Locally Complemented Subspaces and \mathcal{L}_p -Spaces for 0

By N. J. KALTON¹) of Missouri-Columbia

(Received February 25, 1982)

Abstract. We develop a theory of \mathcal{L}_p -spaces for $0 , basing our definition on the concept of a locally complemented subspace of a quasi-BANACH space. Among the topics we consider are the existence of basis in <math>\mathcal{L}_p$ -spaces, and lifting and extension properties for operators. We also give a simple construction of uncountably many separable \mathcal{L}_p -spaces of the form $\mathcal{L}_p(X)$ where X is not a \mathcal{L}_p -space. We also give some applications of our theory to the spaces H_p , 0 .

1. Introduction

 \mathfrak{L}_p -spaces $(1 \leq p \leq \infty)$ were introduced by LINDENSTRAUSS and PELCZYŃSKI [15] as BANACH spaces whose local structure resembles that of the spaces l_p . Thus a BANACH space X is an \mathfrak{L}_p -space if there is a constant λ such that for every finite dimensional subspace F of X there is a finite-dimensional subspace $G \supset F$ and a linear isomorphism $T: G \rightarrow l_p^{(n)}$ with $||T|| \cdot ||T^{-1}|| \leq \lambda$. The study of \mathfrak{L}_p -spaces has proved to be rich and rewarding.

There has been little effort at a systematic treatment of \mathfrak{L}_p -spaces for 0 . $There is however, in the author's opinion, some interest in giving such a treatment. For example in [12], it is shown that the quotient <math>\mathfrak{L}_p/1$ of \mathfrak{L}_p by a one-dimensional subspace is not an \mathfrak{L}_p -space if $0 and hence it cannot be isomorphic to <math>L_p$.

Suppose now Σ_0 is a sub- σ -algebra of the BOBEL sets of (0, 1) and let $L_p(\Sigma_0)$ be the closed subspace of all Σ_0 -measurable functions in L_p . We denote by $\Lambda(\Sigma_0)$ the quotient space $L_p/L_p(\Sigma_0)$. In [9] it is shown that, 'usually', $L_p(\Sigma_0)$ is uncomplemented in L_p if $0 . Thus N. T. PECK raised the question whether <math>\Lambda(\Sigma_0)$ can be isomorphic to L_p if $L_p(\Sigma_0)$ is uncomplemented, and equally whether $\Lambda(\Sigma_0)$ could be an \mathfrak{L}_p -space.

The definition of an \mathfrak{L}_p -space used in [12] is slightly different from the definition given above for $1 \leq p \leq \infty$. It is merely required that X contains an increasing net of finite-dimensional subspaces uniformly isomorphic to finite-dimensional l_p -spaces, whose union is dense. This distinction is unimportant for $p \geq 1$, but for 0 it is significant, for, as W. J. STILES pointed out to the author it is not

¹) Research supported in part by NSF grant MCS-8001852.

clear that even $L_p(0 would satisfy the LINDENSTRAUSS-PELCZYŃSKI definition. This led us to consider whether there is an alternative indirect definition of <math>\mathfrak{L}_p$ -spaces more suitable for 0 .

The crucial notion we introduce in this paper is that of a locally complemented subspace of a quasi-BANACH space. This idea is entirely natural we believe and leads to an attractive definition of \mathfrak{L}_p -spaces. Thus a quasi-BANACH X is an \mathfrak{L}_p -space if and only if it is isomorphic to a locally complemented subspace of a space $L_p(\Omega, \Sigma, \mu)$. There is a local version of this definition (see Theorem 6.1 below); X is an \mathfrak{L}_p -space if there is a uniform constant λ , such that whenever F is a finite-dimensional subspaces of X and $\varepsilon > 0$ there are operators $S: F \to l_p, T: l_p \to X$ with $||T|| \cdot ||S|| \leq \lambda$ and $||TSf - f|| \leq \varepsilon ||f||$ for $f \in F$. For p = 1 or ∞ , this simply reduces to the standard definition, but for $1 <math>(p \neq 2)$ it gives a very slightly wider class (HILBERT spaces are \mathfrak{L}_p -spaces for 1).

We now discuss the layout and main results of the paper. Section 2 is purely preparatory and in Section 3 we introduce the notion of a locally complemented subspace. In a BANACH space this has several equivalent attractive formulations; for example N is a locally complemented subspace of X if and only if N^{**} is complemented in X^{**} . The Principle of Local Reflexivity plays an important role here, as it states that X is locally complemented in X^{**} .

The absence of a bidual for non-locally convex quasi-BANACH spaces leads us to consider ultraproducts in Section 4, and we give a number of connections between these ideas. Section 5 contains our first main result that a locally complemented subspace of a quasi-BANACH space with a basis, under certain conditions, also has a basis; these conditions include the case of a weakly dense subspace. This result is similar in spirit to some results of JOHNSON, ROSENTHAL and ZIPPIN [7].

In Section 6, we introduce \mathfrak{L}_p -spaces and give some of their properties. We also show that if $0 , it is convenient to separate separable <math>L_p$ -spaces into three categories – discrete, continuous and hybrid \mathfrak{L}_p -spaces. A separable \mathfrak{L}_p -space has a basis if and only if it is discrete, i.e., a locally complemented subspace of l_p . Separable \mathfrak{L}_p -spaces with trivial dual are called continuous and correspond to the locally complemented subspaces of L_p . We point out (Theorem 6.7) that the kernel of any operator from a p-BANACH space with a basis onto a continuous \mathfrak{L}_p -space (including L_p itself) will again have a basis. We also produce a simple explicit example of a weakly dense subspace of l_p ($0) failing to have a basis (or even the Bounded Approximation Property). In view of the results of DAVIE and ENFLO [3], [5] and recently SZANKOWSKI [22] the existence of such a subspace is hardly surprising; however the construction is very easy and the subspace has the additional property that every compact operator defined on it may be extended to <math>l_p$.

In Section 7 we show that the subspace $L_p(\Sigma_0)$ is locally complemented but not complemented (see [9]). A deduction is that in this case $\Lambda(\Sigma_0)$ is an \mathfrak{L}_p -space; however we have shown in [11] that, in the case where (Ω, Σ, μ) is separable, that $\Lambda(\Sigma_0) \cong L_p$ implies that $L_p(\Sigma_0)$ is complemented. If we take the special example

where $\Omega = (0, 1) \times (0, 1)$, Σ is the BOREL sets of $(0, 1)^2$ and Σ_0 is σ -algebra of sets of the form $B \times (0, 1)$ for B a BOREL subset of (0, 1), then $\Lambda(\Sigma_0) \cong L_p(L_p/1)$ where $L_p/1$ ([12]) is the quotient of L_p by a single line. However $L_p/1$ is not an \mathfrak{L}_p -space. This shows also that for $0 it is possible to have <math>L_p(X)$ an L_p -space without having X as \mathfrak{L}_p -space, in contrast to the situation for p = 1. We go on to construct an uncountable collection of separable \mathfrak{L}_p -spaces of this type.

In Section 8, we prove a number of lifting theorems (similar to those of [12]) and extension theorems for operators. For example if X is a p-BANACH space and N is a closed subspace such that X/N is a continuous \mathfrak{L}_p -space then an operator $T: N \rightarrow Z$ can be extended to an operator $T_1: X \rightarrow Z$ under any one of three hypotheses: (1) T is compact, (2) Z is a q-BANACH space for some q > p or (3) Z is a pseudo-dual space. In each the extension is unique.

In Section 9, we give an application of these ideas to an example involving H_p for $0 . Let <math>J_p$ for $0 be the closed subspace of <math>H_p$ (regarded as a subspace of $L_p(\mathfrak{F})$, where \mathfrak{F} is the unit circle with LEBESQUE measure) of all f such that $\overline{f} \in H_p$. Exploiting a recent result of ALEKSANDROV [1] we show J_p is isomorphic to a locally complemented subspace of $H_p \oplus \overline{H}_p$ (where $\overline{H}_p = \{f \in L_p(\mathfrak{F}) : \overline{f} \in H_p\}$). We deduce that J_p has (BAP) and that as H_p has a basis then so does J_p . We also quickly obtain the dual space of J_p ; every continuous linear functional $\varphi \in J_p^*$ is of the form

 $\varphi(f) = \psi_1(f) + \psi_2(f) \quad f \in J_p$

where $\psi_1 \in H_p^*$ and $\psi_2 \in \bar{H}_p^*$. We show that J_p is non-isomorphic to H_p , but $L_p/H_p \cong \cong L_p/J_p \cong H_p/J_p$. Finally we characterize translation-invariant operators $T: J_p \to J_p$ using the extension theorems of Section 8. We show that every translation-invariant operator $T: J_p \to J_p$ takes the form

$$Tf(z) = \sum_{n=1}^{\infty} c_n f(\omega_n z) + a_1 \theta_0(f) + a_2 \theta_{\infty}(f)$$

where $\omega_n \in \mathfrak{F}$, $\sum |c_n|^p < \infty$ and, $\theta_0(f) = f(0)$ regarding f as a member of H_p and $\overline{\theta_{\infty}(f)} = \overline{f}(0)$ regarding \overline{f} as a member of H_p .

2. Preliminaries

As usual a quasi-norm on real (or complex) vector space X is a map $x \mapsto ||x||$ $(x \in \mathbb{R})$ satisfying

 $(2.0.1) ||x|| > 0 x \neq 0$

$$(2.0.2) \|\alpha x\| = |\alpha| \|x\|, \quad \alpha \in \mathbb{R} \quad (\text{or } \mathbb{C}), \quad x \in X$$

 $(2.03) ||x+y|| \le k (||x||+||y||) x, y \in X,$

where k is a constant independent of x and y. A quasi-norm defines a locally bounded vector topology on X. A complete quasi-normed space is called a quasi-BANACH space. If, in addition the quasi-norm satisfies for some p, 0 ,

$$(2.0.4) ||x+y||^p \le ||x||^p + ||y||^p \quad x, y \in X$$

then we say X is a p-BANACH space. A basic theorem due to AOKI and ROLEWICZ asserts that every quasi-BANACH space may be equivalently renormed as a p-BANACH space for some p, 0 . We shall therefore assume without losingany generality that every quasi-BANACH space considered is a p-BANACH space forsome suitable <math>p where 0 (i.e. that (2.0.4) is satisfied).

If (Ω, Σ, μ) is a measure space then by $L_p(\Omega, \Sigma, \mu)$ we denote the space of all real (or complex) Σ -measurable functions f satisfying:

$$||f||_p = \{ \int_{\Omega} |f|^p \, d\mu \}^{1/p} < \infty$$

 $L_p(\Omega, \Sigma, \mu)$ is a *p*-BANACH space, after the standard identification of functions agreeing μ -almost everywhere. If Σ is the power set of Ω and μ is counting measure on Σ (i.e. $\mu(A)$ is the cardinality of A if A is a finite subset of Ω and ∞ otherwise), then $L_p(\Omega, \Sigma, \mu)$ is written $l_p(\Omega)$. If Ω is countable this reduces to the standard sequence space l_p .

On the other hand if (Ω, Σ, μ) is separable non-atomic probability space then $L_p(\Omega, \Sigma, \mu)$ can be identified isometrically with the function space $L_p(0, 1)$ and will be written L_p .

If X is a quasi-BANACH space the $L_p(\Omega, \Sigma, \mu; X)$ will denote the space of Σ -measurable maps: $f: \Omega \to X$ with separable range satisfying:

$$||f||_p = \{ \int_{\Omega} ||f(\omega)^p|| d\mu(\omega) \}^{1/p} < \infty.$$

Again $L_p(\Omega, \Sigma, \mu; X)$ is a quasi-BANACH space; if X is a *p*-BANACH space, then it is also a *p*-BANACH space. If $\Omega = N$ and μ is counting measure we write this space as $l_p(X)$, while if (Ω, Σ, μ) is separable non-atomic probability space we write it as $L_p(X)$.

If X is a p-BANACH space, then for any index set I, the space $l_{\infty}(I; X)$ is the space of "generalized sequences", $\{x_i\}_{i \in I}$ satisfying

$$\|\{x_i\}_{i\in I}\| = \sup_{i\in I} \|x_i\| < \infty$$
.

 $l_{\omega}(I; X)$ is also a *p*-BANACH space. If \mathcal{U} is a non-principal ultrafilter on *I*, then the ultraproduct $X_{\mathcal{U}}$ of *X* is the space $l_{\omega}(I; X)/C_{0,\mathcal{U}}(I; X)$ where $C_{0,\mathcal{U}}(I; X)$ is the closed subspace of $l_{\omega}(I; X)$ of all $\{x_i\}$ such that

$$\lim_{a_i} \|x_i\| = 0$$

It is often convenient to think of X_u as the HAUSDORFF quotient of the space $l_{\infty}(I; X)$ with the "semi-quasi-norm"

$$\|\{x_i\}\|_{\mathcal{U}} = \lim_{a_i} \|x_i\|$$
.

We also shall identify X as a subspace of $X_{\mathcal{U}}$ by identifying each $x \in X$ with the constant sequence $x_i = x$ for $i \in I$.

The main theorem we shall require here is due to SCHREIBER [20] (the case $p \ge 1$ is due to DACUNHA-CASTELLE and KRIVINE [2]).

Theorem 2.1. Any ultraproduct of a space $L_p(\Omega, \Sigma, \mu)$ is isometrically isomorphic to $L_p(\Omega_1, \Sigma_1, \mu_1)$ for a suitably chosen measure space $(\Omega_1, \Sigma_1, \mu_1)$.

Any separable *p*-BANACH space X is a quotient of the space l_p . In the case p=1, LINDENSTRAUSS and ROSENTHAL [16] showed that there is a form of uniqueness of the quotient map of l_1 onto X. Precisely if $T_1: l_1 \rightarrow X$ are any two quotient maps and X is not isomorphic to l_1 then there is an automorphism $\tau: l_1 \rightarrow l_1$ such that $T_1 = T_2 \tau$. STILES [21] asked whether this can be generalized to l_p when p < 1. In the stated form this is impossible, since as shown by STILES, l_p contains a subspace M which contains no copy of l_p complemented in the whole space; then $l_p/M \cong l_p \oplus l_p/l_p \oplus M$ and there can be no isomorphism of l_p onto $l_p \oplus l_p$ carrying M to $l_p \oplus M$. However, excepting this case, the argument of LINDENSTRAUSS and ROSENTHAL can be extended. We therefore state for 0 :

Theorem 2.2. Suppose X is a separable p-BANACH space and suppose $T_1: l_p \to X$ and $T_2: l_p \to X$ are open mappings. Provided the kernels of T_1 and T_2 both contain copies of l_p , which are complemented in l_p , there is an automorphism $\tau: l_p \to l_p$ with $T_1 = T_2 \tau$.

The proof given in LINDENSTRAUSS-TZAFRIRI [18] p. 108 goes through undisturbed, once one observes that the operator S defined therein is subjective for purely algebraic reasons (the proof in [18] appeals to duality) indeed given $x \in l_1$, $x - \hat{T}_1 \hat{T}_2 x$ is clearly in S(U) while $\hat{T}_1 \hat{T}_2 x \in S(V)$.

A closed subspace M of a quasi-BANACH space X is said to have the HAHN-BANACH Extension Property (HBEP) if every continuous linear functional $q \in M^*$ can be extended to a continuous linear functional $\tilde{q} \in X^*$.

Corollory 2.3. Suppose X is a separable p-BANACH xspace non-isomorphic is l_p . Suppose $T_1: l_p \to X$ and $T_2: l_p \to X$ are two open mappings and suppose the kernel of T_1 has (HBEP). Then there is an automorphism τ of l_p such that $T_1 = T_2 \tau$.

Proof. If ker T_1 has HBEP then X is a \mathcal{K}_p -space as defined in [12] and so ker T_2 also has HBEP. But this means by results of STILES that both ker T_1 and ker T_2 contain copies of l_p , complemented in l_p .

We conclude by recalling some definitions. A quasi-BANACH space X is a *pseudo-dual space* if there is HAUSDORFF vector topology on X for which the unit ball is relatively compact. X has the *Bounded Approximation Property* (BAP) if there is a sequence of finite-rank operation $T_n: X \to X$ such that $T_n x \to x$ for $x \in X$.

3. Locally complemented subspaces

We shall say that a closed subspace E of a quasi-BANACH space X is *locally* complemented in X if there is a constant λ such that whenever F is a finite-dimensional subspace of X and $\varepsilon > 0$ there is a linear operator $T = T_F : F \to E$ such that $||T|| \leq \lambda$ and $||Tf - f|| \leq \varepsilon ||f||$ for $f \in E \cap F$.

Kalton. Locally Complemented Subspaces and \mathfrak{L}_{ρ} -Spaces

By way of motivation let us observe that the Principle of Local Reflexivity for BANACH spaces (LINDENSTRAUSS and ROSENTHAL [17]) states that every BANACH space X is locally complemented in its bidual X^{**} (with $\lambda = 1$).

We shall start with two rather technical lemmas which will be needed later to identify locally complemented subspaces.

Lemma 3.1. Suppose X is a quasi-BANACH space and that E is closed subspace of X. Suppose there is an increasing net X_{α} of subspaces of X so that $\cup (X_{\alpha} \cap E)$ is dense in E and $\cup X_{\alpha}$ is dense in X. Suppose there are operators $Q_{\alpha}: X_{\alpha} \to E$ such that $\sup ||Q_{\alpha}|| < \infty$ and $Q_{\alpha}e \to e$ for $e \in \cup (X_{\alpha} \cap E)$. Then E is locally complemented in X.

Proof. Suppose $F \subset X$ is a finite-dimensional subspace and $\{f_1, \ldots, f_n\}$ is a normalized basis of F such that for some $m \leq n$, $\{f_1, \ldots, f_n\}$ is a basis of $E \cap F$. Then there is a constant c > 0 such that for any (a_1, \ldots, a_n)

$$\left|\sum_{i=l}^{n} a_{i} f_{i}\right| \geq c \left\{\sum_{i=l}^{n} |a_{i}|^{p}\right\}^{1/p}$$

For fixed $0 < \varepsilon < 1$ select α and $g_1, \ldots, g_n \in X_{\alpha}$ so that $||g_i - f_i||^p \leq \frac{1}{4} c^p \varepsilon^p$ for $1 \leq i \leq n$ and $g_i \in E$ for $1 \leq i \leq m$. Choose $\beta \geq \alpha$ that $||Q_{\beta}e - e||^p \leq \frac{1}{4} \varepsilon^p ||e||^p$ for $e \in [g_1, \ldots, g_m]$.

Then define $T: F \rightarrow E$ by

$$T\left(\sum_{i=l}^{n} a_{i}f_{i}\right) = Q_{\beta}\left(\sum_{i=l}^{n} a_{i}g_{i}\right).$$

Then

$$\left\|\sum_{i=l}^{n} a_{i} \left(g_{i} - f_{i}\right)\right\|^{p} \leq \frac{1}{4} c^{p} \varepsilon^{p} \sum |a_{i}|^{p}$$
$$\leq \frac{1}{4} \varepsilon^{p} \left\|\sum a_{i} f_{i}\right\|^{p}$$

Thus $||T||^p \leq 2||Q_{\beta}||^p$ and if $e \in F \cap E$,

$$\|Te-e\|\leq \varepsilon \|e\|.$$

Lemma 3.2. Let X be a quasi-BANACH space and suppose E is a locally complemented subspace of X. Thus there is a constant λ such that whenever Y is a closed subspace of X containing E with dim $Y/E < \infty$ there is a projection $P: Y \to E$ with $||P|| \leq \lambda$.

Remark. Clearly the converse of Lemma 3.2 is immediate.

Proof. There is a constant λ_0 so that for every $\varepsilon > 0$ and finite-dimensional subspace F of X there is a linear map $T: F \to E$ with $||Tf - f|| \le \varepsilon ||f||$ for $f \in E \cap F$ and $||T|| \le \lambda_0$. We can suppose that X is a *p*-BANACH space where 0 .

77

Suppose $Q: Y \rightarrow E$ is any bounded projection (there is a bounded projection since dim $Y|E < \infty$). Suppose $\varrho = ||I-Q||$ and choose $\varepsilon > 0$ so that

$$\varepsilon < (3\lambda_0^p + 4)^{-1} \varrho^{-1}$$
.

Let $G = Q^{-1}(0)$ and let $\{g_1, \ldots, g_n\}$ is an ε -net for the unit ball of G. Let

$$\delta_i = d(g_i, E) = \inf_{e \in E} \|g_i - e\| \quad 1 \leq i \leq n$$

and choose $e_i \in E$ so that

 $\|g_i - e_i\|^p \leq 2\delta_i^p \quad 1 \leq i \leq n .$

Let *H* be the linear span of *G* and $\{e_1, \ldots, e_n\}$. Since $||e_i||^p \leq 3$ there is a linear map $T: H \to E$ so that $||T|| \leq \lambda_0$ and

$$\|Te_i - e_i\| \leq \varepsilon$$
 $1 \leq i \leq n$

Suppose $g \in G$ and let $||g|| = \theta$. For some $i, 1 \leq i \leq n$

$$(3.2.1) ||g - \theta g_i|| \leq \varepsilon ||g||$$

and so

 $(3.2.2) \|g - \theta e_i\|^p \leq (2\delta_i^p + \varepsilon^p) \|g\|^p$

while

(3.2.3)
$$\delta_i^p \|g\|^p \leq d(g, E)^p + \varepsilon^p \|g\|^p$$
.

Combining (3.2.2) and (3.2.3) we obtain:

 $(3.2.4) \|g - \theta e_i\|^p \leq 2d(g, E)^p + 3\varepsilon^p \|g\|^p$

Now define $P: Y \to E$ by P = Q + T (I-Q). Then P is a projection. Suppose $y \in Y$ and ||y|| = 1; let g = y - Qy and $\theta = ||g||$. Choose *i* so that (3.2.1) holds. Then by (3.2.4)

$$egin{aligned} \|Qy+ heta e_i\|^p &\leq \|y\|^p+\|g- heta e_i\|^p \ &\leq 1+2d(g,\,E)^p+3arepsilon^p \; \|g\|^p \ &\leq 3+3arepsilon^p q^p \; . \end{aligned}$$

On the other hand

$$\begin{split} \|Tg - \theta e_i\|^p &\leq \lambda_0^p \|g - \theta e_i\|^p + \|g\|^p \|Te_i - e_i\|^p \\ &\leq 2\lambda_0^p d(g, E)^p + (3\lambda_0^p + 1) \varepsilon^p \varrho^p . \end{split}$$

Thus we have

$$||Py||^p \leq 2\lambda_0^p + 3 + \varepsilon^p \varrho^p (3\lambda_0^p + 4) \leq 2\lambda_0^p + 4.$$

Setting $\lambda^p = 2\lambda_0^p + 4$ we have the desired conclusion.

Lemma 3.3. implies the following proposition whose proof we omit:

Proposition 3.3. Suppose X is a quasi-BANACH space and $E \subset F$ are closed sub-spaces of X. If F is locally complemented in X and E is locally complemented in F, then E is locally complemented in X.

We shall say a that closed subspace E of a quasi-BANACH space X has the Compact Extension Property (CEP) in X if whenever Z is a quasi-BANACH space and $K: E \approx Z$ is a compact operator then there is a compact operator $K_1: X \rightarrow Z$ with $K_1e = Ke$ for $e \in E$. An argument exactly as in Theorem 2.2 of [14] shows that if E has (CEP) then for any fixed r > 0 there is a constant λ so that whenever Z is an r-BANACH space and $K: E \rightarrow Z$ is compact then we can determine K_1 so that $||K_1|| \leq \lambda ||K||$.

Theorem 3.4. If E is a locally complemented subspace of X then E has (CEP).

Proof. We shall not give full details here as this is a straightforward "LINDENSTRAUSS compactness argument". If $K: E \rightarrow Z$ is compact consider the net $\{KP_Y\}$ where Y ranges over all subspaces of X with $Y \supset E$ and dim $Y|E < \infty$ and $P_Y: Y \rightarrow E$ is a uniformly bounded set of projections as in Lemma 3.2.

The next result is essentially known, but helps to clarify the situation for BANACH spaces.

Theorem 3.5. Let X be a BANACH space and let E be a closed subspace of X. The following conditions on E are equivalent:

(1) E has (CEP) in X.

(2) E is locally complemented in X.

(3) E^{**} is complemented in X^{**} under its natural embedding.

(4) There is a linear extension operator $L: E^* \rightarrow X^*$ such that $Le^*(e) = e^*(e)$ for $e \in E$ and $e^* \in E^*$.

Proof. (2) \Rightarrow (1): Theorem 3.4.

(1) \Rightarrow (4): There is a constant λ so that wherever $K: E \rightarrow Y$ is a compact operator into a BANACH space Y then K has extension $K_1: X \rightarrow Y$ with $||K_1|| \leq \lambda ||K||$.

Let G be a finite-dimensional subspace of E^* and let $G^{\perp} = \{e \in E : g(e) = 0 \text{ for } g \in G\}$. Let Y be the quotient space E/G^{\perp} and $q : E \to Y$ be the quotient map. Then there exists a linear operator $K : X \to Y$ with Ke = qe for $e \in E$ and $||K|| \leq \lambda$. Now $K^* : G \to X^*, \cdot ||K^*|| \leq \lambda$ and $K^*g(e) = g(e)$ for $g \in G$ and $e \in E$. The conclusion of (4) can then be obtained by a standard compactness argument.

(4) \Rightarrow (3) The adjoint $L^*: X^{**} \rightarrow E^{**}$ is a projection.

 $(3) \Rightarrow (2)$ This follows from Proposition 3.3 and the Principle of Local Reflexivity.

Remark. In general, so we shall see, the property (CEP) is strictly weaker than local complementation for a subspace.

4. Ultraproducts

The first part of the following theorem serves as a replacement in the nonlocally convex setting for the Principle of Local Reflexivity.

Theorem 4.1. Suppose X is a quasi-BANACH space, I is an index set and \mathfrak{U} is a non-principal ultrafilter on I.

(1) X is locally complemented in X_{γ} .

(2) If Y is a locally complemented subspace of X then $Y_{\mathfrak{A}}$ is locally complemented in $X_{\mathfrak{A}}$.

Proof. (1): Let F be a finite-dimensional subspace of $X_{\mathfrak{A}}$ and let $\{f^{(1)}, \ldots, f^{(n)}\}$ be a basis of F. We shall regard $f^{(k)}$ as members of $l_{\mathfrak{A}}(I; X)$ by selecting representatives. For each $i \in I$, define $T_i: F \to X$ by

$$T_i \left\{ \sum_{k=1}^n a_k f^{(k)} \right\} = \sum_{k=1}^n a_k f_i^{(k)} .$$

Clearly we have

$$\sup_{i \in I} \|T_i f\| < \infty$$

and

$$\lim_{\mathcal{H}} \|T_i f\| = \|f\| \quad f \in F.$$

By an elementary compactness argument $\lim_{M} ||T_i|| = 1$. If $f \in F \cap X$ then

$$\lim Tf = f.$$

Again by a compactness argument we may select *i* so that for any $\varepsilon > 0$, $||T_i f - -f||^p \leq \varepsilon^p / 2||f||^p (f \in F \cap X)$ and $||T_i||^p \leq 1 + \varepsilon^p / 2$. Letting $S = (1 + \varepsilon^p / 2)^{-1/p} T_i$ we have $||S|| \leq 1$ and $||Sf - f|| \leq \varepsilon ||f||$ for $f \in F \cap X$.

(2): Here we may suppose that for some λ , we have, for every subspace W of X containing Y with dim $W/Y < \infty$, a projection $P: W \to Y$ with $||P|| \leq \lambda$. Again let F be a finite-dimensional subspace of $X_{\mathfrak{N}}$ and select a basis $\{f^{(1)}, \ldots, f^{(n)}\}$ for F. For each $i \in I$ let $W_i = [Y, f_i^{(1)}, \ldots, f_i^{(n)}]$ be the linear span of Y and $f_i^{(1)}, \ldots, f_i^{(n)}$. Let $P_i: W_i \to Y$ be a projection with $||P_i|| \leq \lambda$. Define $T: F \to Y_{\mathfrak{N}}$ by $Tf = \{P_i f_i\}_{i \in I}$ for $f \in F$. Then $||T|| \leq \lambda$ and if $f \in Y_{\mathfrak{N}}$ then Tf = f.

Let us define a quasi-BANACH space X to be an ultra-summand if X is complemented in X_{u} for every ultraproduct X_{u} of X. Then we have:

Theorem 4.2. Let X be a quasi-BANACH space and E be a locally complemented subspace of X. Suppose Y is an ultra-summand. Then any bounded linear operator $T_0: E \to Y$ can be extended to a bounded linear operator $T: X \to Y$.

Proof. For an index set \Im we take the collection of subspaces W of X with $W \supset E$ and dim $W/E < \infty$. We let \mathscr{U} be any ultrafilter on \Im containing all subsets of \Im of the form $\{W \in \Im : W \supset W_0\}$ for $W_0 \in \Im$. For each $W \in \Im$ there is a projection $P_W: W \rightarrow E$ so that $\sup \|P_W\| = \lambda < \infty$.

Define $\tilde{T}: X \to Y_{\mathcal{U}}$ by

$$(\hat{T}x)_{W} = 0 \qquad x \notin W$$
$$= T_{0}P_{W}x \qquad x \in W.$$

Then \tilde{T} factors to a linear map into $Y_{\mathcal{U}}$ and $\|\tilde{T}\| \leq \lambda \|T_0\|$. If $Q: Y_{\mathcal{U}} \to Y$ is any projection then $T = Q\tilde{T}$ provides the desired extension.

Proposition 4.3. A complemented subspace of a pseudo-dual space is an ultrasummand. **Proof.** Suppose Y is a pseudo-dual space and $P: Y \rightarrow X$ is a projection onto a closed subspace X of Y. We may assume the unit ball of Y is compact in a **HAUSDORFF** vector topology γ . If X_{qt} is any ultraproduct of X then we can define $Q: X_{qt} \rightarrow X$ by

$$Q(\{x_i\}) = P(\gamma - \lim_{a_i} x_i).$$

Then Q is a projection of $X_{\mathfrak{N}}$ onto X.

Theorem 4.4. Consider the following properties of a quasi-BANACH space X: (1) X is an ultra-summand.

(2) Whenever X is a locally complemented subspace of a quasi-BANACH space Z then X is complemented in Z.

(3) X is isomorphic to a complemented subspace of a pseudo-dual space.

Then (1) and (2) are equivalent in general. If X has (BAP) then (1), (2) and (3) are equivalent.

Proof. (1) \Leftrightarrow (2): This follows directly from Theorems 4.1 and 4.2.

 $(2) \Rightarrow (3)$ when X has (BAP): Suppose $T_n: X \to X$ is a sequence of finite-rank operators with $T_n x \to x$ for $x \in X$. Then $\sup ||T_n|| = \lambda < \infty$. Form the space Z of all sequence $\xi = (\xi_n)_{n=1}^{\infty}$ where $\xi_n \in T_n(X)$ such that $||\xi|| = \sup ||\xi_n|| < \infty$. Then Z is a pseudo-dual space since its unit ball is compact for co-ordinatewise convergence. Define $J: X \to Z$ by $Jx = (T_n x)_{n=1}^{\infty}$. Then J is an isomorphic embedding of X into Z. Define $Q_k: Z \to J(X)$ by $Q_k(\xi) = J\xi_k$; then $||Q_k|| \le ||J||$ and $Q_k u \to u$ for $u \in J(X)$. By Lemma 3.1, J(X) is locally complemented in Z and hence is complemented in Z.

Theorem 4.5. Suppose E is a locally complemented subspace of X. Then X/E is isomorphic to a locally complemented subspace of an ultraproduct X_{u} of X.

Proof. Again let \mathfrak{I} be the collection of all subspaces W of X with $W \supset E$ and dim $W/E < \infty$. Let \mathfrak{U} be an ultrafilter on \mathfrak{I} containing all subsets of the form $\{W: W \subset W_0\}$ for $W_0 \in \mathfrak{I}$. There exist projections $P_W: W \rightarrow E$ so that $\sup ||P_W|| = \lambda < \infty$. Define $Q: X \rightarrow X_U$ by

$$(Qx)_W = 0 \qquad x \notin W$$
$$= x - P_W x \qquad x \in W.$$

Again Q is linear into $X_{\mathcal{U}}$ (after factoring out sequences tending to zero through \mathcal{U}) and $||Q|| \leq (1 + \lambda^p)^{1/p}$ (where we assume \tilde{X} to be a *p*-BANACH space). If $x \in E$ then Qx = 0 and clearly in general,

 $\|Qx\| \ge d(x, E) .$

Thus Q factors to an embedding of X/E into X_{ql} . It remains to show that Q(X) is locally complemented in X_{ql} .

Let F be a finite-dimensional subspace of $X_{\mathcal{M}}$ with a basis $\{f^{(1)}, \ldots, f^{(n)}\}$. For each $W \in \mathfrak{I}$ define $T_{\mathcal{W}}: F \to Q(X)$ by

$$T_{W}\left(\sum_{j=1}^{n} a_{(j)}f^{(j)}\right) = \sum_{j=1}^{n} a_{j}Qf_{W}^{(j)}.$$

Now $\sup ||T_W|| < \infty$ and $\lim_{\mathcal{M}} ||T_W|| \le ||Q||$ as in the proof of Theorem 4.1. If $f \in Q(X) \cap F$ then f = Qx for some $x \in X$. Hence

$$T_W f = Q (x - P_W x)$$

eventually (as $W \to \infty$ through \mathcal{U}). Thus $T_W f = Qx = f$ eventually.

Now we can clearly choose $W \in \mathfrak{I}$ so that $T_W f = f$ for $f \in Q(X) \cap F$ and $||T_W|| \leq 2||Q||$, thus showing Q(X) is locally complemented in $X_{\mathfrak{A}}$.

5. Bases

If a quasi-BANACH space X has (BAP) then it is possible to give a generalization of Theorem 3.5.

Theorem 5.1. Suppose X is a quasi-BANACH space with (BAP): Then a closed subspace E of X is locally complemented if and only if E has both (BAP) and (CEP).

Proof. Suppose first that E has (BAP) and (CEP). Then where is a sequence $T_n: E \to E$ of finite-rank operators with $T_n e \to e$ for $e \in E$ and $\sup_n ||T_n|| < \infty$. Now by (CEP) (and remarks following the definition) there is a uniformly bounded sequence of operators $Q_n: X \to T_n(E)$ such that $Q_n e = T_n e$ for $e \in E$. Now by Lemma 3.1, E is locally complemented.

Conversely supposed $T_n: X \to X$ are finite-rank operators satisfying $T_n x \to x$ for $x \in X$ and $\sup ||T_n|| < \infty$. If E is locally complemented there are uniformly bounded projections $P_n: E + T_n(X) \to E$. Define $Q_n = P_n T_n$; then $\sup ||Q_n|| < \infty$, $Q_n(X) \subset \subset E$ and $Q_n e \to e$ for $e \in E$. Thus E has (BAP); it has (CEP) by Theorem 3.4.

Remark. See below Example 6.7.

Corollary 5.2. If X has (BAP) and E is locally complemented in X there is a sequence of operators $S_n: X \to E$ such that $\sup ||S_n|| < \infty$ and $S_n e \to e$ for $e \in E$.

Now suppose X has a basis. It is unlikely that in general every complemented subspace of X has a basis. This would require for BANACH spaces the equivalence of (BAP) and the existence of a basis; see LINDENSTRAUSS and TZAFEIRI [18] p. 38 and p. 92. However under certain circumstances we shall show that a locally complemented subspace does have a basis.

Suppose X has a basis (b_n) and E is a closed subspace of X. Let Γ be the linear span in X^* of the biorthogonal functionals (b_n^*) . We shall say that E is *residual* in X if there is a uniformly bounded sequence of operators $T_n: X \to E$ such that $T_n^* \to \gamma$ for $\gamma \in \Gamma$ in the weak*-topology (i.e. $\gamma(T_n x) \to \gamma(x)$ for $x \in X$).

We shall denote by P_m the partial summation operators with respect to the basis i.e.

$$P_m x = \sum_{k=1}^m b_k^*(x) b_k$$

Let X_0 be the algebraic linear span of $(b_k)_{k=1}^{\infty}$.

6 Math. Nachr. Bd. 115

Kalton, Locally Complemented Subspaces and \mathcal{L}_p -Spaces

Our main theorem will be that every residual locally complemented subspace of X has a basis. This theorem is similar in spirit to result of JOHNSON, ROSENTHAL and ZIPPIN [7] on the existence of bases in BANACH spaces. Our proof will be achieved in several steps; the first is:

Lemma 5.3. Suppose E_0 is a residual locally complemented subspace of X. Then there is a residual locally complemented subspace E of X isomorphic to E_0 and uniformly bounded sequences of finite-rank operators $S_n: X \to E \cap X_0 T_n: X \to E \cap X_0$ such that

- $(5.3.1) \quad S_n e \to e \quad e \in E$
- (5.3.2) $T_n^* \gamma \rightarrow \gamma$ weak*, $\gamma \in \Gamma$.

Proof. Since E_0 is residual and locally complemented there are uniformly bounded operators $\hat{S}_n: X \to E_0$, $\hat{T}_n: X \to E_0$ so that $\hat{S}_n e_0 \to e_0$ for $e_0 \in E_0$ and $\hat{T}_n^* \gamma \to \gamma$ weak* for $\gamma \in \Gamma$.

Choose a countable dimensional dense subspace of E_0 , E_{00} say, such that $\hat{S}_n(X_0) \subset E_{00}$ for $n \in \mathbb{N}$ and $\hat{T}_n(X_0) \subset E_{00}$ for $n \in \mathbb{N}$. Since Γ separates the points of E_{00} it is possible to chose a Hamel basis $(w_n : n \in \mathbb{N})$ of E_{00} such that the biothogonal functionals $\varphi_n \in \Gamma$. Now for each $n \in \mathbb{N}$ choose $m(n) \in \mathbb{N}$ so that

$$||w_n - \dot{P}_{m(n)}w_n||^p \leq 2^{-(n+1)} ||\varphi_n||^p$$
.

Let $v_n = w_n - P_{m(n)}w_n$ and define $K: X \rightarrow X$ by

$$Kx = \sum_{n=1}^{\infty} \varphi_n(x) \ v_n$$

Then ||K|| < 1 and so A = I - K is invertible. Now let $E = A(E_0)$.

Clearly $\{A\hat{S}_nA^{-1}: n \in N\}$ is uniformly bounded and $A\hat{S}_nA^{-1}e \rightarrow e$ for $e \in E$. Let $S_n = A\hat{S}_nA^{-1}P_n$; then $\{S_n: n \in N\}$ is a uniformly bounded sequence of finite-rank operators and $S_ne \rightarrow e$ for $e \in E$.

If $\gamma \in \Gamma$ and $x \in X$

$$\gamma(A\hat{T}_nA^{-1}x) = \gamma(\hat{T}_nA^{-1}x) - \gamma(K\hat{T}_nA^{-1}x)$$

and

$$\gamma(\hat{T}_n A^{-1}x) \to \gamma(A^{-1}x) \text{ as } n \to \infty$$
.

On the other hand

$$\gamma(K\hat{T}_nA^{-1}x) = \sum_{j=1}^{\infty} \varphi_j(T_nA^{-1}x) \gamma(v_j).$$

Now

$$|\varphi_j(\hat{T}_n A^{-1}x)| |\gamma(v_j)| \leq C \|\varphi_j\| \|v_j\|$$

where

$$C = (\sup \|\hat{T}_n\|) \|A^{-1}\| \|\gamma\| \|x\|.$$

82

Hence, by a form of the Dominated Convergence Theorem,

$$\lim_{n\to\infty} \gamma(K\hat{T}_n A^{-1}x) = \sum_{j=1}^{\infty} \varphi_j(A^{-1}x) \gamma(v_j)$$

noting that

$$\lim_{n\to\infty}\varphi_j(\hat{T}_nA^{-1}x)=\varphi_j(A^{-1}x) \quad \text{since} \quad \varphi_j\in\Gamma$$

 \mathbf{T} hus

$$\lim_{n\to\infty} \gamma(A\hat{T}_n A^{-1}x) = \gamma(A^{-1}x) - \gamma(KA^{-1}x) = \gamma(x) \ .$$

Now let $T_n = \hat{T}_n P_n$; then (5.3.2) follows immediately.

Lemma 5.4. If E satisfies the conclusions of Lemma 5.3, then there is a uniformly bounded sequence of finite-rank operators $V_n: X \to E \cap X_0$ such that

 $(5.4.1) V_n e \rightarrow e ext{ } e \in E$

(5.4.2) $P_n V_n = P_n \quad n \in \mathbf{N}.$

Proof. Let $W_n = S_n + T_n - T_n S_n$. Then for fixed k,

$$P_k T_n x = \sum_{i=1}^k T_n^* b_i^*(x) b_i$$

and $||P_kT_n - P_k|| \to 0$, as $n \to \infty$. Hence $P_kW_n \to P_k$ as $n \to \infty$. Choose m(k) an increasing sequence so that

$$||P_k W_{m(k)} - P_k||^p < \frac{1}{2} k^{-p} \quad k = 1, 2, ...$$

Then on $[b_1, \ldots, b_k]$, $P_k W_{m(k)}$ is invertible with inverse A_k with

$$||A_k - I||^p \leq \frac{1}{2} k^{-p} (1 - \frac{1}{2} k^{-p})^{-1} \leq k^{-p}$$

Let $V_k = W_{m(k)}A_kP_k$. Then $P_kV_k = P_k$ and $\{V_k\}$ is uniformly bounded. If $e \in E$ $V_ke - P_ke = (W_{m(k)}A_k - I) P_ke$

so that

$$\|V_{k}e - P_{k}e\|^{p} \leq \|W_{m(k)}\|^{p} k^{-p} \|e\| + \|(W_{m(k)} - I) P_{k}e\|^{p}$$

and

$$W_{m(k)} - I = (T_{m(k)} - I) (I - S_{m(k)})$$

Hence

 $\|(W_{m(k)}-I)e\| \rightarrow 0$

and

$$\|(W_{m(k)}-I)(e-P_ke)\| \rightarrow 0$$
.

Thus $V_k e \rightarrow e$ for $e \in E$.

6*

Lemma 5.5. If E satisfies the conclusions of Lemma 5.4., then we can find a constant λ , an increasing sequence of positive integers $(h_n : n = 0, 1, 2, ...)$ with $h_0 = 0$ and $h_1 = 1$, and a (not necessarily continuous) linear operator $T : X_0 \rightarrow X_0$ such that

(5.5.1) If $G_n = [b_i: h_{n-1} < i \le h_n]$ for $n \ge 1$, then $T(G_n) \subset G_{n+1}$.

(5.5.2) If $g \in G_n$ then $||Tg|| \leq \lambda ||g||$ and $||Tg||^p \leq \lambda^p \left(d(g, E)^p + \lambda^{-2np} ||g||^p \right)$ (5.5.3) If $x \in X_0$, then $x - Tx \in E$.

Proof. Choose λ sufficiently large so that $\lambda^p > 2$,

$$\|P_m - P_n\| \leq \lambda \quad m, n \geq 0$$

(where $P_0 = 0$) and

$$\begin{split} \|V_n\| &\leq \lambda \qquad n \in \mathbf{N} \,. \\ \|I - V_n\| &\leq \lambda \qquad n \in \mathbf{N} \,. \end{split}$$

Next observe that if $x \in X$ and $\varepsilon > 0$ then we can find $e \in E$ so that

 $||x-e||^p < d(x, E)^p + \varepsilon ||x||^p$

and as $(I - V_n) e \rightarrow 0$, for large enough n we have

(5.5.4)
$$||(I - V_n) x||^p < \lambda^p (d(x, E)^p + \varepsilon ||x||^p).$$

By obvious compactness argument if F is a finite-dimensional subspace of X we can choose $n \in N$ so that (5.5.4) holds for any $x \in F$.

Using this remark it is possible to construct two increasing sequences of positive integers $\{h_n: n=0, 1, 2, \ldots\}$ and $\{m_n: n=1, 2, 3, \ldots\}$ so that $h_0=0$, $h_1=1, m_n \ge h_n$ and.

$$(5.5.5) \qquad (I - V_{m(n)}) (G_n) \subset G_{n+1}$$

 $(5.5.6) \qquad \|(I - V_{m(n)}) g\|^{p} \leq \lambda^{p} \left(d(g, E)^{p} + \lambda^{-2np} \|g\|^{p} \right) \quad g \in G_{n} .$

Here we have used the fact that $P_{m(n)}(I - V_{m(n)}) = 0$.

Let $T: X_0 \to X_0$ be the linear map defined by $Tg = (I - V_{m(n)})g$ for $g \in G_n$. Then the lemma follows.

Theorem 5.6. If E is a residual locally complemented subspace of a space X with a basis; then E also has a basis.

Proof. We may assume that E satisfies the conclusions of Lemma 5.5. We start with some observations where we let $T^{0} = I$.

$$(5.6.1) \qquad P_n T^{\prime} = 0 \qquad \qquad h_j \ge n$$

$$(5.6.2) P_n T^j = P_n T^j P_n h_j < n, \quad j \ge 0$$

$$(5.6.3) TP_{h_j} - P_{h_j}T = TQ_j \quad j = 1, 2, 3, \ldots$$

where

$$Q_j = P_{h_j} - P_{h_{j-1}}$$
 $(j = 1, 2, 3, \ldots)$.

Note that $(I-T)(X_0) \subset E$ and define $w_n = (I-T) b_n$. Clearly $b_n^*(w_n) = 1$ so that

 $w_n \neq 0$. We shall show that (w_n) is a basis for E. To this end we define a sequence of operators $U_n: X \to E$ by

$$U_n = (I - T) P_n \left(\sum_{j=0}^{k-1} T^j \right) P_n$$

where $h_{k-1} < n \leq h_k$. If $x \in X_0$,

$$U_n x = (I - T) P_n \sum_{j=0}^{k-1} T^j x$$
.

by (5.5.1). If $1 \le l \le n$

$$\begin{split} U_n w_l &= (I - T) \ P_n \left(\sum_{j=0}^{k=1} T^j (I - T) \ b_l \right) \\ &= (I - T) \ P_n (I - T^k) \ b_l = (I - T) \ b_l = w_l \end{split}$$

Similarly if l > n, $U_n w_l = 0$. Similar calculations show that $U_m U_n = U_n U_m = U_n$ whenever $m \ge n$. Thus to show (w_n) is a basis it will suffice to show $U_n e \rightarrow e$ for $e \in E$.

First we make a preliminary calculation; suppose $x \in X_0$ and $k \ge 1$. Let

$$y = \sum_{j=0}^{k-1} T^j Q_{k-j} x .$$

Then $y \in G_k$ and $\sum_{j=0}^{k-1} (T^j - I) Q_{k-j} x \in E$. Hence
 $d(y, E) = d(P_{h_k} x, E) .$

Also

$$\|T^j Q_{k-j} x\| \leq \lambda^j \|Q_{k-j} x\|$$

by (5.5.2). Thus

$$||y||^p \leq \left(\sum_{j=0}^{k-1} \lambda^{(j+1)p}\right) ||x||^p \leq \lambda^{(k+1)p} ||x||^p$$

since $\lambda^p > 2$. Returning to 5.5.2, we have

(5.6.4)
$$\left\| T\left(\sum_{j=0}^{k-1} T^{j} Q_{k-j} x \right) \right\|^{p} \leq \lambda^{p} \left(d(P_{h_{k}} x, E)^{p} + \lambda^{(1-k)p} \|x\|^{p} \right)$$

and in particular.

(5.6.5)
$$\left\|T\left(\sum_{j=0}^{k-1}T^{j}Q_{k-j}\right)\right\|^{p} \leq \lambda^{2p} + \lambda^{(2-k)p} \leq \lambda^{3p}$$

Now for any k

$$P_{h_k} - U_{h_k} = TQ_k \sum_{j=0}^{k-1} T^j P_{h_k}$$

by (5.6.3). Thus

$$P_{h_k} - U_{h_k} = T\left(\sum_{j=0}^{k-1} T^{j}Q_{k-j}\right) P_{h_k}$$

so that

$$\|P_{h_k} - U_{h_k}\| \leq \lambda^4 .$$

Finally $||U_{h_k}|| \leq \lambda^5$ for all k. If $e \in E$

$$\|P_{h_{k}}e - U_{h_{k}}e\| \leq \lambda^{p} \left[\left(d(P_{h_{k}}e, E) \right)^{p} + \lambda^{(1-k)p} \|P_{h_{k}}e\|^{p} \right]$$

by (5.6.4) and so $P_{h_k}e - U_{h_k}e \rightarrow 0$ i.e. $U_{h_k}e \rightarrow e$. If $h_{k-1} < n \leq h_k$, then

$$U_{h_k} - U_n = (I - T) (P_{h_k} - P_n) Q_k \left(\sum_{j=0}^{k-1} T^j \right) P_{h_k}$$

= (I - T) (P_{h_k} - P_n) + (I - T) (P_{h_k} - P_n) Q_k \left(\sum_{j=1}^{k-1} T^j \right) P_{h_k}.

Now

$$Q_k \left(\sum_{j=1}^{k-1} T^j \right) P_{h_k} = \sum_{j=1}^{k-1} T^j Q_{k-j} P_{h_k} = T \left(\sum_{j=0}^{k-2} T^j Q_{k-1-j} \right) P_{h_k}.$$

Hence by (5.6.5)

$$\|U_{\boldsymbol{h}_{k}} - U_{\boldsymbol{n}}\|^{p} \leq (\lambda^{p} + 1) \lambda^{p} \left[1 + \lambda^{3p}\right] \leq \lambda^{7p}$$

We conclude $||U_n|| \leq \lambda^8$ for all $n \in N$. If $h_{k-1} < n \leq h_k$ then for $e \in E$

$$e - U_n e = (I - U_n) (e - U_{h_{k-1}} e)$$

 $\rightarrow 0 \text{ and } n \rightarrow \infty$.

Thus (w_n) is a basis for E.

Theorem 5.7. If X is a quasi-BANACH space with a basis and E is a weakly dense locally complemented subspace of X then E also has a basis.

Proof. There is a uniformly bounded sequence of operators $S_n: X \to E$ with $S_n e \to e$ for $e \in E$. Then if $\gamma \in \Gamma$, consider the map $A: X \to l_{\infty}$ defined by $Ax = (\gamma \ (x - -S_n x))_{n=1}^{\infty}$. Since l_{∞} is locally convex then $A^{-1}(c_0)$ is weakly closed. However $A^{-1}(c_0) \supset E$ is weakly dense so that $A(X) \subset c_0$ i.e. $S_n^* \gamma \to \gamma$. Thus E is also residual with $T_n = S_n$.

6. \mathcal{L}_p -spaces when 0

We shall say that a quasi-BANACH space X is an \mathfrak{L}_p -space for 0 if it is $isomorphic to a locally complemented subspace of a space <math>L_p(\Omega, \Sigma, \mu)$ where (Ω, Σ, μ) is measure space. Let us note that the standard definition of an \mathfrak{L}_p -space for $1 \leq p \leq \infty$ due to LINDENSTRAUSS and PELCZYŃSKI [15] is local in character. X is an \mathfrak{L}_p -space $(1 \leq p \leq \infty)$ if for some constant λ and for every finite-dimensional subspace F of X there is a finite-dimensional subspace G containing F an isomorphism $S: G \to l_p^{(n)}$ (where $n = \dim G$) with $||S|| \cdot ||S^{-1}|| \leq \lambda$. The problem with this definition for 0 (pointed out to us by W. J. STILES) is that it is by no means clear that $even <math>L_p(0, 1)$ satisfies this condition. A possible alternative would be to define X to be an \mathfrak{L}_p -space if there is a constant λ and an increasing net of finite-dimensional subspace $(E_{\alpha} : \alpha \in A)$ with UE_{α} dense in X and isomorphisms $S_{\alpha} : E_{\alpha} \to l_p^{(n_{\alpha})}$ with $||S_{\alpha}|| \cdot ||S_{\alpha}^{-1}|| \leq \lambda$. This definition was adopted in [12]. It is a consequence of Theorem 6.1 below that every such space is an \mathfrak{L}_p -space in our sense here, but we do not know whether the converse holds.

In our opinion, the definition given above would serve as a natural definition for all p, 0 . However for <math>1 , it would make a BANACH space X an $<math>\mathcal{L}_p$ -space if and only if it is a complemented subspace of a space $L_p(\Omega, \Sigma, \mu)$. The standard definition makes X an L_p -space if it is a complemented non-HILBERTIAN subspace of a space $L_p(\Omega, \Sigma, \mu)$ [17]. For p=1 or $p=\infty$ our definition is the same as the standard one. The equivalence follows easily from Theorem 3.5 and results in [17] (Corollary to Theorem 3.2, and Theorem III (a)).

Note that every \mathfrak{L}_p -space is (isomrophic to) a *p*-BANACH space when 0 . $The following theorem lists several equivalent formulations of the statement that X is an <math>\mathfrak{L}_p$ -space.

Theorem 6.1. Let X be a p-BANACH space where 0 . The following conditions on X are equivalent:

X is an 𝔅_p-space

(2) X is isomorphic to a locally complemented subspace of some \mathfrak{L}_p -space

(3) X is isomorphic to the quotient of a \mathcal{L}_p -space by a locally complemented subspace

(4) X is isomorphic to the quotient of a space $l_p(I)$ by a locally complemented subspace.

(5) Whenever Z is a p-BANACH space and $Q: Z \rightarrow X$ is an open map then ker Q is locally complemented in Z.

(6) There is a constant λ such that whenever F is a finite-dimensional subspace of X and $\varepsilon > 0$ there are linear operators $S: F \rightarrow l_p$, $T: l_p \rightarrow X$ with $||S|| \cdot ||T|| \leq \lambda$ and $||TSf - f|| \leq \varepsilon ||f||$ for $f \in F$.

Proof. (1) \Leftrightarrow (2) follows from Proposition 3.3. Since every *p*-BANACH space is a quotient of $l_p(I)$ for some index set *I*, we have $(5) \Rightarrow (4) \Rightarrow (3)$. To conclude the proof we shall show $(1) \Rightarrow (6)$, $(6) \Rightarrow (5)$ and $(3) \Rightarrow (1)$.

(1) \Rightarrow (6): We suppose X is a locally complemented subspace of $L_p(\Omega, \Sigma, \mu)$. Let λ be a constant so that whenever $Y \supset X$ there is a projection $P_Y: Y \rightarrow X$ with $||P_Y|| \leq \lambda$. Suppose $F \subset X$ is a finite-dimensional subspace and $\varepsilon > 0$. By a routine approximation argument there is a finite subalgebra Σ_0 of Σ and a linear map $S: F \to L_p(\Omega, \Sigma_0, \mu)$ with $||S|| \leq 1$ and $||Sf - f|| \leq \lambda^{-1} \varepsilon ||f||$. Let $Y = X + L_p(\Omega, \Sigma_0, \mu)$ and let $T = P_Y |L_p(\Omega, \Sigma_0, \mu)$. Then $||T|| \leq \lambda$ and $||TSf - f|| \leq \varepsilon ||f||$ for $f \in F$. Since $L_p(\Omega, \Sigma_0, \mu)$ is isometric to a subspace of l_p which is the range of a norm-one projection, (1) follows.

(6) \Rightarrow (5). For convenience we may suppose Q is a quotient map. Let F be a subspace of Z of dimension n with a basis f_1, \ldots, f_n where $||f_i|| = 1$ for $1 \le i \le n$. Suppose $0 < \varepsilon < 1$ and let $\alpha > 0$ be a constant so that

$$\left\|\sum_{i=1}^{n} a_{i} f_{i}\right\| \ge \alpha (\Sigma |a_{i}|^{p})^{1/p}$$

for all a_1, \ldots, a_n . Choose operators $S: Q(F) \to l_p$ and $T: l_p \to X$ with $||T|| \cdot ||S|| \le \lambda$ and

$$||TSQf-Qf|| \leq \frac{1}{2} \alpha \varepsilon ||Qf|| \quad f \in F.$$

Since l_p is projective for *p*-BANACH spaces there is an operator $T_1: l_p \to Z$ with $||T_1|| = ||T||$ and $QT_1 = T$. Define $R: F \to Z$ by $R = I - T_1 SQ$. Then QR = (I - TS) Q and $||QR|| \leq \frac{1}{2} \alpha \varepsilon$. Thus we can find $g_1, \ldots, g_n \in Z$ with $Qg_i = QRf_i$ and $||g_i|| < \alpha \varepsilon$. Define $L: F \to Z$ by $Lf_i = g_i$. Then

$$\left\| L\left(\sum_{i=1}^{n} a_{i}f_{i}\right) \right\| \leq \alpha \varepsilon \left(\sum_{i=1}^{n} |a_{i}|^{p}\right)^{1/p} \leq \varepsilon \left\| \sum_{i=1}^{n} a_{i}f_{i} \right\|.$$

Hence $||L|| \leq \varepsilon$. Let V = R - L; then $V(F) \subset \ker Q$ and $||V|| \leq (\lambda^p + 2)^{1/p}$. If $f \in F \cap \cap \ker Q$, we have Rf = f and $||f - Vf|| \leq \varepsilon ||f||$. Hence ker Q is locally complemented in Z.

(3) \Rightarrow (1). We may suppose X is the quotient of a space Y by a locally complemented subspace, where Y is itself a locally complemented subspace of $L_p(\Omega, \Sigma, \mu)$.

By Theorem 4.5, X is isomorphic to a locally complemented subspace of an ultraproduct $Y_{\mathcal{U}}$ of Y. By Theorem 4.1, $Y_{\mathcal{U}}$ is isomorphic to a locally complemented subspace of $(L_p(\Omega, \Sigma, \mu))_{\mathcal{U}}$, which by SCHREIBER's Theorem 2.1 is a space $L_p(\Omega_1, \Sigma_1, \mu_1)$. Hence by Proposition 3.3, X is a \mathfrak{L}_p -space.

Separable infinite-dimensional spaces $L_p(\Omega, \Sigma, \mu) \ 0 are isomorphic to one of the spaces <math>l_p, L_p$ or $l_p \oplus L_p$. Based on this, we define, for $0 , a discrete <math>\mathfrak{L}_p$ -space to be a separable \mathfrak{L}_p -space isomorphic to a locally complemented subspace of l_p . We also define X to be a continuous \mathfrak{L}_p -space if it is isomorphic to a locally complemented subspace of L_p .

We shall say that a separable \mathfrak{L}_p -space is a *hybrid* \mathfrak{L}_p -space if it is neither discrete nor continuous,

Theorem 6.4. Let X be a separable \mathfrak{L}_p -space where 0 . The following conditions on X are equivalent:

- (1) X is a discrete \mathfrak{L}_p -space
- (2) X has (BAP)
- (3) X has a basis.

Proof. (1) \Rightarrow (3) Suppose X is a locally complemented subspace of l_p , which is non-isomorphic to l_p . Let $l_p/X = Y$, so that Y is also an \mathfrak{L}_p -space. Then there is a quotient map $U: l_p \rightarrow Y$ which takes the unit vector basis (e_n) of l_p to a sequence Ue_n dense in the unit ball of Y. By Corollary 2.3, ker $U \cong X$, and is locally complemented in l_p .

For each $n \in N$ select for $1 \leq k \leq n$, $u_{n,k} \in l_p$ with $u_{n,k} \in [e_{n+1}, e_{n+2,...}]$, $Un_{n,k} = Ue_k$ and $||u_{n,k}|| \leq 2||Ue_k||$. Define $T_n : l_p \rightarrow \ker U$ by

$$T_n\left(\sum\limits_{i=1}^{\infty}a_ie_i\right) \!=\! \sum\limits_{i=1}^{n}a_i\left(e_i\!-\!u_{n,i}\right)$$
 .

Then $||T_n|| \leq (1+2^p)^{1/p}$ and $T_n^* \gamma \to \gamma$ weak* for γ in the linear span of the biorthogonal functionals (e_k^*) . Hence ker U is residual, and we can apply Theorem 5.6 to deduce that ker U (and hence X) has a basis.

 $(3) \Rightarrow (2)$: Immediate

 $(2) \Rightarrow (1)$: We may suppose X is a locally complemented subspace of $l_p \oplus L_p$. From the proof of Theorem 5.1 it is easy to see there is a uniformly bounded sequence of finite-rank operators $S_n: l_p \oplus L_p \to X$ with $S_n x \to x$ for $x \in X$. Let $P: l_p \oplus L_p \to l_p \oplus L_p$ by defined by P(u, v) = (u, 0). Clearly $S_n = S_n P$ and so $S_n P_x \to x$ for $x \in X$. Thus P maps X isomorphically onto a space P(X) of l_p $(=l_p \oplus \{0\})$. Now $PS_n Px \to x$ for $x \in P(X)$ and so by Lemma 3.1, P(X) is also locally complemented in l_p . Thus X is a discrete \mathfrak{L}_p -space.

Remark. Every separable \mathfrak{L}_p -space $(1 \leq p \leq \infty)$ has a basis [7].

Theorem 6.5. Let X be a separable \mathfrak{L}_p -space where $0 . Then X is continuous if and only if <math>X^* = \{0\}$.

Proof. If X is locally complemented in L_p , then X has HBEP i.e. $X^* = \{0\}^*$ Conversely if $X \subset l_p \oplus L_p$ and $X^* = \{0\}$ then $X \subset \{0\} \oplus L_p$.

A nice property of continuous \mathfrak{L}_p -spaces is given by:

Theorem 6.6. Let X be a p-BANACH space and let Y be a continuous \mathfrak{L}_p -space. Suppose $Q: X \to Y$ is an open mapping. Then (a) if X has (BAP), ker Q has (BAP) and (b) if X has a basis, ker Q has a basis.

Proof. Since $Y^* = \{0\}$, ker Q is weakly dense in X. Simply apply Theorems 5.1, 5.7 and 6.1 (5).

Example 6.7 Let C denote the subspace of L_p of constant functions. Since C fails to have HBEP, C is not locally complemented. Thus L_p/C is not a \mathfrak{L}_p -space (see [12], where essentially this argument is invoked to show $L_p/C \cong L_p$). However L_p/C is isomorphic to a subspace of L_p by the embedding $T: L_p/C \to L_p$ [(0, 1)××(0, 1)] given by ([13])

$$Tqf(s, t) = f(s) - f(t) \quad s, t \in (0, 1)$$
.

where $q: L_p \to L_p/C$ is the quotient map. Let Y be this subspace of L_p . Now let $Q: l_p \to L_p$ be any quotient map and let $Z \subset l_p$ be defined by $Z = Q^{-1}(Y)$. We claim that Z has (CEP). Indeed if $T: Z \to W$ is a compact operator then $T | \ker Q$ is compact and as ker Q is locally complemented it has an extension $T_1: l_p \to W$ which is also compact. Now $T_1 - T$ factors to a compact operator on $Y \cong L_p | C$. Since there are no non-zero compact operators on L_p , $T_1 = T$ on Z.

However Z is not locally complemented, since if it were $l_p|Z \cong L_p|C$ would be an \mathfrak{L}_p -space. We conclude that Z also fails (BAP) by Theorem 5.1.

7. Example of \mathcal{L}_p -spaces

If 0 , it is rather easy to construct numerous mutually non-isomorphic $examples of separable <math>\mathcal{L}_p$ -spaces. This contrasts with the case p=1 (see [6]). The construction used by JOHNSON and LINDENSTRAUSS in [6] can be adapted to the case p < 1 to construct examples which are in general hybrids. We shall however take another route to construct examples. The following observation is routine:

Theorem 7.1. Let X be a separable \mathfrak{L}_p -space. Then $L_p(X)$ is a continuous \mathfrak{L}_p -space.

As we shall see, the converse of Theorem 7.1 is false, for $0 . We can construct examples where X is not an <math>\mathcal{L}_p$ -space but $L_p(X)$ is. For p=1 this is impossible since $L_1(X)$ contains a complemented copy of X, when X is locally convex.

Theorem 7.2. Let (Ω, Σ, μ) be a non-atomic measure space and let Σ_0 be a sub- σ -algebra of Σ . For $0 , let <math>L_p(\Sigma_0)$ denote the closed subspace of $L_p(\Omega, \Sigma, \mu)$ of all Σ_0 -measurable functions, and let $\Lambda(\Sigma_0)$ denote the quotient $L_p(\Omega, \Sigma, \mu)/L_p(\Sigma_0)$. Then the following statements are equivalent:

- (1) $L_p(\Sigma_0)$ is locally complemented in $L_p(\Omega, \Sigma, \mu)$
- (2) $\Lambda(\Sigma_0)$ is an \mathfrak{L}_p -space
- (3) $L_p(\Sigma_0)^* = \{0\}$
- (4) $\mu \mid \Sigma_0$ is non-atomic.

Proof. It follows from Theorem 6.1 that (1) and (2) are equivalent, and the equivalence of (3) and (4) is classical (cf. [4]). Since (1) implies that $L_p(\Sigma_0)$ has (HBEP) we have (1) \Rightarrow (3). We complete the proof by showing (4) \Rightarrow (1).

Consider the net Σ_{α} (under containment) of finite subalgebras of Σ . For each Σ_{α} , let A_1, \ldots, A_k be the atoms of $\Sigma_{\alpha} \cap \Sigma_0$ and let $(B_{ij}: 1 \leq j \leq m(i))$ be the atoms of Σ_{α} contained in A_i . Then there are disjoint sets $(C_{ij}: 1 \leq j \leq m(i))$ in Σ_0 such that

$$\bigcup_{j=1}^{m(i)} C_{ij} = A_i$$
$$\mu(C_{ij}) = \mu(B_{ij}) .$$

Define $Q_{\alpha}: L_p(\Sigma_{\alpha}) \to L_p(\Sigma_0)$ by $Q_{\alpha}(1_{B_{ij}}) = 1_{C_{ij}}$ for $1 \le j \le m(i)$ and $1 \le i \le k$. Q_{α} is an isometry, and $Q_{\alpha}f = f$ for $f \in L_p(\Sigma_{\alpha} \cap \Sigma_0)$. Now apply Lemma 3.1.

Example 7.3. If we take Ω a POLISH space and Σ the BOREL sets in Ω and μ a nonatomic probability measure, then it is shown in [11] that $\Lambda(\Sigma_0) \cong L_p$ implies $L_p(\Sigma_0)$ is complemented in L_p .

As a special case consider $\Omega = (0, 1) \times (0, 1)$ with ordinary LEBESGUE area measure and let Σ_0 be sets of the form $(0, 1) \times B$ where B is a BOREL subset of (0, 1). Then $\Lambda(\Sigma_0) \cong L_p(L_p \mid C)$ whose C is the space of constants in L_p . This is an \mathfrak{L}_p -space, but as seen in Example 6.7, $L_p \mid C$ is not an \mathfrak{L}_p -space.

Example 7.4. We now show how to construct an uncountable family of separable *p*-BANACH spaces $(E_q: p < q \leq 1)$ so that

- (7.4.1) E_q is *p*-trivial [10] i.e. $\mathfrak{L}(L_p, E_q) = 0$
- (7.4.2) There is a quotient map $Q: l_p \rightarrow E_q$ with ker $Q \simeq l_p$.
- (7.4.3) The spaces $L_p(E_q)$ are mutually non-isomorphic \mathfrak{L}_p -spaces.

We start by letting H be the subspace of l_p spanned by the basic sequence $(e_{2m-1}+e_{2m}: m=1, 2...)$ (where (e_m) is the standard basis of l_p). Let (A_m) be a BOREL partitioning of (0, 1) into sets of positive measure and suppose $A_m = B_{2m-1} \cup B_{2m}$ where $B_{2m-1} \cap B_{2m} = \Phi$ and $\mu(B_{2m-1}) = \mu(B_{2m}) = 1/2\mu(A_m)$ where μ is LEBESGUE measure on (0, 1). Define an isometry $V: l_p \to L_p$ by

$$V(e_k) = \mu(B_k)^{-1/p} \mathbf{1}_{B_k}$$
 $k = 1, 2, ...$

For $p < q \leq 1$, define $T_q: H \rightarrow l_p$ by

$$T_q (e_{2m-1} + e_{2m}) = 2^{1/q} e_m$$

Then $||T_q|| = 2^{1/q-1/p} < 1$, and let $G_q = (I - T_q) H$. Then $G_q \cong l_p$. Define $E_q = l_p | G_q$. Then (7.4.2) is immediate, and (7.4.1) follows from the lifting theorems of [12].

Next we show $L_p(E_q)$ is an \mathcal{L}_p -space. For each $m \in N$ we find $f_{2m-1}, f_{2m} \in L_p$ with

$$\|f_{2m-1}\|^{p} = \|f_{2m}\|^{p} = \frac{1}{2} \|T_{q} (e_{2m-1} + e_{2m})\|^{p}$$

and

$$f_{2m-1} + f_{2m} = V T_q (e_{2m-1} + e_{2m}) .$$

Now there is an operator $U: L_p \rightarrow L_p$ with

$$U(1_{B_m}) = \mu(B_m)^{1/p} f_m \qquad m \in \mathcal{N}$$

and $||U||^p \leq \sup ||f_m||^p < 1$. Clearly $VT_q x = UVx$ for $x \in H$: Thus $V(G_q) = (I - U) V(H)$ and (I - U) is invertible.

Consider $L_p(V(G_q)) \subset L_p(L_p)$. By the above, there is an automorphism of $L_p(L_p)$ carrying $L_p(V(H_q))$ onto $L_p(V(H))$. However if we identify $L_p(L_p)$ as $L_p((0, 1) \times (0, 1))$ then $L_p(V(H))$ is identified with $L_p(\Sigma_0)$ where Σ_0 is the algebra generated by sets of the form $C \times B$ where C is a BOREL subset of (0, 1) and B is in the σ -algebra generated by $(B_k: k \in \mathbf{N})$. Thus $L_p(V(H))$ is locally comple-

meted. It is then also locally complemented in the smaller space $L_p(V(l_p))$ and thus $L_p(G_q)$ is locally complemented in $L_p(l_p) (\cong L_p)$. Hence $L_p(l_p | G_q) = L_p(E_q)$ is an \mathfrak{L}_p -space.

Finally we show these spaces are mutually non-isomorphic. If $p < r \le 1$, there is no non-zero continuous linear operator from E_q into r-BANACH space if and only if G_q is dense in l_r . If r > q, then G_q is dense in l_r since its closure contains the range of the invertible operator $A: l_r \rightarrow l_r$ given by

$$Ae_m = e_m - 2^{-1/q} (e_{2m-1} + e_{2m})$$
.

(Here $||A-I||^r \leq 2^{1-r/q}$ on l_r). On the other hand if r < q, then $||Tx|| \leq 2^{r/q-1} ||x||$ for $x \in H$ in l_r -norm, and so the closure of G_q in l_r has $e_{2m-1} + e_{2m} - 2^{1/q} e_m$ as a basis, equivalent to the usual l_r -basis. However $e_1 \notin G_q$ since if

$$e_1 = \sum_{m=1}^{\infty} c_m (e_{2m-1} + e_{2m} - 2^{1/q} e_m)$$

then solving co-ordinatewise $c_1 = -2^{-1/q}$, $c_2 = c_3 = 2^{-2/q}$, $c_4 = c_5 = c_6 = c_7 = -2^{-3/q}$ etc. and

$$\sum_{k=1}^{\infty} |c_k|^r = \sum_{n=1}^{\infty} 2^{n-1-nr/q} = \infty .$$

Thus the spaces E_q are mutually non-isomorphic and even more, so are the spaces $l_p(E_q)$. Now by Theorem 8.4 of [11], the spaces $L_p(E_q)$ are mutually non-isomorphic.

Remarks. It can be shown that the containing q-BANACH space of E_q is isomorphic to L_q .

Also we note that if G_q is the kernel of a quotient map of l_p onto $L_p(E_q)$ then the spaces G_q are mutually non-isomorphic discrete \mathfrak{L}_p -spaces. For suppose $S: G_q \to G_r$ is an isomorphism. Then since G_q is locally complemented in l_p , and l_p is an ultra-summand, Theorem 4.2 gives an extension $S_1: l_p \to l_p$ of S. Similarly S^{-1} has an extension $S_2: l_p \to l_p$ and $S_2S_1: l_p \to l_p$ extends the identity from G_q to itself. Since G_q is weakly dense, $S_2S_1 = I$, and similarly $S_1S_2 = I$ so that $l_p/G_q \cong$ $\cong l_p/G_r$, a contradiction.

8. Lifting theorems for continuous \mathcal{L}_{p} -spaces

Lemma 8.1. Let X be a continuous \mathcal{L}_p -space and let Y be an ultra-summand. Then $L(X, Y) = \{0\}$.

Proof. X is isomorphic to a locally complemented subspace of $L_p(0, 1)$; $L_p(0, 1)$ is isomorphic to a locally complemented subspace of $L_p[(0, 1)^r]$ (where Γ is any set whose cardinality exceeds that of Y) by Theorem 7.2. Hence by Theorem 4.2 it suffices to consider maps $T: L_p[(0, 1)^r] \to Y$. Suppose $f \in L_p[(0, 1)^r]$ is simple. Then there is a set of functions $(r_y: \gamma \in \Gamma)$ mutually independent and independent of f so that $\hat{\mu}(r_{\gamma} = +1) = \hat{\mu}(r_{\gamma} = -1) = \frac{1}{2}$ [We denote by $\hat{\mu}$ the product measure in $(0, 1)^{\Gamma}$]. By KHINTCHINE's inequality,

(8.1.1)
$$||\Sigma a_{\gamma}(r_{\gamma}f)|| \leq C(\Sigma |a_{\gamma}|^2)^{\frac{1}{2}}$$

for some constant C whenever a_{γ} is finitely non-zero. Since $|\Gamma| > |Y|$, there are infinitely many γ with $T(r_{\gamma}f) = g$ for some $g \in Y$. By (8.1.1) we must have g = 0. Thus for some $\gamma \in \Gamma$, $T(r_{\gamma}f) = 0$, and $||(1+r_{\gamma}) f||_{p} = 2^{1-1/p} ||f||$. Thus $||Tf|| \le 2^{1-1/p} ||T|| \cdot ||f||$. Hence $||T|| \le 2^{1-1/p} ||T||$, i.e. T = 0.

Theorem 8.2. Let X be a p-BANACH space, and let N be a closed subspace of X such that X/N is a continuous \mathfrak{L}_p -space. Let Z be any quasi-BANACH space and let $T: N \rightarrow Z$ be a bounded linear operator. Each of the following conditions implies T has a unique extension $T_1: X \rightarrow Z$

- (1) T is compact (and then T_1 is compact)
- (2) Z is q-convex for some q > p
- (3) Z is an ultra-summand.

Proof. Let $Q: l_p(I) \to X$ be a quotient map, and consider $S: Q^{-1}(N) \to Z$. Then $Q^{-1}(N)$ is locally complemented and so in cases (1) and (3) S has an extension $S_1: l_p(I) \to Z$ which is compact in case (1). In case (2) we appeal to the non-separable version of Theorem 5.1. There is a uniformly bounded set of finite-rank operators $V_{\alpha}: l_p(I) \to Q^{-1}(N)$ so that $V_{\alpha}x \to x$ for $x \in Q^{-1}(N)$. Since $Q^{-1}(N)$ is weakly dense, we have $||V_{\alpha}x - x||_1 \to 0$ for $x \in l_p(I)$ where $||\cdot||_1$ is the l_1 -norm on $l_p(I)$.

If $u \in Q^{-1}(N)$ and $||u||_1 < \varepsilon$ then we can write $u = v_1 + \ldots + v_n$ where the v_i 's have disjoint support and $\varepsilon^p \leq ||v_i||^p \leq 2\varepsilon^p$ for $i \leq n-1$, with $||v_n||^p \leq 2\varepsilon^p$. Thus

$$||SV_{\mathfrak{a}}u|| \leq \left(\sum_{i=1}^{n} ||V_{\mathfrak{a}}v_{i}||^{q}\right)^{1/q} \leq 2^{1/p} n^{1/q} ||V_{\mathfrak{a}}|| \varepsilon.$$

Hence

 $\|Su\| \leq 2^{1/p} C n^{1/q} \varepsilon$

where $C = \sup ||V_{\alpha}||$. Now

$$(n-1) \leq \|u\|^p \varepsilon^{-p}$$

so that

$$||Su|| \leq 2^{1/p}C (1+||u||^p \varepsilon^{-p})^{1/q} \varepsilon.$$

We conclude that if $x \in l_p(I)$, since $\{V_x x\}$ is bounded and l_1 -CAUCHY, $SV_x x$ converges in Z. Defining $S_1 x = \lim SV_x x$ for $x \in l_p(I)$ we obtain our extension.

The extension S_1 factors to $T_1: X \rightarrow Z$. In each case the extension is unique. In case (1) there are no compact operators on X/N since (using Theorem 3.4) there are no compact operators on $L_p[8]$. In case (2) use Lemma 8.1. In case (3) uniqueness follows from the construction. **Theorem 8.3.** Let X be a continuous \mathbb{S}_p -space and let Z be a p-BANACH space. Let N be a closed subspace of Z which is either q-convex for q > p or an ultra-summand. Then any bounded linear operator $T: X \rightarrow Z/N$ has a unique lift $T_1: X \rightarrow Z$ (so that $qT_1 = T$ where $q: Z \rightarrow Z/N$ is the quotient map).

Proof. Let $V: l_p \to X$ be a quotient map. Then there is a lifting $S: l_p \to Z$ of $TV: X \to Z/N$. Consider $S: \ker V \to N$. Since ker V is weakly dense and locally complemented in l_p , then in either case there is an extension $S_1: l_p \to N$. Consider $(S-S_1): l_p \to Z; S-S_1$ factors to the desired lift T_1 . Again uniqueness follows from $\mathfrak{L}(X, N) = \{0\}$. In the case when N is q-convex this follows from using 8.2 to extend to any operator from X into N to an operator from L_p into N.

Remarks. Compare Theorem 4.2 of [17] with Theorems 8.2 and 8.3. It is possible to derive a statement similar to that of Theorem 4.2 in [17] from Theorem 8.2 for \mathcal{L}_p -spaces when p < 1, but it no longer characterizes \mathcal{L}_p -spaces. This is because (see Example 6.7) the (CEP) does not imply local complementation for subspaces of l_p when p < 1.

9. Some applications to H_p

Now we consider the space $L_p(\mathfrak{F}, m)$ where \mathfrak{F} is the unit circle in the complex plane and $dm = d\theta/2\pi$ is normalized Lebesgue measure on the circle. The closure of the polynomials in $L_p(\mathfrak{F})$ is denoted by H_p . It is easy to show for $0 that <math>H_p$ has (BAP), and it has recently been shown that it has a basis [23]. Also H_p is a pseudo-dual space.

In [15] it is shown that H_1 is not an \mathfrak{L}_1 -space.

Proposition 9.1. H_p is not a \mathfrak{L}_p -space for 0 .

Proof. H_p has (BAP) but does not embed into l_p since it contains copies of l_2 (see Theorem 6.4).

Let us denote by H_p the space of polynomials in \bar{z} , i.e. the space of complex conjugates of H_p -functions. Let $J_p = H_p \cap \bar{H}_p$ the linear span of the real H_p -functions. Recently Aleksandrov [1] showed that $H_p + \bar{H}_p = L_p(\mathfrak{F})$ if 0 (this is clearly false when <math>p = 1 but true trivially for 1).

This means we can set up a map $U: H_p \oplus \overline{H}_p \to L_p(\mathfrak{T})$ defined by U(f, g) = f + g. Then ker $U = \{(f, g) : f = -g\}$ is isomorphic to J_p .

Proposition 9.2. (1) J_p is not an ultra-summand and is therefore non-isomorphic to H_p

(2) J_p has a basis.

Proof. These remarks follow from the fact that the ker U must be locally complemented in $H_p \oplus \overline{H}_p$, but is clearly weakly dense. We use of course Theorems 6.1, 4.4, 5.1 and 5.7. For (2) we use the fact that H_p has a basis [23].

Theorem 9.3 (see [24]). The spaces $L_p(\mathfrak{F})/J_p$, $L_p(\mathfrak{F})/H_p$ and H_p/J_p are isomorphic. Froof. By considering the automorphism $z \rightarrow \bar{z}$ of the circle, we clearly obtain $L_p/H_p \cong L_p/\bar{H}_p$. If we define projections in L_p by

$$Pf(z) = \frac{1}{2} (f(z) + f(-z))$$
$$Qf(z) = \frac{1}{2} (f(z) - f(-z))$$

then P and Q each leave H_p invariant. Thus $L_p/H_p \cong P(L_p)/P(H_p) \oplus Q(L_p)/Q(H_p)$. Now if $Tf(z) = f(z^2)$, T maps L_p onto $P(L_p)$ and H_p onto $P(H_p)$, isometrically. Similarly $T_1f(z) = zf(z^2)$ maps L_p onto $Q(L_p)$ and H_p onto $Q(H_p)$. Thus $L_p/H_p \cong \cong L_p/H_p \oplus L_p/H_p$.

Now use the ALEKSANDROV map $U: H_p \oplus \overline{H}_p \to L_p$. Since $U^{-1}(\overline{H}_p) = J_p \oplus \overline{H}_p$, we have $L_p/\overline{H}_p \cong H_p/J_p$. Since $U^{-1}(J_p) = J_p \oplus J_p$, $L_p/J_p \cong H_p/J_p \oplus \overline{H}_p/J_p$. However $\overline{H}_p/J_p \cong L_p/H_p$, by the above reasoning and so $L_p/J_p \cong L_p/H_p \cong H_p/J_p$.

Theorem 9.4. Suppose X is an ultra-summand or is q-convex for some q > p and $T: J_p - X$ is a bounded linear operator. Then T can be expressed in the form

$$Tf = S_1 f + S_2 f \quad f \in J$$

where $S_1: H_p \to X$ and $S_2: \overline{H}_p \to X$ are bounded linear operators. Proof. Define $T_1: \ker U \to X$ by

 $T_1(f, -f) = Tf \quad f \in J_p \; .$

Extend T_1 by Theorem 8.2 to give an operator $V: H_p \oplus \overline{H}_p \to X$. Write

$$S_1 f = V(f, 0) \qquad f \in H_p$$

$$S_2 f = -V(0, f) \qquad f \in \overline{H}_p$$

Corollary 9.5. (ALEKSANDROV). Every continuous linear functional φ on J_p is the form

$$\varphi(f) = \psi_1(f) + \psi_2(f)$$

where $\psi_1 \in H_p^*$ and $\psi_2 \in \overline{H}_p^*$.

Remark. ALEKSANDROV proves this directly [1].

Finally we apply our methods to characterize translation-invariant operators on J_p . An operator $T: X \rightarrow L_p$, where X is a translation-invariant subspace of L_p , is translation-invariant if

$$T(f_{\omega}) = (Tf)_{\omega} \quad \omega \in \mathfrak{T}$$

where $f_{\omega}(z) = f(\omega z)$.

OBERLIN [19] has shown that every translation-invariant operator $T:L_p\to L_p$ is of the form

$$Tf = \sum_{n=1}^{\infty} c_n f_{\omega_n}$$

where $\sum_{n=1}^{\infty} |c_n|^p < \infty$, and $\omega_n \in \mathfrak{S}$. Clearly any such operator restricts to a translation-invariant endomorphism of J_p .

For $f \in H_p$, f can be realized as the boundary values of a function \hat{f} analytic in the open unit disc. Denote by $\theta_0(f)$ the value of f at 0. Then the map $f \mid \rightarrow \theta_0(f) \cdot 1$ is a translation-invariant linear operator on $J_{,p}$ as is $f \mid \rightarrow \overline{\theta_0(f)} \cdot 1$ (where we exploit the fact the $\hat{f} \in H_p$ for $f \in J_p$) Let $\theta_{\infty}(f) = \overline{\theta_0(f)}$.

Theorem 9.6. Let $T: J_p \to J_p$ be a translation-invariant linear operator. Then takes the form:

(9.6.1)
$$Tf(z) = \sum_{n=1}^{\infty} c_n f(\omega_n z) + a_1 \theta_0(f) + a_2 \theta_{\infty}(f)$$

where $\omega_n \in \mathfrak{T}$, $\Sigma |c_n|^p < \infty$ and $a_1, a_2 \in C$.

Proof. First define T_1 : ker $U \rightarrow J_p$ by

$$T_1(f, -f) = Tf$$

Then since H_p is an ultra-summand, we can find a unique extension $S_1: H_p \oplus \overline{H}_p \approx H_p$. If $\omega \in \mathfrak{T}$, then $(f, g) \mid \rightarrow (S_1(f, g))_{\omega}$ extends $(f, -f) \mid \rightarrow (Tf)_{\omega} = T_1(f_{\omega}, -f_{\omega})$, as

does $(f, g) \mid \rightarrow S_1(f_\omega, g_\omega)$. Hence by uniqueness $(S_1(f, g))_\omega = S_1(f_\omega, g_\omega)$. For $n \ge 0$ choose $g_n(z) = z^{-n} \in \overline{H}_p$. Then $S_1(0, g_n)_\omega = \omega^{-n} S_1(0, g)$ and $S_1(0, g) \in \mathbb{C}$.

For $n \equiv 0$ choose $g_n(z) = z$ $\in H_p$. Then $S_1(0, g_n)_{\omega} = \omega$ $S_1(0, g)$ and $S_1(0, g) \in H_p$. Hence $S_1(0, g_n) = 0$ if n > 1, and $S_1(0, g_0)$ is constant. We conclude that

$$S_1(0,f) = \alpha \theta_{\infty}(f) \; .$$

for some $\alpha \in C$. Thus we have

$$S_1(f, g) = V_1 f + \alpha \theta_{\infty}(g)$$

where $V_1: H_p \to H_p$ is translation-invariant. Similarly T_1 extends to a translation invariant operator $S_2: H_p \oplus \overline{H}_p \to \overline{H}_p$ of the form

$$S_2(f, g) = \beta \theta_0(f) + V_2 f$$

On ker $U S_1 = S_2$. Thus there is an operator $R: L_p(\mathfrak{T}) \to L_p(\mathfrak{T})$ such that

$$RU = S_1 - S_2$$

and R is clearly translation-invariant. Hence R is of the form

$$Rf(z) = \sum_{n=1}^{\infty} c_n f(\omega_n z)$$

where $\Sigma |c_n|^p < \infty$ and $\omega_n \in \mathfrak{I}$.

If
$$f \in H_p$$
,

$$Rf = V_1 f - \beta \theta_0(f) \; .$$

Hence

$$V_1 f = Rf + \beta \theta_0(f)$$

and if $f \in J_p$

$$Tf = S_1 (f, -f) = Rf + \beta \theta_0(f) - \alpha \theta_{\infty}(f)$$

which is of the form (9.6.1).

References

- [1] ALEKSANDROV, A. B., Approximation by rational functions and an analogue of the M. Riesz theorem on conjugate functions for L_p -spaces with $p \in (0, 1)$, Math USSR Sbornik **35** (1979) 301-316 (translation of Mat. Sb. 107 (1978).
- [2] DACUNHA-CASTELLE, D. and KRIVINE, J. L., Applications des ultraproducts a l'étude des espaces and des algebres de Banach, Studit Math. 41 (1972) 315-334.
- [3] DAVIE, A. M., The approximation problem for Banach spaces, Bull. London Math. Soc. 5 (1973) 261-266.
- [4] DAY, M. M., The spaces L_p with 0 , Bull. Amer. Math. Soc. 46 (1940) 816-823.
- [5] ENFLO, P., A counterexample to the approximation property in Banach spaces, Acta Math. 130 (1973) 309-317.
- [6] JOHNSON, W. B., and LINDENSTRAUSS, J., Examples of L₁-spaces Arkiv för Matematik 18 (1980) 101-106.
- [7] JOHNSON, W. B., ROSENTHAL, H. P., and ZIPPIN, M., On bases finite-dimensional decompositions and weaker structures in BANACH spaces, Israel J. Math. 9 (1971) 488-506.
- [8] KALTON, N. J., Compact and strictly singular operators on Orlicz spaces, Israel J. Math. 26 (1977) 126-136.
- [9] -, The endomorphisms of L_p ($0 \le p \le 1$), Indiana Univ. Math. J. 27 (1978) 353-381.
- [10] -, An analogue of the Radon-Nikodym property for non-locally convex quasi-Banach spaces, Proc. Edinburgh Math. Soc. 22 (1979) 49-60.
- [11] –, Isomorphisms between L_p -function spaces when p < 1, I. Functional Analysis 42 (1981) 299-337.
- [12] KALTON, N. J., and PECK, N. T., Quotients of $L_p(0, 1)$ for $0 \le p < 1$, Studia Math. 64 (1979) 65-75.
- [13] KALTON, N. J., and ROBERTS, J. W., A rigid subspace of L₀, Trans. Amer. Math. Soc. 266 (1981) 645-654.
- [14] LINDENSTRAUSS, J., Extensions of compact operators, Mem. Amer. Math. Soc. 48 (1964).
- [15] LINDENSTRAUSS, J., PELCZYŃSKI, A., Absolutely summing operators in L-spaces and their applications Studia Math. 29 (1968) 275-326.
- [16] LINDENSTRAUSS, J., and ROSENTHAL, H. P., Automorphisms in c_0 , l_1 and m, Israel J. Math. 7 (1969) 227-239.
- [17] -, -, The \mathcal{L}_{v} -spaces Israel J. Math. 7 (1969) 325-349.
- [18] LINDENSTRAUSS, J., and TZAFRIRI, L., Classical Banach Spaces I, Sequence Spaces, Springer-Verlag, Berlin 1977.
- [19] OBERLIN, D. M., Translation-invariant operators on $L_p(G)$, 0 , Michigan Math. J. 23 (1976) 119-122.
- [20] SCHREIBER, M., Quelques remarques sur les caractérisations des espaces L_p , $0 \le p < 1$, Ann. Inst. Henri Poincaré 8 (1972) 83-92.
- [21] STILES, W. J., Some properties of l_p , 0 , Studia Math. 42 (1972) 109-119.
- [22] SZANKOWSKI, A., Subspaces without approximation property, Israel J. Math. 30 (1978) 123-129.
- [23] P. WOJTASCZYK, H_p -spaces $p \leq 1$ and spline systems, preprint.
- [24] ALEKSANDROV, A. B., Essays on non locally convex Hardy class, Springer Lechves in Math. Vol. 864 (1981) 1-89.

University of Missouri Department of Mathematics Columbia Missouri 65211 (U.S.A.)

7 Math. Nachr. Bd. 115