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Abstract. We consider the problem of complex interpolation of certain Hardy-type subspaces of
Kothe function spaces. For example, suppose that X, and X, are Kothe function spaces on the unit
circle T, and let Hy, and Hy, be the corresponding Hardy spaces. Under mild conditions on X, X,
we give a necessary and sufficient condition for the complex interpolation space [Hy,, Hx ], to coincide
with Hy, where X, = [X,, X ], We develop a very general framework for such results and our methods
apply to many more general situations including the vector-valued case.

1. Introduction

Let X be a Kothe function space on the circle T equipped with its usual Haar measure.
Consider the Hardy subspace Hy consisting of all fe€ X n N* where N* is the Smirnov
class or Hardy algebra. Provided X c L,,, (see Section 2 for the definition) this is a closed
subspace. Consider the following two problems:

(1) When is Hy complemented in X by the usual Riesz projection?
(2) If X,, X, are two such Kdthe function spaces when is it true that the complex
interpolation space X, = [X,, X,], satisfies Hy, = [Hy,, Hx,]s?

In the case of weighted L ,-spaces, a precise answer to (1) was given by MUCKENHAUPT
[26] in terms of the so-called A, -conditions. In the case p = 2, the Helson-Szeg6 theorem
[15] gives an alternative precise criterion; in the same direction COTLAR and SADOsKY [8],
[9] gave necessary and sufficient conditions for all weighted L,-spaces (see also [10]).
Subsequently, RUBIO DE FRANCIA extended the Cotlar-Sadosky methods to all 2-convex or
2-concave K éthe function spaces. In the case of L,-spaces (without weights) (2) is answered
by a well-known theorem of JONES [16], [17] (cf. recent proofs by Xu [34], MULLER [27]
and PiSiER [29]). For weighted L,-spaces (2) has recently been studied by CWIKEL,
McCartHY and WOLFF [11], and KisLiAKkov and Xu [20], [2]] (who also consider
vector-valued analogues). See also [33].
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In this paper we will develop a very general approach to question (2) by relating it to
(1). We will be able to answer (2) completely under some mild restrictions on the spaces.
In fact our approach uses very little specific information about Hardy spaces or properties
of analytic functions and we give our results in a rather general setting, which includes
abstract Hardy spaces generated by weak*-Dirchlet algebras and certain vector-valued
cases as studied by KisLiakov and Xu.

We limit our discussion in the introduction to the case of the circle. Let us say that a
Kéthe function space X is BMO-regular if and only if there exist constants (C, M) so that
given 0 < feX there exists g > f with ||gllx < M ||flx and |log glizno < C. A weighted
L,-space, L,(w)is BMO-regular if and only if log w e BMO. The concept of BMO-regularity
appears implicity first in the work of COTLAR and SADOSKY [9] and also in RUBIO DE FRANCIA
[30] in connection with the boundedness of the Hilbert transfrom (it should be noted that
in both cases the boundedness of the Hilbert transform is related to the BMO-regular of
a space derived from X, not of X itself). We show that a superreflexive space X is
BMO-regular if and only if the Riesz projection is bounded on an interpolation space
L5X'® for some 0 > 0 (cf. [18] for other conditions equivalent to this property for X).

If X, X, are super-reflexive and X,, X, X§, X} = L,,,, then we give a necessary and
sufficient condition for Hy, = [Hy,, Hy,], where 0 < 8 < 1 (in this case we say that the
Hardy algebra H = N* is interpolation stable at 8 for (X,, X,)). Consider first the case
when X, is BMO-regular; then it necessary and sufficient that X, is BMO-regularity. For
the general case the necessary and sufficient condition is obtained by “lifting” the direction
X, — X, tocreate a parallel direction L, — Z; the condition is then that Z is BMO-regular.
This is precisely explained in Section 5; let us remark that if X, = wX| is obtained by a
change of weight, then Z = w'2L, = L,(w™!) so that the condition is simply that
log w € BMOQ. Our result includes the results of the previous work of KisLiakov and Xu
[21] as special cases and extends, as we have explained, to a very general setting, thus giving
also vector-valued applications.

Let us also comment on the methods used. In Section 3 we discuss a very general
formulation of question (2); when does the operation of interpolation commute with taking
a particular subspace? Our main result is that if this happens, then under appropriate
conditions, one can extrapolate the boundedness of a projection onto the subspace. In
Section 4 we consider an arbitrary self-adjoint operator T on L,. We then discuss for which
Kéthe spaces X it is true that T is bounded on L}~°X® for some 6 > 0. If we assume that
T is bounded on some L, where p # 2, then this can answered in terms of the weighted
L,-spaces on which T is bounded. These results are of course closely related to the earlier
work of CotrLAar and Saposky [9], and RuBio DE Francia [30]; unlike [30] we do not
assume 2-convexity or 2-concavity but our conclusions are somewhat weaker.

We put these ideas together in Section 5, restricting our attention to “Hardy-type”
algebras, which we introduce as an abstraction of the Smirnov class; in this case our
operator T becomes the orthogonal projection onto H,. We are then able to relate the
results of Section 4 to the notion of BMO-regularity and prove our main results. We discuss
further applications in Section 6. At the end of Section 6, we improve the results of KiSLIAKOV
and Xu ([20], [21]) on interpolation of vector-valued Hardy spaces, by giving necessary and
sufficient conditions for such interpolation to be “stable” at least in the super-reflexive case.

Let us mention that we use some ideas from [18]; however we have tried to avoid using
differential techniques in order to keep our approach as simple as possible. We plan a
further paper showing how by using such techniques one can improve and extend these
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results. We do use freely however, the notion of an indicator function for a Kothe function
space as introduced and studied in [18].

We would like to thank MICHAEL CWIKEL, MARIO MILMAN and RICHARD ROCHBERG for
discussing this problem with us, and Cora SaDosky for some very helpful remarks. We
also thank QUANHUA XU for several important suggestions which we have incorporated.

2. Kathe function spaces

Let S be a Polish space and let u be a probability measure on S. Let Ly(u) denote, as
usual, the space of all equivalence classes of (complex) Borel functions on S with the topology
of convergence in measure.

We define a Kéthe quasinorm on L, to be a lower-semicontinuous functional f — | f|l
defined on L, with values in [0, o] such that:

(D Ifllx = 0ifand only if f =0 ae,

@ 1f1x < llgllx whenever |f] < |g] a.e.,

(3) There exists a constant C so that || + gllx < C(||fllx + llglix for f, g€ Lo,

(4) There exists u € L, so that u > 0 a.e. and |ujjx < o©.

Associated to the Ké6the quasi-norm we can associate a maximal quasi-Ko6the function
space X = {f:||fllx < oo}. X is then a quasi-Banach space under quasi-norm f — | f||x;
furthermore, By = {f: || fllx < 1} is closed in L, so that X has the Fatou property (cf.
[4]). We can also define a minimal quasi-Ko6the function space X, to be the closure of
L.~ X in X. In this paper, however, we will only deal with maximal spaces (i.e., spaces
with the Fatou property). If in (3) C = 1, then By is convex and X is an Banach space; in
this case we say that X is a (maximal) Kothe function space. Henceforward we will adopt
the convention that all spaces are maximal.

If X is a K&the function space and we Ly g with w > 0 a.e. we define the weighted
space wX by [ fll,x = Ifw™"llx. Thus wL,(w™?).

If X is a Kothe function space we will let X* denote its Kothe dual, ie., the maximal
Kothe function space induced by || || 5. where | flx = sup]'] fg| du. Tt is not difficult to

geBx
show that X'* is also a Ko6the function space. Of course, if X is reflexive as will usually be
the case, then X* is the Banach dual of X.

We recall that a quasi-Kothe function space X is p-convex where 0 < p < oo with

constant M if for every, fi, ..., f, € X we have that

n 1/p n 1/p
(.,; mv) < M(El ||fk||§) :

and g-concave (0 < g < o0) with constant M if for every f}, ..., f, € X,

n 1/q n
(5 va)" < ne (£ e

If X is p-convex and g-concave there is an equivalent quasi-norm so that the p-convexity
and g-concavity constants are both one. For convenience we will say that X is exactly
p-convex or g-concave if the associated constant of convexity or concavity is one. X is a
Kathe function space if and only it is 1-convex with constant one. A K&the function space
is super-reflexive if and only if it is p-convex and g-concave for some 1 < p < ¢ < 0.

X

X -
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For any Kothe function space X we define the quasi-Kothe function space X* by

Ifllxs = NIAY0% -

Then X*° is exactly 1/a-convex. If X, Y are two Kothe function spaces and 0 < &, f < o
we can define a quasi-K6the function space Z = X*Y? by setting

If1lz = inf {max (Iglx. [Aly)**?: 1f] = |gI* A’} .

Then Z isexactly 1/(« + f)-convex. It may also be shown easily that, since X, Y are assumed
maximal, there is always an optimal factorization |f] = |g|* |h[%.

We now describe a simple method of doing calculations with Koéthe function spaces
introduced in [18]. We will not need the full force of the results in [18] and thus we will try
to keep to description brief. Let us recall [18] that a semi-ideal .# is a subset of L, , so
that if 0 < f < ge # then f e #; # is strict if it contains a strictly positive function. For
a functional @ : # — R we define

44(/,8) = &(f) + 2(g) — &(f + 2).

We say that & is semilinear if:

() If fe# and « > O, then ®(af) = a®(f),

(2) There is a constant J so that for all f, g € # we have d4(f, g) < (I f1l; + lglo),

B IffeFand 0 < f < f with | £, = O, then lim &(f,) = 0.

If X is a Kothe function space we define £ to be the set of nonnegative functions f in
L, so that

sup { flog, |x|du < o

xeBx

and there exists x € By so that f log |x| is integrable. Then .#, is a strict semi-ideal.
On 4, we can define the indicator functional

@y = sup | flog|x|du.

xeBx

The indicator function @y is semilinear with § < log 2 (see [18], Proposition 4.2). In the
special case X = L; we obtain

S =LlogL and &, (f)=A(f)={flogfdu.
It then may be shown that for general X and f, g e #; n Llog L, we have
0 < 4,,(£,8) <44/ 8).

There is a converse to this result ([18]. Theorem 5.2). If @ is a semilinear map on a strict
semi-ideal # = Llog Lsothat 0 < 44(f, g) < 4,(f, g)forall £ g € £, then thereis a unique
Kothe function space X so that % o £ and ®(f) = &,(f) for fe F. Furthermore, X is
exactly p-convex and exactly g-concave if and only if

1 1
;AA(f,g)son(ﬁg)s ;AA(ﬁg) for figes.

It is also easy to see that if Z = X*Y?, then
D;(f) = aPx(f) + fPy(f) for feShn %.
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This enables us to use the indicator functions to calculate spaces. Let us give a simple
application which we will later; basically this is a simple generalization of PiSIER’s
extrapolation theorem [28] (cf. [18], Corollary 5.4).

Proposition 2.1. Suppose that X, Y are Kithe function spaces with Y super-reflexive. Then
there exists a super-reflexive Kothe function space Z and 0 < 0 < 1 so that Y = X'~°Z°
up to equivalence of norm.

Proof. For convenience, we do all calculations on a strict semi-ideal contained in
HnFHnLloglL.
1 1
We can assume that Y is exactly p-convex and g-concave where — + — =1 and
p q

1
2<qg< . Leta =2—.Wedeﬁne¢= &y + a(Py — Py). Then
q

AO = (1 + a)Awy - awa 2 aAA.
Similarly,
de<(l+0)(1 —20)4, < (1 —a)4,.
Thus we can apply Theorem 5.2 of [18] to find a space Z so that ¢, = @ and Z will be

1 1
2g-concave and r-convex where — + % =1 H
r q

Finally let us define L,,, to be the Orlicz space of all f € L, so that _|'logJr [f1dp < o0.
Then L,,, can be F-normed by

S - [log (1 +|f)dp.
We will especially concerned with the class of Kéthe function spaces & of all X so that
X, X*c L,

Lemma 2.2. If X is a Kéthe function space, then the following conditions are equivalent:
(1) XeZ.

Q) If f e X there existsge X withg > |f| and logge L,.

() Ife > 0 and f € X there exists g € X with

g2|flliglx <Ilflx +¢& and loggelL,.
4) L, = A

Proof. (1) = (4). We must show yse 4. If X c L, then it follows from the Closed
Graph Theorem that the inclusion is continuous and hence

sup [ flog, |x|du < oo

xeBx

On the other hand, by a theorem of LozaNovskli [25] (cf. [13], [25]) there exist nonnegative
x € By and x* € By. with xx* = ys.
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Thus

log |x| = log. |x| — log, |x*[e L, .

4)= (3).If fe X, then log, |f| € L,. However there exists h € By with log |hj € L;. Now
take g = max (|f], n|h]) for small enough #.

(3) = (2). Obvious.

(2) = (1). Clearly the conditions imply X < L;,,. Now suppose x* € X*, There exists
x € X withlog |x| € L,. Now xx* € L, so that | log [xx*| du < co. Hence | log |x*| du < oo,
ie,log, |x*|e L. Thus X* < L,,,, W

Remark. In doing calculations with indicator functions we can always restrict to a small
enough strict semi-ideal. Later in the paper for economy we will not mention the domains
of the indicators in question when doing algebraic manipulations. The reader may wish
simply to consider only spaces X € % and regard all indicator functions as defined on L, g.

3. Complex interpolation of subspaces

Let us describe a very general setting for complex-type interpolation. We recall that if X
is a topological vector space and D is an open subset of the complex plane, then a function
F:D — X is analytic if for each ae D there exists a neighborhood U of a and a power
series ), x,(z — a)'sothat F(z) = ¥ x,(z — a)"forz € U. We will consider a triple (D, X, %)
n=0

where D is an open subset of the complex plane conformally equivalent to the unit disk 4,
X is a complex topological vector space and # is subspace of the space ./ (D, X) of all
X-valued analytic functions on D equipped with a norm F — || F|| . such that:

l. If Fe #(D, X) and ¢ is any conformal mapping of D onto 4, then ¢F € # if and
only if Fe & and |¢F|, = ||Fl 5.

2. fzeDand xe X, then inf {|F| & : F(z) = x} = 0if and only if x = 0.

Under these assumptions, we define, for ze D, X, = {x: | x| x, < oo} where

Ixllx, = inf {|Flg:F(z) = x}.

We will call the spaces {X,:z € D} the interpolation field generated by {D, X, #}.
The following elementary lemma will be used repeatedly. If a, b € D we let d(a, b} = |o(b)|
where ¢ is any conformal map of D onto 4 with ¢(a) = 0. Thus if D = 4 we have
b — al
|1 — abl’

5(a, b) =
If D= &isthestrip¥ = {z:0 < Rz < 1}, then for 0 < 5,z < 1 we have
sin £|s —t

o(s, t) = .

N

sin — (s + ¢
2( )
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Lemma 3.1. Suppose that F, G € ¥ and that a € D. Suppose F(a) = G(a). Then
IF(z) — G(z)llx, < 6(a,2) |F — Gl 5.

Proof. Let ¢ be an conformal map of D onto 4 with ¢(a) = 0. Let H € # be defined
so that pH = F — G. Then ||[H|#< |F — G| & and |F(z) — G(2)llx, < l¢(2)| |H| 5. The
lemma follows. WM

Now suppose that V is a linear subspace of X. Let # (V) be the space of F € # such
that F(z) e V for every z € D. Let (V,) be the interpolation field generated by {D, Y, #(V)}.
We will say that V is interpolation stable at z € D if there is a constant C so that forve ¥,
we have ||v]|,, < Cllv|lx,. The least such constant C we denote by K(z) = K(z, V) where
K(z) = oo if V fails to be interpolation stable.

Theorem 3.2. Suppose that V is interpolation stable at some a € D; let K(a) = K. Then
V is interpolation stable at any z € D, with 3Ké(a,z) < 1, and K(z) < 4K(1 — 3Kd)™ . In
particular, the set of z € D so that V is interpolation stable at z is open.

Proop. Suppose d = d(a, z) < 1/(3K). Suppose ve V,; then for e > 0 we can pick
Fe#V) and Ge¥ so that F(z)=G(z)=v and |Fllg < (1 + ¢ |v|l,, while
[Gllg < (1 + &) |v|x,. Thus by Lemma 3.1,

IF(a) — G(@) Ix, < (1 + &) d(livllx, + lIvllv.)-
It follows that
[F@lx, < (1 +¢ 1 +9d)|vilx, + dloly,)-
Now pick H € # (V) so that H(a) = F(a) and
[Hlg < (1 + ) [F@lly, < (1 + &) K [F(a)|x,-
Then
Ivlly, < IF(@2) — H@)ly, + [H@E)y,
<O(IFls + (HlF) + 1H| 5
<IJ|Fls + (1 +9)(1+ &) K |F(a)lx,
<61+ K+ KO +8|v)y, + (1+8*1+eK|vlly,.
Since § < 1 and K > 1, we have that
lvlly, < 3Kd |vly, + 4K |vllx,

whence we conclude that

4K
lolly, < 1 = 3K9) lolx,

and so K(z) < 4K(1 — 3K8)"!. N
Theorem 3.3. Suppose that V, W are two subspaces of X which are both interpolation stable

at a. Suppose further that X, = V, @ W,. Then there exists n > 0 so that if é(a, z) < n then
X, =V, ®W,
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Proof. Let K = max (K(a, V), K(a, W)) and let M = max (| P|, ||@l) where P, Q are
the induced projections from X, onto V, and W,. We let n = 1/(300K2M). Suppose that
z € D satisfies § = 6(a, z) < 1.

First suppose that z is such that V, + W, fails to be dense in X,. Then there exists x € X,
so that ||x|ly, = 1 and ||x — (v + w)|lx, = 4 whenever ve V, and we W, Pick any Fe #
with F(z) = x and ||F|lg < 2. Then there exist Ge #(V) and He #(W) so that
|Gllg, IH|l# < 4KM and G(a) = PF(a), H(a) = QF(a). Then

3 < |F(2) — G(2) — H(2)|lx,
< (2 + 2(4KM))
< 10KMyp.
This contradiction immediately leads to the conclusion that V, + W, is dense in X,.

To complete the proof, suppose veV,, we W, satisfying [v + w|ly, = 1. Let
y = max (1, |[v|lx,, [wlx,). We will show that y < 8KM and this will complete the proof.
We choose F € # with |F|ls < 2 and F(z) = v + w. Notice that K(z, V), K(z, W) < 8K
by Theorem 3.2. We therefore pick Ge #(V), He F(W) so that |G|s < 10Ky and
|H| s < 10Ky, and G(z) = v, H(2) = w.

Now we have, by Lemma 3.1, |F(a) — G(a) — H(a)|y, < 30Kyé (where & = 4(a, z)) and
hence {|PF(a) — G(a){ly, < 30KMvé and |QF (a) — H(a)lly, < 30KMyd. However
IPF(a)llx, < M ||[F(a)llx, < 2M and so obtain an estimate

IG(a)llx, < 2M + 30KMyd)

with a similar estimate for ||H(a)|y,. Thus
1G@Iy, < 2KM + 30K>M3y5 < 2KM + 1?—0

and we can find E € # (V) with E(a) = G(a) and ||E| s < 3KM + 7. Now
lellx, < 1E@Ix, + 1E@) — G@)lIx,.
Thus
lolx, < (1 — ) Ells + & |Gl
< 3KM(1 + 8) + 1y + 10KyS
<4KM +4y.
With a similar estimate on w we obtain
? < BKM) + 1y
and so y < 8KM as promised. W

Let us now give a simple application. Obviously one special case of the above construction
is the usual Calderon method of complex interpolation. To be more precise, note that if
(X0, X ) is a Banach couple, then if we take D = &, X = X, + X, and & to be the space
of functions F € &/ (¥, X) so that F is bounded on & and extends continuously to the
closure of & so that F is X ;-continuous on the line Rz = jfor j = 0, 1 then the interpolation
field generated is given by X, = [X,, X 1], where 8§ = Rz.
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Now if X is a Banach space and 1 < p < oo, we consider the space L,(X) = L,(T, X) of
all Bochner measurable functions f: T — X so that

1/p

2n
R
11, = _I‘ IIf(e")II”E <.
0

2n
The subspace H ,(X) consists of all f € L,(X) so that J. f (e“)% = 0. It is well-known that
n
0

H,(X) is complemented in L,(X) by the vector-valued Riesz projection if and only if
1 < p < o and X is UMD-space (see [3], [4]).

Theorem 3.4, Suppose that (X,, X,) is a Banach couple. Suppose that for some 0 < 6 < |,
we have that [Xo, X ] is a UMD-space and [H,(X,), Hy(X,)ly = H3[Xo, X,]s. Then there
exists n > 0 so that if |¢ — 6] < n, then [X,, X ], is also UMD.

Remark. Brasco and Xu [2] show if X, and X, are UMD-spaces then
[H2(Xo), Hy(X )]y = Hy(X,) .

This results is therefore a converse to their result. They also present an example of PISIER
to show that (H,(X,), H,(X )]s need not coincide with H,(X,). We remark that in [18] we
construct an example where [ X, X,];,, = L, but X, is not UMD for any 0 + 4, thus giving
another counterexample.

Proof. We consider the Banach couple (L,(X,), L1(X,)). Let V be the subspace of
Ly(X,) + Ly(X,) © Ly(Xy + X,) of all f so that
:{" e fle) dt = 0
for n > 0. Let W be the space of all f so that
if e f(e")dt = 0

for n < 0. Our assumptions guarantee that ¥, W are interpolation stable at § and that
[L2(Xo), Ly(X )l = Ly([( X0, X1Jo = Vo @ W

By Theorem 3.3. we obtain a similar decomposition for |¢ — 6] < n which implies the
result.

Let us now discuss the case of Koéthe function spaces. Suppose that S is a Polish space
and that u is a probability measure on S. As in [18] we consider the class 4" * of all functions
F:A - L, of the form F(z) (s) = F,(z) where F, is in the Smirnov class N* for almost
everyse S. Then /" *(¥)istheclassofmaps F: & — Lowhere Fope A * withgp:D - &
any conformal mapping. If F e #* (&) we can extend Ftothelinesz = j+ it (j = 0,1)
so that F(j + it) = lim F(s + it) in L, for ae. t.

s—j
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Suppose that X, X, are Kothe function spaces (assumed maximal so that f — ||f]|x, is
lower-semi-continuous on L,). Consider the space # = £ (X,, X)ofall F ¢ 4+ (&) so that

IFlls = max {esssup [|F(j + i)lly,} < 0.
i=0,1

Then # generates an interpolation field X, for ze & so that X, = X7 °X® where 6§ = Rz.

Now suppose that Z is a separable Kéthe function space which contains both X, and X .

It is essentially shown in [18] that if Fe # (X, X,), then F:% — Z is analytic and

lim F(s + ity = F(j + it) in the space Z (so that we can work in Z in place of L); see

s=j

Lemma 2.2. of [18].

Now suppose that V is a linear subspace of L, so that for some separable K6the function
space Z o X,, X the space Vn Z is closed in Z. Then V; = V n X; is closed in X for
j = 0, 1. Furthermore, if F e # (X4, X,; V) = F(X,, X,) (V), then F has boundary values
in V; along the line z = j + it, — 0 < t < oco. The method of interpolation generated this
way is not precisely the complex method introduced by CALDERON, but we now make some
remarks which establish that under reasonable hypotheses we obtain the same result.

The usual interpolation spaces [V,, V,], are induced by considering the subspace
F(Xo, Xi;V)ofall F so that

(@) F is analytic into V, + V,,
(b) lim F(s + it) exist a.e. in V, + V,

(Ed]
and
(c) t = F(j + it) is Bochner measurable into ¥, for j = 0, 1.

In fact, only condition (c) is required; this is a consequence of the following lemma.

Lemma 35. If Ge F(Xo, X,; V), then Ge F (Xo, Xy; V) if and only if for each j the
map t - G(j + it) has essentially separable range in X;.

Proof. This is essentially proved in Lemma 2.2. of [18], although our assumptions are
a little less strict; we sketch the argument. Observe first that t — G(j + it) is Bochner
measurable into X; for each j. Let ¢:4 - % be a conformal mapping. Suppose
GeF(Xo, Xy;Lo). Then F=Gope#" and has Ls-boundary values F(e¥) for ae.
0<t<2n Then t - F(e") is Vo + V; and X, + X,-measurable. It is thus Bochner
integrable in both X = X, + X, and W =V, + V.

Now suppose that w e X* is strictly positive. It follows that

2x
; d
J J [F (") w(s) du(s) 9 .
2n
0 S

Then if Fi(z) = Y. a,(s) z" for |z| < 1 we observe that t - F(e)e N* n L, = H, for ae.
nz0

s. Hence of n > 0, we have, p-a.e,

2x

[«

t

FeMe ™ — = a,(s).

N
2

=]
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Similarly if n < 0 we have

2n
. . dt
j F,(e")c_"“ — =0.
2n

0

Hence we can also evaluate the Bochner integrals in L, (w)

2n
dt
F,(C")C_"" — =aq,
27

0

when n > 0 and

2n
dt

J‘ Fs(cit)c—lnt — =0
2n

0

when n < 0. These integrals have the same values in W and X and it thus follows
easily that F: 4 — W is analytic and has a.e. boundary values F(e"). This implies that
GE?:(XO’XI;V)' .

Remark: It follows that if X,, X, are separable Kothe function spaces (which are as
usual assumed to have the Fatou property), then [X,, X1, = X5 2X8 (cf. [5]).

Proposition 3.6. Suppose that X, X, are Kithe function spaces and that V is a linear
subspace of Ly so that V Z is closed in Z for some separable Kithe function space Z
containing X 5, X,. Suppose 0 < 6 < 1. Suppose that either

(a) X, and X, are both separable or
(b) X, = X57°X4 is reflexive.

Then V is interpolation stable at 8 for the interpolation method generated by % (X, X ;)
if an only if [V,, Vi]lg = V n Xy up to equivalence of norm.

Proof. It is immediately clear that [V,, V], = V n X, implies interpolation stability
of V. In the other direction consider first (a). In this case Lemma 3.5 implies that
F(Xp, X3 V)= F (X, Xy; V) and the conclusion is immediate.

Now consider (b); let ¥, be the space induced by the method % (X,, X;; V) and let
W = [V,, V], Let B be the closed unit ball of ¥, and let B’ be the closed unit ball of W.
Then B’ < B; it follows from the Open Mapping Theorem since both spaces are complete
that if we can show that B’ is dense in B then Wand Vj coincide. Suppose that B” is the
V,-closure of B'. Since V; is a closed subspace of X,, B” is weakly compact. If B” & B there
exist v € ¥ with||v|,, < 1 and v ¢ B”. Since B". Since B” is weakly compact in Z there exist
¢ € Z* so that |¢(v) > 1 but sup |p(w)| < 1. Let |¢(v)] + o> where ¢ > 1. Pick any

webB’

Fe # (X, X,; V) with |F|g < g and F(6) = ».
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Now for t > 0 let

T

6.l = - -[F(z + i de,
T
]

for z € &, where the integrals are computed in Z. It is clear that the boundary values of
G, are given by the same formula; hence t » G,(j + it) is continuous in X for j =0, 1.
Since clearly G, € # (X, X ,; V), Lemma 3.5 can be applied to give that G, € (X, X; V).
Hence ¢~ !G,(0) € B'. We conclude that |¢(G,(0))| < ¢ and letting t — O gives [¢p(v)] < o, 2
contradiction. W

In the situations when we will apply this result we will consider a closed subspace V of
L,,, and Kothe function spaces X,, X, €4%. The following lemma then shows that
Propositoin 3.6 can be used.

Lemma 3.7. If X € &, then there is a separable Kithe function Z > X with Z e .
Proof. Simply pick 0 < we X* withlogwe L, andlet Z = L, (w). W

4. Operators on Kothe function spaces

Now suppose that S is a Polish space and that g is a probabilty measure on S. We suppose
that T: L,(u) — L,(u) is a bounded self-adjoint operator with |T| < 1. Now suppose that
X is a Kothe function space on (S, u). We define

ITIx =sup {ITfllx:feL,n X, |flx < 1}.

If X is a separable Kothe function space (with the Fatou property), then L, n X is dense
in X and so T extends to a bounded operator T: X — X if and only if | T|y < co.
The following remarks are elementary.

Lemma 4.1. (1) For any separable Kothe function space X, we have | Ty = || T|x"
(2) If X, Y are separable Kothe function spaces and 0 < 0 < 1, then
ITIxeys-e < ITIGNTNF7°.

Proof. (1) is a trivial deduction from duality and the self-adjointness of T (the Banach
space adjoint of T is the complex conjugate of the Hilbert space adjoint of T).
(2) is immediate from complex interpolation. W

Let us now say that X is a T-direction (space) if there exists 0 < 8§ < 1 so that
I Tl xors-e < co. Note that if 0 < < 1, then the space X*L}~° is p-convex and g-concave
1 1 1-86
where — = 1 — — = ——— + 6. It is thus super-reflexive and hence separable. Clearly, by
p q
duality, X is a T-direction if and only if X* is a T-direction.
If we L, g(u) we will that w is a T-weight direction if there exists @ > 0 so that T is
bounded on L,(e**). Thus w is T-weight direction if and only if L,(e*) is a T-direction. The
space of all T-weight directions will be denoted by 2 = 2(T). We define

Iwllg = inf{t > 0: | T|l,(ms < €}
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By complex interpolation it is clear that |w| s < o0 if we 2.

Lemma 4.2. (1) The set {w. |w|g < 1} is a closed absolutely convex subset of Lg g.
(2) For any fe L, and we D such that f,wf € L, we have

ITwf) — wTfl, <elwlgfll..
In particular, |w| g = 0 if and only if TWf) = wT(f) whenever f,wf € L,.
Proof. Note that |w|s < 1 if and only if
[ITAP e dp < € [ |12 e dp

whenever fe L,(1 + ¢*) and ¢t > 1. It then follows from the Dominated Convergence
Theorem that |w| 5 < 1 if and only if

[ITfP e dp < e [|f>e* du

for feL,(1 + e¥).

Now suppose that w, is a sequence withw, » wa.e. and |w,|lg < 1.Letu = 1 + supe™.
Then if fe L,(u) we clearly have |Tf|.,v < €llfll,ew By a density argument this
estimate extends to L,(1 + €*). Hence |w|g < 1.

Convexity of the set {w : [|w|» < 1} follows from the fact that L, (u)® L,(v)' ~® = L,(u®" 79
Symmetry follows from the fact that L,(u)* = L,(u"1).

(2) Finally suppose |w|s < 1. Then for any real ~1 <t < 1 we have | Ty, w < €.

Suppose f,ge ﬂ L,(™). Then the maps z — e”f and z — e*¥g are entire L,-valued
nel

functions. It follows that the map @(z) = _|' T(e*f) e **g du is an entire function. However
ifz=x+iywith —1 <x <1,

(J‘ |T(esz)|2 erw dﬂ)llz (J‘ |e—zw|2 erw |g|2 d#)1/2
el fll gl
and so by Cauchy’s theorem, |¢’'(0)] < e ||f]|; llgll.- This implies that

f (Twf) = wTf)gdul <e|fl. lgl-

By varying g we see that T(wf) — wTf e L, and |[T(wf) — wTf|, <e|fll, whenever

fe [\ Ly(e™). A simple approximation argument completes the proof that this holds under
nel

the weaker hypothesis that f, wf e L,.

Clearly now if |w|; = O we obtain the conclusion that T(wf) = wTf under the same
hypotheses. Conversely if T(wf) = wTf for all f such that f, wf € L, it is easy to reverse
the argument to show that || T (e < 1 for all real t. W

IA

(2l

IA

Now if X is a Kothe function space, we will say that X satifies the T-weight condition
if there exist constants (C, M) so that if 0 < feBy, then there exists g > f with
lgly < M and |logg|e < C. We then say that X satisfies the T-weight condition with
constants (C, M).

Theorem 4.3. (1) Suppose that X, for j = 0, 1 are Kéthe function space with the T-weight
condition with constants (C, M)). Then if 0 < 68 < 1, X§7°XY has the T-weight condition
with constants (1 — 0) Cy + 6C,, M5 MY).
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(2) Suppose0 < 8 < 1. Then for any Kithe function space X, X has the T-weight condition
with constants (C, M) if and only X°(= L1 °X®) has the T-weight condition with constants
(6c, M9

Proof. (1) Suppose that X; satisfies the T-weight condition with constants (C; M)).
Suppose

0< feXy=X17°XY with |fly,<1.

We may factor f = f37°f7 where 0 < f;e By, for j=1,2. Then pick g;e X; with
0 < f;<g;and ||g;ly, < M; so that |logg,lg < C;. Then f < g = g4 %}, and clearly
lglx, < Mg™°M4 and flogglls < (1 = 6)Cy + 6C,.

Before proceeding we will need a technical lemma.
Lemma 4.4. Suppose that X is a Kiothe function space with the property that there exist

constants 0 <c <1, C,M so that if 0 < feX there exists a Borel set A< S, and
g = f,, such that:

W If = flx <clflx
) lglx < M {1l
() llogeglls < C.

Then X satisfies the T-weight condition with constants (C', M') where C' = max (1, C) and
Jor suitable M'.

Proof. Suppose f = f, € By. We inductively define Borel sets (4,)>.,, and sequences
(/215 (8adnz1 in X, so that for n > 1,

[fo-s = fac1Xal < cllfuzillxs

€n = fo-1Xa,
lgallx < M |l fo-illx
[log g.lle < C

Jo=Jo-1 = SomiXan-
Then, by construction, ||f,|ly < ¢" and f — f, = fxz, where B, = |J 4,. It follows that

k<n

f=maxf_,y,, < maxg,
nx1 nz1

Now for 0 < p < 1 we have

o0 i/p
I &0 l1x < (% leal?)s < M ( 5 c"’)
n=0
by p-convexity of X. Thus
1 82)"7llx < M1 — c?)™ 1.

Choose p = min (1,1/C), and let g = () g5)'"?. Then |logglls <1 and so that if
he L,(1 + g) then

[1Th? ghdp < € [ |k gr du.
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On adding we see that

JITh* g?du < €* [ |h> g”dp.

1
Thus |log gllg < —, and the result follows. W
p

Theorem 4.5. Suppose that X, is a Kothe function space satisfying the T-weight condition
and that X, is an arbitrary Kdthe function space. Suppose that for some 0 < ¢ < 1 the space
XL~*X* satisfies the T-weight condition. Then, for any 0 < 0 < 1, the space X}~ ° X9 satisfies
the T-weight condition. If X, is super-reflexive, then we also have that X, satisfies the T-weight
condition.

Proof. If0 < 8 < ¢ this follows immediately from Theorem 4.3 We therefore suppose
0< ¢ <8< 1 We will write X, = X}~ °X%. Suppose that X, satisfies the T-weight
condition with costants (Cy, M) and that X, satisfies the T-weight condition with constants
(Cy, M ). We will verify the condition of Lemma 4.4. for the space X,. Fix a contant L so
that L#°7¢ = 2MM,.

Suppose f= fo > 0 and | fllx, < 1. Then we can write f; = f§~°f% where f; > 0,
Ifilx, < 1 for j=0,1 Let fy = f57°f% so that | fllx, < 1. Then there exists g, > f,
with [g,lix, < M, and {log g,lls < C,.

We thus write g, = g~ %g? where g; > 0 and ||gl|lx, < M,. Then there exists hy > g,
with ||Agll < MM, and |log ho|lp < Co. Next we define

hy = holgeho')* where a=6/¢>1 and (0/0)=0.
Then
1-6,0

hy = 84»(84,’761)1_1 <8 8-
Thus ||hllx, < My Let b = Lh,. We note that |||y, < LM, and

llog Kllg = lilog hlls
= [l(1 — a)log hy + alog gylls
< (@ —1)Cq + oC,.
Let A = {s:f(s) < Lhy(s)} and let B = S\ A. Then
Srask and Nf = xalx, < Worslk,” -

Now if s € B we have

& > L @
f68) 848

- (&@)
ho(s) .

16 Math. Nachr,, Bd. 171
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Hence

B f¢(s) ~¢l0—¢
fo(s) = f¢(S) (m)

< L""/""”g,,(s) (id,_is;)-x
oS

1
< 3 Mg M, 'h(s).

We conclude that || foxsllx, < 4 and hence that [|f — fy,llx, < (%)% = ¢ < 1 say. Thus
the hypotheses of Lemma 4.4. are verified and X, has the T-weight condition.

For the last assertion, if X, is super-reflexive, we may suppose that there is a Kéthe
function space Y so that X, = X} *Y" for 0 < 1 < 1. The above argument then gives the
conclusion.

Let us draw a simple conclusion from Theorem 4.5.

Theorem 4.6. Suppose that X is g-concave for some q < oo and that &y = _Zl a;®y, where
j=
a; € Randeach X ; satisfies the T-weight condition. Then X satisfies the T-weight condition.

Proof. Since we may replace X by X* where 0 < « < 1 we consider only the case when
X is super-reflexive. It clearly also suffices to establish this theorem when n = 2. It follows
directly from Theorem 4.3 when a,,a, = 0. If a,, &, < 0, then — @y is convex so that &y
is linear when X = wL_ for some weight w which contradicts super-reflexivity. We may thus
suppose that a, and &, have opposite signs and by Theorem 4.3 we need only consider the
case a; = 1 and a;, < 0. Define Y; = X%/? and then let Y, be defined by Y, = X12x /4,
Then Y, is an interpolation space between X and X1/2X%/? and so is super-reflexive. By
Theorem 4.3, Y, satisfies the T-weight condition; but for an appropriate ¢ > 0 we have
Y3 ¢Y¢ = X1/2 which also satisfies the T-weight condition. Now by Theorem 4.5 we con-
clude that X'/? satisfies the T-weight condition and thus Theorem 4.3 completes the
proof. W

Lemmad.7. Let X be anexactly 2-convex Kéthe function space andlet Y = (X2)*. Then:
(1) If Y satisfies the T-weight condition with constants (1, M) then |T|y < oo.
(2) If IT|lx < 0, then Y satisfies the T-weight condition.

Proof. (1) Suppose f e L, nBy. Suppose 0 < ue Y with |lu|ly < 1. Then there exists
v > u so that ||v]|y < M and |logv|| < 1. Thus (cf. [30], Theorem A’),

JITN udp < e fIfPvdp < Me? |[1fP]x

and henced | Tf|ly< M2 ¢ | f|y.

(2) This follows from a result of RUBIO DE FRANCIA ([30], Theorem A’); in the case when
X is a weighted L,-space for p > 2 it was shown by COTLAR and SaDosKkY [9]. In fact by
Therorem A’ of [30] there is a constant M so that if 0 < u € By, there exists v > u with
1Ty < M and | o]y < 2 jlull,. Now by interpolation |logvly < log M and we are
done. W
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Lemma 4.8. Let X be an exactly 2-convex Kithe function space and let Y = (X?)*. Then
Y satisfies the T-weight condition if and only if X is a T-direction space.

Proof. Suppose that Y satisfies the T-weight condition with constants (C, M). Choose
6 > 0 so that 6C < 1. Consider the space Z = L}~ 9X% Then

1-6
¢z= %A + 0¢X

and so 2¢, + 0¢, = A so that Y? = (Z?)*. By applying Lemma 4.7, is bounded on Z.
Conversely, if X is a T-direction space there exists § > 0 so that ||T|; < oo where
Z = L)7%X% and so by Lemma 4.7, Y? satisfies the T-weight condition. Theorem 4.3
completes the proof. W
We are now finally able to state our main result of this section.

Theorem 4.9. Suppose that T: L, — L, is a self-adjoint operator with |T| < 1. Suppose
that L is a T-direction space (i.e., there exists p > 2 so that | T|,, < o). Then

(1) If X satisfies the T-weight condition, then X is a T-direction space.
) If X is g-concave for some q < 0, then X is a T-direction space if and only if X
satisfies the T-weight condition.

Remark. Note that L is always a T-weight space. In general our assumption that Tis
bounded at some L, where p > 2 is equivalent to the requirement that L, satisfies the
T-weigth condition by Lemma 4.8. This shown that the assumption is necessary for the
theorem to hold.

Proof. We assume that p > 2 and p' < 2 are conjugate indices so that
ITl, = IT|L, < oo.We first notice that L, much satisfy the T-weight condition. Indeed,

by Lemma 4.7, L, satisfies the T-weight conditions when i + 3 =1 and hence by
Theorem 4.3 L, satisfies the T-weight condition. r P

We will now prove (2) under the stronger hypothesis that X is super-reflexive.

We next show that, in general, if X is super-reflexive and satisfies the T-weight condition,
then X* also satisfies the T:weight condition. In fact, L, = X*/3(X*)"/? and so it follows
from Theorem 4.5 that X* has the T-weight condition.

We now proceed to the proof of the theorem. Assume first that X is super-reflexive and
satisfies the T-weight condition. We now may select 0 < a < 1 small enough so that (X*)*
has the T-weight condition with constants (1, M) for suitable M. Now by Lemma 4.7 T is
bounded on the space Z where

2¢Z=A—a¢x-, or ¢z=%(1_a)A+%a¢x.

Now 44, > 3 (1 — o) 4, so that Z has nontrivial concavity and is thus super-reflexive.
It follows that T is also bounded on any space Y = L. #Z* where 0 < f < 1. We select
B so that Y is an interpolation space between L, and X. In fact

¢y=((l—ﬂ)(l—i)+£(1—a))A+iaﬂ¢,
P 2 2

16*
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and the conclusion is obtained by choosing § so that

2(1—/3)(1—i>+ﬂ(1—a)+ia/3=1
p 2
or

1 - =
_ p
b= o 2
—+1-=-=
2 p
Now T is bounded at Y and so X is a T-direction space.

Now suppose, conversely, that X is a T-direction space. Then for suitable 8 > 0, T is
bounded at L; ~°X®. Interpolating with L, we see that Tis also bounded at any space Z where

1 —
¢z=( “+1(1—0))A+0a¢x
p 2

with 0 < a < 1. Notice that
1 - 1+86
A°zs( “+“(+)>AA,
p 2

and so by choosing o small enough we can suppose that Z is 2-convex. Let us put

&, =4+ ydy where 0< B,y and B+ y<i.

Thus Y satisfies the T-weight condition where ¢, = A4 — 2@,. We can now solve for @,
in form

1
¢x=2—y((1 — 24— &).

An applications of Theorem 4.6 now completes the proof for the case when X is
super-reflexive.

Now consider (1). If X satisfies the T>weight condition, then so does L}/2X /2 by Theorem
4.6 (or 4.5). This space is super-reflexive and so it is also a T-direction space; hence X is
T-direction space.

Finally we complete the proof of (2) when X is g-concave for some finite g and is a
T-direction space. Then Y = L}/2X"/? is a T-direction space and is super-reflexive; hence
it satisfies the T-weight condition. Since ¢y = 2&, — 4 A, we complete the proof by Theorem
46. B

5. Interpolation of Hardy spaces

We again consider a probability measure z on a Polish space S. Consider the Orlicz algebra
Ly, and let Z be the collection of all Kéthe function spaces X so that X, X* < Ly,
Consider a closed subalgebra H of L,,, (which is always assumed to contain the constants).
We define for every X € & the Hardy space Hy = H n X so that Hy is a closed subspace
of X. In particular, we define H, = L,» X when 1 < p < o0.
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We will say that H is of Dirichlet type if for every invertible f € L, there exists g€ H
which is invertible in H so that |g| = |f| a.e.; equivalently, H is a Dirichlet-type algebra if
for every real u € L, there exists an invertible g € H with [g| = ¢" a.e..

The simplest example of such a Dirichlet-type algebra is the Smirnov class N* (or Hardy
algebra) considered as a subalgebra of L,,,(T). In this way one generates the standard Hardy
spaces. More generally suppose that 4 is a subalgebra of L (S, u) so that f — [ fduisa
multiplicative linear functional and R4 is weak*-dense in L, 5. Thus 4 is a weak*-Dirichlet
algebra (cf. [1], [12], [14]). Let H be the closure of A in L,,;; then H has the Dirichlet property
and the standard abstract Hardy spaces are obtained. The reader may consult GAMELIN
[12] for details when A is generated by a Dirichlet algebra: see also BARBEY-KONIG [1].

Another example is obtained when one considers (T x S, A x u) and defines H to be the
space of all functions f{(t, s) so that f e L, and for ae. se S the function f,e N* where
£:(t) = f(t, 5). In this way we can treat vector-valued problems.

Notice that, in each case, one can always replace the measure u by a measure w du as long
as w, log we L,. This will not change L, or H but will alter the space H,. This change of
density allows one to study skew projections.

Lemma 5.1. Let H be any closed subalgebra of L. If f€ H, the ¢/ € H.

Proof. The series Z — converges in L,,, since it converges a.e. and
n!
n20

Z I‘f—l' = elfl € Llog' .

nz0 B

Lemma 5.2, Suppose that H is a Dirichlet-type algebra. Then if f € H and v e L, there is
a sequence g, € H so that |g,| < min (ne”, |f]) and g, — f in measure (and hence in L,,,).

Proof. First consider the subspace G of L, g x Ly g of all (1, v) so that e*®*® e H. It
is easy to check that G is closed. Hence by application of the Open Mapping Theorem if
lu,ll; — O there exist v, - 0 in L, so that e**"~ € H.

Now pick any he L, g with h > |f]. There exists an invertible y € H with |y| = €.
Now let

u, = h — min (h,v + logn).

Then |u,]; =0 and so there exist v, » 0 in measure so that ef@*®ecH Let
g, = we @ntiv £ and the result follows easily. W

Suppose that H is a closed subalgebra of L,,;. We define V' to the subspace of L,,, of all f
sothat [ fgdu = O wheneverge Hand fge L,. For X e & weset Vy = V n X. It is trivial
to see that if f eV and ge H, then fge V. We will V, for ¥, , when 1 < p < c0.

Lemma 5.3. Assume that H is a Dirichlet-type algebra.

(1) f €V if and only if there exists an invertible g € H so that fge L, and | fghdu =0
for evey he H,.

(2) V is a closed subspace of L,

) IfXeZ, then X " H,, is dense in H, and X 0V, is dense in Vy.
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Proof. (1) Supposey € Hand fy € L,. Then by Lemma 5.2 there exists y, € H so that
[, < min (n|g|,ly]) and 1wy, = in measure.

Then | fy, dp = 0 and the conclusion follows from Dominated Convergence.
(2) Suppose f, = f in L,,; where f, € V. By passing to a subsequence we can suppose
that F = sup |f)| € L,,;. Choose any invertible g € H so that |g| > F. Then

§fg 'hdu =0 forevery heH,.

Hence by (1), f e V.

(3) Suppose f € X; then (Lemma 2.2) there exists w > |f| with logwe L,. The there
exists an invertible g € H with |g| = w a.e. and by Lemma 5.2 a sequence g, € H, with
lg.l < |g| so that g, — g in measure. If f € H, then the sequence (fg~'g,) is in H, N X,
converges in measure to f and is lattice bounded by |f]. Hence it convergence also in X.
If f € Vwe use a similar argument on fg 'g,.

From now on, we suppose that H is a Dirichlet-type algebra. We define # to be the
orthogonal projetion of L, onto H,; it follows from the preceding lemma that the kernel
of # is V,. Further, if X € &, then % is bounded at X if and only if X = H, @ Vy. We will
say that H is a Hardy-type algebraif L, = H, @ V, for all 1 < p < oo. Note that all the
examples quoted are of Hardy type.

Ifwe L, gwewillsaythatwe BMOifwe H, + L and we define the BMO-norm by

Iwllgso = inf {lw — hll,:he H,}.

Let us note in passing that the infimum is attained. Indeed, if h,e H; is such that
Iw — Byl = IWllamo, then by KoMLos’s theorem [22), since (h,) is L,-bounded, we can
pass to a sequence of convex combinations (g,) of (h,) which converge a.e. to some g.
Howeveritis easily seen that [|g, — gll, - Owhen p < 1andsog e H since Hisclosed in L.

Proposition 5.4, Ifwe L,, then we BMO if and only if w is an R-weight direction. Further,
there is a constant C so that if we BMO then

C™! Wlismo < Iwlla@ < C IWligmo
Proof. First suppose we £ n L,. By Lemma 4.2, if f € V, then
RWNHI2 < eliwlla If12.

Now suppose f € V,, with wf € L,. Then for ¢ > 0 there exists an invertible g € H so that
lgl = If|*? + ¢ a.e. Then fg~'e V, and g € H,, and so

[fwdp=[gwfg ) du = [gRwfg~"dpu.
Hence we have

|§ fwdp| < elwls Ifg™ 12 ligl, -
Letting ¢ — 0 we obtain

”de#I <elwlslfl-
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Now by the Hahn-Banach theorem there exists yp € L, so that

lvlle <elwie
and
[fw —9)dp=0 for feV,n Ly(wp).

Now for any f € V, we can find, utilizing Lemma 5.2, with v = —(log, |f] + log, |w|), an
invertible g, € H so that

lgJd < min(,n|fj"'w™!) and g,—>1 ae

Then g,feV, N L,(w?) and by the Dominated Convergence Theorem we have
[fw —y)du=0.
It now follows, again from the Hahn-Banach theorem, that w — p € H, and hence that
IWlamo < € [Wlla.
Now conversely suppose w e BMO, with ||w| gy < 1. Let
Xo=L,e*™ and X, = L,(e” ™).

Then if X, = [X,, X,], we have X,,; = L,. We claim that H is interpolation stable at 1/2
and further, there is a universal constant C so that K&, H) < C. In fact, there exists he H
so that |w — k|, < 1. Suppose f € H,. Then we define a map F: % — H by

F(Z) — e—1+4z2 e(l—Zz)h f
It is clear that F is analytic into H and
J‘ |F(it)|z e 2w d[l = e—z—az’ J‘ |e2(1—2it)(h—w)| |f|2 d[l
=e* M8 113 < 2| 113,

while
[IF(L + it)? e~ du < €878 [|e2~1-2th=w) 7|2 4y

— Rr2
< et TR < e S5

It follows that H is interpolation stable at 1/2 with K(1/2, H) < e Now it follows from
Theorem 3.3. and its proof that L,(e*") = H,(€"") @ V,(e*") if |f] < C for some absolute
consant C. Thus we 2(#) and |wlla <C. W

We will now say that a Kothe function space X € 4 is BMO-regular (for H) if there are
constants (C, M) so that if 0 < f e X with | f||y< 1, then there exists g e X with g > f
lgllx < M and |log gllsmo< C.

Lemma 5.5. Suppose X € . Then X satisfies the &-weight condition if and only if X is
BMO-regular.

Proof. One direction is obvious. For the other, note that if X is the #-weight direction
then given f e X, with ||f||y = 1 there exists f* > fwith || f'||y fy < 2and log f'e L, by
Lemma 2.2. Thus if X satisfies the #-weight condition with constants (C, M) there exists
g > f'with ||g|ly < 2Mand |log gl < C.Butthenalsolog g e L, so that ||log gllguo < C'
for a suitable constant C'.
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Proposition 5.6. Let H be a Hardy-type algebra. If X € X is super-reflexive, then X is
BMO-regular if and only if X is an R-direction. In particular, each L, is BMO-regular.

Proof. This is simply Theorem 4.9. I

Theorem 5.7. Suppose that H is a Dirichlet-type algebra. Suppose that X o, X | € Z are both
BMO-regular and that 0 < 0 < 1. Let X, = X}7°XS. Suppose either that (a) both X4, X,
are separable or (b) X° is reflexive. Then H is interpolation stable at 0 for (Xo, X)), i.e.,
[me Hx.]o = on-

Proof. We suppose that, for j =0, 1, X; are BMO-regular with constants (C;, M)).
Suppose f € Hy, with | flx, = 1; then we can factor |f| = f§7°f% where 0 < f;, f; and
Ifilx; = Lfor j =0, 1. Pick f; > f;so that | f;|x, < M;and |log f}llz4e < C; Then pick
h;e H, so that |log f; — hl|,, < C; We consider the following function for z € &,
F(Z) = ¥’ ¢ elz =01 (hy ~ho) f

F is continuous into H and F(f) = f. Further if z = j + it where j = 0,1
|F(j + it) < =8¢ elli=oi+hhCosCn | oy

Hence F e #(X,, X,; H) (see Section 3). Thus we get an estimate
\FG + iy, < C,

where C' = C'(Cy, Cy, My, M, 6). We can now appeal to Proposition 3.6 to deduce that
If Ny bty g0 < € and this proves the theorem.

Remark. In the case when S = T and H = N* then the spaces L, satisfy the BMO-
condition. This is immediate from Proposition 5.6 but there is an amusing alternative
argument. It suffices to consider the case p = 2. The Hardy-Littlewood maximal function
# is bounded on L, (cf. [31]) and for any fe L, log.#fe BMO by a result of
COIFMAN-ROCHBERG [6] with an appropriate bound. Combining these facts shows that L,
and every L, satisfies the BMO-condition. Notice that this then implies an immediate proof

of a well-known theorem of P. JonEs [16}, [17] that [H,, H,]l, = H, where p = %)— Inter-
polation with H, when p < 1 can be handled in the same way.

To understand the picture for interpolation in general, we need two further lemmas.

Lemma 5.8. Suppose that Xq, X, €& are separable Kothe function spaces and that
0 < 0 < 1 is such that H is interpolation stable at 0 for (X, X,). Suppose that Y, Y, e ¥
are also separable Kithe function spaces so that for Kithe function space W we have Y; = X ;W
for j =0, 1. Then H is interpolation stable for (Y,, Y,).

Proof. As usual let X, = X} °X} and Y, = Y}7°YY. Suppose that K is the constant
of interpolation stability at 8 for (X, X,). Suppose f € Hy,, and | flly, = 1. Then we can
factorize

S =bw where |bly,=Iwlw=1.
Now pick

b > bl sothat logh'elL, and ||b'|y, <2.
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The there exists an invertible g € H with [g| = |b’| . Hence there exists
FeN (&) with F:¥->H
so that
F@) =g and(ae) [F(j+iflx, <2K.
Define
G:¥—-H by G@)=F@z)fg".
Itis easy to see that |G(j + itlly, < 2K (a.e)and G(0) = f. H is stable at 6 for (Y,, ¥;). W
Lemma 5.9. Suppose that X, X, € 4 are separable Kothe function spaces such that H is
interpolation stable at 8 for (X o, X ). Then V is also interpolation stable at 0.
Proof. Suppose fe X, = X3 7°X% and f € V with | f|lx, = 1. Pick any
f'eXy, sothat f' >I|f,1If'lx, <2 and log f'eL,.
Then pick g € H so that |g| = f'. There exists an F e 4 * (&) with F: % — H so that
F@)=g and |F(j+ i)ly, <2K
almost everywhere. Define
F(z) = F(z) and consider G(z) = fg ' F(z).
Then G is also admissible but has range in ¥, G(6) = fand ||G(j + it)|lx, < 2K ae.so V

is also interpolation stable at 6. W

Lemma 5.10. Suppose that X,, X, € & are separable Kothe function spaces so that H is
interpolation stable at some 0 < 0 < 1 for (Xo, X,). If R is bounded at Xo(= X5 °X%),
then there exists n > 0 so that R is also bounded on X, if |¢ — 0] < n.

Proof. This follows directly from Theorem 3.3. and Lemma 5.9. W

Remark. Let us note that this implies that if L, is BMO-regular then since H must be
interpolation-stable at 6 = 4 for (Lj/,, Ls), then # is bounded on L, for some p > 2. This
provides a weak converse to Proposition 5.6.

For the remainder of this section we require that H is of Hardy type, ie., the Riesz
projection is bounded on L, for 1 < p < 0.

Proposition 5.11. Suppose that H is of Hardy type and X € 4 is g-concave for some q < 0.
Then X is a R-direction space if and only if X is BMO-regular.

Proof. By Theorem 4.9 and Lemma 5.5. we obtain the result for super-reflexive X.
In the general case if X is BMO-regular, then so is L}/?X*/? and this must therefore be
a R-direction space, which implies that X is an #-direction space. Conversely, if X is an
AR-direction space, then LY2X/2 js BMO-regular. But then Theorem 4.6 implies that X/
is BMO-regular since it is super-reflexive. This in turn implies that X is BMO-regular. W
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To state our main theorem we introduce the idea of a BMO-direction. If Xy, X, € ¥ we
define a Kdthe function space Z by ¢, = 4 (4 + &, — ¥, ). We say that X, » X, isa
BMO-direction if Z is an ®-direction space. If either X is p-convex where p > 1 or X, is
g-concave where ¢ < 00, then Z has nontrivial concavity and so this is the same as requiring
that Z is BMO-regular. If, for example, both spaces are super-reflexive, and X, is already
BMO-regular, then X, » X, is a BMO-direction if and only if X, is BMO-regular; this
follows immediately from Theorems 4.6 and 4.9. On an intuitive level, X, - X, is a
BMO-direction if and only if the parallel complex interpolation scale through L, only
passes through BMO-regular spaces.

Theorem 5.12. Suppose that H is a Hardy-type algebra and that X,, X, € ¥ are super-
reflexive Kithe function spaces. Then, for any 0 < 6 < 1, H is interpolation stable at 0 for
(X, X,) ifand only if Xy - X, is a BMO-direction.

In particular, if X, is BMO-regular then H is interpolation stable at 0 for (X, X,) if and
only if X, is BMO-regular.

Proof. We may suppose that both X,, X, are p-convex and g-concave (with constant

one) where %+l I, and 1< p<g<o0. Let ¢= 2i Let X, = X} X} for
q q

0<t< L

We start with some remarks on the implications of H being of Hardy type. In this
situation we can apply Proposition 5.11: a super-reflexive X € & is BMO-regular if and
only if X is a #-direction space. Note that L, is BMO-regular and further that X is
BMO-regular if and only if X* is BMO-regular.

Let us first suppose that H is interpolation stable at 8. Now X, is p-convex; furthermore,
there is a Kothe function space W defined by

1
¢W=_A_¢Xe'
p

Now consider the quasi-Kéthe spaces Y, defined by

1
¢y¢ = ; + ¢X¢ bt ¢xe.

Clearly,

<|lp—04,.

AO __AA
Yo p

1 . . .
Henceif |¢p — 0 < e = % then Y, is a super-reflexive Kothe function space. We set
q

¢o=0—¢ and ¢, =0+¢.

Then L, = Y, = Y}/2Y}/2

Now H is mterpolatlon stable at § for (X,,, X,,) since it is also interpolation stable at
6 for (Xo, X,). By Lemma 5.8 H is interpolation stable at % also for (Y, ¥,,). However
Y42, Y2 = L, and & is by assumption bounded at L,
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By Lemma 5.10, we conclude that there exists n > 0 so that Y, = Hy, @ Vy, for
|¢ — 8] < 2n. In particular # is bounded on B = Y, ,,; hence B is BMO-regular. Now

1 1
Py = — A+ Py, — Bx) = <— _’T)A + ®;.
p p

Applying Theorem 4.6 gives that Z is BMO-regular.
Now we consider the converse; assume that Z is BMO-regular. We note that if
—& < 1 <1 + &, then there is a K&the function space X, defined by

¢X: = ¢Xo + T(¢X1 - ¢Xo)5

1 1
and further, each such space is p'-convex and 2g-concave where — + % =1
P q
We show first that if 0 < 7, < 1, then H is interpolation stable at all 0 < ¢ < 1 for

X 1,X 1 . . . "
[ L s 56] . To this end note that X, is g-concave and so there is a Kothe func-

tion space W defined by
¢W = ¢xw - %SA

Now we also have that Z* is BMO-regular. Hence both Y, = Z* and Y, = (Z*)" are
BMO-regular. Now H is interpolation stable at all 0 < ¢ < 1 for (¥, Y;) by Theorem 5.5.
But

Dy, =Le(d + (2 — 1) (Px, — Px))-

J
Hence

Bryt By = Or 46— Belr, — 00 = B, ().

Thus by Lemma 5.8, H is interpolation stable at all 0 < ¢ < 1 for (X W 1o X 15) .
T2 T

Now if I = [a, f] is a closed sub-interval of (—e¢, 1 + ¢) we will say that I is acceptable
if H is interpolation stable at all 0 < ¢ <1 for (x,, X ). Suppose that I, J are two acceptable
intervals which intersect in a non-trivial interval; then we claim that I U J is acceptable.
In fact, excluding the trivial cases when I < J or J < I we can suppose that I = [«,, 8]
and J = [a,, f,] where a; < a, < f; < f,. Then we have

Hxﬂ1 = [Hyx,,» Hxh],, where B, = (1 —o0)a, + of,
and similarly

Hy, = [me,Hxﬁl],, where o, = (1 —d)a, + da'f1.
By applying WOLFF’s theorem [32] we obtain

Hy, = [Hx,,Hxy), Where a, = (1 -o)a; + 0f,.

It then follows from the re-iteration theorem that we actually have that H is interpolation
stable at any 0 < ¢ < 1 for (X,,, X))

Now by simple induction we can obtain that [0, 1] is acceptable and this implies the
result. W
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Remarks. QuaNHUA XU has pointed out that it follows from Theorem 5.12 that if X, is
p-convex for some p > 1 and if H is interpolation stable at some 0 < 6 < 1, then X, » X,
is a BMO-direction. In fact, the proof of Theorem 5.12 essentially yields this fact since that
direction of the argument only uses that X, is r-convex, for some r > 1.

Theorem 5.13. Suppose that H is a Hardy-type algebra and that X o, X | € &. Suppose that
X, is p-convex for some p > 1 and is BMO-regular. Suppose that X is q-concave for some
g < . Then, for any 0 < 6 < 1, H s interpolation stable at 0 (i.e., [Hx, Hy ]y = Hy,)
where X, = X57°X%, if and only if X, is BMO-regular.

Proof. First note that every X, is super-reflexive and that Proposition 3.6 can be invoked
to show the equivalence of the parenthetical statement with interpolation stability. One
direction of the proof is simply Theorem 5.7. Conversely, if H is interpolation stable at
some 0 < 0 < 1, then we may pick 0 < t < 6 and H is interpolation stable at 1/2 for
(Xo_p Xg+,). Hence (Xy-, > Xy ,) is a BMO-direction. Thus if &; = 1 A4 + (P, — Dy,)
then Z is BMO-regular. Theorems 4.6 and 4.9 allow us to conclude that X, is BMO-
regular, W

Let us mention at this stage that, in the case of the standard Hardy spaces on T, pairs
Xo, X, for which X, —» X, is a BMO-direction, can be characterized neatly by using
extended indicators. As in [18] it is possible to extend the indicator &, to any complex
feL, with [fle £x n Llog L by setting ®x(f) = [ flog x dA where |f] = xx* is the

T

Lozanovskii factorization of |f}, i.., the unique pair x, x* > 0, so that supp x, x* = supp f
and ||x|y = 1, [|[x*||x« = ||f|l;- The extended @y is a quasilinear map with constant 4/e (see
Lemma 5.6 of [18]). The following theorem follows almost directly from Theorem 9.8 of
[18]. We will not give a formal proof here, as we plan a more detailed investigation in a
subsequent paper.

Theorem 5.14. Suppose that S = Tand H = N ™ is the Smirnov class. If X, X, € &, then
X, — X, is a BMO-direction if and only if there is a constant C so that for any f € H .

|Px,(f) — &x, N < C Sl

6. Skew projections

We now establish some results on “skew” projections. We suppose that H is a closed
subalgebra of L, of Hardy type (of course our principal example of interest is the Smirnov
class). If w > 0 a.e. and log we L, then we define #,, to be the orthogonal projecion of
the weighted Hilbert space L,(w) onto its subspace H n L,(w) = H,(w).

Theorem 6.1. Suppose that H is of Hardy-type. Suppose that X € X is super-reflexive and
that 0 < v,we L, satisfy logv,logwe L,. Then if R, R, are both bounded at X, then
log v — log we BMO.

Proof. Clearly by duality, #, is also bounded at v~ !X* and at L,(v). It then follows
easily that H is interpolation stable at any 0 < 6 < 1 for (L,(v), v~ *X*). By Theorem 5.9,
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Z, is BMO-regular where for 0 < fe L_, we have

D, (f) = 1 (A() = Prw(f) + Py-1x4)
= 3(A() + 204.(f) — _[flogvdl).

By similar reasoning, H is interpolation stable at any 0 < § < 1 for (L,(w), X) and hence
Z, is BMO-regular where

B,,(f) = 4 (A(f) + 285(f) + | f log wdi).
Thus Y = Z12Z3/? is BMO-regular. But
@y(f) = 1 4() + & | fllogw — log v) dy.
Hence L,((vw™!)!/*) is BMO-regular so that logv — logwe BMO. W

The following theorem is suggested by a result of COIFMAN-ROCHBERG [7] on bounded-
ness of skew projections on weighted L,-spaces. We observe that although we consider
more general Kothe spaces, our result is here restricted to projections on Hardy sub-
spaces; however, we plan to investigate more general results of this type in a forthcoming

paper.

Theorem 6.2. Suppose that H is of Hardy type. Suppose that X o, X | € & are super-reflexive
and that 0 < v,we L, with logwe L,. Suppose that %, R, are both bounded on X,.
If R, is also bounded on X, then there exists n > 0 so that R,, is bounded on X}~°X9 for
O0<b<n

Proof. Since X, X, are super-reflexive, we may suppose that both are p-convex and

1 1 . . 1
g-concave where — + — =1,and 1 < p < g < 0. As in Theorem 5.12 ifg = % we can
p q q
define super-reflexive spaces X, for —e < 1 <1 + ¢
Since #, is a bounded on X, and X |, it is easy to see that H is interpolation stable for
any 0 < 6 < 1 and (X, X,). Thus X, - X, is a BMO-direction by Theorem 5.12 and so

for (X_, X,); the

also is X

- . €
— X,. Hence H is interpolation stable at 0 = T
o . . g
corresponding interpolation space is X,

Without loss of generality we can suppose that dv = w d4 is a probability measure. Then
Lyy4(v) = Lyo4(4) and so we can consider H as a Dirichlet-type algebra on (S, v). It follows
from Lemma 5.10, since #,, is bounded on X, that there exists n > 0 so that &, is also
bounded on X, forall |16 <n. W

7. The vector-valued case

Finally let us point out an application to the vector-valued case. Let S be a Polish space
and u be a probability measure on S. Let X be a K&the function space on § and let Y be
a Kéthe function space on T. We denote by Y(X) the Ko6the function space on T x § with
measure Ax p given by | fllyx) = IFlly where F(t) = [ f(¢, *)llx-
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Lemma 7.1. Suppose X € X(S) and Y € Z(T). Then for 0 < fe L, (T xS) we have
Pyxy(f) = (F) + __! Dy(f)dA(r),

where F(t) = I f(t, s)du(s) and f,(s) = f(t, 5).
S
Proof. Let us suppose first that ||f|; = 1 and that f is a simple function of the form
f= Z cijJXB_"
j=1

Suppose that the Lozanovskii factorization of F for (Y, Y*) is given by F = GH. Then for
each t suppose that

ft, ) FO™ = u(t, s) v(t, 9)

is the Lozanovskii factorization for (X, X*). Then the Lozanovskii factorization for
(Y(X), Y(X)*) is given by f = gh where g(t, s) = G(t) u(t, s) and h(t, s) = H(t) v(t, s). Thus

Pynyf) = ! g 1t 5) (log G(t) + log uft, s)) du(s) dA(t)
= &(F) + 1_’: Dx(f) dA(r) .

For general f the measurability of the integrand and the same formula follows by a simple
continuity argument (cf. [18], Lemma 4.3). I}

If X is a super-reflexive Kothe funtion space in Z(S) and Y is a super-reflexive Kéthe
function space on T with Ye &' (T), then we set H,(X) to be the closed subspace of Y(X)
of all functions f(-,s)e N* for p-a.e. seS.

We will denote the Riesz projection on L,(T) by # and the vector-valued Riesz projection
on L,(T x S) by &. ’

We are in effect studying the Hardy-type algebra # consisting of all f € L,,,(T x S) with
f5=f(,s)e N* for ae. seS. For this algebra J#, consists of all fe L,(T xS) so that
f*e H (T) for a.e. s € S. The corresponding BMO-space we denote #.40.

In the vector-valued case we must consider the notion of UMD-spaces as introduced
and studied initially by BURKHOLDER [4]. In fact a result of BOURGAIN [3] implies that if
X € ¥(S) then X is a UM D-space if and only if the Riesz projection £ is bounded on L,(X).
This characterization will be all that require.

Now let us say that a Kéthe function space X € 2(S) is UMD-regular if for some
0 < 6 < 1 the space L3X'~%is a UMD-space. If X,,, X, are two K&the function spaces
on S we say that X, = X, is a UMD-direction if the space Z is UMD-regular where

¢Z = %A "'1'2'(¢x1 - ¢x°).
Proposition 7.2. If f € L,(T x S), then f € BM4 O if and only if f° € BMO for a.e. s € S with
[l gne = I/l guollc < 0.

Proof. If f e L, the map s — || f*| zmo is €asily seen to be measurable, and it is trivial
to check that || f|lgxe = Il | /*llzmoll - For the converse it is enough to note that the set K
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of (¢, y)in L,(T)x L,(T) such that ¢ € H, and |¢ — y|, < 1 is a Borel set. It follows by
standard selection theorems that there is a universally measurable map y — ¥ from

{vels;livlamo <1} to H, sothat |y — |, <1.

It follows easily that if f e L,(T x S) with | f*|g;o < 1 for ae. s, then there exists g € ),
with ||/ — gl < 1.

Proposition 7.3. Suppose that Y € Z(T) and X € Z(S).
(1) If # is bounded on Y(X), then R is bounded on Y.
(2) If # is bounded on Y, then & is bounded on Y(L,).

Proof. (1) Pick any fixed 0 + x € X and restrict A to the space Y([x]) where [x] is the
one-dimensional space Cx.

(2) It follows directly from KRIVINE's theorem ([23], [24]) that the operator (x,) = (%#x,)
is bounded on Y(¢,) which implis the result.

Proposition 7.4. Suppose that Y € Z'(T) is super-reflexive and that X is a super-reflexive
Kéthe function space on S with X € Z(S). Then the following conditions are equivalent:

(1) Y(X) is a R-direction space.

(2) Y is BMO(T)-regular and X is UM D-regular.

(3) There exist constants (C, M) so that if 0 < [ € Y(X) there exists g > fwith

Igllvey < M N f v and ess sup ||log g°'llgmo < C

where g°(t) = g(t, s) for s€ S.
4) Y(X) is BMO-regular.

Proof. Of course (3) just restates (4) and so the equivalence of (1), (3) and (4) is just
Proposition 5.11. Let us prove that (1) = (2). Since Y(X) is a #-direction space it follows
that there exists § > 0so that £ is bounded on Y,(X,)where Y, = L} °Y%and X, = L} °Xx®
Thus by _l_?roposition 7.3, & is bounded on Y, which implies that Y is BMO(T)-regular.
Further # is bounded on Y,(L,) so that this is a #.#0-regular space. Hence Y(L,) is a
BMO-regular space. We show that L,(X) is a B.# O-regular space. In fact, if 0 < fe L

D) =34F) + ! Dy(f) di

where F, f, are as in Lemma 7.1. Thus

D,000) = Pya(N) — Pruanlf) + Prouy(f)

whence L,(X) is #.# O-regular by Theorem 4.6. This implies that 2 is bounded at L,(X )
for some ¢ > 0, X, is UMD and so X is UMD-regular.

In the converse direction we show that (2) implies that Y(X) is #.4 0-regular. Indeed,
if Y is a BMO-regular space, then Proposition 7.3 implies that Y(L,) is 8.4 0-regular. If
X is UMD-regular, then L,(X) is a #.#0-regular space. As in the preceding argument we
can then use Theorem 4.6 to get that Y (X) is 8.4 0-regular. W

Theorem 7.5. Suppose that (X o, X ) are super-reflexive Kithe function spaces in Z(S) and
that (Y, Y,) are super-reflexive Kothe function spaces on T in Z (T). Suppose that 0 < 8 < 1
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andthat Yy = [Yo, V]pand X, = [Xo, X ]o. Then [Hy (X o), Hy,(X )l = Hy,(X,) if and only if
Y, — Y, is a BMO-direction and Xy — X, is a UM D-direction.

Proof. The necessary and sufficient condition of Theorem 5.12 is that Y,(X,) — Y;(X,)
is a #.# O-direction. This means by Lemma 7.1 that W(Z)is a #.# O-regular space where

Oy =1(A+ Py, — ) and D, =3 (A + Py, — Dy,).

The equivalence of this with the fact that W is BMO-regular and Z is UM D-regular is
proved in Proposition 7.4. Thus the theorem is immediate. W

Remark. The restriction that X, X, € #(S) can easily be removed. It is well-known
that for general Ko6the function spaces there exists weight functions w;, j = 0, 1, so that
L, c wiX; c L,. Then if wj(s, t) = ws),

{Hy,(Xo), Hy (X ]y = th) - W‘:[HYO(WOXO)’ Hy (w X )l
and this coincides with wo *WiHy (wi~? WiX,) and so on.

We may also given a non-super-reflexive version:

Theorem 7.6. Suppose that X is a Kéhte function space in Z(S) which is g-concave for
some q < oo. Suppose that (Y,, Y,) are BMO-regular Kithe function spaces on T in Z(T).
Suppose that Y, is p-convex where p > 1 and that Y, is q-concave. Suppose that 0 < 0 < |
and that Yy = (Y, Y]y and X4 = X®. Then [Hy (L), Hy,(X)le = Hy,(Xo) if and only if X
is UMD-regular.

Proof. In fact, the special properties of L, imply that Yy(L,) is B.#@-regular. Thus
from Theorem 5.12 we see that the conclusion holds if and only if Y, (X) is 8.4 O-regular.
This occurs if and only if the super-reflexive space Y1/2(X'/?) is #.4O-regular or, by
Proposition 7.4, if and only if X is UMD-regular. W

Let us finally relate our work to that of KisLiakov and Xu ([20], [21]). They introduce
a technical condition on a space L,(X,w) = w™'/PL (X) where w > 0 is a weight function
on T and consider when such spaces “admit sufficiently many analytic partitions of the
unity.” Let us say, without defining this concept precisely, that L,(X, w) has the KX-property.
They show that if X* is UMD for some a > 0 and log we BMO, then L (X, w) has the
KX-property. They also show that if X,, X; are both reflexive and L, (X,, wo) and
L, (X, w;) have the K X-property, then indeed # is interpolation stable for evey 0 < 0 < 1
for (L,(Xo, Wo), Ly (X, wy)).

Proposition 7.7. If X € Z(S) is super-reflexive and 1 < p < oo is such that L (X, w) has
the KX-property, X is UMD-regular and logwe BMO. In particular, if X* is UMD
for some o > 0, then X is UM D-regular.

Proof. As noted above, if L,(X,w) has the KX-property then »# is stable at any
0 < 0 < 1for (Ly(L,), L,(X,w)). Thus, by Theorem 7.5, X is UMD-regular and L,(w) is
BMO-regular which implies that log we BMO. B
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Note that the assumption X € '(S) can easily be removed by a change of weight. Thus
our results, at least for super-reflexive spaces, include those of KisL1akov and Xu; in fact, the
conclusion also holds for spaces X with nontrivial concavity by a minor modification.

We also note that UMD-regularity of a super-reflexive Kothe function space is actually
an isomorphic invariant; thus if X and Y are two such function spaces which are isomorphic
(but not necessarily as lattices), then it may be shown that X is UM D-regular if and only
if Y is UMD-regular. This can be done by methods of [19]. Let us conclude by remarking
that in [18] we construct a super-reflexive Kothe function space which is not UM D-regular.
However we do not know any example of a super-reflexive UM D-regular space which is
not already a UM D-space (although L, is UMD-regular and not UMD).
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