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Unusual Traces on Operator I1deals
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1. Introduction

In this note we answer a question of A. Prerscm by constructing an example of a
quasi-normed operator ideal on a HILBERT space which admits more than one continu-
ous trace. We also characterize the class of uniquely traceable operators as described
below.

Let H be a separable HILBERT space and let D be an ideal in K(H) (the compact
operators on H). Then & trace ({2]) on D is a linear functional 7: J — C so that

(T1) »(P) = 1 if P is a projection of rank one.
(T2) ©(4B) = v(B4) if A € D and B € Y(H).
In addition 7 is called separately continuous or (£, £)-continuous ([2}) if
(T3) For every 4 € D, the linear functional B — r(4B) is bounded on ¥ (H).

Let C; be the trace-class and let tr: 0; - C denote the standard trace. If 4 € D
and rank (4) < oo then

7(4) == tr (4).
If  verifies (T 3) then for every 4 € D we have
sup |tr (4B} < o0
i8i=1
rank 8<co

and so 4 € C,. Hence if D supports a separately continuous trace then D < C,.

‘We shall say that a positive T € C; is uniquely traceable if the ideal D it generates
supports exactly one separately continuous trace, namely the standard trace tr.

An ideal D is said to be quasi-normed if there is a quasi-norm |.| on D verifying

(Q1) (D, |}) is complete
Q2) 4| 244l 4€2D
for some § > 0, and
(Q3) ISAT| <IN 14{IT} S, Tef(H) 4€2
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Proposition 1. I} D is a quasi-normed ideal and v is a separately continuous trace on
D then t 13 continuous on (D, ||).

Remark. The converse is clear ([2] p. 68).

Proof. Suppose first that 4, € D is a sequence of normal operators verifying [4,| — 0.
We show 7(4,) — 0. Indeed if not we can find normal B, with |B,| < 27" and ©(B,) = =.
Now there exists isometries U,: H — H (not necessarily surjective) so that the se-
quence C, = U,B,U? commutes. Let P, = |C,| = (C3C,)%. Then J P, converges
in to an operator P and each C, can be written ¢ = PT, where |[T,|| < 1. Thus

sup 7(C,) < oo.
B
However 1(C,) = 7(U,BU%) = ©(B, U U,) = n.

For the general case, if 4, is any sequence in D with |4,| — 0, then |4, + 4}| -0

and |4, — A% — 0 and hence z(4,;) = 0.

2. Some preparatory lemmas

For 4 € X (H) denote by s,(4) the sequence of singular values of 4 so that |4}l = 5,(4)
= 83(4) = -+ = 8,(4) — 0. Define

@4(t) =sup (n:8,(4)>¢ t>0.

Then @, is a monotone decreasing function continuous on the right.
‘We note first some easy inequalities. First

(1) 3m+n—1(A + B) = ém(A) + '311(-3)
for 4, B € J(H), m,n € N (cf. [1]). It follows that
) Parsll) < 4 (g) + s (g)
Further note that
®) Z sld) = [ utt) dt.
nm=] 0

Now suppose 4 = 0 and 4 € J(H). Then the sequence {s,(4)} consists of the eigen-
values {4,}%., of 4 arranged in decreasing order. Let us define

@ trn (&) = 5 an(4).
Then ]
(5) trp (4) = max (tr (PAP))

where P ranges over all self-adjoint projections of rank m.

Lemma 2. For A, B = 0 and m, n € N we have

@) try (4 + B) £ try (4) + try (B)
(ii) tTmin (A + B) 2 try (4) + tr, (B).
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Proof. (i) is immediate. For (ii) note that there exists self-adjoint projections P, Q
so that rank P = m, rank Q@ = n and

tr (PAP) = tr, (4)
tr (QBQ) = tr, (B).
Let R be a self-adjoint projection onto a subspace of dimension m 4 n containing
P(H) and Q(H). Then
tr (R4R) 2 tr, (4
tr (RBR) = tr, (B)
but
tr (R(4 + B) R) < trp, (4 + B).
Lemma 3. If A, B € J(H)and A,B = 0, then
@) P4:8(t) = max (p4(t), pa(t)) t>0
(ii) Paa(4t) < 3 max (p,(t), ps(f)) > 0.

Proof. (i) is immediate, for if g,(t) =m then {{(4 — ¢tI)z, z) > 0 on a subspace
of dimension m. Hence {(4 4+ B — tI} 2, ) > 0 on the same subspace and so @ .5(t)
=m.

(ii) Let ¢4(f) = m, pa(t) = n and suppose p.5(4) = 2 max (m, n). Let gup(dl) = k;
then

T (4 + B) > trmia (4 + B) + 4k — m — n)¢

Stry(4)+try (B + 4k —m — n)t.

However
tr, (4) < tra (4) + (k- m)
tr, (B) Sty (B) + (k — m) ¢
Hence
try (4 + B) < trn (4) + tr, (B) + (26 — m — )¢,
Thus
2%k —m—n>4k—m—n)
and so

lc<-§i(m +n) £ 3 max (m, n).

Now fora > 0, A € 0, with 4 = 0 we shall define

Fufo) = [ ut) dt.
0

Lemma 4. If A, B¢ C; with A, B = 0 then
| 4.8(8) — Fila) — Fpla)] < 9apss(a).
Proof. First note that

Fy6)= ) min (si(4), a).

j=1
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Let g,(a) = m, pa(a) = n, pup(a) = p and p,p(4a) = g. Then
Fy(a) = tr (4) — X (s;(4) — a)
jm1

= tr (4) + ma — tr, (4).
Now since p = max (m, n) (Lemma 3)

trpin (4 4 B) < amin (m, n) 4 tr, (4 + B)
and hence
try, (4) + tr, (B) < tr, (4 + B) + a min {m, n).
Thus ;
F1.5(0) < tr (4 + B) + a(p + min (m, n)) — tr, (4) — tr, (B)

< F(a) + Fpla) + a{p — max (m] n))
< Fu(a) + Fpla) + aps(@)-
Conversely ¢ < 3 max (m, n) and hence
tr, (4 + B) < tryy (4 + B)
where N = max (m, n). Thus
try (4 + B) < tryy (4) + tray (B)

< trp (4) + tr, (B) + (6N — m — n).
Hence
tr, (4 + B) < tr, (4 + B) + 4a(p — g)

< trp (A) + tr, (B) + a(d4p + 6N — 49 — m — n).
We conclude

Fipla) = Fya) + Fpla) +alp —m —n) —aldp + 6N — 49 — m — n)
= F4(a) + Fg(a) — a(3p + 6N — 4q)
2 F (@) + Fs(a) — 9pa:

Lemma 5. Suppose yp: (0, o0) = (0, o) 18 a right-continuous inieger-valued monotone
decreasing function. Suppose

o
(2) fzp(u) du < oo,
[+]
(b) There exist constants C < o0 and 0 < y < 1 so that

[
[v(w) du < Cyay(ya) O0<a<1.
0

Then there exists constants K < co and &« > 0 so that

p(st) = Ks*ly(f)
for0 <s,t < 1.
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Proof. First we observe if 0 < @ < y and 0 < b < a then

aly

byd) < f w(u) du < Coyla).
0
In particular if b = ya

yay(ya) < Cay(a)
and hence

f’:p(u) du € Clayla) O<a <yl
0

Next we observe that we may suppose y = 27? where p € N. Let
& =2%p(27F) EEN.

For n € N we define v, € w, the space of all real sequences, by

va(k) = i"—;ﬂ keN.

n

If n = p then
0ok <=C

123

so that {v,: » = p} is bounded in w. Let I" be the closed convex null of {v,: n = p}.

Then I is compact.
By hypothesisif k 2 p

2-t

[ wlw) du < C%4,
0

and hence

X d; < 20%,.
=k

Henceifm>k=2p

min
2 d; =20,
) j=k+n
and so
2 0alf) < 2C%,(k).
j=k
Nowifwel

3 i) < 20%u(k).

j=k

Since w is bounded this implies that w € ¢,. Let P be the closed positive cone of w;
then I' — P is closed and the constant sequence e = (1, 1, ...) is not in I' — P. Thus
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there exist 8, = O finitely non-zero such that
Zh=1

Zhwak) =1 —6
for all n = p. If B, = O for ¥ > N we conclude that

minv,(k) <1 — 6
RSN

for n = p. Thus for every n = p there exists ¢ < N with
Qo = (1 —0)d;.

Fix « > 0 by 2-¥* = 1 — §. We deduce that if n = p, ¢ € N there exists £ with
oN<Ek=(c+1)Nand

Qi = (1 — G)7*1d, = 2-(o+Dalg,

and

Hence if (¢ — 1) N < I < oN, since p is monotone decreasing,
Gpyg S 2-Ud,,, < 22N (e+DeNg, == =G~ DNQ~lod | < 2HD~led
We easily deduce that for some constant K we have
sty(st) < Ksety(t)
for every 0 < s, t < 1 and the result follows.

3. The main resulfs

Let T be a positive compact operator and let y(t) = @r(t). Then the two-sided ideal Dy
generated by 7' is determined solely by y. In fact A € Dy if and only if for some y,
0 < y < 1 and some C < oo we have

(8) pi(t) < Cyp(yt) t>0.

We denote the set of such 4 by D(p). To see that D(yp) is an ideal one must use equa-
tion (2).
Suppose in addition we have that for some 4, 0 < 1< 1,
w(it) = 29(t) ¢>0.

Then D(y) is a quasi-normed ideal if we define |4| to be the infimum of all ¢ > 0 so
that

palct) < p(t) t>0.
Note here that

i § o) 2o ) )

(4 + B| < 2 max (141, 1B).

so that
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We also remark that if y is any right-continuous monotone decreasing integer valued
function with lim p(f) = O then there is a positive compact operator 7' with g, = y.
t~>c0
Clearly D(y) = 0, if and only if T € O, i.e.

fp(u)du< 00,
]

Theorem 6. Suppose y s a nonnegative monolone-decreasing, inbeger-valued left-con-
tinuous function on (0, oo) with

frp(u)d/u < 0.
9

Then the following are equivalent:
(i) If t i3 a separately continuous trace on D(y) then
d) =tr(4) 4 ¢ D).
(ii) Thereexists K << oo, >080thatif 0 s, ¢ <1
plst) < Ksylt).

Proof. (i) = (ii): Let us suppose (ii) fails. Then, according to Lemma 5 we can find
a sequence a, with 0 < e, <1 and

f p(w) du > na,y (%)
0

For 4 = 0 in D(y) we set
Sa
A,(4) = Fd(au)/‘[ 'P(u) du.
Q

Suppose g,(t) < Cy{yt). Then

PO

8a
Fy(an) < C [ plyw) du = Oy [ piw) du
0 0

so that
0 < 4,04) SOy
Define
4(4) = lim 4,(4)
nelt

where ¥ is some non-principal ultrafilter on N.
We observe that if 0 S 1 < 1,

1-'gs

Frulen) = [ pua(w) du = [ puttu) du = 4 [ g,(0) du
0 1] 0
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so that
g,
IF1a(@s) — AFu(a)| S 2| [ guln) du
< A — 1) pulas) < C(L — 2) p(y8,) G,

Thus if n > y~2

IFiuan) — ] S % (1~ 2 f o) du
and ’

c

4a(3d) — 4,(4)] S = (1 —4).

Thus

A(14) = 14(4) A=0, A=0.
Now by Lemma 4if 4, B =0

17 4:8(@n) — Fa(@s) — Fp(a,)] < 90404.8(a)
I @4,8(t) < Cry(yit) we have

90, [
B 5(e) — Falan) — Falan)] S 9C,anply, an) S~ f () du
[1]

ifn> -1- . It follows that

71
A(4 + By = A(d) + A(B).
Note further that
osamy =2
Y

where @,(t) < Cyp(yt).
We also note that if F' has finite rank then ¢,{t) is bounded and then

Fy(as) = Ka,

for some n. Hence A(4) = 0 if rank 4 < . Now extend A to a linear functional still
denoted by A, defined on D(y). We note that

A(U14AU) = A(A)
if U is unitary.
If rank 4 < oo then A(4) = 0. Furthermore if H is hermitian then we can write
H = P, — P, where P,, P, are positive and
?r,+p,8) = @alf).
Hence if pg(t) < Oyp(yt) then
|[A(H)] < Oy~
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In general if 4 € D(y) then

Paraslt) = 20, (%)

Pia—aml) S 294 (—;')

and hence if g4(f) < Cyp(yt) then

Pusant) = 20y (‘;' '}")

1
Pia—an(t) = 209 (—2- 7‘) .

Hence

[4(4)! < 8Cy™1.
It follows easily that A is separately continuous, i.e. for each B € D(y) the linear
functional 4 — A4(A4B) is bounded on ¥(H).

Now define 7(4) = tr (4) + A(4) for 4 € D(y). Then 7 is separately continnous and
z(P) = 1 for every rank one projection. Furthermore

(U24U) = 17(4)
for every unitary U and hence
1(4B) = t(B4)

for every B € ¥(H), 4 € D(y) (cof. [2] p. 63).

To see that 7 is a trace distinct from tr we need only produce a positive operator T
with

or(t) = v(t)-

Then A(T") = 1 and hence ¥(T) = tr (T) 4 1. This shows that (i) = (ii).

(i) = (i): Let us assume z is a separately continuous trace on D (yp). Let us write
A(4) = 1(4) — tr(4), so that A is separately continuous and A(F) = 0 if rank F < oc.
Suppose 0 < o0 and 0 < y < 1; then there exists M < oo so that if

) p4) = Cy(rt)

then |A(4)| < M.
Fix A satisfying (7). Then for n € N using standard representation theorems we can

write :
A=F+ 4,4 .-+ 4,

where rank F < oo and
1
pa(f) = o pat) 0St=12

and
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Consider for 0 < 1 < 1,
Pr-14,(6) = P (AF)

g-l-m,(u) o<t
n
C

= — pliyt) o<t=1
n
c .

S—EKilpipt) 0<t=1
n

= Cy(ph) 0<t=<1
provided Kis~! = n. Similarly if £ > 1
Prma(b) = 0 = Cyp(t)
and hence
|[AA4) = M

K (1 —a)

Hence

1/(1—a)
A(4) < Mn (E)
n

and hence A(4) = 0. It follows that tr (4) = ©(4) for 4 € D(y).

Corollary 7. Let T be a positive trace-class operator. In order that T is uniquely iraceable
it is necessary and sufficient that there exisis p > 1 and C < oo so that the singular values
(4s) of T satisfy

m

}-mgc(—)-p W m>n.
n

Proof. It suffices to show that gy satisfies (ii) of Theorem 6 if and only if it satisfies
the criterion of the Corollary. In fact if

or(st) < K> lgp(t) 0<s, t<1,
<1 and m > n then

orida) <n

prids —) =0

‘PT(}-m -) =m
and hence

a=1
m= K(f'—"i) n

n

and the Corollary follows with p = I ! .

-«
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If the condition of the Corollary fails we may for every C >0 p> 1 find m > n
with 1, < 1 so that

Am > G(ﬂ)-p&.-
i3

Then ¢(1,) < n and
. (0 (ﬁ>°’ 1,) > m.
n

p(1—a)
K(C=t (T—n-) n>m
™

Thus

so that

1-p(1-a)
(ﬁ) ? < K0¢—1
n
Clearly this is a contradiction if p = (1 — &)™ and KC*1 < 1.

Example. We now construct an explicit example of a function y so that &(y) is a
quasi-normed ideal supporting at least two distinet continuous traces.

We define only y(2-2®) for m € N v {0}. We do this by induction. Let p(2-2) =y,
Set =0, =1.Forn=1,2, ..., let

Yo =4ypy if Rl<mEnltn
Yo =29pq if nltn<msSn+ 1!
Let v be a monotone-decreasing right-continuous integer-valued function with y(2-2m)

= y,. Clearly D(p) is & quasi-normed ideal since

1
yy(-l-é-t)g%(t) t>0.

Furthermore
Pinrgmy = 2%y,
so0 that p fails Theorem 6 (ii).
We must check that
o0
j w(t) df < co.
0
To do this note we need
® 1
,.é; -2—2: YPm < 00,
Now
nli-'n i
— Y = NPy
o2 2w Y Yni

9 Math. Nachr., Bd. 134
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while
+nl >
nit+n+l 22m ¥ = Y
Now
1
Vipinp = VAT Dly, = 20y, S 5 v
if n = 2. Hence

2+ 1)py <oo

and so
-~
[v)dt < oo.
]

By Theorem 6, D(yp) gives the promised example.
Added in proof. For an alternative treatment see [3] pp. 312321,
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