Cp‖I‖.

Returning to Theorem 3.2, we note the following consequence:

Corollary 3.4 Let D ⊆ Rd be a nonempty bounded open domain with smooth boundary. Let p ∈ [1, 2] and
let α, β ∈ R satisfy α > β +

(
1
p − 1

2

)
d � 0. If E has type p, we have a continuous embedding

Cα(D;E) ↪→ γ
(
Hβ,2(D), E

)
.

P r o o f. For α > γ > β +
(

1
p − 1

2

)
d � 0 we have, cf. [2],

Cα(D;E) ↪→ Bγ
∞,∞(D;E) ↪→ B

β+( 1
p− 1

2 )d
p,p (D;E).

The result now follows from Theorem 3.2.

For dimension d = 1 we have the following converse:

www.mn-journal.com c© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



250 Kalton, van Neerven, Veraar, and Weis: Vector-valued Besov spaces and γ-radonifying operators

Theorem 3.5 Let E be a Banach space, let p ∈ (1, 2) and let α ∈ (
0, 1

p − 1
2

)
. If Cα([0, 1];E) ↪→

γ
(
L2(0, 1);E

)
, then E has type p.

In particular this shows that in the spaces E = lp and E = Lp(0, 1), with p ∈ [1, 2), for every α ∈ (0, 1
p − 1

2

)
there exist α-Hölder continuous functions which do not belong to γ

(
L2(0, 1), E

)
. Indeed, for such α we can find

p < p′ < 2 such that α ∈ (0, 1
p′ − 1

2

)
, but both lp and Lp(0, 1) fail type p′. A similar result holds for E = c0

and E = C([0, 1]) and α ∈ (0, 1
2

)
. This improves the examples in [19], where only measurable functions are

considered.

P r o o f. Assume for a contradiction that E is not of type p. We will show that this leads to a contradiction.
By the Maurey–Pisier theorem (see [13]), lp is finitely representable in E. Fix an integer n and let T : lpn → E
be such that for all x ∈ lpn

‖x‖lpn � ‖Tx‖ � 2‖x‖lpn .

Choose 1 < r <
(

1
2 p + αp

)−1
. Let c =

∑
i�1 i

−r and let t0 = 0, tk = c−1
∑k

i=1 i
−r for k � 1. Let (ek)n

k=1

be the standard basis of lpn and define gn : [0, 1] → lpn as

gn(t) =

⎧⎪⎨⎪⎩
(

1 − |2t− tk − tk−1|
tk − tk−1

)
ek, if t ∈ (tk−1, tk] for 1 � k � n,

0, otherwise.

We claim that gn is Hölder continuous of exponent α and

‖gn‖Cα([0,1];lpn) = sup
t∈[0,1]

‖gn(t)‖lpn + sup
0�s<t�1

‖g(t) − g(s)‖lpn

|t− s|α � 1 + 4(tn − tn−1)−α = 1 + 4cαnrα.

To show this we consider several cases. First of all ‖gn(t)‖lpn � 1 for all t ∈ [0, 1]. If t, s ∈ [tk−1, tk] for some
1 � k � n,

‖gn(t) − gn(s)‖lpn =
∣∣∣ |2t− tk − tk−1|

tk − tk−1
− |2s− tk − tk−1|

tk − tk−1

∣∣∣
� 2|t− s|
tk − tk−1

� 2|t− s|α
|tk − tk−1|α � 2|t− s|α

|tn − tn−1|α .

If s ∈ (tk−1, tk] and t ∈ (tk, tk+1] for some 1 � k � n − 1, then by the above estimate and the concavity of
x �→ xα,

‖gn(t) − gn(s)‖lpn � ‖gn(t) − gn(tk)‖lpn + ‖gn(tk) − gn(s)‖lpn

� 2|t− tk|α
|tn − tn−1|α +

2|tk − s|α
|tn − tn−1|α � 22−α|t− s|α

|tn − tn−1|α .

If s ∈ (tl−1, tl] and t ∈ (tk−1, tk] for l + 2 � k � n then

‖gn(t) − gn(s)‖lpn � 2 � 2(tk−1 − tl)α(tn − tn−1)−α � 2(t− s)α(tn − tn−1)−α.

For the other cases the estimate is obvious and we proved the claim. We have gn ∈ γ
(
L2(0, 1), lpn

)
and a standard

square function estimate (cf. [16, Example 7.3]) gives

∥∥Ign

∥∥p

γ(L2(0,1),lpn)
� Kp

p

n∑
k=1

(∫ tk

tk−1

(
1 − |2t− tk − tk−1|

tk − tk−1

)2

dt

) p
2

= Kp
p

n∑
k=1

(
tk − tk−1

2

∫ 1

−1

(1 − |s|)2 dt
) p

2

� 3−
p
2 c−

p
2Kp

p

2
2 − pr

(
(n+ 1)−

pr
2 +1 − 1

)
,
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where Kp is a constant depending only on p. Define fn : [0, 1] → E as fn := Tgn. Then fn is α-Hölder
continuous and Ifn ∈ γ

(
L2(0, 1), E

)
with

‖fn‖Cα([0,1],E) � 2‖gn‖Cα([0,1],lpn) � 2(1 + 4cαnrα)

and

‖Ifn‖p
γ(L2(0,1),E) � ‖Ign‖p

γ(L2(0,1),lpn)
� 3−

p
2 c−

p
2Kp

p

2
2 − pr

((n+ 1)−
pr
2 +1 − 1).

Since the inclusion operator I : Cα([0, 1];E) → γ
(
L2(0, 1), E

)
is bounded we conclude that

3−
1
2 c−

1
2Kp

2
1
p

(2 − pr)
1
p

(
(n+ 1)−

pr
2 +1 − 1

) 1
p � 2(1 + 4cαnrα).

Since we may take n arbitrary large, this implies − r
2 + 1

p � rα, so r �
(
αp + p

2

)−1
. But this contradicts the

choice of r, and the proof is complete.

After the completion of this paper, an improvement of Theorem 3.5 has been obtained in [14] where it is shown
that if p0 ∈ [1, 2) and Cα([0, 1];E) ↪→ γ

(
L2(0, 1), E

)
for α = 1

p0
− 1

2 , then E has type p for some p > p0.
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[18] A. Pełczyński and M. Wojciechowski, Molecular decompositions and embedding theorems for vector-valued Sobolev
spaces with gradient norm, Studia Math. 107, No. 1, 61–100 (1993).

[19] J. Rosiński and Z. Suchanecki, On the space of vector-valued functions integrable with respect to the white noise, Colloq.
Math. 43, No. 1, 183–201 (1980).

[20] H.-J. Schmeisser, Vector-valued Sobolev and Besov spaces, in: Seminar Analysis of the Karl-Weierstraß-Institute of
Mathematics 1985/86 (Berlin, 1985/86), Teubner-Texte zur Mathematik Bd. 96 (Teubner, Leipzig, 1987), pp. 4–44.

[21] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland Mathematical Library Vol. 18
(North-Holland Publishing Co., Amsterdam, 1978).

[22] H. Triebel, Theory of Function Spaces, Monographs in Mathematics Vol. 78 (Birkhäuser, Basel, 1983).

c© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com


