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Abstract. We consider the problem of complex interpolation of certain Hardy-type subspaces of 
Kothe function spaces. For example, suppose that X ,  and XI are Kothe function spaces on the unit 
circle T, and let Hxo and H x ,  be the corresponding Hardy spaces. Under mild conditions on X, .  XI 
we give a necessary and sufficient condition for the complex interpolation space [Hxo, If,,], to coincide 
with H,, where Xe = [X,, XIle We develop a very genera1 framework for such results and our methods 
apply to many more general situations including the vector-valued case. 

1. Introduction 

Let X be a Kothe function space on the circle T equipped with its usual Haar measure. 
Consider the Hardy subspace H, consisting of all f E X n N +  where N +  is the Smirnov 
class or Hardy algebra. Provided X c LlOg (see Section 2 for the definition) this is a closed 
subspace. Consider the following two problems: 

(1) When is H, complemented in X by the usual Riesz projection? 
(2) If X,, X, are two such Kothe function spaces when is it true that the complex 

interpolation space X B  = [X,,  X,], satisfies H,, = [H,,,, H,,],? 
In the case of weighted L,-spaces, a precise answer to (1) was given by MUCKENHAUPT 

[26] in terms of the so-called A,-conditions. In the case p = 2, the Helson-Szego theorem 
[15] gives an alternative precise criterion; in the same direction COTLAR and SADOSKY [8], 
[9] gave necessary and sutlicient conditions for all weighted L,-spaces (see also [lo]). 
Subsequently, RUBIO DE FRANCIA extended the Cotlar-Sadosky methods to all 2-convex or 
2-concave Kothe function spaces. In the case of L,-spaces (without weights) (2) is answered 
by a well-known theorem of JONES [16], [17] (cf. recent proofs by Xu [34], MULLER [27] 
and PISIER [29]). For weighted L,-spaces (2) has recently been studied by CWIKEL, 
MCCARTHY and WOLW [Ill, and KISLIAKOV and Xu [20], [21] (who also consider 
vector-valued analogues). See also [33]. 
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In this paper we will develop a very general approach to question (2) by relating it to 
(1). We will be able to answer (2) completely under some mild restrictions on the spaces. 
In fact our approach uses very little specific information about Hardy spaces or properties 
of analytic functions and we give our results in a rather general setting, which includes 
abstract Hardy spaces generated by weak*-Dirchlet algebras and certain vector-valued 
cases as studied by KISLIAKOV and Xu. 

We limit our discussion in the introduction to the case of the circle. Let us say that a 
Kothe function space X is BMO-regular if and only if there exist constants (C, M) so that 
given 0 I  EX there exists g 2 j’ with llgllx I M llfllx and IIlog gllBMo I C. A weighted 
L,-space, L,(w) is BMO-regular if and only if log w E BMO. The concept of BMO-regularity 
appears implicity first in the work of COTLAR and SADOSKY [9] and also in RUBIO DE FRANCIA 
[30] in connection with the boundedness of the Hilbert transfrom (it should be noted that 
in both cases the boundedness of the Hilbert transform is related to the BMO-regular of 
a space derived from X ,  not of X itself). We show that a superreflexive space X is 
BMO-regular if and only if the Riesz projection is bounded on an interpolation space 
LOX1 -0 

If X,, X1 are super-reflexive and X,, X,, Xg, Xy c Llog, then we give a necessary and 
sufficient condition for H,, = [Hxo,  HXJB where 0 < 8 < 1 (in this case we say that the 
Hardy algebra H = N +  is interpolation stable at 8 for (Xo, X,)). Consider first the case 
when X, is BMO-regular; then it necessary and sufficient that X, is BMO-regularity. For 
the general case the necessary and sufficient condition is obtained by “lifting” the direction 
X, + X, to create a parallel direction L, + Z; the condition is then that 2 is BMO-regular. 
This is precisely explained in Section 5 ;  let us remark that if X, = wXo is obtained by a 
change of weight, then Z = wl/’L, = L,(W-’) so that the condition is simply that 
log w E BMO. Our result includes the results of the previous work of KISLIAKOV and Xu 
[21] as special cases and extends, as we have explained, to a very general setting, thus giving 
also vector-valued applications. 

Let us also comment on the methods used. In Section 3 we discuss a very general 
formulation of question (2); when does the operation of interpolation commute with taking 
a particular subspace? Our main result is that if this happens, then under appropriate 
conditions, one can extrapolate the boundedness of a projection onto the subspace. In 
Section 4 we consider an arbitrary self-adjoint operator T on L,. We then discuss for which 
Kothe spaces X it is true that T is bounded on Li-’X’ for some 8 > 0. If we assume that 
T is bounded on some L, where p 9 2, then this can answered in terms of the weighted 
L,-spaces on which T is bounded. These results are of course closely related to the earlier 
work of COTLAR and SAWSKY [9], and RUBIO DE FRANCIA [30]; unlike [30] we do not 
assume 2-convexity or 2-concavity but our conclusions are somewhat weaker. 

We put these ideas together in Section 5 ,  restricting our attention to “Hardy-type” 
algebras, which we introduce as an abstraction of the Smirnov class; in this case our 
operator T becomes the orthogonal projection onto H,. We are then able to relate the 
results of Section 4 to the notion of BMO-regularity and prove our main results. We discuss 
further applications in Section 6. At the end of Section 6, we improve the results of KISLIAKOV 
and Xu ([20], [21]) on interpolation of vector-valued Hardy spaces, by giving necessary and 
sufficient conditions for such interpolation to be “stable” at least in the super-reflexive case. 

Let us mention that we use some ideas from [18]; however we have tried to avoid using 
differential techniques in order to keep our approach as simple as possible. We plan a 
further paper showing how by using such techniques one can improve and extend these 

for some 8 > 0 (cf. [18] for other conditions equivalent to this property for X). 
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results. We do use freely however, the notion of an indicator function for a Kothe function 
space as introduced and studied in [18]. 

We would like to thank MICHAEL CWIKEL, MARIO MILMAN and RICHARD R~CHBERG for 
discussing this problem with us, and CORA SADOSKY for some very helpful remarks. We 
also thank QUANHUA Xu for several important suggestions which we have incorporated. 

2. Kothe function spaces 

Let S be a Polish space and let p be a probability measure on S. Let Lo(p) denote, as 
usual, the space of all equivalence classes of (complex) Bore1 functions on S with the topology 
of convergence in measure. 

We define a Kothe quasinorm on Lo to be a lower-semicontinuous functional f + l l f l l x  
defined on Lo with values in [0,00] such that: 

(1) l l f l l x  = 0 if and only i f f  = 0 a.e., 

(3) There exists a constant C so that I l f  + gll, I C(llfllx + llgllx for f, g E LO, 
(4) There exists u E Lo so that u > 0 a.e. and llullx < co. 
Associated to the Kothe quasi-norm we can associate a maximal quasi-Kothe function 

space X = {f: llfllx < a}. X is then a quasi-Banach space under quasi-norm f + Ilfllx; 
furthermore, B,  = {f: l l f l l x  I I} is closed in Lo so that X has the Fatou property (cf. 
[4]). We can also define a minimal quasi-Kothe function space Xo to be the closure of 
L ,  n X in X. In this paper, however, we will only deal with maximal spaces (i.e., spaces 
with the Fatou property). If in (3) C = 1, then B, is convex and X is an Banach space; in 
this case we say that X is a (maximal) Kothe function space. Henceforward we will adopt 
the convention that all spaces are maximal. 

If X is a Kothe function space and w E Lo,R with w > 0 a.e. we define the weighted 
space WX by l l f l l w x  = Ilfw-’llX. Thus wL,(w-,). 

If X is a Kothe function space we will let X* denote its Kothe dual, i.e., the maximal 
Kothe function space induced by 11 \ I x ,  where IlfII, .  = sups lfgl dp. It is not difficult to 

show that X *  is also a Kothe function space. Of course, if X is reflexive as will usually be 
the case, then X *  is the Banach dual of X. 

We recall that a quasi-Kothe function space X is p-convex where 0 < p < co with 
constant M if for every, fi, . . . , f, E X we have that 

(2) llfllx I llgllx whenever If1 I lgl a.e.9 

seBx 

and q-concave (0 < q c a) with constant M if for every fl, . . . , f, E X ,  

If X is p-convex and q-concave there is an equivalent quasi-norm so that the p-convexity 
and q-concavity constants are both one. For convenience we will say that X is exactly 
p-convex or q-concave if the associated constant of convexity or concavity is one. X is a 
Kothe function space if and only it is 1-convex with constant one. A Kothe function space 
is super-reflexive if and only if it is p-convex and q-concave for some 1 < p I q < co. 
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For any Kothe function space X we define the quasi-Kothe function space X u  by 

Ilfllx. = I1 If l""l l~ ' 
Then X" is exactly l/a-convex. If X ,  Y are two Kothe function spaces and 0 < a, fl c co 
we can define a quasi-Kothe function space 2 = X u Y u  by setting 

Then Z is exactly l/(a + &convex. It may also be shown easily that, since X ,  Y are assumed 
maximal, there is always an optimal factorization I f 1  = lgl" Ihls. 

We now describe a simple method of doing calculations with Kothe function spaces 
introduced in [18]. We will not need the full force of the results in [18] and thus we will try 
to keep to description brief. Let us recall [18] that a semi-ideal 9 is a subset of L l , +  so 
that if 0 I f I g E f then f E 9; 9 is strict if it contains a strictly positive function. For 
a functional @ : f -+ R we define 

~ l p c f ,  8) = @cf) + @(g) - @(f + 8) ' 

We say that @ is semilinear if: 
(1) If f ~ f  and a > 0, then @(an = a@Cf), 
(2) There is a constant 6 so that for all I; g E 9 we have d,U; g) I 6(llflll + Ilglll), 
(3) I f f  E 9 and 0 I f, I f with Ilf.ll , -+ 0, then lim @un) = 0. 
If X is a Kothe function space we define 9, to be the set of nonnegative functions f in 

L, so that 

SUP J f  log+ 1x1 dp c 00 
XSBX 

and there exists x E B,  so that f log 1x1 is integrable. Then 9, is a strict semi-ideal. 
On 3, we can define the indicator functional 

ax = sup J f log 1x1 dp . 
XEBX 

The indicator function @, is semilinear with 6 I log 2 (see [18], Proposition 4.2). In the 
special case X = L1 we obtain 

9, = LlogL and GL,Cf) = ACf) = I f l o g f d p .  

It then may be shown that for general X and f, g E 9, n L log L, we have 

0 5 4flxU; g) I AnV; 8) ' 

There is a converse to this result ([18]. Theorem 5.2). If @ is a semilinear map on a strict 
semi-ideal 9 t L log L so that 0 I d,V; g) 5 dnV; g) for all f, g E 9, then there is a unique 
Kothe function space X so that 9, I> 3 and @Cf) = QXCf) for f~ 9. Furthermore, X is 
exactly p-convex and exactly q-concave if and only if 

1 1 

4 P 
- A n V ;  g) I &,V; g) I - AnU;  g) for f, g E f. 

It is also easy to see that if Z = XuYB, then 

QZcf) = a@,Cf) + fl@yCf) for f E 9, n 3,. 
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This enables us to use the indicator functions to calculate spaces. Let us give a simple 
application which we will later; basically this is a simple generalization of RSIER'S 
extrapolation theorem [28] (cf. [18], Corollary 5.4). 

Proposition 2.1. Suppose that X, Y are Kothe function spaces with Y super-rejlexive. Then 
there exists a super-rejlexive Kothe function space Z and 0 < 8 < 1 so that Y = X'-'Z' 
up to equivalence of norm. 

Proof. For convenience, we do all calculations on a strict semi-ideal contained in 

Yx n Y, n L log L . 
1 1  

P 4  
We can assume that Y is exactly p-convex and q-concave where - + - = 1 and 

1 
2 < q < co. Let a = -. We define @ = @y + a(@, - QX).  Then 

2q 

A ,  = (1 + a) A,, - addx 2 a d , .  

A ,  I (1 + a)  (1 - 2a) A n  I (1 - a) A,, . 
Similarly, 

Thus we can apply Theorem 5.2 of [18] to find a space Z so that QZ = @ and Z will be 

2q-concave and r-convex where - + - = 1. 
1 1  

r 29 

Finally let us define Llog to be the Orlicz space of all f E Lo so that log+ I f 1  dp < 00. 

Then LlOg can be F-normed by 

f + J log (1 + Ifl) dP 

We will especially concerned with the class of Kothe function spaces 3 of all X so that 
x, x* c LlOg. 

Lemma 2.2. If X is a Kothe function space, then the following conditions are equivalent: 

(2)  r f  f E X there exists g E X with g 2 If1  and log g E L1. 
(3) If& > 0 and f E X there exists g E X with 

(1) XE3. 

g 2 If19 llgllx I l l f l lx + and log g E L,  * 

(4) La3 = 4. 
Proof. (1) 3 (4). We must show xs  E Yx. If X c LlOp, then it follows from the Closed 

Graph Theorem that the inclusion is continuous and hence 

SUP J f  log+ 1x1 dP < - 
x o B x  

On the other hand, by a theorem of LOZANOVSKII [25] (cf. [13], [25]) there exist nonnegative 
x E E x  and x* E Ex. with xx* = xs.  
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Thus 
log 1x1 = log+ 1x1 - log+ Ix*l E L ,  . 

(4) 

(3) =. (2). Obvious. 
(2) =. (1). Clearly the conditions imply X c Llog. Now suppose x* EX*. There exists 

x E X with log 1x1 E L,.  Now xx* E L,  so that f log Ixx*( dp < co. Hence log Jx*( dp c co, 
i.e., log+ Ix*l E L,.  Thus X* c LLOr 

(3). Iff E X, then log, I f 1  E L,. However there exists h E B,  with log JhJ E L,.  Now 
take g = max (Ifl, qlhl) for small enough 1. 

W 

Remark. In doing calculations with indicator functions we can always restrict to a small 
enough strict semi-ideal. Later in the paper for economy we will not mention the domains 
of the indicators in question when doing algebraic manipulations. The reader may wish 
simply to consider only spaces X E S a n d  regard all indicator functions as defined on Lm,R. 

3. Complex interpolation of subspaces 

Let us describe a very general setting for complex-type interpolation. We recall that if X 
is a topological vector space and D is an open subset of the complex plane, then a function 
F: D 4 X is analytic if for each a E D there exists a neighborhood U of a and a power 

series xn(z  - a)” so that F ( z )  = 1 x,(z - a)” for z E U .  We will consider a triple (0, X, 9) 

where D is an open subset of the complex plane conformally equivalent to the unit disk A, 
X is a complex topological vector space and 9 is subspace of the space .rQ(D, X) of all 
X-valued analytic functions on D equipped with a norm F + JJF)JS such that: 

only if F E 4 and IIcpFllF = IIFII.F. 

m 

n = O  

1. If F E d ( D ,  X) and cp is any conformal mapping of D onto A, then cpF E f if and 

2. If z E D and x E X, then inf { )lF)ls : F ( z )  = x} = 0 if and only if x = 0. 
Under these assumptions, we define, for z E D, X, = {x : llxllx, < co} where 

llxllx. = inf IIIFII, : w = x) . 
We will call the spaces {Xz : z E D }  the interpolation field generated by {D, X, 4}. 

where cp is any conformal map of D onto d with cp(a) = 0. Thus if D = d we have 
The following elementary lemma will be used repeatedly. If a, b E D we let 6(a, b) = Iq(b)l 

If D = Y is the strip Y = {z : 0 c %z c I}, then for 0 5 s, t I 1 we have 

I[ 
sin - 1s - tl 

sin - (s + t )  

2 qs, t )  = 
n 
2 
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Lemma 3.1. Suppose that F ,  G E 9 and that a E D. Suppose F ( a )  = C(a). Then 

llF(4 - G(z)llxz I S(a, 4 (IF - GI(, . 
Proof .  Let cp be an conformal map of D onto A with q(a) = 0. Let H E  9 be defined 

so that cpH = F - G. Then IIHI151 IIF - Glls and llF(z) - C ( Z ) ~ ( . ~  5 Iq(z)l IIHlls. The 
lemma follows. 

Now suppose that V is a linear subspace of X .  Let 9 ( V )  be the space of F E 9 such 
that F(z)  E V for every z E D. Let (V,) be the interpolation field generated by (D, F ( V ) } .  
We will say that V is interpolation stable at z E D if there is a constant C so that for u E V ,  
we have llullv, 5 Cllullx,. The least such constant C we denote by K ( z )  = K ( z ,  V )  where 
K ( z )  = co if V fails to be interpolation stable. 

Theorem 3.2. Suppose that V is interpolation stable at some a E D; let K (a) = K .  Then 
4K(1 - 3 K 4 - l .  In V is interpolation stable at any z E D,  with 3KS(a, z )  < 1, and K ( z )  

particular, the set of z E D so that V is interpolation stable at z is open. 

Proop.  Suppose S = S(a, z) < 1/(3K). Suppose u E V,; then for E > 0 we can pick 
F E ~ ( V )  and G E ~  so that F ( z )  = G(z) = u and llFllF I (1 + E )  llvllv, while 
llGl\F I (1 + E )  IIullx,. Thus by Lemma 3.1, 

IIF(a) - G(a) I Ix ,  I (1 + 4~(114x. + Il4v,). 

IIF(a)ll.. I (1 + E )  (1 + 4 IIullx, + 8 llullv,). 

IlHlls I (1 + E )  IIF(a)llv. I (1 + K IIF(a)llx.. 

11~11v, 

It follows that 

Now pick H E  F ( V )  so that H ( a )  = F ( a )  and 

Then 
llW - H(z)llv= + IIH(z)llv= 

WFlls + IlHllF) + IlHlls 
5 8 IlFllF + (1 + 4 (1 + E)K IIF(a)llx. 

I S(l + K + K S )  (1 + E )  l l~ l lv ,  + (1 + S12 (1 + &I2 K IIDIIx.. 

Since S < 1 and K 2 1, we have that 

lbllv. s 3K6 llullv, + 4K II~llx. 

whence we conclude that 

and so K ( z )  I 4K(1 - 3KS)-'. 

Theorem 3.3. Suppose that V, Ware two subspaces of X which are both interpolation stable 
at a .  Suppose further that X ,  = V,  @ W,. Then there exists q > 0 so that ifS(a, z) < q then 
x, = V,  0 w,. 
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Proof. Let K = max (K(a, V), K(a, W)) and let M = max (IIPII, IIQII) where P, Q are 
the induced projections from X, onto V ,  and W,. We let q = 1/(300K2M). Suppose that 
z E D  satisfies 6 = &a, z) < q. 

First suppose that z is such that V ,  + W, fails to be dense in X,. Then there exists x E X, 
so that llxllx, = 1 and IIx - (u + w)llx= 2 4 whenever u E V,  and w E W, Pick any F E 9 
with F(z) = x and JIF(JS 5 2. Then there exist G E ~ ( V )  and H E ~ ( W )  so that 
IIGIIs, llH1I9 I 4 K M  and G(a) = PF(a), H(a) = QF(a). Then 

3 5 IIF(4 - G(z) - H(z)llxz 

I 4 2  + 2(4KM)) 

5 lOKMq. 

This contradiction immediately leads to the conclusion that V, + W, is dense in X,. 
To complete the proof, suppose u E V,, w E W, satisfying IIv + wIIx, = 1.  Let 

y = max (1, (JuIJX,, llwllx,). We will show that y I 8KM and this will complete the proof. 
We choose F E 9 with lIFlls I 2 and F(z) = u + w. Notice that K(z, V ) ,  K(z, W) I 8K 
by Theorem 3.2. We therefore pick G E F ( V ) ,  H E F ( W )  so that llG1I9 5 lOKy and 
IIHII.F I lOKy, and G(z) = u, H(z) = w. 

Now we have, by Lemma 3.1, IIF(a) - G(a) - H(a)JJXe I 30Ky6 (where 6 = 6(a, z)) and 
hence (JPF(a) - G(a)llxa I 30KMy6 and IIQF(a) - H ( U ) ~ ~ ~ , ,  5 30KMy6. However 
~ ~ P F ( a ) ~ ~ x a  I M IIF(a)llx, I 2M and so obtain an estimate 

lIG(u)IIx, I 2M + 30KMy6) 

with a similar estimate for llH(a)llx,. Thus 

IIG(a)llva I 2 K M  + 30K2My6 < 2KM + 2 
10 

and we can find E E F ( V )  with E(a) = G(a) and llEllS I 3KM + & y. Now 

IIullx. I IIE(z)llx. + llE(z) - G(z)llxz. 

IIvllx, I (1 - 4 IlElls + 6 IIGIIS 
Thus 

5 3KM(l + 6) + i y  + 10Ky6 

- c 4KM + iy. 
With a similar estimate on w we obtain 

y I (4KM) + i y  
and so y I 8KM as promised. 

Let us now give a simple application. Obviously one special case of the above construction 
is the usual Calderrjn method of complex interpolation. To be more precise, note that if 
( X , ,  X , )  is a Banach couple, then if we take D = 9, X = X, + XI and f to be the space 
of functions F e d ( Y , X )  so that F is bounded on Y and extends continuously to the 
closure of .Yso that F is Xi-continuous on the line %z = j for j = 0 , l  then the interpolation 
field generated is given by X, = [X,, Xlle where 8 = %z. 
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Now if X is a Banach space and 1 5 p < 00, we consider the space L J X )  = LJT, X )  of 
all Bochner measurable functions f :  T + X so that 

2% 
dt The subspace H J X )  consists of all f E L J X )  so that f(e") - = 0. It is well-known that s 2.n 

0 

H,(X)  is complemented in L J X )  by the vector-valued Riesz projection if and only if 
1 < p < 03 and X is UMD-space (see [3], [4]). 

Theorem 3.4. Suppose that (Xo ,  X , )  is a Banach couple. Suppose that for some 0 < 0 < 1, 
we have that [X, ,  X , ]e  is a UMD-space and [ H 2 ( X 0 ) ,  H2(Xl)]e = H2[Xo,  X , ] &  Then there 
exists q > 0 so that $14 - 01 < q, then [X,,  X , ] +  is also UMD. 

Remark. BLASCO and Xu [2] show if X ,  and X ,  are UMD-spaces then 

[H2(Xo),  H2(Xille = H2(Xe).  

This results is therefore a converse to their result. They also present an example of PISIER 
to show that (H2(XO),  H2(X,)]e need not coincide with HZ(X0). We remark that in [18] we 
construct an example where [Xo,  = L2 but X ,  is not UMD for any 8 9 4, thus giving 
another counterexample. 

Proof. We consider the Banach couple (L2(X0) ,  L2(X1)).  Let V be the subspace of 
L2(X0) + L 2 ( X 1 )  c L2(X0 + X , )  of all f so that 

7 eint f(eit) dt = 0 
0 

for n > 0. Let W be the space of all f so that 

for n I 0. Our assumptions guarantee that K W are interpolation stable at 8 and that 

[ L 2 W o ) ,  L2(Xi)le = L2([Xo, Xile = V, CD We. 

By Theorem 3.3. we obtain a similar decomposition for 14 - 81 < q which implies the 
result. 

Let us now discuss the case of Kothe function spaces. Suppose that S is a Polish space 
and that p is a probability measure on S. As in [18] we consider the class N +  of all functions 
F :  A + Lo of the form F(z) (s) = F,(z) where F, is in the Smirnov class N +  for almost 
every s E S. Then JV + (9') is the class of maps F : 9 + Lo where F 0 p E .N + with cp : D + Y 
any conformal mapping. If F E N +  (9') we can extend F to the lines z = j + it ( j  = 0 , l )  
so that F ( j  + i t )  = lim F(s + it) in Lo, for a.e. t. 

s - i  



236 Math. Nachr. 171 (1995) 

Suppose that X,, X, are Kothe function spaces (assumed maximal so that f -+ IIfllx, is 
lower-semi-continuous on Lo). Consider the space 4t = 4t(Xo, X,) of all F E A''+ (9') so that 

llFIl9 = max {esssup IIF(j + it)llx,} < 0 3 .  
j = O . l  

Then 9 generates an interpolation field X, for z E Y so that X, = X;-'Xe where 0 = %z. 
Now suppose that Z is a separable Kothe function space which contains both X, and X,. 
It is essentially shown in [IS] that if F E F(X0,  X,), then F: Y -+ Z is analytic and 
lim F(s  + i t )  = F(j + it) in the space Z (so that we can work in Z in place of Lo); see 

Lemma 2.2. of [18]. 
Now suppose that V is a linear subspace of Lo so that for some separable Kothe function 

space Z 3 X,, X, the space V n  Z is closed in Z. Then 5 = V n X, is closed in Xj  for 
j = 0, 1. Furthermore, if F E 4 t ( X o ,  X,; V) = f ( X o ,  X,) (V), then F has boundary values 
in along the line z = j + it, - 03 < t < 03. The method of interpolation generated this 
way is not precisely the complex method introduced by CALDER~N, but we now make some 
remarks which establish that under reasonable hypotheses we obtain the same result. 

The usual interpolation spaces [V,, Vile are induced by considering the subspace 
.Fc(Xo, X,; V )  of all F so that 

(a) F is analytic into V, + V,, 
(b) lim F ( s  + i t )  exist a.e. in V, + V, 

r - j  

s - j  

and 
(c) t -+ F(j + it) is Bochner measurable into 5 for j = 0, 1. 

In fact, only condition (c) is required; this is a consequence of the following lemma. 

Lemma 3.5. If G E F(X,, X,; V), then G E .Fc(Xo, X,; V) if and only iffor each j the 
map t -+ G ( j  + it) has essentially separable range in Xi. 

Proof. This is essentially proved in Lemma 2.2. of [18], although our assumptions are 
a little less strict; we sketch the argument. Observe first that t + G ( j  + it)  is Bochner 
measurable into Xj  for each j .  Let rp : A + Y be a conformal mapping. Suppose 
G E .F(Xo, X,; Lo). Then F = G 0 cp E N +  and has Lo-boundary values F(e") for a.e. 
0 5 t < 2n. Then t --t F(e") is V, + V, and X, + X,-measurable. It is thus Bochner 
integrable in both X = Xo + X,, and W = V, + V,. 

Now suppose that w E X* is strictly positive. It follows that 

dt 
lFr(eil)l w(s) dp(s) - < co 

0 s  Ts 2n 

Then if F,(z) = 

s. Hence of n 2 0, we have, p-a.e., 

a&) z" for IzI < 1 we observe that t -+ F,(eif) E N +  n Ll = HI for a.e. 
n 2 0  
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Similarly if n < 0 we have 

Hence we can also evaluate the Bochner integrals in L,(w) 

dt 
271 

F,(e") e-"'r - = a, 

when n 2 0 and 

dt 
2n 

F,(eir) e-lnr - = o  
0 

when n c 0. These integrals have the same values in W and X and it thus follows 
easily that F : A -+ W is analytic and has a.e. boundary values F(eir). This implies that 
G E F c ( X o ,  Xi; V). H 

Remark: It follows that if X,, X, are separable Kothe function spaces (which are as 
usual assumed to have the Fatou property), then [X,, X , ] ,  = XA-'X; (cf. [S]). 

Proposition 3.6. Suppose that X,, X ,  are Kothe function spaces and that V is a linear 
subspace of Lo so that V n  Z is closed in Z for some separable Kothe function space Z 
containing X , ,  X , .  Suppose 0 < 0 < 1. Suppose that either 

(a) X ,  and XI are both separable or 
(b) X ,  = XA-'X: is reflexive. 

Then V is interpolation stable at 0 for the interpolation method generated by F ( X , ,  X , )  
i f  an only if [V,, Vile = V n X, up to equivalence of norm. 

Proof.  It is immediately clear that [V,, V,], = V n X, implies interpolation stability 
of K In the other direction consider first (a). In this case Lemma 3.5 implies that 
Fcc(X,, X,; V) = .F(X, ,  X,; V)  and the conclusion is immediate. 

Now consider (b); let & be the space induced by the method 9(X0, X,; V) and let 
W = [V,, V,],. Let B be the closed unit ball of V, and let B' be the closed unit ball of W 
Then B' c B; it follows from the Open Mapping Theorem since both spaces are complete 
that if we can show that B' is dense in B then Wand V, coincide. Suppose that B" is the 
V,-closure of B'. Since V, is a closed subspace of X,, E" is weakly compact. If B" + B there 
exist u E V, withllullve I 1 and u 4 B". Since B". Since B is weakly compact in Z there exist 
$ E  Z* so that I$(u)l > 1 but sup I4(w)l I 1. Let I$(u)l + ez where e > 1. Pick any 

F E F ( X , ,  X,; V) with IIFIIF 5 e and F ( 0 )  = u. 
W E B '  
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Now for t > 0 let 

G,(z) = 1 f F(z  + it) dt , 
T 

0 

for z E 9, where the integrals are computed in Z. It is clear that the boundary values of 
G ,  are given by the same formula; hence t -+ G,( j  + it) is continuous in X j  for j = 0,l. 
Since clearly G ,  E F(X,,, X,; V), Lemma 3.5 can be applied to give that G, E Pc(X0, XI;  V ) .  
Hence e-'G,(O) E B'. We conclude that 14(G,(O))l I e and letting T + 0 gives I4(u)l I e,  a 
contradiction. 

In the situations when we will apply this result we will consider a closed subspace V of 
LlOg and Kothe function spaces X,, X, €3. The following lemma then shows that 
Propositoin 3.6 can be used. 

Lemma 3.7. r f X  E %, then there is a separable Kothe function Z 3 X with Z E .T. 

Proof. Simply pick 0 5 w E X *  with log w E L ,  and let 2 = L,(w). 

4. Operators on Kothe function spaces 

Now suppose that S is a Polish space and that p is a probabilty measure on S. We suppose 
that T: L2(p) -+ L,(p) is a bounded self-adjoint operator with IlTll I 1. Now suppose that 
X is a Kothe function space on (S, p). We define 

I I T I I X  = S U P  I I I ~ f l I x : f E L 2  n x, l l f l l x  5 11 

If X is a separable Kothe function space (with the Fatou property), then L, n X is dense 
in X and so T extends to a bounded operator T : X + X if and only if II Tllx < 00. 

The following remarks are elementary. 

Lemma 4.1. (1) For any separable Kothe function space X, we have I1 T ( I x  = I1 T )Ix*. 
(2) If X, Y are separable Kothe function spaces and 0 < O < 1, then 

Proof. (1) is a trivial deduction from duality and the self-adjointness of T (the Banach 

(2) is immediate from complex interpolation. 

Let us now say that X is a T-direction (space) if there exists 0 < O < 1 so that 
(1 T ( ( X ~ L : - e  < 00. Note that if 0 < 8 c 1, then the space X'Li-' is p-convex and q-concave 

+ 0. It is thus super-reflexive and hence separable. Clearly, by 

I IT I Ixeu l -e  5 IITII: IITIIi-'. 

space adjoint of T is the complex conjugate of the Hilbert space adjoint of T). 

1 1 - e  1 where- = 1 - - = __ 
P 4 2  

duality, X is a T-direction if and only if X *  is a T-direction. 
If w E Lo,&) we will that w is a T-weight direction if there exists a > 0 so that T is 

bounded on L2(euw). Thus w is T-weight direction if and only if L,(e") is a T-direction. The 
space of all T-weight directions will be denoted by 9 = g ( T ) .  We define 

IIwIIg = inf { t  > 0 :  IITIILI(cW/f) I e} . 
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By complex interpolation it is clear that llwllp c co if w E 9. 

Lemma 4.2. (1) The set { w  : llwlls 
(2) For any f E L, and w E 9 such that 

l} is a closed absolutely conuex subset of Lo,p 
w f  E L, we have 

l l T ( w f )  - WTf 112 e llwlls l l f l l z .  
In particular, 11 w 11 = 0 if and only if T ( w f )  = w Tcf) whenever 1; wf E L,. 

Proof.  Note that [lwllp I 1 if and only if 

ITfl' eW/' dp I e2 j Ifl' ew/' dp 

whenever f E Lz(l + ew) and t > 1. It then follows from the Dominated Convergence 
Theorem that llwllg I 1 if and only if 

1 ITf12 ew dp I e2 If12 ew dp 

for f E L,(1 + ew). 
Now suppose that w, is a sequence with w, + w a.e. and 1 1  w,IIp I 1. Let u = 1 + sup ewn. 

Then if f~ L2(u) we clearly have llTfllL2(ew) I e I l f l l L 2 ( e W ) .  By a density argument this 
estimate extends to L,(1 + ew). Hence [lwllp 

Convexity of the set { w  : IIwIIp I l} follows from the fact that L,(u)' L,(u)'-' = L,(u'u'-8). 
Symmetry follows from the fact that L,(u)* = L,(u-'). 

(2) Finally suppose llwllg I 1. Then for any real - 1 I t I 1 we have IITIIL2(etw) I e. 
Suppose 1; g E n L,(e""). Then the maps z + ezwf and z + ezwg are entire L,-valued 

functions. It follows that the map q ( z )  = j T(ezwf)  e-zwg dp is an entire function. However 
if z = x + iy with -1 I x I 1, 

1. 

n E Z  

Iq(z)l I (1 IT(eZwf)l2 e2xw dp)'', (j  le-zw12 e2xw 181, dP)"2 

I e llfll, 11g112 

and so by Cauchy's theorem, Iq'(0)I I e l l f l l z  Ilgll,. This implies that 

Ij m w f )  = w m  g dPl I e llfll, llSll2~ 

By varying g we see that T ( w f )  - wTf E L, and IIT(wf) - wTfll, I e l l f l l ,  whenever 
f E n L,(e""). A simple approximation argument completes the proof that this holds under 

the weaker hypothesis that 1; wf E L,. 
Clearly now if llwllp = 0 we obtain the conclusion that T ( w f )  = wTf under the same 

hypotheses. Conversely if T ( w f )  = wTf for all f such that 1; wf E L, it is easy to reverse 
the argument to show that IITIIL2(etW) I 1 for all real t. H 

Now if X is a Kothe function space, we will say that X satifies the T-weight condition 
if there exist constants (C, M) so that if 0 f E B ~ ,  then there exists g 2 f with 
llgllx I A4 and llloggll, I C. We then say that X satisfies the T-weight condition with 
constants (C, M). 

Theorem 4.3, (1) Suppose that X ,  for  j = 0, 1 are Kothe function space with the T-weight 
condition with constants (Cj, M j ) .  Then i f 0  < 0 < 1, XA-'Xy has the T-weight condition 
with constants ((1 - 6) C, + W,, MA-'M!). 

n E Z  
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(2) Suppose 0 < 6 < 1. Then for any Kothe function space X ,  X has the T-weight condition 
with constants (C, M )  if and only X e (  = L;-'XB) has the T-weight condition with constants 
(ec, MB). 

Proof. (1) Suppose that Xi satisfies the T-weight condition with constants (Cj,Mj). 
Suppose 

0 I f E X ,  = Xi- 'X!  with llfllxe I 1 . 
We may factor .j' = jh-efl where 0 I fi E Bx, for j = 1,2. Then pick g, E X, with 
0 I .h I gj and llgjllx, I M j  so that Illogg,ll. I Cj. Then f 5 g = go g,, and clearly 
Ilgllxe I Mh-'MB, and IIlog gll, I (1 - 6) Co + BC,. 

Before proceeding we will need a technical lemma. 

1-8  e 

Lemma 4.4. Suppose that X is a Kothe function space with the property that there exist 
constants 0 < c < 1, C, M so that if 0 I f E X there exists a Borel set A c S, and 
g 2 f X A  such that: 

(1) I l f -  fXAI IX  5 c Ilfllx9 
(2) llgllx 5 M l l f l lx7 
(3) IIlog glla c. 
Then X satisfies the T-weight condition with constants (C', M ' )  where C = max (1, C) and 

for suitable M'. 

Proof. Suppose f = fo E B,. We inductively define Borel sets (An),"= 1, and sequences 
( . fn)nr  1, ( g n ) n >  1 in X + SO that for n 2 1, 

l l f n - 1  - f n - l X A , I I  I c Ilfn-1Ilx, 

gn 2 L-IXA, 
Ilgnllx I M l l f n - 1 1 1 ~  

Illog gnll, I C 

I n  = f n - 1  - L-IxA,.  
Then, by construction, I l f n l l x  I cn and f - f. = fxBn where Bn = u A,. It follows that 

f = max f,- ,xA,  I max g,. 
k s n  

n L  1 n 2  1 

Now for 0 < p 5 1 we have 

by p-convexity of X. Thus 

II(Cgi)"pllx I M(l - cP)-l''. 

Choose p = min (1, l/C)% and let g = (c g:)'Ip. Then IJlog gillo < 1 and so that if 
h E L2(l + g) then 

IThI2 g: dp 5 e2 lh12 gi: dp. 
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On adding we see that 

J (Thl' gp dp I e2 J (h(' gp dp .  

1 

P 
Thus IIlog gl19 5 - , and the result follows. 

Theorem 4.5. Suppose that X o  is a Kothe function space satisfying the T-weight condition 
and that X, is an arbitrary Kothe function space. Suppose that,for some 0 c 4 5 1 the space 
Xh-@Xf satisfies the T-weight condition. Then, for any 0 c 8 c 1, the space X;-'X? satisfies 
the T-weight condition. IfX, is super-refexive, then we also have that X ,  satisfies the T-weight 
condition. 

Proof .  If 0 < 8 5 4 this follows immediately from Theorem 4.3 We therefore suppose 
0 c 4 c 8 c 1. We will write X ,  = Xb-rX;. Suppose that X o  satisfies the T-weight 
condition with costants (Co, M,) and that X, satisfies the T-weight condition with constants 
(C,, M,). We will verify the condition of Lemma 4.4. for the space X,. Fix a contant L so 
that L61e-6 = 2M0M,. 

Suppose f =  fo 2 0 and l l f e l l x e  5 1. Then we can write fe = f:-'f: where fj 2 0, 
Ilfillx, I 1 for j = 0, 1. Let f, = f;-+'ft so that Ilf,llx, 5 1. Then there exists g4 2 f6 

We thus write g, = gb-,gf where gj 2 0 and llgjllx, I M,. Then there exists ho 2 go 
with lh?,IlX~ I M, and illogg,ll, c,. 

with llhoII I MOM, and lllog hol19 I C,. Next we define 

he = h,(g,h; ')a where a = 0/4 > 1 and (O/O) = 0 .  

Then 
-101-1 1 - e  e he = g,(g,ho 1 5 go g1. 

Thus llhellxe I M,. Let h' = Lh,. We note that llh'llxB I L M ,  and 

I I b  WI9 = lllog hell9 

= IIU - 4 log ho + a log g,lla 

I (a - 1)C, + ac,. 

Let A = {s : f(s) 5 Lh,(s)} and let B = S \ A. Then 

f x A  I h' and I I f -  XAIIXe I I I f o ~ s l I k ~ .  

Now if s E B we have 

16 Math. Nachr.. Ed. 171 
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1 
2 

I - M;'M,'h,(s) .  

We conclude that IlfoxBIJxo I f and hence that I l f -  fxAllxe I = c < 1 say. Thus 
the hypotheses of Lemma 4.4. are verified and X @  has the T-weight condition. 

For the last assertion, if X 1  is super-reflexive, we may suppose that there is a Kothe 
function space Y so that X ,  = XA-rYr for 0 < t < 1. The above argument then gives the 
conclusion. H 

Let us draw a simple conclusion from Theorem 4.5. 

Theorem 4.6. Suppose that X i s  q-concave for some q < co and that ax = ajax, where 
j =  1 

uj  E R andeach Xjsatisfies the T-weight condition. Then Xsatisfies the T-weight condition. 

Proof. Since we may replace X by X" where 0 < a < 1 we consider only the case when 
X is super-reflexive. It clearly also suffices to establish this theorem when n = 2. It follows 
directly from Theorem 4.3 when al. u2 2 0. If ul ,  a2 I 0, then -ax is convex so that ax 
is linear when X = wL., for some weight w which contradicts super-reflexivity. We may thus 
suppose that al  and a2 have opposite signs and by Theorem 4.3 we need only consider the 
case al = 1 and a2 < 0. Define Yl = X1I2 and then let Yo be defined by Yo = X:/2X: '4 .  
Then Yo is an interpolation space between X and X:/2X: '2  and so is super-reflexive. By 
Theorem 4.3, Yo satisfies the T-weight condition; but for an appropriate q5 > 0 we have 
YA-*Yt  = X:I2 which also satisfies the T-weight condition. Now by Theorem 4.5 we con- 
clude that X'" satisfies the T-weight condition and thus Theorem 4.3 completes the 
proof. 

Lemma 4.7. Let X b e  an exactly 2-conuex Kothe function space andlet Y = (X2)* .  Then: 
(1) If Y satisfies the T-weight condition with constants ( I ,  M) then IITllx < co. 
(2) If 11 T I I x  < 00, then Y satisfies the T-weight condition. 

Proof. (1) Suppose f e L 2  nB,. Suppose 0 I U E  Y with llully I 1. Then there exists 
u 2 u so that llully I M and lllog 011 I 1. Thus (cf. [30], Theorem A'), 

jITfI2udCr I e2SlfI2udCr I M e Z  IIlfl21Ix2 
and henced l lT f l Ix~  e 

(2) This follows from a result of RUBIO DE FRANCIA ([30], Theorem A'); in the case when 
X is a weighted L,-space for p > 2 it was shown by COTLAR and SADOSKY [9]. In fact by 
Therorem A' of [30] there is a constant M so that if 0 5 ueBy,  there exists u 2 u with 
IITIIL,cv, I M and 11 ully I 2 llully Now by interpolation IIlog ullp I log M and we are 
done. W 
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Lemma 4.8. Let X be an exactly 2-convex Kothe function space and let Y = (X2)*. Then 
Y satisfies the T-weight condition if and only i f X  is a T-direction space. 

8 > 0 so that 8C < 1. Consider the space Z = L:-'Xe. Then 
Proof. Suppose that Y satisfies the T-weight condition with constants (C, M). Choose 

and so 2Gz + 8Qy = A so that Y e  = (Z2)*. By applying Lemma 4.7, is bounded on Z.  
Conversely, if X is a T-direction space there exists 8 > 0 so that llTllz < co where 

Z = L;-'Xe and so by Lemma 4.7, Y e  satisfies the T-weight condition. Theorem 4.3 
completes the proof. 

We are now finally able to state our main result of this section. 

Theorem 4.9. Suppose that T :  L, -P L, is a self-adjoint operator with 11 T ( 1  5 1. Suppose 
that L, is a T-direction space (i.e., there exists p > 2 so that I( T [ I L p  < co). Then 

(1) If X satisfies the T-weight condition, then X is a T-direction space. 
(2)  If X is q-concave for some q < 00, then X is a T-direction space if and only if X 

satisfies the T-weight condition. 

Remark. Note that L ,  is always a T-weight space. In general our assumption that Tis 
bounded at some Lp where p > 2 is equivalent to the requirement that L, satisfies the 
T-weigth condition by Lemma 4.8. This shown that the assumption is necessary for the 
theorem to hold. 

Proof. We assume that p > 2 and p' < 2 are conjugate indices so that 
II T [ I L p  = II T I IL , ,  < co. We first notice that L,  much satisfy the T-weight condition. Indeed, 

by Lemma 4.7, L, satisfies the T-weight conditions when - + - = 1 and hence by 
Theorem 4.3 L, satisfies the T-weight condition. 

1 2  

r p  
We will now prove (2) under the stronger hypothesis that X is super-reflexive. 
We next show that, in general, if X is super-reflexive and satisfies the T-weight condition, 

then X *  also satisfies the T-weight condition. In fact, L,  = X'/2(X*)''2 and so it follows 
from Theorem 4.5 that X* has the T-weight condition. 

We now proceed to the proof of the theorem. Assume first that X is super-reflexive and 
satisfies the T-weight condition. We now may select 0 < a < 1 small enough so that (X*)" 
has the T-weight condition with constants (1, M) for suitable M. Now by Lemma 4.7 T is 
bounded on the space Z where 

24jZ = A - a@X., or Gz = )(1 - a ) A  + $ a @ x .  

Now Aoz 2 (1 - a) A,, so that Z has nontrivial concavity and is thus super-reflexive. 
It follows that T is also bounded on any space Y = Lj.-BZp where 0 < fi c 1. We select 
b so that Y is an interpolation space between L, and X. In fact 

16. 
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and the conclusion is obtained by choosing 8 so that 

1 
2 

+ /I(1 - a) + - a/? = 1 

or 
2 

1 - -  
P 

2 
- + l - -  
2 P 

8 =  a 

Now T is bounded at Y and so X is a T-direction space. 
Now suppose, conversely, that X is a T-direction space. Then for suitable 8 > 0, T is 

bounded at L:-"X". Interpolating with L, we see that Tis also bounded at any space Z where 

with 0 < a < 1. Notice that 

and so by choosing a small enough we can suppose that Z is 2-convex. Let us put 

QZ = /?A + yGX where 0 < /I, y and /I + y < f. 
Thus Y satisfies the T-weight condition where @y = A - 2a2 We can now solve for @, 
in form 

1 
@x = - ((1 - 28) n - GZ). 

2Y 

An applications of Theorem 4.6 now completes the proof for the case when X is 
super-reflexive. 

Now consider (1). If X satisfies the T-weight condition, then so does Li'2X''2 by Theorem 
4.6 (or 4.5). This space is super-reflexive and so it is also a T-direction space; hence X is 
T-direction space. 

Finally we complete the proof of (2) when X is q-concave for some finite q and is a 
T-direction space. Then Y = L:'2X''2 is a T-direction space and is super-reflexive; hence 
it satisfies the T-weight condition. Since @, = 2QY - $ A,  we complete the proof by Theorem 
4.6. 

5. Interpolation of Hardy spaces 

We again consider a probability measure p on a Polish space S. Consider the Orlicz algebra 
Llop, and let X be the collection of all Kothe function spaces X so that X, X *  c Llog. 
Consider a closed subalgebra H of Llog (which is always assumed to contain the constants). 
We define for every X E the Hardy space H, = H n X so that H, is a closed subspace 
of X. In particular, we define H, = L, n X when 1 I p 5 00. 
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We will say that H is of Dirichlet type if for every invertible f E Llog there exists g E H 
which is invertible in H so that lgl = I f l  a.e.; equivalently, H is a Dirichlet-type algebra if 
for every real u E L ,  there exists an invertible g E H with lg( = ey a.e.. 

The simplest example of such a Dirichlet-type algebra is the Smirnov class N + (or Hardy 
algebra) considered as a subalgebra of Llog(T). In this way one generates the standard Hardy 
spaces. More generally suppose that A is a subalgebra of L,(S, p) so that f + J f dp is a 
multiplicative linear functional and !RA is weak*-dense in Lm,R.  Thus A is a weak*-Dirichlet 
algebra (cf. [l], [12], [14]). Let H be the closure of A in LIog; then H has the Dirichlet property 
and the standard abstract Hardy spaces are obtained. The reader may consult GAMELIN 
[12] for details when A is generated by a Dirichlet algebra: see also BARBEY-KONIG [I]. 

Another example is obtained when one considers (T x S, A x p) and defines H to be the 
space of all functions f ( t ,  s) so that f E LlOg and for a.e. s E S the function f, E N +  where 
f,(t) = f ( t ,  s). In this way we can treat vector-valued problems. 

Notice that, in each case, one can always replace the measure p by a measure w dp as long 
as w, log w E L,. This will not change Llog or H but will alter the space H,. This change of 
density allows one to study skew projections. 

Lemma 5.1. Let H be any closed subalgebra of LlOr I f f  E HI the er E H .  

Proof. The series f" 
n 2 0  n!  
- converges in Llog since it converges a.e. and 

If 1, 
n 2 0  n !  
C - = elJl E L~~~ w 

Lemma 5.2. Suppose that H is a Dirichlet-type algebra. Then i f f  E H and v E L,  there is 
a sequence g ,  E H so that 1g.l 5 min (n  en, If I) and g ,  + f in measure (and hence in Llog). 

Proof. First consider the subspace G of L1.R x L0.R of all (u, v )  so that e*("+"')E H. It 
is easy to check that G is closed. Hence by application of the Open Mapping Theorem if 
llunll , -+ 0 there exist u, + 0 in Lo so that eun+iun E H. 

Now pick any h E L1,* with h 2 I f I .  There exists an invertible y E H with IyI = eh. 
Now let 

u, = h - min (h, u + log n) . 
Then )Iu,II1 + 0 and so there exist u, + 0 in measure so that e*(Un+iUn)E H. Let 
g ,  = y e-(un+i"n) f and the result follows easily. 

Suppose that H is a closed subalgebra of Llog. We define V to the subspace of LlOg of all f 
so that j g  dp = 0 whenever g E H and fg E L1. For X E 3 we set V, = V n X. It is trivial 
to see that if f E V and g E H, then f j j  E K We will V, for VL, when 1 I p I co. 

Lemma 5.3. Assume that H is a Dirichlet-type algebra. 
(1) f E V if and only i f  there exists an invertible g E H so that fg E L,  and 1 T g h  dp = 0 

(2)  V is a closed subspace of Llor 
(3)  I f X  E X, then X n H ,  is dense in H ,  and X n V, is dense in V,. 

for euey h E H, .  
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Proof. (1) Supposey E Handfy  E L,.ThenbyLemma5.2thereexistsyn~ Hsothat 

Iy,l I min (n lgl, Iwl) and yn + w in measure. 

Then f y n  dp = 0 and the conclusion follows from Dominated Convergence. 

that F = sup Ifnl E LlOg. Choose any invertible g E H so that lgl 2 F. Then 
(2) Suppose f, + f in Llop where f. E K By passing to a subsequence we can suppose 

n 

Jfg- lh  dp = 0 for every h E H ,  . 

Hence by (l), f E V: 
(3) Suppose f EX;  then (Lemma 2.2) there exists w 2 If1  with log w E L,. The there 

exists an invertible g €If with Igl = w a.e. and by Lemma 5.2 a sequence gnEH, with 
1g.l I lgl so that g, + g in measure. I f f €  H, then the sequence (Jg-'g,,) is in H, n X, 
converges in measure to f and is lattice bounded by Ifl. Hence it convergence also in X. 
If f E V we use a similar argument on fi-li,,. 

From now on, we suppose that H is a Dirichlet-type algebra. We define W to be the 
orthogonal projetion of L, onto H1; it follows from the preceding lemma that the kernel 
of W is V,. Further, if X E %, then W is bounded at X if and only if X = H, 0 V,. We will 
say that H is a Hardy-type algebra if L, = H, 8 V, for all 1 < p < co. Note that all the 
examples quoted are of Hardy type. 

If w E L,,R we will say that w E BMO if w E H, i L, and wedefine the BMO-norm by 

IIWIIBMO = inf{llw - hllm:hEH1) 

Let us note in passing that the infimum is attained. Indeed, if h, E H, is such that 
llw - hnll, + ( ( w ( ( ~ ~ ~ ,  then by KOMLOS'S theorem [22], since (h,) is L,-bounded, we can 
pass to a sequence of convex combinations (g,) of (h,) which converge a.e. to some g. 
However it is easily seen that llg, - gll, + 0 when p < 1 and so g E H since His closed in LlOr 

Proposition 5.4. r f w  E L,, then w E BMO ifand only i f w  is an W-weight direction. Further, 
there is a constant C so that if w E BMO then 

c-' ~ ~ W ~ ~ E M O  IlwllP(@) ~ ~ w ~ ~ B M O  9 

Proof. First suppose w E 9 n L,.  By Lemma 4.2, iff E V, then 

IlWcwnll, 5 e IIWllP l l f l l z  * 

Now suppose f E V, with wf E L,. Then for E =- 0 there exists an invertible g E H so that 
lgl = lf11'2 + E ax. Then fi-' E V, and g E H,, and so 

J f w  dp = J g(wfi-') dp = J g W ( w f i - ' )  dp . 
Hence we have 

Ijfwdpl I e llwllg llfg-'Il2 11g1I2. 

I J f w O J  e I I W I I ~  llflll - 
Letting E + 0 we obtain 
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Now by the Hahn-Banach theorem there exists y E L, so that 

llwllco I e llwlls 
and 

j f(w - F) dp = 0 for f E V, n L,(lwJz). 

Now for any f E V, we can find, utilizing Lemma 5.2, with u = - (log+ 
invertible g, E H so that 

1g.l I min (1, n 1fI-l w-') and g, + 1 a.e. 
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Then inf E V, n L,(w2) and by the Dominated Convergence T..eorem we have 
J f(w - W) dp = 0. 

It now follows, again from the Hahn-Banach theorem, that w - y E H ,  and hence that 

Now conversely suppose w E BMO, with IIw(IBMO I 1. Let 

X, = L,(e2") and X, = L,(e-'"). 

IIWIIBMO I llwl19. 

Then if X, = [X,, X,], we have X,/, = L,. We claim that H is interpolation stable at 1/2 
and further, there is a universal constant C so that K(4, H) I C. In fact, there exists h E H, 
so that (Iw - hll , I 1. Suppose f E H,. Then we define a map F : Y + H by 

f .  F ( ~ )  = e-1+4z2 e ( l - z z ) h  

It is clear that F is analytic into H and 

1 If? dlr J IF(it)l2 e - 2 w  dp = , -2 -8 t2  leZ(l-Zit)(h-w) 

Ilfll: 5 ell2 Ilfll: 9 
- e4 111 - 8r2 - 

while 

j p(1  + jt)12 e - 2 w  dp I e6-8t2 j l e 2 ( - 1 - W ( h - w )  I Ifl2 dp 

Ilfll: I e9I2 Ilfll:. < e4+41rl - 8 t 2  - 

It follows that H is interpolation stable at 1/2 with K(1/2, H) 5 e5I4. Now it follows from 
Theorem 3.3. and its proof that L2(ew/*) = Hz(ew/') 8 Vz(ewlt) if It1 I C for some absolute 
consant C. Thus w E 9(9) and llwlls I C. 

We will now say that a Kothe function space X E I is BMO-regular (for H) if there are 
constants (C, M) so that if 0 I f E X with Ilfllx< 1, then there exists g E X with g 2 f, 
llgllx s M and ll~oggllBMoI C. 

Lemma 5.5. Suppose X E I. Then X satisfies the 9-weight condition if and only if X is 
BMO-regular. 

Proof.  One direction is obvious. For the other, note that if X is the 9-weight direction 
then given f~ X, with llfllx = 1 there exists f' 2 fwith I l f ' l l x  f x  S 2 and logf' E L, by 
Lemma 2.2. Thus if X satisfies the %weight condition with constants (C, M) there exists 
g 2 f'with llgllx I 2M and IIlog glls I C. But then also log g E L,  so that IIlog gIlBM0 I C 
for a suitable constant C .  
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Proposition 5.6. Let H be a Hardy-type algebra. If' X E X is super-rejlexive, then X is 

Proof. This is simply Theorem 4.9. 

BMO-regular if and only if X is an 9-direction. In particular, each L, is BMO-regular. 

Theorem 5.7. Suppose that H i s  a Dirichlet-type algebra. Suppose that X, ,  XI E S are both 
BMO-regular and that 0 < 8 < 1. Let X e  = Xh-'X;. Suppose either that (a) both X,, XI 
are separable or (b) X e  is reflexive. Then H is interpolation stable at 8 for ( X o ,  XI), i.e., 

Proof. We suppose that, for j = 0, 1, Xj are BMO-regular with constants (Cj ,  Mi) .  
Suppose f~ H,, with IlfIIx, = 1; then we can factor I f 1  = f;-'ff", where 0 I fo,fl and 
llfjll,, = 1 for j = 0, 1. Pick f; 2 fi so that IlfJ,, I M j  and (\log f > \ I B M o  I Cj.  Then pick 
hj E HI so that IIlog f$ - hjll, I Cj. We consider the following function for z E 9, 

IHxo, Hx~Io = H,e* 

f .  F ( ~ )  = ezz-e' ,(z-e)(hl-ho) 

F is continuous into H and F(8)  = 1: Further if z = j + it where j = 0, l  

lfil * l ~ ( j  + it)l I # - e 2 - f 2  e( l j -@l+l~l)(Co+C1) 

Hence F E F ( X o ,  X,; H) (see Section 3). Thus we get an estimate 

IIW + it)llx, I C' , 
where C = C'(Co. C , ,  M,, MI, 0). We can now appeal to Proposition 3.6 to deduce that 
Ilfll[Hxo, H,yIle < - C' and this proves the theorem. 

Remark. In the case when S = T and H = Nt then the spaces L,  satisfy the BMO- 
condition. This is immediate from Proposition 5.6 but there is an amusing alternative 
argument. It suffices to consider the case p = 2. The Hardy-Littlewood maximal function 
A is bounded on L, (cf. [31]) and for any f E L,, log &f E BMO by a result of 
COIFMAN-ROCHBERG [6] with an appropriate bound. Combining these facts shows that L, 
and every L, satisfies the BMO-condition. Notice that this then implies an immediate proof 

of a well-known theorem of P. JONES [16], [17] that [H,, H l ] e  = H ,  where p = -. Inter- 
polation with H ,  when p < 1 can be handled in the same way. 

To understand the picture for interpolation in general, we need two further lemmas. 

1 
8 

Lemma 5.8. Suppose that X,, X ,  E X  are separable Kothe function spaces and that 
0 < 8 < 1 is such that H is interpolation stable at 8 .for (X, ,  X I ) .  Suppose that Yo, Y, E .Y 
are also separable Kothe function spaces so that for Kothe function space W we have yi = Xj W 
for j = 0, 1. Then H i s  interpolation stable for (Yo, Y,). 

Proof.  As usual let X, = XA-OXXl: and Ye = YA-BY:.  Suppose that K is the constant 
of interpolation stability at 8 for ( X o ,  X I ) .  Suppose f E Hrs, and llfllr, = 1. Then we can 
factorize 

f = bw where llbllxe = llwllw = 1 . 

b' 2 lbl so that log b' E L ,  and llb'lIxe I 2 .  
Now pick 
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The there exists an invertible g E H with (g( = (b'l . Hence there exists 

F E & ' + ( ~ )  with F : Y + H  

so that 
F(8)  = g and (a.e.) IIF(j + i t )" ,  5 2K.  

Define 
G : Y + H by G ( z )  = F ( z )  fg-' . 

It is easy to see that IIG(j + itllYj I 2K (a.e.) and G(8) = 5 His  stable at 8 for (Yo, Yl). 

Lemma 5.9. Suppose that X , ,  X ,  E 3 are separable Kothe function spaces such that H is 
interpolation stable at 8 for ( X , ,  X , ) .  Then V is also interpolation stable at 8. 

Proof. Suppose f E X ,  = X;-'XB, and f E I/ with I l f I I x ,  = 1. Pick any 

f' E X ,  so that f' 2 IfI, I ( f ' l l X e  I 2 and log f' E L,  . 
Then pick g E H so that lgl = f'. There exists an F E N'(9') with F : Y + H so that 

F(8)  = g and l lF(j  + i f ) l lxj  I 2K 

almost everywhere. Define 
- 
F(z)  = F(z) and consider G(z)  = fg-' F ( z ) .  

Then G is also admissible but has range in V ,  G(6)  = fand  llC(j + i f ) l lxj  I 2K a.e. so V 
is also interpolation stable at 8. 

Lemma 5.10. Suppose that X,,, X ,  E 3 are separable Kothe function spaces so that H is 
interpolation stable at some 0 < 8 < 1 ,for (X, ,  X , ) .  r f  W is bounded at X,( = X;-'X:), 
then there exists q > 0 so that W is also bounded on X ,  $14 - 8) I q. 

Proof. This follows directly from Theorem 3.3. and Lemma 5.9. 

Remark. Let us note that this implies that if L, is BMO-regular then since H must be 
interpolation-stable at 8 = 4 for (L3/z ,  L3), then 4e is bounded on L, for some p > 2. This 
provides a weak converse to Proposition 5.6. 

For the remainder of this section we require that H is of Hardy type, i.e., the Riesz 
projection is bounded on L, for 1 < p < a. 

Proposition 5.11. Suppose that H is of Hardy type and X E 3 is q-concave for some q < 03. 

Then X is a W-direction space if and only if X is BMO-regular. 

Proof. By Theorem 4.9 and Lemma 5.5. we obtain the result for super-reflexive X .  
In the general case if X is BMO-regular, then so is Li'zX'/z  and this must therefore be 
a W-direction space, which implies that X is an W-direction space. Conversely, if X is an 
W-direction space, then L:'2X''z is BMO-regular. But then Theorem 4.6 implies that X1/' 
is BMO-regular since it is super-reflexive. This in turn implies that Xis BMO-regular. 
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To state our main theorem we introduce the idea of a BMO-direction. If X, ,  X, E % we 
define a Kothe function space Z by aZ = 4 ( A  + ax, - ax,). We say that X ,  + X, is a 
BMO-direction if 2 is an ,%-direction space. If either X ,  is p-convex where p > 1 or X, is 
q-concave where q < 03, then 2 has nontrivial concavity and so this is the same as requiring 
that 2 is BMO-regular. If, for example, both spaces are super-reflexive, and X o  is already 
BMO-regular, then X, + X, is a BMO-direction if and only if XI is BMO-regular; this 
follows immediately from Theorems 4.6 and 4.9. On an intuitive level, X o  + X, is a 
BMO-direction if and only if the parallel complex interpolation scale through L, only 
passes through BMO-regular spaces. 

Theorem 5.12. Suppose that H is a Hardy-type algebra and that X,, X I  E % are super- 
reflexive Kothe function spaces. Then, for any 0 < 8 < 1, H is interpolation stable at 8 for 
( X , ,  X,) if and only if X ,  --t XI is a BMO-direction. 

In particular, if X ,  is BMO-regular then H is interpolation stable at  8 for (X, ,  XI) if and 
only if X ,  is BMO-regular. 

Proof. We may suppose that both X,, XI are p-convex and q-concave (with constant 

one) where - + - = 1, and 1 < p I q < 00. Let E = -. Let X ,  = X;-*X\ for 
P 4  29 

O < r < l .  
We start with some remarks on the implications of H being of Hardy type. In this 

situation we can apply Proposition 5.11: a super-reflexive X E % is BMO-regular if and 
only if X is a 9-direction space. Note that L2 is BMO-regular and further that X is 
BMO-regular if and only if X *  is BMO-regular. 

Let us first suppose that H is interpolation stable at 8. Now Xtt is p-convex; furthermore, 
there is a Kothe function space W defined by 

1 1  1 

Now consider the quasi-Kothe spaces Y, defined by 

1 

P 
auO = .- + ax+ - axe. 

Clearly, 

1 
Hence if I$ - 81 I E = - , then Y, is a super-reflexive Kothe function space. We set 

29 

4 , = 8 - ~  and 4, = 8 +  E .  

Then L, = = Y:12Y$/12. 
Now H is interpolation stable at 3 for (X,,, X4J since it is also interpolation stable at 

8 for (X, ,  XI). By Lemma 5.8 H is interpolation stable at 4 also for (Y,,, Y,,). However 
Yi/oz, Y$!’ = L, and W is by assumption bounded at L,. 
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By Lemma 5.10, we conclude that there exists ‘1 > 0 so that Y4 = H y +  0 Vy+ for 
hence B is BMO-regular. Now 14 - 81 I 2‘1. In particular 9 is bounded on B = 

Applying Theorem 4.6 gives that Z is BMO-regular. 

- 8  < T < 1 + E, then there is a Kothe function space X, defined by 
Now we consider the converse; assume that Z is BMO-regular. We note that if 

@& = @ x o  + ?(@XI - @XO)I 

1 1  
and further, each such space is p‘-convex and 29-concave where - + - = 1. 

P’ 29 
We show first that if 0 I T~ I 1, then H is interpolation stable at all 0 < a < 1 for 

+ 1.1 . To this end note that X,, is q-concave and so there is a Kothe func- [ x ~ o  - i t ’  

tion space W defined by 

QW = ax,, - $ E A .  

Now we also have that Z* is BMO-regular. Hence both Yo = Z8 and Yl = (Z*)c are 
BMO-regular. Now H is interpolation stable at all 0 < a < 1 for (&, Y,) by Theorem 5.5. 
But 

GY, = 3 + (2j - 1) - @x,)). 

Hence 

@Y, + @w = @x,, + 0’ - 4) &(@XI - @x,) = @XT0 + & j - - ’ ( 3 
Thus by Lemma 5.8, H is interpolation stable at all 0 < < 1 for Xro -A,,  XTo + 

. 
( 2  2 ) 

Now if I = [a, fl  is a closed sub-interval of ( -8 ,  1 + E )  we will say that I is acceptable 
if H is interpolation stable at all 0 < a < 1 for (xa, XB).  Suppose that I, J are two acceptable 
intervals which intersect in a non-trivial interval; then we claim that I u J is acceptable. 
In fact, excluding the trivial cases when I c J or J c I we can suppose that I = [a,, /Il] 
and J = [a2, B2] where a, < a2 < 8, < /I2. Then we have 

H X B I  = [HXu2’ HXJa where B1 = (1 - 4 a2 + d 3 2  

and similarly 

HXa2 = [Hxa,, Hxbl]u. where a, = (1 - a‘) al + a’b1 . 
By applying WOLFF’S theorem [32] we obtain 

HXu2 = [HXuI, H x ~ I ] ~  where a2 = (1 - e) al + eB2 . 
It then follows from the re-iteration theorem that we actually have that H is interpolation 
stable at any 0 < a < 1 for (X,,, XB2).  

Now by simple induction we can obtain that [0,1] is acceptable and this implies the 
result. 
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Remarks. QUANHUA Xu has pointed out that it follows from Theorem 5.12 that if X ,  is 
p-convex for some p > 1 and if H is interpolation stable at some 0 c 8 c 1, then X ,  + X ,  
is a BMO-direction. In fact, the proof of Theorem 5.12 essentially yields this fact since that 
direction of the argument only uses that X ,  is r-convex, for some r > 1. 

Theorem 5.13. Suppose that H is a Hardy-type algebra and that X , ,  X I  E X. Suppose that 
X ,  is p-convex for some p > 1 and is BMO-regular. Suppose that X1 is q-concave for some 
q < 00. Then, for any 0 c 8 < 1, H is interpolation stable at 8 (i.e., [Hx, ,  HX,],j = H x J  
where X ,  = Xh-'X!, $and only if X ,  is BMO-regular. 

Proof. First note that every X o  is super-reflexive and that Proposition 3.6 can be invoked 
to show the equivalence of the parenthetical statement with interpolation stability. One 
direction of the proof is simply Theorem 5.7. Conversely, if H is interpolation stable at 
some 0 c 8 c 1, then we may pick 0 < t c 8 and H is interpolation stable at 1/2 for 
( X e P r ,  X , j+J .  Hence (Xe-t -P X, , , )  is a BMO-direction. Thus if @= = 4 A + 7 ( @ x ,  - ex0) 
then Z is BMO-regular. Theorems 4.6 and 4.9 allow us to conclude that X ,  is BMO- 
regular. 

Let us mention at this stage that, in the case of the standard Hardy spaces on T, pairs 
X,, X, for which X, + X ,  is a BMO-direction, can be characterized neatly by using 
extended indicators. As in [18] it is possible to extend the indicator Ox to any complex 
f E L,  with I f 1  E 9, n L log L by setting @,(J) = 1 f log x d l  where I f 1  = xx* is the 

Lozanovskii factorization of I f l ,  i.e., the unique pair x, x* 2 0, so that supp x, x* = supp f 
and llxllx = 1, IIx*IIx. = l l f l l  ,. The extended Ox is a quasilinear map with constant 4/e (see 
Lemma 5.6 of [18]). The following theorem follows almost directly from Theorem 9.8 of 
[18]. We will not give a formal proof here, as we plan a more detailed investigation in a 
subsequent paper. 

T 

Theorem 5.14. Suppose that S = T and H = Nf is the Smirnov class. VX,,  X ,  E I, then 
X ,  + X ,  is a BMO-direction i f  and only if there is a constant C so that for any f E H, .  

I@x,cf) - @xocf)l c l l f l l l  . 

6. Skew projections 

We now establish some results on "skew" projections. We suppose that H is a closed 
subalgebra of Llog of Hardy type (of course our principal example of interest is the Smirnov 
class). If w > 0 a.e. and log w E L, ,  then we define 9, to be the orthogonal projecion of 
the weighted Hilbert space L 2 ( w )  onto its subspace H n L 2 ( w )  = H,(w).  

Theorem 6.1. Suppose that H is of Hardy-type. Suppose that X E % is super-reflexive and 
v, w E L ,  satisfy log v, log w E L,.  Then if B,,, W, are both bounded at X ,  then that 0 

log u - log w E BMO. 

Proof. Clearly by duality, 9, is also bounded at u-'X* and at L2(u). It then follows 
easily that H is interpolation stable at any 0 < 8 < 1 for (L2(v),  o - 'X*) .  By Theorem 5.9, 
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Z1 is BMO-regular where for 0 I f E L,, we have 

@z,cf) = f (4.fl - @'.,C,cf) + @ v - ' X * )  

= ( A m  + 2Qx.cf) - J f log v dl) .  

By similar reasoning, H is interpolation stable at any 0 < 8 < 1 for (L,(w), X )  and hence 
Z ,  is BMO-regular where 

QZ,O = f (Acf )  + 2@xcf) + J f log w dl )  . 
Thus Y = Z:'2Z:'2 is BMO-regular. But 

@,(n = f A 0  + $jf( logw - 1ogo)dp. 

Hence L2((uw-1)114) is BMO-regular so that log u - log w E BMO. 

The following theorem is suggested by a result of COIFMAN-ROCHBERG [7] on bounded- 
ness of skew projections on weighted L,-spaces. We observe that although we consider 
more general Kothe spaces, our result is here restricted to projections on Hardy sub- 
spaces; however, we plan to investigate more general results of this type in a forthcoming 
paper. 

Theorem 6.2. Suppose that His  of Hardy type. Suppose that X o ,  X ,  E 9- are super-reflexive 
and that 0 v, w E L, with log w E L,. Suppose that W,, W, are both bounded on X,. 
r f  9, is also bounded on X,, then there exists q > 0 so that W, is bounded on XA-'X; for 
o < e s q .  

Proof. Since X, ,  X I  are super-reflexive, we may suppose that both are p-convex and 
1 1  1 

P 4  29 
q-concave where - + - = 1, and 1 < p I q < co. As in Theorem 5.12 if E = - we can 

define super-reflexive spaces X ,  for - E  I t I 1 + E. 

Since 9, is a bounded on X o  and X,, it is easy to see that H is interpolation stable for 
any 0 < 0 < 1 and (X, ,  X l ) .  Thus X ,  -+ X ,  is a BMO-direction by Theorem 5.12 and so 

also is X - ,  -P X I .  Hence H is interpolation stable at 8 = - for ( X - z , X , ) ;  the 
corresponding interpolation space is X , .  

Without loss of generality we can suppose that dv = w dL is a probability measure. Then 
L,,,(v) = LIog(L) and so we can consider H as a Dirichlet-type algebra on (S, v). It follows 
from Lemma 5.10, since W, is bounded on X,, that there exists q > 0 so that 9, is also 
bounded on XB for all 181 I q. 

E 

1 S E  

7. The vector-valued case 

Finally let us point out an application to the vector-valued case. Let S be a Polish space 
and p be a probability measure on S. Let X be a Kothe function space on S and let Y be 
a Kothe function space on T. We denote by Y ( X )  the Kothe function space on T x S with 
measure 1 x p given by I l f l l u c x ,  = llFllv where F ( t )  = Ilf(t;)llx. 
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Lemma 7.1. Suppose X E S(S) and Y E .Y(T). Then for 0 I f E L,(T x S )  we have 

@ U ( X , C f )  = @ A F )  + I @xu; )  d4 t )  9 

T 

where F ( t )  = I f ( t ,  s) dp(s) and f t (s)  = f(t, s). 
S 

Proof. Let us suppose first that l l f l l ,  = 1 and that f is a simple function of the form 

Suppose that the Lozanovskii factorization of F for (I: Y * )  is given by F = GH. Then for 
each t suppose that 

f ( t ,  s) F ( t ) -  = u(t. S) ~ ( t ,  S) 

is the Lozanovskii factorization for (X, X*). Then the Lozanovskii factorization for 
( Y ( X ) ,  Y(X)*) is given by f = gh where g(t,  s) = G ( t )  u(t, s) and h(t, s) = H ( t )  v( t ,  s). Thus 

For general f the measurability of the integrand and the same formula follows by a simple 
continuity argument (cf. [18], Lemma 4.3). 

If X is a super-reflexive Kothe funtion space in %(S) and Y is a super-reflexive Kothe 
function space on T with YE S(T), then we set H,(X) to be the closed subspace of Y(X) 
of all functions f(., s) E N + for p-a.e. s E S. 

We will denote the Riesz projection on L,(T) by 9 and the vector-valued Riesz projection 
on L2(T x S) by g. 

We are in effect studying the Hardy-type algebra # consisting of all f E L,,,(T x S )  with 
f = f(-, s) E N +  for a.e. s E S. For this algebra HI consists of all f E L,(T x S) so that 
f E Hl(T) for a.e. s E S. The corresponding BMO-space we denote W A O .  

In the vector-valued case we must consider the notion of UMD-spaces as introduced 
and studied initially by BURKHOLDER [4]. In fact a result of BOURGAIN [3] implies that if 
X E S ( S )  then X is a UMD-space if and only if the Riesz projection g is bounded on L2(X). 
This characterization will be all that require. 

Now let us say that a Kothe function space XE%(S) is UMD-regular if for some 
0 < 8 c 1 the space L;X'-' is a UMD-space. If X o , X l  are two Kothe function spaces 
on S we say that X ,  -+ X ,  is a UMD-direction if the space Z is UMD-regular where 

@ z = $ A + 2  (@XI - @xJ ' 

Proposition 7.2. Iff E L,  (T x S), then f E 93AO ifand only i f f  E BMO for a.e. s E S with 

Proof. I f f  E L ,  the map s -+ JJfSJJBMO is easily seen to be measurable, and it is trivial 
to check that I l f l lBd lYO 2 11 I l f l ( B M O l ( m .  For the converse it is enough to note that the set K 

I l f l l taJla = II IlfIIBJlYBIIm c ** 
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of (4, w) in L,(T) x L,(T) such that 4 E HI and 114 - ~ 1 1 ,  I 1 is a Bore1 set. It follows by 
standard selection theorems that there is a universally measurable map w + @ from 

{w E L , ;  I I W I I ~ ~ ~  s 1) to HI so that llw - @llm s 1. 

It follows easily that if f E L,(T x S )  with Ilf"llBMo 
with Ilf - gll, I 1. 

1 for a.e. s, then there exists g E 

Proposition 7.3. Suppose that Y E J(T) and X E J(S). 
(1) Zfg is bounded on Y ( X ) ,  then 9 is bounded on Y.  
(2) I f 9  is bounded on Y, then is bounded on Y(L,). 

Proof. (1) Pick any fixed 0 + x E X and restrict 2 to the space Y([x ] )  where [x] is the 

(2) It follows directly from KRIVINE'S theorem ([23], [24]) that the operator (x,) -, ( a x , )  
one-dimensional space Cx. 

is bounded on Y ( t , )  which implis the result. W 

Proposition 7.4. Suppose that Y E J(T) is super-reflexive and that X is a super-reflexive 

(1) Y ( X )  is a 9-direction space. 
(2)  Y is BMO(T)-regular and X is UMD-regular. 
(3) There exist constants (C, M )  so that if0 I f E Y ( X )  there exists g 2 fwith 

Kothe function spzce on S with X E J ( S ) .  Then the following conditions are equivalent: 

IlgllY(x) M I l f I IY (X ,  and ess SUP lllog g'llBMO c 
where f ( t )  = g(t, s) for s E S.  

(4) Y ( X )  is WAO-regular. 

Proof. Of course (3) just restates (4) and so the equivalence of (l), (3)  and (4) is just 
Proposition 5.11. Let us prove that ( 1 )  (2). Since Y ( X )  is a 2-direction space it follows 
that thereexists 0 > 0 so that g i s  bounded on Y,(Xe) where Y,  = L:-'Ye and X B  = L:-'X'. 
Thus by Proposition 7.3, 9 is bounded on Y ,  which implies that Y is BMO(T)-regular. 
Further @ is bounded on YO(L2) so that this is a WAO-regular space. Hence Y(L,) is a 
WAO-regular space. We show that L 2 ( X )  is a WAU-regular space. In fact, if 0 I f E L,  

@L2(X,W = t 4 F )  + s @ X U )  d l  
T 

where F, f, are as in Lemma 7.1. Thus 

@L,CX)W = @y(x)(f l  - @w2,W + @L~(L~)W 
whence L,(X)  is WAO-regular by Theorem 4.6. This implies that 99 is bounded at L,(X,) 
for some 4 > 0, X+ is UMD and so X is UMD-regular. 

In the converse direction we show that (2) implies that Y ( X )  is K4lO-regular. Indeed, 
if Y is a BMO-regular space, then Proposition 7.3 implies that Y(L,) is WAO-regular. If 
X is UMD-regular, then L 2 ( X )  is a WAU-regular space. As in the preceding argument we 
can then use Theorem 4.6 to get that Y ( X )  is %&@-regular. 

Theorem 7.5. Suppose that (Xo,  X , )  are super-reflexive Kothe function spaces in T(S) and 
Suppose that 0 < 0 < 1 that (Y,, Yl) are super-reflexive Kothe function spaces on T in 
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and that Ye = [Yo, Y,], andX, = [Xo, Xlle Then [H,,(X,), H,, (X,)], = H,,(X,) ifand only if 
Yo -, Y, is a BMO-direction and Xo + X1 is a UMD-direction. 

Proof. The necessary and sufficient condition of Theorem 5.12 is that Yo(X,) + Yl(X,) 
is a 9lAO-direction. This means by Lemma 7.1 that W(Z)is a BdO-regular space where 

(A + Qyl - Quo) and Qz = 4 ( A  + ax, - cPx0). Qw = 

The equivalence of this with the fact that W is BMO-regular and Z is UMD-regular is 
proved in Proposition 7.4. Thus the theorem is immediate. W 

Remark. The restriction that X,, X, E S(S) can easily be removed. It is well-known 
that for general Kothe function spaces there exists weight functions wj, j = 0, 1, so that 
L ,  c w,Xj c L,. Then if Gj(s, t )  = wj(s), 

[H,,(Xo), HYI(Xl)II) = “w-, ~ ~ [ ~ , o ( w o x o ) ~  H,,(w,X1~l, 

and this coincides with i$,-Bw~Hyo(w:-o w:X,) and so on. 

We may also given a non-super-reflexive version: 

Theorem 7.6. Suppose that X is a Kohte function space in X ( S )  which is q-concave for 
some q < 03. Suppose that (Yo, Yl) are BMO-regular Kothe .function spaces on T in %(T). 
Suppose that Yo is p-convex where p > 1 and that Yl is q-concave. Suppose that 0 < 8 < 1 
and that yS = [Yo, Y,], and X, = X*. Then [H,,(L,), H,,(X)], = H,,(X,) if and only i f X  
is UMD-regular. 

Proof. In fact, the special properties of L ,  imply that Yo(&) is &#@-regular. Thus 
from Theorem 5.12 we see that the conclusion holds if and only if Yl(X) is aAO-regular. 
This occurs if and only if the super-reflexive space Y:/2(X1/2) is gAO-regular or, by 
Proposition 7.4, if and only if X is UMD-regular. 

Let us finally relate our work to that of KISLIAKOV and Xu ([20], [21]). They introduce 
a technical condition on a space L,(X, w) = w-’/PL,(X) where w > 0 is a weight function 
on T and consider when such spaces “admit sufficiently many analytic partitions of the 
unity.” Let us say, without defining this concept precisely, that L,(X, w) has the KX-property. 
They show that if X” is UMD for some a > 0 and log w E BMO, then L,(X, w) has the 
KX-property. They also show that if Xo,X, are both reflexive and Lp,(Xo, wo) and 
Lpl(Xl, w,) have the KX-property, then indeed 2 is interpolation stable for evey 0 < 8 < 1 
for (Lpo(X09 wo)9 L,,(X19 Wl)). 

Proposition 7.7. If X E X ( S )  is super-reflexive and 1 < p < 03 is such that L,(X, w) has 
the KX-property, X is UMD-regular and log w E BMO. In particular, if X“ is UMD 
for some a > 0, then X is UMD-regular. 

Proof. As noted above, if L,(X,w) has the KX-property then iW is stable at any 
0 < 8 < 1 for (L2(L2),  L,(X, w)). Thus, by Theorem 7.5, X is UMD-regular and L,(w) is 
BMO-regular which implies that log w E BMO. 
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Note that the assumption X E T(S) can easily be removed by a change of weight. Thus 
our results, at least for super-reflexive spaces, include those of KISLIAKOV and Xu; in fact, the 
conclusion also holds for spaces X with nontrivial concavity by a minor modification. 

We also note that UMD-regularity of a super-reflexive Kothe function space is actually 
an isomorphic invariant; thus ifX and Yare two such function spaces which are isomorphic 
(but not necessarily as lattices), then it may be shown that X is UMD-regular if and only 
if Y is UMD-regular. This can be done by methods of [19]. Let us conclude by remarking 
that in [18] we construct a super-reflexive Kothe function space which is not UMD-regular. 
However we do not know any example of a super-reflexive UMD-regular space which is 
not already a UMD-space (although L, is UMD-regular and not UMD). 
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