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Locally Complemented Subspaces and I,- Spaces for 0 c p  <I 

By N. J. KALTON~) of Jtissouri-Columbia, 

(Rereived February 25, 1982) 

Abstract. We develop a theory of Fp-spares for O<p< 1, basing our definit.ion on the concept 
of a locally complernonted subspace of a quasi-BaNacH space. Among the topics we consider 
are the existence of basis in Qp-spaces, and lifting and extension properties for operators. We also 
give R simple ronstrriction of unrountably many separable f,-spaces of the form fP(X)  where 
X is not a ?+pace. \Ve also give some applications of our theory to  the spares H,,  O-=p-=l. 

1. Introduction 

g,-spaces (1 s p  s m) were introduced by LINDENSTRAUSS and PELCZY~SKI 
1151 as BANACH spaces whose local structure resembles that of the spaces lp. Thus 
a BANACH space X is an g,-sp?ce if there is a constant 1 such that for every finite 
dimensional subspace F of X there is a finite-dimensional subspace cfx F and a 
linear isomorphism T :  G-ZF) with /IT11 * ~ ~ T - ~ ~ ~ s , ? .  The study of I,-spaces has 
proved to be rich and rewarding. 

There has been little effort at a systematic treatment of gp-spaces for 0 <p-= 1.  
There is however, in the author’s opinion, some interest in giving such a treat- 
ment. For example in [12], it  is shown that the quotient C,/l of 2p by a one- 
dimensional’subspace is not an CP-space if O-=p-=l and hence it cannot be iso- 
morphic to Lp. 

Suppose now Zo is a sub-a-algebra of the ROREL sets of (0, 1) and let i5,(Z0) 
be the closed subspace of all &-measurable functions in L,. We denote by d(Zo) 
the quotient space Lp/L,(Zh). In [9] it is shown that, ‘usually’, Lp(Zo) is uncomple- 
mented in Lp if 0 -=p< 1. Thus N. T. PECK raised the question whet,her A(Z0) can 
be isomorphic to L, if Lp(Z0) is uncomplemented, and equally whether A(&) 
could be an $?,-space. 

The definition of an I,-space used in [I21 is slightly different from the defini- 
tion given above for 1 s p  s -. It is merely required that X contains an increasing 
net of finite-dimensional subspaces uniformly isomorphic to finite-dimensional 
I,-spaces, whose union is dense. This distinction is unimportant for p z 1, but for 
O < p <  1 it  is significant, for, as W. J. STILES pointed out to the author it is not 

J) Research supported in purt by NSF grant RICS-8001855. 



72 Kalton, Locally Compleniented Subspaces and gp-Spaces 

clear that even L,(O -=p-= 1) would satisfy the LINDENSTRAUSS-PELCZY~SKI 
definition. This led us to consider whether theke is an alternative indirect defini- 
tion of 2p-spaces more suitable for 0 -= p - c  1. 

The crucial notion we introduce in this paper is that of a locally complemented 
subspace of a qUasi-BANACH space. This idea is entirely natural we believe and 
leads to an attractiva definition of gp-spaces. Thus a quwi-BANACH x is an 2,- 
space i f  and only if i t  is isomorphic to  a locally complementedmbspace of aspace 
L,(L?, Z, p). There is a local version of this definition (see Theorem 6.1  below); 
S is an gP-space if there is a uniform constant A, such that whenever F is 
finite-dimensional subspaces of X and E=- 0 there are operators S : 3 -. l,, T : lp --c X 
with llTll- ~ ~ S ~ ~ s A  and IlTl3f-fllse llfll for fcP.  For p= 1 or a, this simply reduces 
to the standard definition, but for 1 < p  -= a ( p +  2) it  gives a very slightly wider 
claas (HILBERT spaces are $',-spaces for l-=p-=-). 

We now discuss the layout and main results of the paper. Section 2 is purely 
preparatory and in Section 3 we introduce the notion of a locally complemented 
subspace. In a BANACH space this has several equivalent attractive formulations ; 
for example N iu a locally complemented subspace of X if and only if N** is 
complemented in X**. The Principle of Local Reflexivity plays an important 
role here, as it states that X is locally complemented in X**. 

The absence of a bidual for non-locally convex quasi-BANACH spaces leads us 
to consider ultraproducts in Section 4, and we give a number of connections be- 
tween these ideas. Section 5 contains our first main result that a locally comple- 
mented subspaceof a quasi-BANACH space with a basis, under certain conditions, also 
has a basis; these conditions include the case of a weakly dense subspace. This 
result is similar in spirit to some results of JOHNSON, ROSENTHAL and ZIPPIN [7]. 

I n  Section 6, we introduce gP-spaces and give some of their properties. We 
also show that if 0 c p - z  1, it is convenient to separate separable L,-spaces into 
three categories - discrete, continuous and hybrid $-spaces. A separable 2,- 
space has a basis if and only if it  is discrete, i.e., a locally complemented subspace 
of Zp. Separable $',-spaces with trivial dual are called continuous and correspond 
to the locally complemented subspaces of Lp. We point out (Theorem 6.7) that 
the kernel of any operator from a ~ B A N A C H  space with a basis onto a continuous 
9,-space (including Lp itself) will again have a basis. We also produce a simple 
explicit example of a weakly dense subspace of Zp (O<p-=l) failing to have a 
basis (or even the Bounded Approximation Property). In  view of the results of 
DAVIE and ENFLO [3], [5] and recently SZANKOWSKI "221 the existence of such 8 
subspace is hardly surprising; however the construction is very easy and the sub- 
space has the additional property that every compact operator defined on it may 
be extended to lp. 

In Section 7 we show that the subspace LP(Z0) is locally complemented but not 
complemented (see [9]). A deduction is that in this case A(&) is an 9p-space; 
however we have shown in [ I l l  that, in the case where (Q, 2, p) is separable, that 
A(,&) Lp implies that Lp(Zo) is complemented. If we take the special example 
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where 9= (0, 1 )  x (0, l ) ,  Z i s  the BOREL sets of (0, 1 ) 2  and Z;, is a-algebra of sets 
of the form Bx(0 ,  1) for B a BOREL subset of (0, I ) ,  then A(Zo)sLp(Lp/ l )  
where Lp/l ([i2]) is the quotient of Lp by a single line. However Lp/l is not an 
?p-space. This shows also that for O<p-= 1 it is possible to have L p ( X )  an Lp-space 
without having X as $-space, in contrast to the situation for p = 1. We go on to 
construct an uncountable collection of separable ?,-spaces of this type. 

In Section 8. we prove a number of lifting theorems (similar to those of [12]) 
and extension theoremR for operators. For example if X is a ~ B A N A C H  space and 
N is a closed subspace such that XIN is a continuous ?,-space then an operator 
T : N -2 can be extended to an operator Ti : X -2 under any one of three hypo- 
theses: (1 )  T is compact, (2) is a q-BANACH space for some q > p  or (3) Z is a 
pseudo-dual space. In each the extension is unique. 

In Section 9, we give an application of these ideas to an example involving 
H p  for O<p< I. Let J p  for O-=p-= 1 be the closed subspace of H p  (regarded as a 
subspace of Lp(3), where d is the unit circle with LEBESGUE measure) of all f such 
that f€ Hp. Exploiting a recent result of ALEKSANDROV [ 13 we show J p  is isomor- 
phic to a locally complemented subspace of H,$RP (where I7,=(fELp(3) : j C  
E Hp}) .  We deduce that J p  has (BAP)  and that as Hp has a basis then so does Jp .  
We also quickly obtain the dual space of J,; every continuous linear functional 
~ I E  J z  is of the form 

where yi E H z  and y2.,A,*. We show that J p  is non-isomorphic to H,, but LJH, z 
s Lp/Jp  s Hp/J,.  Finally we characterize translation-invariant operators T : J ,  
+ J p  using the extension theorems of Section 8. We show that every translation- 
invariant operator T : J p  -. Jp takes the form 

d f )  = Y l ( f )  + Y A f )  f E J p  

- 
T f ( 4  = c c,f(w,z) + nie,(f) + a,e,(f) 

11 = 1 

where on€$, 
O,(f) = f ( O )  regarding 1 at3 a member of H,. 

Ic,[p-=oo and, e,( f )=f (O)  regarding f as a member of H p  and 
___ 

2. Preliminaries 

As usual a quasi-norm on real (or complex) vector space X is a map m-+11~11 
(x E R) satisfying 
(2.0.1) /lzll>O x i 0  
(2.0.2) JIccxIJ= lccl 11211, cr€ R (or C),  EX 
(2.03) l l ~ + Y l l ~ ~  (11~11+ll~ll) 5, Y€X ! 
where k is a constant independent of 2 and y. A quasi-norm defines a locally 
bounded vector topology on X .  A complete quasi-normed space is called a quasi- 
BANACH space. If, in addition the quasi-norm satisfies for some p .  O ~ r p s ’ l ,  

(2.0.4) ~ l x + Y l l P ~ ~ ~ ~ l [ P + l ~ v l l p  2, yEX 
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then we say X is a ~ B A N A C H  space. A basic theorem due to  AOKI and ROLEWICZ 
asserts that every CpSi-BANACH space may be equivalently renormed as a p-  
BANACH space for some p ,  O c p s l .  We shall therefore assume without losing 
any generality that every quasi-BANACH space considered is a ~ B A N A C H  space for 
some suitable p where O - = p s l  (i.e. that (2.0.4) is satisfied). 

If (8, Z, p) is a measure space then by L,(8, 2, p) we denote the space of all 
real (or complex) 2-measurable functions f satisfying : 

Ilfll, = { l- VIP d p Y P  == O0 
D 

LJQ, Z, p) is a ~ B A N A C H  space, after the standard identification of functions 
agreeing p-almost everywhere. If Zis  the power set of Q and p is counting measure 
on Z (Lee p ( A )  is the cardinality of A if A is a finite subset of Q and m otherwise), 
then LJQ, C, p) is written ZJQ). If Q is countable this reduces to the standard 
sequence space lp. 

On the other hand if (Q, 2, p)  is separable non-atomic probability space 
then L,(Q, 2, p) can be identified isometrically with the function space LJO, 1 )  
and will be written Lp. 

If X is a quasi-BANACH space the &(Q, Z, p ;  X )  will denote the space of 
2-measurable maps : f : 8 + X with separable range satisfying : 

Ilfll, = { J Ilf(.~)Pll 444P< O0 * 
n 

Again LJQ, 2, p ;  X) is a quasi-BANACH space; if X is a ~-BAKACH space, then 
i t  is also a ~ B A N A C H  space. If Q = N  and ,ic is counting measure we write this 
space as Zp(X), while if (8, C, p)  is separable non-atomic probability space we write 
it as LJX).  

If X is a ~ B A N A C H  space, then for any index set I ,  the space ZJI; X) is the 
space of “generalized sequences”, satisfying 

l l ~ % l i c *  II =SUP 1141 <0° a 

i € I  

,!-(I; X) is also a ~ B A N A C H  space. If 9t is a non-principal ultrafilter on I ,  then 
the ultraproduct X,, of X is the space ZJI; X)/C0,% ( I ;  X) where Co,v ( I ;  X) 
is the closed subspace of ZJI; X )  of all (xi} such that 

It ie often convenient to think of X ,  8s the HAUSDORFF quotient of the space 
ZJI; X )  with the “semi-quasi-norm” 

ll{~t>ll% = $yl llxtll - 
We aho shall identify X as a subspace of X, by identifying each xEX with the 
constant sequence xi = x for i C I .  

The main theorem we shall require here is due to SCHREIBER [2O]  (the case 
p s 1 is due to DACUNHA-CASTELLE and KRIVINE [2]). 
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Theorem 2.1. A n y  ultraproduct i f  a space L,(Q, 2, p) is isonietrically isomorphic 
to L,(SZ,, &, pi) for a suitably chosen measure space (Q,, El, p1). 

Any separable p-BANACH space S is a quotient of the space I,. In the case 
p = 1, LINDENSTRAUSS and ROSEKTHAL [IS] showed that there is a form of uni- 
queness of the quotient map of 1, onto X. Precisely if T i .  1,-X are any two 
quotient maps and X is not isomorphic t o  I, then there is an automorphism z : I, - 

li such that Ti = T,z. STILES [Zl] asked whether this can be generalized t o  1, 
when p .= 1 .  I n  the stated form this is impossible, since as shown by STILES, lp 
contains a subspace 31 which contains no copy of 1, complemented in the whole 
space; then l p l M ~ l p ~ l p / l p ~ ~ ~ ~  and there can be no isomorphism of lp onto 
l p@lp  carrying Af to l P @ M .  However, excepting this case, the argument of 
LINDENSTRACSS and ROSENTHAL can lie extended. We therefore state for 0 -=p< 1 : 

Theorem 2.2. Suppose S is a separable ~-BANACII space and suppose Ti ; 1, - X  
and T2 : lp +X are open mappings. Provided the kernels of TI and T2 both contain 
copies of I,, which are coniplemented in 1). there is an  automorphisrn z : lp-+lp with 
Ti = T,z. 

Ths proof given in LTNDENSTRAUSS-TZAFRIRI [18] p. 108 goes through un- 
disturbed, once one observes that the operator S defined therein is subjective for 
purely algebraic reasons (the proof in  [18] appeals to  duality) indeed given xc l i ,  
x -  PiP2x is clearly in S ( U )  while pl!#!2xCX(V). 

A closed subspace 1V of a quasi-BANACH space X is said to  have the HAHN- 
BANACH Extension Property (HBEP) if every continuous linear functional Y E  M* 
can be extended to a continuous linear functional @ E X " .  

Corollory 2.3. Suppose X is a separable p-BANACH xspace non-isomorphic is lp. 
Suppose T I  : 1, --t X and T._ : lP + X are two open mappings und suppose the kernel 
of T I  has (HBEP) .  Then there i s  a n  automorphism z of lp such that Ti= T2t. 

P r o o f .  If ker Tl has HBEP then Y is a Xp-space as defined in [ 121 and so ker 
T, also has HBEP. But this means by results of STILES that  both ker Ti and 
ker T2 contain copies of lp, complemented in lp .  

We conclude by recalling some definitions. A quBSi-BANACH space X is a 
pseudo-dual space if there is HAUSDORFF vector topology on X for which the unit 
ball is relatively compact. X has the Bounded Approximation Property (BAP) if 
there is a sequence of finite-rank operation T,: X + S  such that T , x + x  for x c S .  

3. Locally coinpleniented subspaces 

We shall say that a closed subspace E of a quasi-BANACH space X is locany 
complemented in X if there is a constant A such that whenever F is a finite-dimen- 
sional subspace of X and E=-O there is a linear operator T = TF : F --r E such that 
l/T/lsA and [ ~ T f - ~ ~ ~ s ~  ] I f 11  for f c E n F .  
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By way of motivation let us observe that the Principle of Local Reflexivity 
for BANACH spaces (LINDENSTRAUSS and ROSE~THAL [17]) states that every 
BANACH space X is locally complemented in its bidual X** (with I =  1). 

We shall start with two rather technical lemmas which will he needed later to 
identify locally complemented eubspaces. 

Lemma 3.1. Suppose X i s  a qumi-BANACH space and that E i s  closed subspacc 
of X .  Suppose there is  a n  increasing net X ,  of subspaces of X so that U ( X u  n E )  is 
dense in E and L'X, is  dense in X .  Suppose there are operators Q, : X,+E such 
that sup ]lQall-=- a d  Q,e+e for e c  U ( X , n E ) .  Then E i s  locally complemented 
in X .  

Proof.  Suppose F c X  is a finite-dimensional subspace and {fl, . . . , f , )  is a 
normalized basis of P such that for some msn ,  {fi, . . . , f n }  is a basis of E nP. 
Then there is a constant c>O such that for any (a l ,  . . . , a,) 

1 
4 

ForfixedO.<e<l select a andgl,..  . gnEX,sot~hatllgi-fiJIP~-cpEPfor l ~ i ~ n  

and g&E for I s i s m .  Choose ~ S K  that IlQBe-eJIPs-EPllellP for eE[gl, . . . , g m ] .  

Then define !P : F - E by 

1 

4 

Then 

Thus ]15!'/1ps211Qallp and if e c P n E ,  

llTe - el] s E lie]] . 
Lemma 3.2. Let X be a qUUSi-BANACH space and suppose E is a locally comple- 

mented subspace of x. Thus there is a constant 1 szcch that whenever Y i s  a closed 
subspace of X containing E with dim YIE < - there is a projection P : Y - E  with 
I /  PI1 5 1. 

Remark, Clearly the converse of Lemma 3.2 is immediate. 

Proof. There is a constant ilo so that for every E=-O and finite-dimensional 
subspace P of X there is a linear map T : IP-E with IITf - f l ]  s~llfll for f EE n F  and 
lITllsilo. We can suppose that X is a ~ B A N A C H  space where O - = p z  1. 
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Suppose Q : Y + E  is any bounded projection (there is a bounded .projection 
since dim Y[E-=- ) .  Suppose e=ilI-&II and choose E=-O so that 

F-= (31; f 4)-‘ @-I . 
Let Q=Q-’(O) and let {gi, . . . , g,} is an &-net for the unit ball of G .  Let 

di=d(gi. E)=inf llgi-ell 1 sisn 
eEh’ 

and choose eiE E so that 

Ilgi-eillPs226P lsisn. 
Let H be the linear span of G and { e i , .  . . , en}. Since Ileillps3 there is a linear 
map T: H - E  so that llT[lsAa and 

~ / ! P e i - - e i ~ ~ ~ &  l s i s n  . 
Suppose gEG and let jlgII=e. For some i, 1 s i s n  

(3.2.1) 119 - 0g;ll ~- t . i lS l l  

and so 

(3.2.2) 

while 

(3.2.3) 

119 - f3eiI[p 5 (26T + E”) l[gIIp 

b:JlgllP sd(g,  E)” +EPllgllP . 
Combining ( 3 . 2 . 2 )  and (3.2.3) we ohtain: 

llg - Bei / jPs  2 4 9 ,  E ) p  + 3211gllP (3.2.4) 

Now define P :  1‘-E by P = Q + T  ( I - Q ) .  Then P is a projection. Supposo 
y e  Y and llylI=l ; let g=y-Qy and €J=llgll. Choose i so that (3 .2 .1)  holds. Thenby 
(3.2.4) 

I IQY+f ’~ i l lP~ I l~ l l p  +Ilq-Wl” 
I 1 + 2 4 9 ,  E)” + 3 ~ ’  Ilgll” 
s 3 + 39QP . 

On the other hand 

IlTg - eeillP 51; IJg - eeillP + llgllP IITei - ei/jP 
5 21;4g, E)” + (31; + 1)  P Q V  . 

[lPyll” s an; + 3 + EPeP ( 3 4  + 4 )  sen; +4 . 
Thus we have 

Setting AP = 21; +4 we have the desired conclusion. 

Lemma 3.3. implies the following proposition whose proof we omit : 

Proposition 3.3. Suppose X is a qZGCCSi-BANACH space and E c F  are closed 
sub-spaces of X ,  If F is locally complemented i n  X and E is locally complemented 
in F, then E is  locally complemented i n  X .  
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We shall say a that closed subspace E of a quasi-BANACH space X has the 
Compact Extension. Property (CEP) in 3 if whenever 2 is a qUaai-BANACH space 
and K : E = Z  is a compact operator then there is a compact operator K z  : X +Z 
with Kie= Ke  for e c  E.  An argument exactly as in Theorem 2.2 of [14] shows that 
if E has (CEP) then for any fixed r=-0 there is a constant 13 so that whenever 2 is 
an r-BANACH space and K : E -2 is compact then we can determine Ki so that 

Theorem 3.4. If E is a locally colkiplemented subspace of S then E has (CEP). 
Proof. We shall not give full details here as this is a straightforward 

“LINDENSTRAUSS compactness argument”. If K : E -+Z is compact consider the 
net (KP,) where Y ranges over all subspaces of X with Y r> E and dim Y IE < 00 

and P, : Y -r E is a uniformly bounded set of projections as in Lemma 3.2. 
The next result is essentially known, but helps to clarify the situation for 

BANACH spaces. 

Theorem 3.6. Let X be a BANACH space and let E be a closed sabspace of X .  The 
following conditions on  E are equivalent : 

(1) E has ( C E P )  in X .  
(2) E is  locally complemented in X .  
(3) E** is complemented in X** under its natural embedding. 
(4) There is  a linear extension operator L :  E*+X* such that Le*(e)=e*(e) for 

Proof .  (2)*(1): Theorem 3.4. 
(1) *(4) : There is a constant I so that wherever K : E - Y is a compact opera- 

tor into a BANACH space Y then K has extension Kl : X +  Y with IIKllJs;llllK]l. 
Let G be a finite-dimensional subspace of E* and let G I  = {e C E : g(e) = 0 for 

gEG}. Let Y be the quotient space E/GL and q : E 4 Y be the quotient map. Then 
there exists a linear operator K : X - r  Y with Ke=qe for e c E  and IIKIIsA. Now 
K* : G-+X*,  * IIK*lls13 and K*g(e)=g(e) for gCG and e c E .  The conclusion of (4) 
can then be obtained by a standard compactness argument. 

l l ~ * l l ~ ~ l l ~ l ’ ~  

eEE and e*EE*. 

(4) 5(3) The adjoint L* : X** -E** is a projection. 
(3) 3 ( 2 )  This follows from Proposition 3.3 and the Principle of Local Reflexi- 

Remark. In  general, so we shall see, the property (CEP) is strictly weaker. 
vity. 

than local complementation for a subspace. 

4. Ultraproduets 

The first part of the following theorem serves as‘a replacement in the non- 

Theorem 4.1. Suppose X i s  a qUaSi-BANACH space, I i s  a n  index set and % is 

(1) X is  locally complemented in X?!. 

locally convex setting for the Principle of Local Reflexivity. 

a non-principal ultrafilter on I .  



Kalton, Locally Complemented Subspaces and Fp-Spaces 79 

(2) If l' is a locally complemented sqcbspace of S then Y ,  is locally coniplemented 
in X,. 

Proof .  (1) : Let F he a finite-dimensional subspace of X ,  and let { f ( ' ) ,  . . . f '")) 
be a basis of F. We shall regard f (k" as members of Z-(I; X )  by selecting represen- 
tatives. For each i E I, define Ti : F +X by 

Clearly we have 

and 
1$? II~,fll=llf// f c F  ' 

By an elementary compactness argument lim vljTajl= 1. If f E F n X  then 

lim Tf=f . 
Again by a compactness argument we may select i so that for any ewO, /IT&- 
- f l I P  s 2'/211fllp ( f  € P fl X) and ~lT$'s 1 + P / 2 .  Letting S = (1 -t P/2) Ti we have 
~ ~ S ~ l s l  and //Sf-flls~/lfl] for f e F n X .  

(2):  Here we may suppose that for some A, we have, for every subspace W of 
S containing Y with dim W / Y  -=a, a projection P : W -  P with llPl]sA. Again 
let F he a finite-dimensional subspace of X,, and select a basis {f(i), ..., f@'} for 
P. For each i e I let Wi = [ Y ,  j:'), . . . , fr) ]  be the linear span of Y and /:), . . . , jy ) .  
Let Pi : Wi+ Y be a projection with ]lP,llzI,. Define T : F- Y,, by Tf={Pifi}iEI 
€or f EP .  Then /lT/]sA and if f~ Y ,  then Tf = f .  

Let us define n quasi-RANACH space Ay to  be an ultra-summand if x is comple- 
mented in x, for every ultraproduct X ,  of x. Then we have: 

Theorem 4.2. Let X be a ~ U ~ ~ ~ - R A N A C H  space and E be a locally complemented 
secbspace of X .  Suppose Y is an ultra-summand. Then any  bounded linear operator 
To : E .-t Y can be extended to a bounded linear operator T : X --t Y .  

Proof .  For an index set 3 we take the collection of subspeces W of X with 
W 2 E  and din1 WIE-em. We let Ze be any ultrafilter on 3 containing all subsets 
of 8 of the form { JYE 3 : W I  W,} for W , , C  3. For each W E  3 there is a projection 
P,r: W - E  so that sup )lPll..IJ=A<-. 

: X --t Yolt by Define 

( W r v = O  x4 w 
= TOP,, x x e  n. . 

Then 
projection then T =QT provides the desired extension. 

summand. 

factors to  a linear map into I', and ~~!P~/zA~]To~].  If Q : Y,- I' is any 

Proposition 4.3. A cornplementetl subspace of a pseudo-dual space is an ultra- 
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Proof. Suppose Y is a pseudo-dual space and P : Y - X  is a projection onto a 
closed subspace X of Y .  We may assume the unit ball of Y is compact in a 
HAUSDORFF vector topology y .  If X ,  is any ultraproduct of X then we can define 
Q :  X,-X by 

Q({q}) = P ( y  - lim x i )  . 
,t 

Then Q is a projection of X,, onto X .  
Theorem 4.4. Consider the following properties of a quasi-BANACH space X: 
(1) X is an ultra-summand. 
(2) Whenever x is a locally complemented subspace of a quasi-BANACH space Z 

(3) X is  isomorphic to a complemented subspace of a pseudo-dual spuce . 
Then (1) and (2) are equivalent in general. If X has (BAP)  then (1),  (2) and (3) 

Proof. ( 1 ) 0 ( 2 ) :  This follows directly from Theorems 4.1 and 4.2. 
( 2 ) 3 ( 3 )  when x’ has ( B A P ) :  Suppose T,: X - X  is a sequence of finite-rank 

operators with Tax +z for zEX. Then sup llT,l/ = I -= a. Form the space 2 of all 
sequence 5 = (5,);= I where Ef i  € T,(X)  such that 11511 =sup 115,,11 rc 00. Then 2 is a 
pseudo-dual space since its unit ball is compact for co-ordinatewise convergence. 
Define J : X +2 by Jx = (T,x)l=, . Then J is an isomorphic embedding of X into 2. 
Define Qk : z - * J ( X )  by Q k ( t ) = J t k ;  then 11&k(15\lJll and &ku+zc for uEJ(X). By 
Lemma 3.1, J ( X )  is locally complemented in 2 and hence is complemented in 2. 

Theorem 4.5. Suppose E i s  a locally complemented subspace of X .  Then  X I E  is 
isomorphic to a locally complemented subspace of a n  ultraproduct X ,  of X .  

Proof. Again let 3 be the collection of all subspaces W of X with W I E  and 
dim W / E  < DJ. Let % be an ultrafilter on 3 containing all subsets of the form 
(W : W c  W,} for Wo€3 .  There exist projections P,,. : W-+E so that sup llPrvll = 
=A,-. Define Q :  X + X ,  by 

then X is complemented in Z .  

are equivalent. 

(&XI w = 0 X B  w 
=5-PlF5 xE bV . 

Again Q is linear into X ,  (after factoring o@ sequences tending to zero through 
%) and 1J&11s(1 + I P ) ’ ’ p  (where we assume X to be a ~ B A N A C H  space). If xEE 
then Q x  = 0 and clearly in general, 

IlQxll a q x ,  E )  
Thus Q factors to an embedding of X / E  into X,. It remains to show that Q ( X )  
is locally complemented in X,. 

Let F be a finite-dimensional subspace of X, with a. basis { f ’ ) ,  . . . , fa)}. For 
each WE3 define T,, : P - Q ( X )  by 
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Now sup IIT,,.I[-=- and liin ~ ] T ~ t r ~ ~ ~ ~ ~ Q ~ ~  as in the proof of Theorem 4.1. If f E  

c Q ( X )  n F  then f =Qx for some x E X .  Hence 
.ZE 

T,rf =& ( x  - P,,-x) 
eventually (as TY + 

s211&11, thus showing & ( X )  is locally complemented in XTt .  

through 29). Thus Tt,,f =&x = f eventually. 
Now we can clearly choose W E 3  so that Twf = f  for f E&(X) nP and llTRlls 

5. Bases 

If a quasi-BANACH space X has (BAP) then it is possible to give a generalizition 

Theorem 5.1. Suppose X is a qUaSi-BANACH space with ( B A P )  : T h e n  a closed 
subspace E of X is locally comple.mented if and only if E has both ( B A  P )  and (CEP). 

Proof.  Suppose first that E has (BAP) and (CEP). Then where is a sequence 
T,  : E + E of finite-rank operators with Tne -e for eE E and sup IITn/l -= W. Now 

by (CEP) (and remarks following the definition) there is a uniformly bounded 
sequence of operators Q, : X -Tn(E)  such that Qne= Tne for eEE. Now by 
Lemma 3.1, E is locally complemented. 

Conversely supposed T,  : X -+X are finite-rank operators satisfying T,x+x 
for xE X and sup llT,ll -= 03. If E is locally complemented there are uniformly bound- 
ed projections P 6 :  E+T,(X)-E.  Define Qn=P,Tn; then sup IIQnll<m, & , ( X ) c  
c E  and Qne-e for eEE. Thus E has (BAP); i t  has (CEP) by Theorem 3.4. 

of Theorem 3.5. 

n 

Remark. See below Example 6.7. 

Corollary 5.2. If X has ( B A P )  and E is locally complemented in X there is a 
sequence of operators S, : X -2- E such that sup IlS,[l 

Now suppose X has a basis. It is unlikely that in general every complemented 
subspace of X has a basis. This would require for BANACH spaces the equivalence 
of (BAP) and the existence of a basis; see LINDENSTRAUSS and TZAFRIRI [18] 
p. 38 and p. 92. However under certain circumstances we shall show that a locally 
complemented subspace does have a basis. 

Suppose X has a basis (b,) and E is a closed subspace of X .  Let I 'be the linear 
span in X *  of the biorthogonal functionals (bz) .  We shall say that E is residual 
in X if there is a uniformly bounded sequence of operators T,  : X +E such that 
T:y-y  for y E T  in the weak*-topology (i.e. y(T,x)+y(x) for x c X ) .  

We shall denote by Pm the partial summation operators with respect to the 
basis i.e. 

cQ and S,e .-r e for e E E.  

m 
P& = 2 bz(x )  bk . 

k = l  

Let X ,  be the algebraic linear span of (bk);=l. 
6 Math. Nachr. Bd. 115 
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Our main theorem will be that every residual locally complemented subspace 
of X has a basis. This theorem is similar in spirit to result of JOHNSON, ROSENTHAL 
and ZIPPIN [7] on the existence of bases in BANACH spaces. Our proof will be 
achieved in several steps ; the first is : 

Lemma 5.3. Sappose Eo is a residual locally complemented subspace of X .  
Then there is a residual locally complemented subspace E of X isomorphic to Eo and 
uniformly bounded seqzlences of finite-rank operators S, : X -. E fl XoTn : X -. E fl X, 
such that 

(5.3.1) , S,e-e eEE 

(5.3.2) T,*y--y weak*, YEP. 

Proof. Since Eo is residual and locally complemented there are uniformly 
bounded operators gn : X +Eo, p, : X + Eo so that &eo +eo for eoE Eo and !f':y - y 
weak * for y E r. 

Choose a countable dimensional dense subspace of Eo, Eoo say, such that 
gn(X0)  c E o o  for nEN and If ,(Xo)cEoo for nEN. Since r separates the points 
of Eoo it  is possible to chose a Hamel basis (w, : nc AT) of Eoo such that the biotho- 
gonal functionals v,<P. Now for each nE N choose nz(n) E N  so that 

Let v, = w, - P,,)w,, and define K : X -+X by 

Kx= Cvn(2)  vn * 
n = i  

Then llKll-c 1 and so A = I -  K is invertible. Now let E=A(Eo) .  
Clearly {A&4-1 : nEN} is uniformly bounded and Af$,A-le-+e for eEE. 

LetSn=A&A-iP,; then {S, : neN}  is a uniformly bounded sequence of finite- 
rank operators and Sne-e for eEE. 

If y e r a n d  xEX 
y ( A  P,A- ix) = y ( P,A -k) - y (K  $,A - 1%) 

and 

y(P,A-ix)-y(A-lz) as n-00 . 
On the other hand 

0 

y(KPmA-'2) = y$PnA-'z) y ( q ) .  
j= 1 

Now 

where 
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Hence, by a form of the Dominated Convergence Theorem, - 
Iim y ( ~ P + 4 - + r )  = C pli(~-lz) y(vi) 

j = i  n-=- 

noting that 

lim q j ( P n ~ - 1 x )  =Y~(A-'s) since ~I ,ET.  
n -- 

Thus 

liin ~ ( A P ~ A - J x )  = Y ( A - I X )  - I / ( K A - ~ X )  =y(z )  . 
Now let T,,= 5?,Pn; then (5.3.2) follows immediately. 

Lemma 5.4. If E satisfies the conclusions of Lemmu 5.3, then there is a uniformly 

n- - 

bounded sequence of finite-rank operators Vn : X + E n X o  such that 

(5.4.1) V,e-e eEE 
(5.4.2) P,V,= P, nELli. 

Proof. Let Wn=Sn+Tn-Tn#,,. Then for fixed k ,  
k 

i = l  
PkTnX = T,*bi(x) bi 

and ]]PkZ"B-Pk~~+O, as n+-. Hence P,Wn-Pk as n-0. Choose m(E) an increas- 
ing sequence so that 

1 
l lPk~~m(k ) -~k l /p<~~-  k-' k= 1, 2,  . . . 

2 

Then on [b,. . . ., b,], PkWm(k) is invertible with inverse A ,  with 

Let v k  = Wm(,,A,Pk. Then PkVk = Pk and { vk) is uniformly bounded. If e < E 
V,e - Pke = ( Wm(,,A, - I )  Pke 

so that 
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Lemmz15.5. I f  E satisfia the conclusions of Lemma 5.4, then we can find a 
eonstant 1, a n  increasing sequence of positive integers (h, : n = 0, 1 , 2, . . .) with ho = 0 
and hi = 1, and a (not necessarily conthuous) linear operator T : X o  - X ,  such that 
(5.5.1) If Gn=[bi: hn.-i<ishn] for n z l ,  then Z’(Gn)cG,+l. 

(5.5.2) I f  gEG, then lfTgll snllgll und IITgllpsAp (d(g, +il-2np~~gllp)  

(5.5.3) If xEXo,  then x-TxEE.  
Proof. Choose il. sufficiently large so that A P > 2 ,  

llPm- Pal[ Z A  m, n z o  

(where Po = 0)  and 

11 Vnll 1 nEN.  
111- V J S n  nEN. 

IIX - ellP 4 z ,  W P  + El/xIy 

] \ ( I -  V,) xl[”<AP(d(z, E)P + ~ l l ~ l l ~ )  . 
By obvious compactness argument if I? is a finite-dimensional subspace of 

X we can choose n<N so that (5.5.4) holds for any xCF. 
Using this remark it is possible to construct two increasing sequences of 

positive integers {h, : n=O, 1, 2, . . .} and {ma : n= 1, 2, 3, . . .} so that ho=O, 
hi= 1, wz,shn and. 

Next observe that if xEX and FwO then we can find e €  E so that 

and as ( I  - V,) e -0 ,  for large enough n we have 

(5.5.4) 

(5.5-5) (1- vmcn,)  (Gn)CGn+i 

(53.6) [I(I- vmcn,) g[l’Sil.’ (d(g,  E)P+A-2npllgllp) gEG, - 
Here we have used the fact that Pmc,, ( I -  Vmcn,) = 0. 

Then the lemma follows. 
Let T : X o - X o  be the linear map defined by Tg= ( I -  VmeJ g for gCG,. 

Theorem5.6. If E is a residua2 locally complemented subspace of a space X 

Proof.  We may assume that E satisfies the conclusions of Lemma 5.5. We 

with a basis; then E also has a basis. 

start with some observations where we let Ta = I .  
(5.6.1) P,Ti=O hi zzn 

(5.6.2) P,Ti= PnTiP, h i e n ,  jz0 

(5.6.3) 

where 

TPhj-  PhiT = TQj j= 1, 2, 3, . . . 

&j = p h i -  p h i  - I (j= 1, 2, 3, . . .) . 
Note that ( I -  T) (X,) c E and define w,= ( I -  T) b,. Clearly bE(w,) = 1 so that 
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w,$;O. We shall show that (w,) is a basis for E. To this end we define a sequence 
of operators U ,  : X -E by 

where hk-,-=nzhk. If x E X ~ ,  
k - I  

U , x = ( I - T )  P, C T ~ x .  
j =O 

by (5.5.1). If 1 s l s n  

U ,w ,=( I -T)  P ,  
j = O  

= ( I - T )  P , ( I - T k ) b , = ( I - T ) b l  =w1. 

Similarly i f  l>n, U,wl=Q. Similar calculations show that UmU,= UnUm= U, 
whenever m?n. Thus to show (w,) is a basis it will suffice to show U,e+e for 
e c E .  

First we make a preliminary calculation; suppose xC X o  and k 2 1. Let 

k - l  

since K>2.  Returning to 5.5.2, we have 

and in particular. 

Now for any rE 
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by (5.6.3). Thus 

so that 

lP*, - U*Jl ?sA4 * 
Finally (1 Uhk[[ 515 for all k. If eE E 

IIPh,e- Uhke[lsAK [(d(Ph,e,  E) )p+ l ( ' -k ) )P  l ~ p h k e l ~ p l  

by (5.6.4) and so Phke - Uhke + O  i.e. Lr e +e.  hk 
If hk - < n s hk, then 

Now 

Thus (w,) is a basis for E .  
Theorem 5.7. If X is a qZGaSi-BANACR space with a basis and E is a weakly 

dense locally complemented subspace of X then E also has a basis. 
Proof. There is a uniformly bounded sequence of operators S,:  X + E  with 

8,e-e for eEE. Then if YET', consider the map A : X + l -  defined by A x = ( y  (x- 
-Snz));si. Since I _  is locally convex then A-l(co) is weakly closed. However 
A-l(co) 2 E  is weakly dense so that A ( X )  c c o  i.e. S,Xy-y. Thus E is also residual 
with Tn = S,. 

6. gP-spaees when O-=p-= 1 

we shall say that a quasi-BANACH space X is an Fp-space for 0 < p  -= 1 if it is 
isomorphic to a locally complemented subspace of a space Lp(Q, Z, p) where 
(Q, Z, p) is measure space. 
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Let us note that the standard definition of an S?,-space for 1 s p s -  due to 
LINDENSTRAUSS and PELCZY~~SKI [15] is local in character. X is an g,-space 
(1 5 p 5 a) if for some oonstant ;Z and for every finite-dimensional subspace F of X 
there is a finite-dimensional subspace Q containing F an isomorphism S : G-Z:) 
(where n=dim G) with jlSll ~~fi‘-~~~s;Z. The problem with this definition for 
~ - = p - =  1 (pointed out to us by W. J. STILES) is that it is by no means clear that 
even L,(O, 1) satisfies this condition. A possible alternative would be to define X 
to  be an g,-space if there is a constant A and an increasing net of finite-dimen- 
sional subspace (B, : aE.4) with UE,  dense in X and isomorphisms S, : E, -+e’ 
with IlS,ll * ~ ~ S ; l ~ ~ ~ A .  This definition was adopted in [12]. It is a consequence of 
Theorem 6.1 below that every such space is an gp-space in our sense here, but we 
do not know whether the converse holds. 

In our opinion, the definition given above would serve as a natural definition 
for all p ,  O i p s - .  However for l-=p-=-, it  would make a BANACH space X an 
g,-space i f  and only if it is a complemented subspace of a space L,(Q, Z, p). The 
Rtandard definition makes X an L,-space if it  is a complemented non-HILBERTian 
subspace of a space L,(Q, Z, p) [17]. For p =  1 or p = -  our definition is the same 
as the standard one. The equivalence follows easily from Theorem 3.5 and results 
in [17] (Corollary to Theorem 3.2, and Theorem JII (a)). 

Note that every ?,-space is (isomrophic to) a p-BANACH space when O - = p s  1.  
The following theorem lists several equivalent formulations of the statement 
that X is an ?,-space. 

tions on X are equivalent: 
Theorem 6.1. Let X be a ~ B A N A C R  space where 0 -=p 5 1. The following condi- 

(1) x’ is an 9,-space 
(2) X is  isomorphic to a locally complemented subspace of some S,-space 
(3) X is isomorphic to the quotient of a ?,-space by a locally coinpleinented sub- 

space 
(4) X is isomorphic to the quotient of a space l ,(I) by  a locally complemented 

subspace. 
( 5 )  Whenever Z is a P-BANACH space and Q : Z + X  is a n  open m a p  then ker Q 

is locally complemented in Z. 
(6) There is a constant *A such that whenever F is a finite-dimensional subspace of 

X and E w O  there are linear operators S :  F-+l,, T :  l p + X  with llSll - llTllsA and 

Proof. ( 1 ) 0 ( 2 )  follows from Proposition 3.3. Since every ~ B A N A C H  space is 
a quotient of .!,(I) for some index set I ,  we have (5) 344) =>(3). To conclude the 
proof we shall show (1)=.(6), (6)*(5) and (3)+(1). 

(1)=.(6): We suppose X is a locally complemented subspace of L,(Q, 2, p). 
Let A be a constant so that whenever Y Z I X  there is a projection P,: 1’-X 
with llPyl[ sl. Suppose F CX is a finite-dimensional sulwpace and E > O .  By a, 

l l ~ W - f I l ~ &  l l f l l  for f € F *  
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routine approximation argument there is a finite subalgebra Zo of L' and a linear 
map S : F-+L,(Q, Z0, p )  with llSll s 1 and llSf - f l !  ~ ' 2 - 1 8  l l f l l .  Let Y =X + L,(sZ, Zo, p) 
and let T=P,IL,(Q, Z0, p). Then IITlls'2 and l l T S f - - - f l ] ~ ~  l l f l l  for j € P .  Since 
L,(Q, Zo, p) is isometric to a subspace of 1, which is the range of a norm-one 
projection, (1) follows. 

(6)+(5) .  For convenience we may suppose Q is a quotient map. Let F be a 
subspace of 2 of dimension n with a basis f , ,  . . . , f ,  where llfill= 1 for 1 zisn. 
Suppose O<E-= 1 and let a>O be a constant so that 1 1  2 aifi 1 '  za(L'lailP)l/, 

i = l  1 1 -  
for all al ,  . . . , a,. Choose operators S : Q(F)+ lp  and T :  l,+X with llTll * I\AS'IISA 
and 

1 
I I T S Q f - Q / l ! ~ ,  a4lQfll f € F  

Since 1, is projective for P-BANACH spaces there is an operator TI : 1, -2 with 
llTlil = llTll and &TI = T .  Define R : P +.Z by R = I - T,SQ. Then Q R  = ( I  - T S )  Q 

and IIQRIIz- a&. Thus we can find gl, . . . , gn€Z with Qg,=QRfi and l\gill<aE. 

Define L : F + Z  by Lf,=g,. Then 

1 
2 

Hence I~LIIZE. Let V=R-L;  then V(F)cker Q and \ lVlls('2p+2)'/p.  If f € F n  
nker Q, we have Rf=f and I l f -  Vfllsellfll. Hence ker Q is locally complemented 
in 2. 

(3) a ( 1 ) .  We may suppose X is the quotient of a spaca Y by a locally comple- 
mented subspace, where Y is itself a locally complemented subspace of Lp(s2, 2, p). 

By Theorem 4.5, X is isomorphic to a locally complemented subspace of an 
ultraproduct Y ,  of Y .  By Theorem 4.1, Y ,  is isomorphic to a locally comple- 
mented subspace of (L,(Q, L', p))%, which by SCHREIBER'S Theorem 2.1 is a space 
L,(Q,, Z;, p l ) .  Hence by Proposition 3.3, X is a 9,-space. 

Separable infinite-dimensional spaces L,(Q, 2, p)  0 -= p -= 1 are isomorphic to 
one of the spaces l,, L, or 1, @ L,. Based on this, we define, for 0 < p < 1,  a discrete 
$?,-space to be a separable 9,-space isomorphic to a l~cally Complemented sub- 
space of 1,. We also define X to be a continuous 9,-space if  it  is isomorphic to a 
locally complemented subpace of L,. 

We shall say that a separable 9,-space is a hybrid 9,-space if it is neither di- 
screte nor continuous, 

Theorem 6.4. Let X be a separable f,-space where O-=p-= 1. T h e  following 
conditions on X are equivalent : 

(1) X is a discrete 9,-spuce 
(2) X has ( B A P )  
(3) X has a basis. 
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Proof .  (1) 3 ( 3 )  fiuppose X is a locally complemented subspace of lp ,  which 
is non-isomorphic to lP.  Let l,/X = Y, so that  Y is also an fp-space. Then there 
is a quotient map U : 1, -+ Y which takes the unit vector basis (en) of lp t o  a 
sequence Ue, dense in the unit ball of Y .  By Corollary 2.3, ker U r X ,  and is 
locally complemented in lp. 

For each nELNselect for 1 s k s n ,  U,,~EZ~ with ZL,,~€[~,+,,  e,+?,.J, Un,,,= Ue, 
and 1 ( ~ , , ~ \ (  s 211 Uekll. Define T, : lp -. ker U by 

Then llTnll 5 (1 + 2p)1’p and T,*y + y  weak* for y in the linear span of the biortho- 
gonal functionals ( e z ) ,  Hence ker U is residual, and we can apply Theorem 5.6 t o  
deduce that ker U (and hence X) has a basis. 

(3) a (2) : Immediate 
(2)*(1): We may suppose X is a locally complemented subspace of lp@Lp. 

From the proof of Theorem 5.1 it is easy to  see there is a uniformly bounded 
sequence of finite-rank operators S, : lp@ Lp -X with S,x +x for xEX.  Let 
P: Zp@Lp-tlp@Lp by defined by P(u, v)=(u ,  0). Clearly S,=S,P and so S,P,-, 
-.x for XEX. Thus Pmaps  Xisomorphically onto a space P(X) of 1, ( = l p @ { O } ) .  
Now PS,Px-x for xE P ( X )  and so by Lemma 3.1, P ( X )  is also locally comple- 
mented in lp. Thus X is a discrete gp-space. 

Remark. Every separable ?p-space (1 sps:03)  has a basis [7]. 

Theorem 6.5. Let X be a separable fp-space where O i p - =  1. Then X is conti- 
nuous if and only if X* = (0). 

Proof .  If X is locally complemented in La, then X has HBEP i.e. X*={O)* 
Conversely if X c Z p @ L p  and X * = { O }  then X c { O } @ L p .  

A nice property of continuous f.p-spaces is given by: 

Theorem 6.6. Let X be a P-BANACH space and let Y be a continuous gP-space. 
Suppose Q : X --f Y is an  open mapping. Then (a )  if X has (BAP), ker Q has (BAP) 
and ( b )  if X has a bask, ker Q has a basis. 

Proof .  Since Y*={O}, ker Q is weaklydense in X .  Simply apply Theorems 
5.1,  5.7 and 6.1 ( 5 ) .  

Example 6.7 Let C denote the subspace of Lp of constant functions. Since C 
fails to  have HBEP, C is not locally complemented. Thus LJC is not a gp-space 
(see [12], where essentially this argument is invoked to show Lp/CzLp) .  However 
LpIC is isomorphic to  a subspace of Lp by the embedding T : Lp/C--Lp [ ( O ,  1) x 
X(0, 111 given by ([I311 

where q :  Lp-tL,/C is the quotient map. Let Y be this subspace of Lp. Now 
let Q : lp+Lp be any quotient map and let Z c l ,  be defined by Z = Q - ’ (  Y ) .  We 
claim that Z has (CEP). Indeed if 21 : 2- W is a compact operator then Tlker Q 

W ( s ,  t )  =f(4 -f(t) s, t €  (0, 1) * 
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is compact and as ker Q is locally complemented it has an extension Ti : lP+ W 
which is also compact. Now Ti - T factors to a compact operator on Y s LJC. 
Since there are no non-zero compact operators on Lp, Ti = T on 2. 

However 2 is not locally complemented, since if it were 1,lZ 2 Lp [ C would be 
an gP-space. We conclude that Z also fails (BAP) by Theorem 5.1. 

7. Example of ?p,-spacos 

If 0 -=p 1 ,  it is rather easy to construct numerous mutually non-isomorphic 
examples of separable gP-spaces. This contrasts with the case p =  1 (see [ S ] ) .  The 
construction used by JOHNSON and LINDENSTRAUSS in [6] can be adapted to the 
case p-= 1 to construct examples which are in general hybrids. We shall however 
take another route to construct examples. The following observation is routine: 

Theorem 7.1. Let X be a separable gP-space. Then L p ( X )  is a continuous gP- 
space. 

As we shall see. the converse of Theorem 7.1 is false, for O-=p-=l .  We can 
construct examples where X is not an &,-space but Lp(X)  is. For p = l  this is 
impossible since L , ( X )  contains a complemented copy of X ,  when X is locally 
convex. 

Theorom 7.2. Let (a, Z, p)  be a non-atomic measure space and let Zo be a sub-c- 
algebra of Z. For O<p< 1, let Lp(Zo) denote the closed subspace of Lp(S, Z, p) of all 
Zo-measurable functions, and let A(Co) denote the quotient LP(Q, Z, ,u)/Lp(C0). Then 
the following statements are equivalent: 

(1) Lp(Zo) is locally complemented in L,(SZ, C, p) 
( 2 )  A(Zo) is an gP-space 
(3) Lp(Zo)* = (01 
(4) p I Zo is non-atomic. 

Proof.  It follows from Theorem 6.1 that ( 1 )  and (2)  are equivalent, and the 
equivalence of (3) and (4) is classical (cf. [4]). Since (1) implies that Lp(Zo) has 
(HBEP) we have ( I )  =.(3). We complete the proof by showing (4 )* (1 ) :  

Consider the net Za (under containment) of finite subalgebras of Z. For each 
Za, let Ai,  . . . , A ,  be the atoms of Za n,Z0 and let (Bi i :  1 s j s m ( i ) )  be the atoms 
of .& contained in Ai.Then there are disjoint sets (C, : 1 ~ j s m ( i ) )  in CO such that 

m(i) U Cii= Ai 
j = r  

p(C,) =p(BiJ * 

Define&,: Lp(Z,)-+Lp(L'o) by&,(lB,)=l,, for l s j s m ( i )  and l s i s k .  &, is an 
isometry, and &,f= f for LP(Za nZo). Now apply Lemma 3.1. 
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Example 7.3. If we take Q a POLISH space and 2 the BOREI, sets in 9 and 
,u a nonatoinic probability measure, then it is shown in [ l l ]  that A ( Z O ) r L p  
implies Lp(Zo) is complemented in L,. 

As a special case consider Q= (0, 1 )  x (0, 1) with ordinary LEBESGUE area 
measure and let Z,, be sets of the form (0, 1) x B where B is a BOREL subset of 
(0, 1). Then A(Zo)rLp(Lp 1 C) whose C is the space of constants in Lp. This is 
an fP-space, but as seen in Example 6.7,  Lp 1 C is not an 5?p-space. 

Example 7.4. FYe now show how to construct an uncountable family of sepa- 
rable ~ R A N A C H  spaces ( Ep : p -= q s l )  so that 

(7.4.1) 

(7.4.2) 

(7.4.3) 

E, is p-trivial [lo] i.e. S(L,], E,l)=O 

There is a quotient map Q :  lp-Eq with ker Q Y ~ , .  

The spaces L,(E,) are mutually non-isomorphic 9p-spaces. 

We start by letting H be the subspace of 1, spanned by the basic sequence 
+e, ,  : wz = 1 ,  2 . . .) (where (em) is the standard basis of ZJ. Let (A,) be a 

BOREL partitioning of (0, 1 )  into sets of positive measure and suppose A,= 
= BL,-l U B,, where Blm--l n B?,=@ and , u ( B ~ ~ - ~ )  = , L L ( B ~ ~ )  = 1/2p(Am) where 
p is LEBESCUE measure on (0, 1). Define an isometry V : Zp -Lp by 

V(e,) = , L L ( B ~ ) - ’ ’ ~ ~ ~ ~  k =  1, 2 ,  . . . 
For p ( q s 1 ,  define T q :  H + l P  by 

Tq ( e l m -  1 + e.,) = 2’Iqem . 
Then \ ~Tq~~=2”q- ’ ’p -c l ,  and let G,=(I-T,) H .  Then G q z l p .  Define Eq=lp  1 G,. 
Then (7.4.2) is immediate, and (7.4.1) follows from the lifting theorems of [12]. 

Next we show Lp(E,) is an 9,-space. For each ?nCX we find f2m-i,  f2mELp 
with 

and 

f 2 m - i + f z m =  VTq (ezm-f  fez,,) . 
Now there is an operator Z;r : L,, +Lp with 

U (  1 nm) = p( B,) j’Pfrn 773 E s 
andIjUllPzsup ~ ~ f m ~ ~ p ~ i .  Clearly VTqx= UVxforxEH: Thus V(G,)=(I-C) V ( H )  
and ( I  - U )  is invertible. 

Consider L,( V(Gq))cLp(Lp). By the above, there is an automorphism of 
Lp(Lp) carrying L,( V ( H q ) )  onto L,( V ( H ) ) .  However if we identify L,(L,) as 
L,( (0, 1) X (0, 1) )  then Lp( V ( H ) )  is identified with Lp(Zo) where Zo is the algebra 
generated by sets of the form C x B  where C is a BOREL subset of (0, 1) and B 
is in the a-algebra generated l q  (Bk : kE S). Thus Lp( V ( H ) )  is locally comple- 
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meted. It is then also locally complemented in the smaller space Lp( B(1,)) and thus 
L,(Gq) is locally complemented in Jp(l,) (2  L,). Hence Lp(lp 1 Gq) =L,(E,) is an  
9,-space. 

Finally we show these spaces are mutually non-isomorphic. If p i  r 5 1, there 
is no non-zero continuous h e a r  operator from EQ into T-BANACH space if and 
only if Gq is dense in 1,. If r>q, then Gq is dense in 1, since its closure contains the 
range of the invertible operator A : 1, -. 1, given by 

~ e , = e , - 2 - ” 4  (e2m-1 +e,,) . 
(Here ~ ~ A - l / ~ r s 2 ‘ - r / q  on &). On the other hand if r-=q, then ] ~ T x ~ ~ s 2 r / q - 1  11x11 for 
ZEH in ,?,-norm, and so the closure of G, in 1, has e,,-,  +e2m-2‘Jqem as a basis, 
equivalent to the usual &-basis. However el ( G ,  since if 

then solving co-ordinatewise c1 = - 2-’Iq, c2 = c3 = 2-’Iq, c4 = c5 = cg = c7 = - 2-314 
etc. and 

Thus the spaces Eq are mutually non-isomorphic and even more, so are the 
spaces lp(Eq). Now by Theorem 8.4 of [ll], the spaces L,(Eq) are mutually non- 
isomorphic. 

Remarks. It can be shown that the containing q-BANAcH space of Eq is isomor- 
phic to  Lq, 

Also we note that if G, is the kernel of a quotient map of 1, onto L,(Eq) then 
the spaces Gq are mutually non-isomorphic discrete ?,-spaces. For suppose 
X : Gq-Gr is an isomorphism. Then since Gq is locally complemented in lp ,  and 1, 
is an ultra-summand, Theorem 4.2 gives an extension SL : l p - l p  of S. Similarly 
S-1 has an extension S2 : lp -1, and S2Si : lp - lp  extends the identity from Gq to 
itself. Since Gq is weakly dense, S2S1=I, and similarly S1S3=I so that l p J G q s  

a contradiction. 

8. Lifting theorems for continuous 2p-spaces 

Lemma 8.1. Let X be a continuous S,-space and let Y be an ultra-summand. 
Then L ( X ,  Y )  = (0). 

Proof.  X is isomorphic to  a locally complemented subspace of L,(O, 1);  
L,(O, 1) is isomorphic to  a locally complemented subspace of L,[(O, l)r] (where r i s  
any set whose cardinality exceeds that of Y )  by Theorem 7.2. Hence by Theorem 
4.2 it suffices t o  consider maps T : Lp[(O, l ) r ]  -r Y .  Suppose f C  L,[(O, l)r] is simple. 
Then there is a set of functions ( r ,  : YET) mutually independent and independent 
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1 
of f so t,hat f i  ( r y =  + 1) =i; (T,,= - 1) = - [We denote by i; the product measure 

2 
in (0 ,  l ) r ] .  By KHINTCHINE'S inequality, 

(8.1.1) l~Zay(ryf)~l SC(ZICI~I~)' 

for some constant C whenever ay is finitely non-zero. Since /Tl=-lY], there are 
infinitely many y with T(r,,f)=g for some gEY. By (8.1.1) we must have g=O. 
Thus for some YET, T(r,f)=O, and Il(1 + r y )  fl]p=2'-"Plifll. Thus ~ ~ T f ~ J ~ 2 1 ~ i ' p ~ ~ T ~ ~  - 
* l l f l l .  Hence ~ ~ T ~ ~ S ~ ~ - ' ' ~ ~ ~ T ~ / ,  i.e. T=O. 

Theorem 8.2. Let Y be a ~ - R A K A C H  space, and let N be a closed subspace of X 
such that XIN is a continuous TP-space. Let Z be any  QUQS&BANACH space and let 
T :  N - Z  be a bounded lineur operator. Each of the following conditions implies T 
has a unique extension Ti : X -Z 

( 1 )  T is compact (and then T ,  is compact) 
(2) Z is q-convex for some q>p 
(3) Z is a n  ultra-sumniand. 

Proof .  Let Q :  l p ( I ) -+X be a quotient map, and consider 8: Q - l ( N ) + & .  

Then Q-I(N)  is locally complemented and so in cases (1) and (3) S has an extension 
Si : ,!,(I) -+Z which is compact in case (1). In  case ( 2 )  we appeal to  the non-separ- 
able version of Theorem 5.1. There is a uniformly bounded set of finite-rank oper- 
ators V ,  : l p ( I )  +Q-f (N)  so that  V,x+x for xE&- ' (N) .  Since Q-I(N) is weakly 
dense, we have ~ ~ V a x - x ~ l l + O  for zEl,(I) where l l . I j l  is the li-norm on Z#). 

If u ~ & - l ( N )  and I/uII1-=e then we can write u=vl +. . . +v, where the vi)s 
have disjoint support and for i ~ n -  1, with I I v , I I ~ s ~ E ~ .  Thus 

1 

Hence 

llSullz 21/PCn'/Qe 
where C=sup llVa\l. Now 

(n- 1 )  sjlzcll"~-" 
so that 

llSull5 2'"c (1 + II211y&-p)"Q& . 
We conclude that if zEZ,(I), since {Vmz) is bou ded and Z t - C ~ ~ ~ ~ ~ ,  S V a x  

converges in Z.  Defining S1x = lim S V a x  for xE l , (I)  we obtain our extension. 

The extension 8, factors t o  Ti : X -2. I n  each case the extension is unique. 
I n  case (1) there are no compact operators on XIN since (using Theorem 3.4) there 
are no compact operators on Lp [S]. Incase (2 )  use Lemma 8.1. I n  case (3) unique- 
ness follows from the construction. 

a 
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Theorem 8.3. Let X be a continuom S?,-space and let Z be a ~ B A N A C H  space. Let 
N be a closed subspace of Z which is either q-convex for q > p  or an ultra-summand. 
Then any bounded linear operator T : X-ZIN has a unique lift Ti : X-cZ (so 
that qT1 = T where q : Z - Z / N  is the quotient map). 

Proof.  Let J' : lP+X be a quotient map. Then there is a lifting S : lp -2 of 
T V :  X + Z / N .  Consider S :  ker V d N .  Since ker V is weakly dense and locally 
complemented in Zp, then in either case there is an extension S, : lp - N .  Consider 
(8-8,) : lp-+2; S-SI factors to the desired lift Ti. Again uniqueness follows 
from 9(X, N )  = (0). In  the case when N is q-convex this follows from using 8.2 
to extend to any operator from X into N to  an operator from Lp into N .  

Remarks. Compare Theorem 4.2 of [17] with Theorems 8.2 and 8.3. It is 
possible to derive a statement similar to that of Theorem 4.2 in [17] from Theorem 
8.2 for 8,-spaces when p e l ,  but it no longer characterizes $lp-speces. This is 
because (see Example 6.7) the (CEP) does not imply local complementation for 
subspaces of 1, when p < 1. 

9. Some applications to Hp 

Now we consider the space L,( 6, m )  where 8 is the unit circle in the complex 
plane and d m = d 8 / 2 ~  is normalized Lebesgue meamre on the circle. The closure 
of the polynomials in &,(a) is denoted by Hp.  It is easy to show for O-=p-=m that  
H p  has (BAP), and i t  has recently been shown that it has a basis [23]. Also H p  is a 
pseudo-dual apace. 

In [15] it  is shown that HI is not an Li-space. 

Proposition 9.1. H p  is not a S?,-spce for 0 -=p-= 1. 

Proof.  H p  has (BAP) but does not embed into Zp since it contains copies of 
l2 (see Theorem 6.4). 

Let us denote by Rp the space of polynomials in 2,  i.e. the space of complex 
conjugates of Hp-functioq. Let J,, = Hp nBp the linear span of the real Hp- 
functions. Recently Aleksandrov [l] showed that H p  +Rp=L,(S) i f  O<p< 1 
(this is clearly false when p = 1 but true trivially for 1 < p ~ - ) .  

This means we can set up  a map U : H p @ H p + L p ( 3 )  defined by V ( f ,  g )  = f  + g .  
Then ker U = { ( f ,  9)  : f =  -g} is isomorphic to Jp .  

Proposition 9.2. (1)  J p  is not an ultra-swmmnd a d  is therefore non-isomorphic 
to H,, 

( 2 )  Jp has a basis. 

Proof. These remarks follow from the fact that the ker U must be locally 
complementedin H p @ f l p ,  but  is clearly weakly dense. We use of courae Theorems 
6.1, 4.4, 5.1 and 5.7. For (2)  we use the fact that H p  has a basis [23]. 



Kalton, Locally Complemented Subspaces and cp-Spaces 95 

Theorem 9.3 (see [24]). Thespaces L p ( 3 ) l J p ,  Lp(3)IHp and H p / J p  are isomorphic. 
Proof. B y  considering the automorphism 2 - 2  of the circle, w0 clearly obtain ? - 

LJH,  2 Lp/Ep. If we define projections in Lp by 
1 

Pf (d=2  (f(44-f (-4) 

Qf(4 = 2 ( f (4  - f  ( -2 , )  
1 

then P and Q each leave H ,  invariant. Thus L J H ,  Y P(Lp)IP(Hp)~&(Lp)/&(Hp).  
Now if T f ( z ) = f ( z 2 ) ,  T maps ,Lp onto P(Lp) and H p  onto P ( H p ) ,  isometrically. 
Similarly T,f(x)=xf(zz) maps Lp onto Q(Lp) and H p  onto &(Hp). Thus L,IHpr 
'I! Lp/Hp @ Lp/Hp. 

Now use the ALEKSANDROV map U : H p @ R p  -. Lp. Since U-1(RP) = Jp@Rp,  
we have Lp/Rp = H p / J p .  Since U - l ( J p )  = J p @  J p ,  L,/J,  Y H p / J p @ E p / J p .  How- 
ever ZPlJp 2 L p / H p ,  by the above reasoning and so LpIJp = LplHp 2 H p / J p .  

Theorem 9.4. Sappose X i s  a n  ultra-summand or is q-convex for some q w p  and 
T : J p  A X  i s  a bozcnded linear operator. Then T can be expressed in the form 

Tf=&f+S2f f € J  

where S1 : H p  -. X and S2 : Rp -. X are bounded linear operators. 
Proof. Define TI : ker U +X by 

Ti(f9 - f ) = T f  f € J p  * 

Sif = V(f1 0) f EHp 
S2f = - V(0, f )  f €Rp  ' 

Extend Ti by Theorem 8.2 to give an operator V : Hp@fTp + X .  Write 

Corollary 9.6. (ALEKSANDROV). Every continuow linear ficnctional y o n  J p  is  
the form 

where y1 € H: and y2 E R;. 
d f )  = Y l ( f )  + Y2(f)  

Remark. ALERSANDROV proves this directly [l]. 
Finally we apply our methods to characterize translation-invariant operators 

on J p .  An operator T : X-cL,, where X is a translation-invariant subspace of 
Lp, is translation-invariant if 

T(f,)=(Tf),  W E 3  

where fm(z)  = f ( o z )  . 
is of  the form 

OBERLIN [ 191 has shown that every translation-invariant operator T : Lp -, Lp 
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- 
where C Jc,JP-cm, and w,E3.  Clearly any such operator restricts to a transla- 

tion-invariant endomorphism of J p .  
For f E H p ,  f can be realized as the boundary values of a function f analytic 

in the open unit disc. Denote by O o ( f )  the value off at 0. Then the map f I -, Oo( f )  - 1 
is a translation-invariant linear operator on J as is f I --j Oo@)  - 1 (where we ex- 

.-'P- 
ploit the fact the f €  H p  for f c  J,) Let O , ( / )  = O o ( / ) .  

takes the form: 

n = i  

__ 

Theorem 9.6. Let T : J p  + J p  be a translation-invariant linear operator. Then 

- 
(9.6.1) Tf(4 = c c,f(w,z) +a1%(f) +a,O-(f) 

n= 1 

where w, E 6, Clc, I p  -= m and a l ,  a2 E C .  
Proof .  First define Ti : ker U + J p  by 

Ti ( f ,  - f )  = Tf ' 
Then since H p  is an ultra-summand, we can find a unique extensionS1 : H p  @ Rp = Hp.  

If WE$, then ( f ,  g)  I -(SAf, g>), extends ( f l  - f )  I -  (Tf),=Tl 
does ( f ,  g)  l+S1(fm, ga). Hence by uniqueness (Sl(f, g)),,,=S1(fW, g,). 

EH,. Hence S,(O, g , ) = O  if %=-I, and Sl(O, go) is constant. We conclude that 

for some aEC. Thus we have 

where V1 : H p  -+ H p  is translation-invariant. Similarly TI extends to a translation 
invariant operator S2 : H p @ R p  -+Rp of the form 

-fa), as 

For nzO choose g , ( ~ ) = z - ~ € R ~ .  Then Si (O ,  g,),=w-nSsi(O, g )  and S,(O, g)E 

MO,  f )  =ae,(f) . 

S,(f* 9)  = Y,f + C&(g) 

S2(f, 9 )  = BOo( f )  + V2f ' 
On ker U Sz=S2. Thus there is an operator R : Lp(3)  -, Lp(3) such that 

RU =Si-S2 
and R is clearly translation-invariant. Hence R is of the form 

, 
Rf(4  = c c,f(w,4 

n=i 

where Zlc,Jp < 00 and o, E 6. 

If f € H p ,  
R f  = Vif  - B W )  * 

Hence 
VIf = Rf + B O O ( f )  

and if f € J p  
T f  = 

which is of the form (9.6.1). 
( f  - f )  = Rf .t @eo(f) - a6-V) 
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