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Locally Complemented Subspaces and £ -Spaces for 0 <p <1
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Abstract, We develop a theory of £,-spaces for 0 <p <1, basing our definition on the concept
of a locally complemented subspace of a quasi-BaNacH space. Among the topics we consider
are the existence of basis in £,-spaces, and lifting and extension properties for operators. We also
give a simple construction of uncountably many separable ¥ -spaces of the form £,(X) where
X is not a £ -space. We also give some applications of our theory to the spaces H,, 0<p=<1.

1. Introduction

£,-spaces (1=p=o) were introduced by LINDENSTRAUSS and PELCZYNSKI
[15] as BANACH spaces whose local structure resembles that of the spaces Z,. Thus
a BANACH space X is an £,-space if there is a constant 4 such that for every finite
dimensional subspace F of X there is a finite-dimensional subspace GO F and a
linear isomorphism 7': G 1§V with ||T'| - | T~1|=A. The study of £,-spaces has
proved to be rich and rewarding.

There has been little effort at a systematic treatment of £,-spaces for 0 <p< 1.
There is however, in the author’s opinion, some interest in giving such a treat-
ment. For example in [12], it is shown that the quotient £,/1 of £, by a one-
dimensional ‘subspace is not an £, -space if 0 <p<1 and hence it cannot be iso-
morphic to L,

Suppose now X is a sub-c-algebra of the BorEL sets of (0, 1) and let L,(Zy)
be the closed subspace of all 2-measurable functions in L,. We denote by (Zy)
the quotient space L,/L,(X,). In [9] it is shown that, ‘usually’, L,(2}) is uncomple-
mented in L, if 0 <p<1. Thus N. T. PECK raised the question whether 4(Z;) can
be isomorphic to L, if L,(Z;) is uncomplemented, and equally whether ()
could be an £, -space.

The definition of an £ -space used in [12] is slightly different from the defini-
tion given above for 1 =p=o. It is merely required that X contains an increasing
net of finite-dimensional subspaces uniformly isomorphic to finite-dimensional
l,-spaces, whose union is dense. This distinction is unimportant for p=1, but for
0<p=<1it is significant, for, as W. J. STILES pointed out to the author it is not
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clear that even L,(0<p<1) would satisfy the LINDENSTRAUSS-PELCZYNSKT
definition. This led us to consider whether thete is an alternative indirect defini-
tion of £,-spaces more suitable for 0 <p<1.

The crucial notion we introduce in this paper is that of alocally complemented
subspace of a quasi-BaNacH space. This idea is entirely natural we believe and
leads to an attractive definition of £,-spaces. Thus a quasi-BaxAcH X is an £,-
space if and only if it is isomorphic to a locally complemented subspace of aspace
L,(2, Z, u). There is a local version of this definition (see Theorem 6.1 below);
X is an £ -space if there is a uniform constant i, such that whenever F is a
finite-dimensional subspaces of X and £=0 there are operatorsS: #~1,, T': [,~ X
with ||| - ||S||=2 and | TSf—f||=¢ ||f|| for f€F. For p=1 or , this simply reduces
to the standard definition, but for 1 <p<oo (p=+2) it gives a very slightly wider
class (HILBERT spaces are £,-spaces for 1 <p-<co).

We now discuss the layout and main results of the paper. Section 2 is purely
preparatory and in Section 3 we introduce the notion of a locally complemented
subspace. In a BANACH space this has several equivalent attractive formulations;
for example N is a locally complemented subspace of X if and only if N** is
complemented in X**, The Principle of L.ocal Reflexivity plays an important
role here, as it states that X is locally complemented in X**.

The absence of a bidual for non-locally convex quasi-BANACH spaces leads us
to consider ultraproducts in Section 4, and we give a number of connections be-
tween these ideas. Section 5 contains our first main result that alocally comple-
mented subspaceof a quasi-BANACHspace with a basis, under certain conditions, also
has a basis; these conditions include the case of a weakly dense subspace. This
result is similar in spirit to some results of JorNsoN, RoSENTHAL and Z1prPIN [7].

In Section 6, we introduce £,-spaces and give some of their properties. We
also show that if 0<p<1, it is convenient to separate separable L,-spaces into
three categories — discrete, continuous and hybrid £,-spaces. A separable £ -
space has a basis if and only if it is discrete, i.e., a locally complemented subspace
of ,. Separable £ -spaces with trivial dual are called continuous and correspond
to the locally complemented subspaces of L,. We point out (Theorem 6.7) that
the kernel of any operator from a p-BANACH space with a basis onto a continuous
£,-space (including L, itself) will again have a basis. We also produce a simple
explicit example of a weakly dense subspace of I, (0 <p<1) failing to have a
basis (or even the Bounded Approximation Property). In view of the results of
Davie and ExrLo [8], [5] and recently SZANKOWSKI [22] the existence of such a
subspace is hardly surprising; however the construction is very easy and the sub-
space has the additional property that every compact operator defined on it may
be extended to I,

In Section 7 we show that the subspace L,(X)) is locally eomplemented but not
complemented (see [9]). A deduction is that in this case A(X) is an £ -space;
however we have shown in [11] that, in the case where (2, X, u) is separable, that
A(Zp)=L, implies that L,(X,) is complemented. If we take the special example



Kalton, Locally Complemented Subspaces and £,-Spaces 73

where 2= (0, 1) X(0, 1), 2'is the BoREL sets of (0, 1)2 and X is o-algebra of sets
of the form BX(0,1) for B a BOREL subset of (0, 1), then A(Z})=L,(L,/1)
where L,/1 ([12]) is the quotient of L, by a single line. However L,/1 is not an
¢ ,-space. This shows also that for 0 <p<1 itis possible to have L,(X) an L,-space
without having X as € -space, in contrast to the situation for p=1. We go on to
construct an uncountable collection of separable £,-spaces of this type.

In Section 8, we prove a number of lifting theorems (similar to those of [12])
and extension theorems for operators. For example if X is a p-BANACH space and
N is a closed subspace such that X/N is a continuous £, -space then an operator
T : N —Z can be extended to an operator 7'y : X --Z under any one of three hypo-
theses: (1) 7' is compact, (2) Z is a g-BanacH space for some g=>p or (3) Z is a
pseudo-dual space. In each the extension is unique.

In Section 9, we give an application of these ideas to an example involving
H, for 0<p<1. Let J, for 0<p<1 be the closed subspace of H, (regarded as a
subspace of L,(§), where J is the unit circle with LEBESGUE measure) of all f such
that f¢ H,. Exploiting a recent result of ALEKSANDROV [1] we show J, is isomor-
phic to a locally complemented subspace of H,®H, (where H,={f¢ L,(8): f¢
€H,}). We deduce that J, has (BAP) and that as H, has a basis then so does J,,.
We also quickly obtain the dual space of J,; every continuous linear functional
@€dJ, is of the form

() =pH+wlh fed,
where y; € H and y,€ HY. We show that J, is non-isomorphic to H,, but L,/H, =
=L,/ ,>=H,/J],. Finally we characterize translation-invariant operators 7' : Jy
—~J, using the extension theorems of Section 8. We show that every translation-
invariant operator T': J,—~J, takes the form

Tf(z)= 2 Caf(047) +a100(f) + a20..(f)

n=1
where ,€8, ) |c,[f<e and, 6,(f)=f(0) regarding f as a member of H, and
6..(f)=F(0) regarding f as a member of H,,.

2. Preliminaries

As usual a quasi-norm on real (or complex) vector space X is a map x|
(z € R) satisfving
(2.0.1) [2|=0 =z%0
(2.0.2) llox|| = || |2], «€R (or C), z¢X
(203)  Je+yl=k )+l = yeX,
where k is a constant independent of z and y. A quasi-norm defines a locally
bounded vector topology on X. A complete quasi-normed space is called a quasi-
BawacH space. If, in addition the quasi-norm satisfies for some p, 0 <p=1,

(2.04)  [le+ylP =[l]®+|yl =z yeX



74 Kalton, Locally Complemented Subspaces and £,-Spaces

then we say X is a p-BANACH space. A basic theorem due to Aokt and RoLEWICZ
asgerts that every quasi-BanacH space may be equivalently renormed as a p-
BawacH space for some p, 0<p=1. We shall therefore assume without losing
any generality that every quasi-BANACH space considered is a p-BANACH space for
some suitable p where 0 <p=1 (i.e. that (2.0.4) is satisfied).

If (2, 2, ) is a measure space then by L, (£, X, u) we denote the space of all
real (or complex) 2-measurable functions f satisfying:

Hfup={gf 1P du}'’? <o

L,(Q, X, p) is a p-BANACH space, after the standard identification of functions
agreeing u-almost everywhere. If 2'is the power set of 2 and p is counting measure
on X (i.e. u(A) is the cardinality of 4 if 4 is a finite subset of 2 and « otherwise),
then L,(2, X, p) is written 1,(2). If Q is countable this reduces to the standard
sequence space I,,.

On the other hand if (£, X, u) is separable nen-atomic probability space
then L,(2, X, u) can be identified isometrically with the function space L,(0, 1)
and will be written L,,. _

If X is a quasi-BaNacH space the L,(2, 2, u; X) will denote the space of
Z-measurable maps: f: 2 X with separable range satisfying:

[y ={ [ (@) du(@)} <.

Again L,(Q, X, u; X) is a quasi-BANACH space; if X is a p-Banacsa space, then
it is also a p-BANACH space. If Q=N and @ is counting measure we write this
space as [,(X), while if (2, 2, u) is separable non-atomic probability space we write
it as L,(X).

If X is a p-BAaNAcH space, then for any index set I, the space I_(I; X) is the
space of “‘generalized sequences’, {x;};.; satisfying

[{%:}ier Il=8up [2;l|<o= .
icl

I(I;X) is also a p-BawacH space. 1f 4{ is a non-principal ultrafilter on I, then
the ultraproduct X, of X is the space I_(I; X)/Cyq (I; X) where Cy 4 (I; X)
is the closed subspace of I (I; X) of all {z;} such that

lim |jz)| =0 .
im |

It is often convenient to think of X, as the HAUSDORFF quotient of the space
1 (I; XY with the “‘semi-quasi-norm”

I{z}iae= liﬁﬂ“ flgl -

We also shall identify X as a subspace of X, by identifying each x€ X with the
constant sequence x;=z for i¢ 1.

The main theorem we shall require here is due to SCHREIBER [20] (the case
p=1 is due to DacunHA-CASTELLE and KRIVINE [2]).
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Theorem 2.1. Any wultraproduct of a space L,(2, X, y) is isometrically isomorphic
to L2y, Xy, 1y) for a suifably chosen measure space (24, Xy, 1y).

Any separable p-BANAcH space X is a quotient of the space /,. In the case
p=1, LINDENSTRAUSS and ROSENTHAL [16] showed that there is a form of uni-
queness of the quotient map of /; onto X. Precisely if T :!,~X are any two
quotient maps and X is not isomorphic to /; then there is an automorphism 7 : /; -
—1; such that T'; =T,r. StiLEs [21] asked whether this can be generalized to /,
when p<1. In the stated form this is impossible, since as shown by STILES, lp
contains a subspace M which contains no copy of [, complemented in the whole
space; then lp/Mglp@lp/lp@Jl[ and there can be no isomorphism of lp onto
l,®l, carrying M to 1, M. However, excepting this case, the argument of
LinpENSTRACUSS and ROSENTHAL can he extended. We therefore state for 0 <p<1:

- Theorem 2.2. Suppose X is a separable p-BANACH space and suppose T'y : [, ~ X
and Ty :1,~X are open mappings. Provided the kernels of T, and Ty both contain
copies of 1, which are complemented in l,. there is an automorphism = :1,~1, with
T,=Ts.

The proof given in LINDENSTRAUSS-TZAFRIRI [18] p. 108 goes through un-
disturbed, once one observes that the operator S defined therein is subjective for
purely algehraic reasons (the proof in [18] appeals to duality) indeed given z¢€/,
x— T Pox is clearly in S(U) while T T.xcS(V).

A closed subspace M of a quasi-BANACH space X is said to have the HAHN-
Banacu Extension Property (HBEP) if every continuous linear functional ¢ € M*
can be extended to a continuous linear functional ¢ X*.

Corollory 2.3. Suppose X ig a separable p-BANACH zspace non-isomorphic is L,.
Suppose Ty :1,~X and Ty: 1, X are two open mappings and suppose the kernel
of T kas (HBEP). Then there is an automor phism v of 1, such that Ty =T\r.

Proof. If ker T, has HBEP then X is a & ,-space as defined in [12] and so ker
T, also has HBEP. But this means by results of STILEsS that both ker 7', and
ker T', contain copies of l,, complemented in I,

We conclude by recalling some definitions. A quasi-BANACH space X is a
pseudo-dual space if there is HAUSDORFF vector topology on X for which the unit
ball is relatively compact. X has the Bounded Approximation Property (BAP) if
there is a sequence of finite-rank operation T, : X -~ X such that T,z -~z for x€ X.

3. Locally complemented subspaces

We shall say that a closed subspace E of a quasi-BaxacH space X is locally
complemented in X if there is a constant A such that whenever F is a finite-dimen-
sional subspace of X and e=0 there is a linear operator T'=7p: F - E such that
I7)|=2 and | Tf—f|=¢ ||f| for feENF.
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By way of motivation let us observe that the Principle of Local Reflexivity
for BANACH spaces (LINDENSTRAUSS and RosENTHAL [17]) states that every
BaxacH space X is locally complemented in its bidual X** (with 1=1).

We shall start with two rather technical lemmas which will be needed later to
identify locally complemented subspaces.

Lemma 3.1. Suppose X is o quasi-BANACH space and that E is closed subspace
of X. Suppose there is an increasing net X, of subspaces of X so that U(X,NE) is
dense in E and UX, is dense in X. Suppose there are operators Q, : X, ~FE such
that sup |@ll<o and Q.e—~e for e€ U(X,NE). Then E is locally complemented
in X.

Proof. Suppose Fc X is a finite-dimensional subspace and {f,,...,f,} is &
normalized basis of F such that for some m=n, {f;,..., f,} i8 a basis of ENF.
Then there is a constant ¢>0 such that for any (a, - .., a,)

1
Forfixed 0<e<1 select « and g4, ... ¢,€ X, so that |[g_i~fi||”§;£ cPePforl=i=n

. 1
and ¢;¢F for 1=i=m. Choose f=a that ||Qﬂe—“e||1’§Ze”||e||” for e€[gy,..., gl
Then define T': ¥ —~ F by
n n
T(_Z;“ifi)=Qﬁ(§“i91) .
i= i=

Then

n 1?1
2 a(g:—1) 5401’8?2'“1"?
i=

1
=2 D afie.
Thus ||T|? =2||@4||” and if ec FNE,
|1 Te—ell=ee -
Lemma 3.2. Let X be a quasi-BANACH space and suppose E is a locally comple-
mented subspace of X. Thus there is a constant A such that whenever Y is a closed

subspace of X containing E with dim Y/E << there is a projection P: Y —~E with
P =A.

Remark, Clearly the converse of Lemma 3.2 is immediate.

Proof. There is a constant 4, so that for every >0 and finite-dimensional
subspace F of X there is a linear map T': F—E with | T'f—f||=¢||f| for fc ENF and
IT)|=2,. We can suppose that X is a p-BANACH space where 0<p=1.
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Suppose @ : Y —~E is any bounded projection (there is a bounded projection
since dim Y|E < ). Suppose ¢ =||I —@)|| and choose £>0 so that

f<(310 1+ 4)"1p 1,
Let @=Q~1(0) and let {g,, ..., g,} is an e-net for the unit ball of @. Let
0;=d(g,. E):i?}‘f' lgi—ell 1=i=n

and choose e,€ £ so that
lg;—elP =267 1=i=n.

Let H be the linear span of G and {e, ..., ¢,}. Since |||’ =3 there is a linear
map T : H— E so that ||T|| =4, and

[Te;—elz=e 1=i=n .

Suppose g€G and let ||g||=0. For some i, 1=i=n
(3.2.1) g —0Ogil|=cellgl
and so
(3.2.2)  llg—Oel”=(267 + &) [lg|”
while
(3.2.3)  &lgl* =d(g, EY +&|gl” -

Combining (3.2.2) and (3.2.3) we obtain:
(3.2.4)  |g—0e|? =2d(g, E)” +3¢"g|”

Now define P: Y —~F by P=Q+T (I—@). Then P is a projection. Suppose
y€Y and |ly||=1; let g=y —Qy and O=||g|. Choose i so that (3.2.1) holds. Then by
(3-2.4)

1Ry + Oe,l” =|ylI” +lg — Oe”
=1+2d(g, E)" +3¢7 ||g||”
=3+36%7.
On the other hand
1Tg —be,l|” =43 llg —Oeyll” +1g]” | Te; —e|”
=2Md(g, E)?+ (340 + 1) %07 .
Thus we have
|Py||? =23 + 3+ %" (3A5 +4)=21F +4 .
Setting A7 =215 +4 we have the desired conclusion.
Lemma 3.3. implies the following proposition whose proof we omit:

Proposition 3.3. Suppose X is a quasi-BANACH space and ECF are closed
sub-spaces of X, If F is locally complemented in X and E is locally complemented
in F, then E is locally complemented in X.
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We shall say a that closed subspace E of a quasi-BANACH space X has the
Compact Extension Property (CEP) in X if whenever Z is a quasi-BANACH space
and K : E~Z is a compact operator then there is a compact operator K : X ~Z
with Kje= Ke for ec E. An argument exactly as in Theorem 2.2 of [14] shows that
if £ has (CEP) then for any fixed r=0 there is a constant 4 so that whenever Z is
an r-BANACH space and K : E-—~Z is compact then we can determine K; so that
|K = K].

Theorem 3.4, If E is a locally complemented subspace of X then E has (CEP).

Proof. We shall not give full details here as this is a straightforward
“LINDENSTRAUSS compactness argument’. If K: E—+Z is compact consider the
net {K Py} where Y ranges over all subspaces of X with Y5 F and dim Y|E <
and Py : Y —~E is a uniformly bounded set of projections as in Lemma 3.2.

The next result is essentially known, but helps to clarify the situation for
BAXACH spaces.

Theorem 3.5. Let X be a BANACH space and let E be a closed subspace of X. The
following conditions on E are equivalent:

(1) E has (CEP) in X.

(2) E is locally complemented in X.

(8) E** is complemented in X** under its natural embedding.

(4) There is a linear extension operator L: E* ~X* guch that Le*(e)=e*(e) for
ecE and e*c E*,

Proof. (2)=(1): Theorem 3.4.

(1) =(4): There is a constant 4 so that wherever K : ¥ - Y is a compact opera-
tor into a BANACH space Y then K has extension K, : X —~Y with |K;|=1||K]|.

Let @ be a finite-dimensional subspace of E* and let GL ={e€E: g(e)=0 for
g€@G}. Let Y be the quotient space E/GL and ¢q: E—~Y be the quotient map. Then
there exists a linear operator K : X —Y with Ke=ge for ec £ and || K| =4. Now
K*:G—-X*, - |K*|=A and K*g(e)=g(e) for g¢G and ec E. The conclusion of (4)
can then be obtained by a standard compactness argument.

(4)=(8) The adjoint L*: X** . E** ig a projection.

(3) =(2) This follows from Proposition 3.3 and the Principle of Local Reflexi-
vityv.

Remark. In general, so we shall see, the property (CEP) is strictly weaker
than local complementation for a subspace.

4. Ultraproduets

The first part of the following theorem serves as a replacement in the non-
locally convex setting for the Principle of Local Reflexivity.
Theorem 4.1. Suppose X is a quasi-BANACH space, I is an index set and U is

a non-principal ultrafilter on 1.
(1) X is locally complemented in Xa,.
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(2) If Y is a locally complemented subspace of X then Y, is locally complemented
in Xg.

Proof. (1): Let F be a finite-dimensional subspace of X, and let {f”, ... f™}
be a basis of F. We shall regard f® as members of I_(I; X) by selecting represen-
tatives. For each i€ I, define T';: F - X by

7n n
T i{ 2 wf (k)}z 2 afd.
E=1 F=t
Clearly we have
sup || 7'f|l <
il
and

Um || Tf|=|fll feF.
By an elementary compactness argument lim ,|T]|=1. If f¢ FNX then
ligx Tf=f.

Again by a compactness argument we may select i so that for any =0, |7/ —
—fIP=2IfIF feFNX) and |T,|P=1+¢7/2. Letting S=(1+¢7/2)""? T'; we have
ISli=1 and |}Sf — | =e{fl for feF NX.

(2): Here we may suppose that for some 4, we have, for every subspace W of
X containing Y with dim W/Y <<, a projection P: WY with ||P||=1. Again
let F he a finite-dimensional subspace of X, and select a basis {f*), ..., f®} for
F. Foreach ic] let W,=[Y,f", ..., f™] be the linear span of ¥ and £, ..., f™.
Let P;: W;—~Y be a projection with ||P||=24. Define T': F ~ Y, by Tf={Pf}ic;
for f¢ F. Then |T||=4 and if f¢ Y, then Tf=Ff.

Let us define a quasi-BANACH space X to be an ultra-summand if X is comple-
mented in X,, for every ultraproduct X,, of X. Then we have:

Theorem 4.2. Let X be a quasi-BANACH space and E be a locally complemented
subspace of X. Suppose Y is an ultra-summand. Then any bounded linear operator
Ty: E~Y can be extended to a bounded linear operator T : X -~ Y.

Proof. For an index set J we take the collection of subspaces W of X with
WoE and dim W/E <e<o. We let i be any ultrafilter on 3 containing all subsets
of & of the form {W¢d: W> Wy} for W€ 8. For each W¢€J there is a projection
Py, : W—E so that sup | Py||=4<-ce.

Define 7': X - Y, by
(T2)y=0 xd W
:TUP”vx SIIE W'.
Then T factors to a linear map into Y., and ||T|=A||T,|. If @: Y., — Y is any
projection then 7' =@QT provides the desired extension.

Proposition 4.3. 4 complemented subspace of a pseudo-dual space is an ulira-
summand.
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Proof. Suppose Y is a pseudo-dual space and P: ¥ - X is a projection onto a
closed subspace X of Y. We may assume the unit ball of Y is compact in a
Hausporrr vector topology y. If X, is any ultraproduct of X then we can define
Q:X,—~X by

Q)= P (y—lim ;) .
Then @ is a projection of X,, onto X,

Theorem 4.4. Consider the following properties of a quasi-BANACH space X :

(1) X is an ultra-summand.

(2) Whenever X is a locally complemented subspace of a quasi-BANACH space Z
then X is complemented in Z.

(8) X is isomorphic to a complemented subspace of o pseudo-dunl space .

Then (1) and (2) are equivalent in general. If X has (BAP) then (1), (2) and (3)
are equivalent.

Proof. {1)<(2): This follows directly from Theorems 4.1 and 4.2,

(2)=-(38) when X has (BAP): Suppose T,: X ~X is a sequence of finite-rank
operators with T,x—~z for 2€ X. Then sup ||T,||=4<<. Form the space Z of all
sequence £=(&,),_, where £,€T, (X) such that ||&|=sup ||, <. Then Z is a
pseudo-dual space since its unit ball is compact for co-ordinatewise convergence.
Define J : X -Z by Jx=(T,2);.,.- Then J is anisomorphic embedding of X into Z.
Define Q,: Z~J(X) by Q,(&)=J&,; then ||@|=|V] and Qu—u for ucJ(X). By
Lemma 3.1, J(X) is locally complemented in Z and hence is complemented in Z.

Theorem 4.5. Suppose E is a locally complemented subspace of X. Then X/E is
isomorphic to a locally complemented subspace of an ultraproduct X, of X.

Proof. Again let § be the collection of all subspaces W of X with W> & and
dim W/E <. Let U be an ultrafilter on J containing all subsets of the form
{W: Wc Wy} for W,€3. There exist projections P,.: W—~E so that sup ||Py| =
=A=<oo, Define ¢ : X - X4, by

(@2)y=0 ¢ W
=x—Pyx zcW.
Again @ is linear into X, (after factoring out sequences tending to zero through
U) and ||Q)|=(1+4%)"? (where we assume X to be a p-BaNacH space). If 2€ E
then @z =0 and clearly in general,

@l =d(x, B) .
Thus @ factors to an embedding of X/E into X, It remains to show that @(X)
is locally complemented in X,,.
Let F be a finite-dimensional subspace of X,, with a basis {f, ..., f™}. For
each W¢§ define T'y, : F -@Q(X) by

TW( 2 a’(j)f (j))= E a,Qf (&2 .
i=1 i=1



Kalton, Locally Complemented Subspaces and £,-Spaces 81

Now sup ||Ty] << and ll;tn ITw=|Q| as in the proof of Theorem 4.1. If f¢
€Q(X)NF then f=Qx for some 2€ X. Hence

Tywf=@Q (x— Pyx)
eventually (as W — oo through U). Thus T, f=Qx=f eventually.

Now we can clearly choose W¢§ so that Ty f=f for feQX)NF and ||Ty||=
=2||Q|, thus showing Q(X) is locally complemented in X,.

5. Bases

If a quasi-BaxacH space X has (BAP) then it is possible to give a generalizition
of Theorem 3.5.

Theorem 5.1. Suppose X is a quasi-BANACH space with (BAP): Then a closed
subspace E of X is locally complemented if and only if E has both (BAP) and (CEP).

Proof. Suppose first that £ has (BAP) and (CEP). Then where is a sequence
T,: E—~E of finite-rank operators with T',e —~e for e€ E and sup ||7,]| <. Now
n

by (CEP) (and remarks following the definition) there is a uniformly bounded
sequence of operators @, : X —T,(F) such that Q,e=T,e for ecE. Now by
Lemma 3.1, E is locally complemented.

Conversely supposed T,: X —X are finite-rank operators satisfying T,z —=
for ¢ X and sup||T,|| <. If £ islocally complemented there are uniformly bound-
ed projections Pg: E+ T,(X)—~E. Define Q,=P,T,; then sup |@,|| <, @, (X)c
Cc K and @,e—~e for ec K. Thus E has (BAP); it has (CEP) by Theorem 3.4.

Remark. See below Example 6.7.

Corollary 5.2. If X has (BAP) and E is locally complemented in X there is a
sequence of operators S, : X —E such that sup ||S,|| <= and S,e—~e for ecE.

Now suppose X has a basis. It is unlikely that in general every complemented
subspace of X has a basis. This would require for BAxAcH spaces the equivalence
of (BAP) and the existence of a basis; see LINDENSTRAUSS and TzAFRIRI [18]
p- 38 and p. 92. However under certain circumstances we shall show that a locally
complemented subspace does have a basis.

Suppose X has a basis (b,) and ¥ is a closed subspace of X. Let I" be the linear
span in X* of the biorthogonal functionals (b%). We shall say that E is residual
in X if there is a uniformly bounded sequence of operators 7, : X — K such that
Tky —~y for y€I' in the weak*-topology (i.e. p(T,z)—y(x) for z¢ X).

We shall denote by P,, the partial summation operators with respect to the
basis i.e.

m
P,x= Y b¥(x) b .
k=1

Let X, be the algebraic linear span of (b,)5_,.
6 Math. Nachr. Bd. 115
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Our main theorem will be that every residual locally complemented subspace
of X has a bagis. This theorem is similar in spirit to result of JOENSON, ROSENTHAL
and ZrprIN [7] on the existence of bases in BANACH spacés. Our proof will be
achieved in several steps; the first is:

Lemma 5.3. Suppose E, is a residual locally complemented subspace of X.
Then there is a residual locally complemented subspace E of X isomorphic to Ey and
uniformly bounded sequences of finite-rank operators 8, : X ~ENXT,: X ~ENX,
such that

(6.3.1) , S,e—~e ecE
(5.3.2) Tiy—-y weak*, yel.

Proof. Since E; is residual and locally complemented there are uniformly
bounded operators S, : X - Eq, T, : X —+E, so that S,e,—e, for eg€ Egand Ty~
weak * for y€rI.

Choose a countable dimensional dense subspace of E, E, say, such that
8,(Xo)cEqy for neN and T,(Xo)c Eq for ne€ N. Since I' separates the points

of Ey it is possible to chose a Hamel basis {w, : n¢ N) of Ey, such that the biotho-
gonal functionals ¢, €. Now for each n€ N choose m(n)€ N so that

||wn"Pm(n)wan§2_(”+i) ”'pn”p .

Let v, =w, — P,,w, and define K : X ~X by

Kx= g: op(®) v, .

Then |K|<1 and so 4=1I—K is invertible. Now let E = A(E,).

Clearly {A48,4-1:n€N} is uniformly bounded and AS,A~te—~e for ecE.
Let 8,=A8,A~1P,; then {8, : nc N} is a uniformly bounded sequence of finite-
rank operators and S,e-e for ec E.

If yeI' and z€ X

r(AP, A1) =y(T, 4 12) —y(K T, A~ x)
and

p(P,A-1x) >p(A~12) as n—-oo.
On the other hand

KD, A-12)= 37 g(Tod™12) y(1).
=1

Now

|pi(PpA=12)| ly(v)| =C gyl Iyl
where
C'=(sup ||T/1) 4= Iyl le] -
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Hence, by a form of the Dominated Convergence Theorem,

oo

lim y(KT,4-12)= 3 g(A=1) y(v)
N> oo j=l

noting that
lim %(TnA—lx)z%(A“lz) since @€l .

N>

Thus
lim (4 T,,A “x)=p(A- ) —p(KA 1) =p(x) .

N> co

Now let T, =T, P,; then (5.3.2) follows immediately.

Lemma 5.4. If E satisfies the conclusions of Lemma 5.3, then there is a uniformly
bounded sequence of finite-rank operators V,: X -~ ENX, such that

(5.4.1) V,e—e ec K
(54.2) P,V,=P, neN.
Proof. Let W,=8,+7,—1T,8,. Then for fixed £,

k

i=1
and | P, T, — P -0, as n><. Hence P, W, ~ P} as n—~. Choose m(k) an increas-
ing sequence so that

1
||Pk""m(k)‘"Pk“p<-2-- E? k=1,2,...
Then on [b,. ..., b;], P,W,q, is invertible with inverse A4, with
1 1
A—IP=—k? (1—— k) 1=k™7.
4~ 2=k (1= k)

Let V=W, 4P Then PV, =P, and {V,} is uniformly bounded. If ec E
Vke_‘Pke= (Wm(k)Ak_I) Pke

go that
| Vie — Prel® =||W |l & 72lef| +1[(W ey — 1) Prell®
and
Wm(k) —I= (Tm(k) -1) (I—Sm(k)) .
Hence
(W mazy — 1) ell -0
and

(W may—1I) (e—Pre)|| -0 .
Thus Vi,e—~e for eckE.

6+
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Lemma 5.5. If E satisfies the conclusions of Lemma 5.4., then we can find a
constant A, an increasing sequence of positive integers (h,: n=0, 1, 2, ...) with hy=0
and hy=1, and a (not necessarily continuous) linear operator T : X~ X, such thas

(66.1) If G,=[b;:hy_,<i=h,] for n=1, then T(G,)cGp,,.
(5.5.2) If geG, then |Tgl=Mgl and |Tg|"=2 (dlg, BV +i~*]g|P)
(5.5.3) If xz¢X, then xz—Tz€E.

Proof. Choose 4 sufficiently large so that 47>2,

|Pp—P,ll=4 m,nz=0

(where P,=0) and
Val=4 neEN.
[I—-V,|=4 neN.

Next observe that if ¢ X and e>0 then we can find e¢ E so that

llz el <d{z, E)” +¢l|®

and as (I—-V,) e~0, for large enough » we have

(5.5.4)  |(I=V,) z|” <2(d(z, E)® +ell|l”) -

By obvious compactness argument if F is a finite-dimensional subspace of
X we can choose n€ N so that (5.5.4) holds for any z¢ F.

Using this remark it is possible to construct two increasing sequences of
positive integers {k,:n=0,1,2,...} and {m,:n=1,2,3,...} so that h;=0,
hy=1, m,=h, and.

(5.5.5) (- Vm(n)) (Gn)CGn+1
(5'5'6) ”(I— Vm(n)) gllpélp (d(gw E)p +1—2m’”g”?) geGﬂ *
Here we have used the fact that P, (I — V) =0.

Let T: X,~X, be the linear map defined by Tg=(I-V,,) g for gcgq,.

Then the lemma follows.

Theorem b.6. If E is a residual locally complemented subspace of a space X
with a basis; then E also has a basis.

Proof. We may assume that E satisfies the conclusions of Lemma 5.5. We
start with some observations where we let 7°=1.
(5.6.1) P,T'=0 hi=n
(5.6.2) P,T'=P,T'P, hj<n, j=0
(5.6.3) TP,,].—PthzTQj j=1,2,3,...
where

Q,-:P,,].—P,,]._1 (j=1,2,38,...).

Note that (I—T) (Xo)cE and define w,=(I—1T)b,. Clearly b;(w,)=1 so that
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w, + 0. We shall show that (w,) is a basis for E. To this end we define a sequence
of operators U, : X ~E by

U,=I-T)P (2 T’)
where b,_,<n=h,. If x€X,,
Ugx=(1-T)P, kZ_‘f Tiz .
i=
by (5.5.1). If 1=l=n

Uw,=(I-T) P, (kf]l T{I-T) b,)
j=0
=(I-TYP,I-THbo,=(I-T) b, =w, .

Similarly if I=n, U,u;=0. Similar calculations show that U,U,=U,U,=U,
whenever m =n. Thus to show (u,) is a basis it will suffice to show U,e—e for
eck.

First we make a preliminary calculation ; suppose 2€ X, and k=1. Let

k-1
y: 2 T’Qk_jx .
i=o
k=1
Then y€Gy and Y] (T7—1) Q,_, xc E. Hence
i=0
d(y, BE)=d(P,z, E) .
Also
||Tij-ij§;~j||Qk—jx||
by (5.5.2). Thus

k—1
i = 5 29+ 2 i

gince A*>2. Returning to 5.5.2, we have

(5.6.4) ‘;T( kj’] _TfQ,c,jx)

i=o

: _
= (d(Py @, E)”+ A" ~D7|q|[?)

and in particular.

(5.6.5) IT(Z’ T7Q; - f)‘
Now for any &

= A’P + A(Z By A3P

k-1
P’!k— Uhk‘: TQk 7';(: T’Phk
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by (5.6.3). Thus
k-1

Phk— Uhkz T(jé; TJQk_7) Phk

g0 that
”Phk_ Uhk"§;‘4 .
Finally (U, [|=2 for all k. If ec K
1Py~ Upel=2 [(d(Pye, B)? + 44757 Py €]
by (5.6.4) and so Py e—U, e—~0ie. U, e—~e.
If b, <n=hy, then

-1
U]Ik_Uu:(IbT) (Phk_Pn) Qk(jgov T]) Phk

k—1
—(I~T) (P, —P)+(I-T) (P, ~P,) @ (;: TJ') P,,.
Now !
k-1 E—t E—2
Qb(_g T’) P,,k=.=21’ .'I"Qb,.P,,k=T(§ TJQk_i_i) P, .

Hence by (5.6.5
U3, = Unl?= (3 +1) 27 [1 4+ 27%] =277
We conclude |U,||=4® for all n€ N. If k,_, <n=h, then for ec E
e—Upe=(I-U,) (e—U,,_.e)
-0 and n-—ee,

Thus (w,,) is a basis for E.

Theorem 5.7. If X is a quasi-BANACH space with a basis and E is a weakly

dense locally complemented subspace of X then E also has a basis.

Proof. There is a uniformly bounded sequence of operators S, : X - E with
Se—~efor ec E. Then if y€I', consider the map A4 : X —~1_ defined by Ax=(y (x—
—8,2))m=;. Since I_ is locally convex then A~1(c;) is weakly closed. However
A~Ycp) DE is weakly dense so that A(X)ccyie. Sfiy—~y. Thus E is also residual

with T, =S,

6. £,-spaces when 0<p <1

We shall say that a quasi-BANACH space X is an £ -space for 0 <p<1if it is
isomorphic to a locally complemented subspace of a space L,(£2, 2, u) where

(2, X, u) is measure space.
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Let us note that the standard definition of an £, -space for 1=p=c due to
LinpENsTRAUSS and PELCZYNSKI [15] is local in character. X is an £ -space
(1= p=oo) if for some constant 4 and for every finite-dimensional subspace F of X
there is a finite-dimensional subspace G containing ¥ an isomorphism S : @ -1
(where n=dim @) with 8| -||S™1||=4. The problem with this definition for
0<p=1 (pointed out to us by W. J. STrLEs) is that it is by no means clear that
even L,(0, 1) satisfies this condition. A possible alternative would be to define X
to be an £ ,-space if there is a constant A and an increasing net of finite-dimen-
sional subspace (Z, : a€ 4) with UE, dense in X and isomorphisms 8, : E,—»l;"’)
with ||S,]| - |IS;|=4. This definition was adopted in [12]. It is a consequence of
Theorem 6.1 below that every such space is an £,-space in our sense here, but we
do not know whether the converse holds.

In our opinion, the definition given above would serve as a natural definition
for all p, 0 <p=e. However for 1 <p<e, it would make a BANACH space X an
€,-space if and only if it is a complemented subspace of a space L,(£2, 2, u). The
standard definition makes X an L -space if it is a complemented non-HILBERTian
subspace of a space L,(£2, 2, u) [17]. For p=1 or p= < our definition is the same
as the standard one. The equivalence follows easily from Theorem 3.5 and results
in [17] (Corollary to Theorem 3.2, and Theorem III (a)).

Note that every £,-space is (isomrophic to) a p-BANACH space when 0 <p=1.
The following theorem lists several equivalent formulations of the statement
that X is an £,-space.

Theorem 6.1. Let X be a p-BANACH space where 0 <p=1. The following condi-
tions on X are equivalent:

(1) X is an £ -space

(2) X is isomorphic to a locally complemented subspace of some £ ,-space

(8) X is isomorphic to the quotient of a £,-space by a locally complemented sub-
space

(4) X is isomorphic to the quotient of a space 1(I) by a locally complemented
subspace.

(5) Whenever Z is a p-BANACH space and Q : Z ~ X is an open map then ker
18 locally complemented in Z.

(6) There is a constant A such that whenever F is a finite-dimensional subspace of
X and £>0 there are linear operators 8: F—1, T:1,~X with ||S) - |T||=2 and
\TSf—fil=s |l for f<F.

Proof. (1)«(2) follows from Proposition 3.3. Since every p-BANACH space is
a quotient of 7,(1) for some index set I, we have (5)=(4)=(3). To conclude the
proof we shall show (1) =(6), (6)=(5) and (3) =(1).

(1)=(6): We suppose X is a locally complemented subspace of L,(2, 2, u).
Let 4 be a constant so that whenever Y > X there is a projection Py: ¥~ X
with ||Py||=A. Suppose Fc X is a finite-dimensional subspace and £>0. By a
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routine approximation argument there is a finite subalgebra X, of 2 and a linear
map 8: F—~L,(Q, X, p) with ||S|=1and |Sf—f| =471 ||f|. Let Y =X +L,(2, X, )
and let T'=Py|L,(Q, 2y, u). Then |T|=4 and |T'Sf—f|=¢ ||f| for j€F. Since
L,(82, 2y, p) is isometric to a subspace of I, which is the range of a norm-one
projection, (1) follows. .

(6)=>(5). For convenience we may suppose § is a quotient map. Let F be a
subspace of Z of dimension n with a basis f;, ..., f, where |[f)|=1 for 1=i{=n.
Suppose 0<e<1 and let «=0 be a constant so that

| va af; } Ea(zlailp)up

=1
for all ay, ..., a,. Choose operators §:@Q(¥F)~1, and T': I, ~ X with |T - |IS|=4
and

750/~ fl=, sclef] f€F .

Since I, is projective for p-BANACH spaces there is an operator T, : [, ~Z with
|T|=|T) and QT =T. Define R: F+~Z by R=1—-T,8Q. Then QR=(I—-T8) @

1
and ||QR||§5 ae. Thus we can find gy, ..., g,€Z with Qg,=QRf; and ||g;||<ae.
Define L : F +~Z by Lf,=g,. Then
n v
i 2 “ifii' .

‘ ] n I/p
{‘L('Z; aifi) éae(%’laﬂ”) =73 1

i= i= i=
Hence ||L||=¢. Let V=RE—L; then V(F)cCker @ and |V||=(A?+2)'"2. If feFN
Nker @, we have Rf=f and |f— Vf| =¢|f|. Hence ker @ is locally complemented
in Z.

(3) =(1). We may suppose X is the quotient of a space ¥ by a locally comple-
mented subspace, where Y is itself a locally complemented subspace of L,(£2, 2, u).

By Theorem 4.5, X is isomorphic to a locally complemented subspace of an
ultraproduet Y,, of Y. By Theorem 4.1, Y, is isomorphic to a locally comple-
mented subspace of (L,(£2, Z, u))s, which by ScHREIBER’s Theorem 2.1 is a space
L, (£, 24, py). Hence by Proposition 3.3, X is a £,-space.

Separable infinite-dimensional spaces L,(2, X, u) 0<p<1 are isomorphic to
one of the spaces [, L, or lpest. Based on this, we define, for 0<p <1, a discrete
£,-space to be a separable £ -space isomorphic to a locally complemented sub-
space of [,. We also define X to be a continuous £ ,-space if it is isomorphic to a
locally complemented subpace of L,,.

We shall say that a separable £, -space is a hybrid £,-space if it is neither di-
screte nor continuous,

Theorem 6.4. Let X be a separable £,-space where 0<p<1. The following
conditions on X are equivalent:

(1) X is a discrete £ ,-space

(2) X has (BAP)

(3) X has a basis.
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Proof. (1)=(3) Suppose X is a locally complemented subspace of /,, which
is non-isomorphic to I,. Let [,/X =Y, so that Y is also an £, -space. Then there
is a quotient map U :[,~Y which takes the unit vector basis (e,) of [, to a
sequence Ue, dense in the unit ball of Y. By Corollary 2.3, ker U= X, and is
locally complemented in .

For each n¢ N select for 1=k=n, u,,€l, with u, €[e,, . ¢,,, 1, Un,,=Ug
and |ju, .| =2||Ue,||. Define 7, : [, ~ker U by

Tn (2: aiei) = 2; a; (ei_un,i) .
= 1=

Then | T,||=(1+2%)"” and Ty -~y weak* for y in the linear span of the biortho-
gonal functionals (ef ). Hence ker U is residual, and we can apply Theorem 5.6 to
deduce that ker U (and hence X) has a basis.

(3)=(2): Immediate

(2)=(1): We may suppose X is a locally complemented subspace of [,@L,.
From the proof of Theorem 5.1 it is easy to see there is a uniformly bounded
sequence of finite-rank operators 8,:1,@L,~X with S,x—~x for z€X. Let
P:l,oL,~1,®L, by defined by P(u, v)=(u, 0). Clearly §,=8,P and so 8,P,—~
—~x for x€ X. Thus P maps X isomorphically onto a space P(X) of I, (=1,&{0}).
Now PS,Pz—x for z¢ P(X) and so by Lemma 3.1, P(X) is also locally comple-
mented in [,. Thus X is a discrete £,-space.

Remark. Every separable £,-space (1 =p=co) has a basis [7].

Theorem 6.5. Let X be a separable € ,-space where 0<p<1. Then X is conti-
nuous if and only if X*={0}.

Proof. If X is locally complemented in L, then X has HBEP i.e. X*={0}*
Conversely if Xcl,@ L, and X*={0} then X C{0}® L,

A nice property of continuous £,-spaces is given by:

Theorem 6.6. Let X be a p-BANACH space and let Y be a continuous £ ,-space.
Suppose @ : X ~Y is an open mapping. Then (a) if X has (BAP), ker @ has (BAP)
and (b) if X has a basis, ker @ has a basis.

Proof. Since Y*={0}, ker @ is weakly-dense in -X. Simply apply Theorems
5.1, 5.7 and 6.1 (5).

Example 6.7 Let C denote the subspace of L, of constant functions. Since C
fails to have HBEP, C is not locally complemented. Thus L,/C is not a £,-space
(see [12], where essentially this argument is invoked to show L, /CF L,). However
L,/C is isomorphic to a subspace of L, by the embedding T : L,/C —~ L, [(0, 1) X
X (0, 1)] given by ([13])

Taf(s, y=F(s)—f(t) s, t€(0,1).
where ¢: L,~L,/C is the quotient map. Let Y be this subspace of L,. Now
let @:1,~L, be any quotient map and let Zcl, be defined by Z=Q~1(Y). We
claim that Z has (CEP). Indeed if T': Z —~ W is a compact operator then T'|ker Q
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is compact and as ker @ is locally complemented it has an extension T, : [,—~ W
which is also compact. Now 7'y — 7' factors to a compact operator on Y =L,|C.
Since there are no non-zero compaet operators on L,, Ty =T on Z.

However Z is not locally complemented, since if 1t were [,|Z = L,|C would be
an £,-space. We conclude that Z also fails (BAP) by Theorem 5. 1

7. Example of £,-spaces

If 0<p=<1, it is rather easy to construct numerous mutually non-isomorphic
examples of separable £,-spaces. This contrasts with the case p=1 (see [6]). The
construction used by JounsoN and LINDENSTRAUSS in [6] can be adapted to the
case p<1 to construct examples which are in general hybrids. We shall however
take another route to construct examples. The following observation is routine:

Theorem 7.1. Let X be a separable £,-space. Then L,(X) is a continuous £,-
space.

As we shall see, the converse of Theorem 7.1 is false, for 0<p<1. We can
construct examples where X is not an £,-space but L,(X) is. For p=1 this is
impossible since L,;(X) contains a complemented copy of X, when X is locally
convex.

Theorem 7.2. Let (2, X, u) be a non-atomic measure space and let X, be a sub-o-
algebra of X. For 0<p<1, let L,(X,) denote the closed subspace of L,(Q, X, u) of all
Zy-measurable functions, and let A(X,) denote the quotient L,(Q, 2, u)/L,(%o). Then
the following statements are equivalent:

(1) p(EO) 18 locally complemented in L,(Q, X, )
(2) 20) is an £,-space

(3) L ={0}

)

1] [ 20 is non-atomic.

(4

Proof. It follows from Theorem 6.1 that (1) and (2) are equivalent, and the
equivalence of (3) and (4) is classical (cf. [4]). Since (1) implies that L,(Z,) has
(HBEDP) we have (1) =(3). We complete the proof by showing (4)=-(1).

Consider the net X, (under containment) of finite subalgebras of X. For each
Z, let 4y, ..., A, be the atoms of 2, N X, and let (B;;: 1 =j=m(i)) be the atoms
of X, contained in 4;. Then there are disjoint sets (C;: 1=j=m(i)) in Z, such that

m()

U Cy=

j=1

w(Cy) =u(By) .
Define @, : L,(Z,) ~ L,(Z,) by Q,(IBW) =1¢, for 1=j=m(i) and 1=i=k. @, is an
isometry, and @,f=f for f¢ L,(Z,NZ). Now apply Lemma 3.1.
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Example 7.3. If we take 0 a Porisu space and X the BoOREL sets in 2 and
¢ a nonatomic probability measure, then it is shown in [11] that A(Zy)=L,
implies L,(Zy) is complemented in L,,.

As a special case consider Q=(0, 1) X (0, 1) with ordinary LEBESGUE area
measure and let X, be sets of the form (0, 1) X B where B is a BorREL subset of
(0, 1). Then A(Zy)=L,(L, | C) whose C is the space of constants in L,. This is
an £, -space, but as seen in Example 6.7, L, | C is not an £,-space.

Example 7.4, We now show how to construct an uncountable family of sepa-
rable p-BANACH spaces (E, : p<q=1) so that
(7.4.1) E, is p-trivial [10] i.e. &(L,, E))=0
(7.4.2) There is a quotient map @ : I, —~E, with ker @ =1,

(7.4.3) The spaces L, (E,) are mutually non-isomorphic £,-spaces.

We start by letting H be the subspace of [, spanned by the basic sequence
(€yp—1 + sy m=1,2...) (where (e¢,) is the standard basis of 7). Let (4,,) be a
BoreL partitioning of (0, 1) into sets of positive measure and suppose 4, =
=B,,_UB,, where B,, ,NB,,=® and u(B.,_,)=p(B,y,)=1/2u(4,,) where
 is LEBESGUE measure on (0, 1). Define an isometry V :1,—~L, by

V(ek)=#(Bk)‘“”11gk k=1,2,...
For p<g=1, define T, : H~1, by
Ty (Cam— i+ €3) =2V, .
Then ||IT,|=2""""?<1, and let G,=(I—-T,) H. Then G,=l,. Define E,=1, | G,.
Then (7.4.2) is immediate, and (7.4.1) follows from the lifting theorems of [12].

Next we show L,(E)) is an £ -space. For each mecN we find f,,,_,, fom€ Ly
with

1
Womll? =fomll” = N (€2~ + €m)I”

and
f‘.’m—i +f‘_’m= VTq (e'_’m—l +eﬂm) .
Now there is an operator U : L, ~ L, with

U(Ly,) =B, meN

and |U|? =sup ||f,/|"<1. Clearly VT x=UVzforxc¢ H: Thus V(@)=(I-U) V(H)
and (I —U) is invertible.

Consider L,(V(G,))cL,(L,). By the above there is an automorphism of
L,(L,) carrying L,(V(H,)) onto L,(V(H)). However if we identify L, (L,) as
L,((0, 1) X (0, 1)) then L(V(H)) is identified with L,(2) where X is the algebra
generated by sets of the form C X B where C is a BOoBEL subset of (0, 1) and B
is in the o-algebra generated by (B,:k€XN). Thus L,(V(H)) is locally comple-
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meted. It is then also locally complemented in the smaller space L,( V(l,)) and thus
L,(@G,) is locally complemented in L,(l,) (=L,). Hence L,(l, |G,)=L,(E)) is an
£ -space.

Finally we show these spaces are mutually non-isomorphic. If p<r=1, there
is no non-zero continuous linear operator from E, into r-BaNAcH space if and
only if G, is dense in . If r>g¢, then G, is dense in J, since its closure contains the
range of the invertible operator A4 : [, I given by

Aem =€y 2='" (e2m—1 +62m) .

(Here |4 —I|"=2'""" on I ). On the other hand if r<g, then ||Tx||=2""" || for
x€H in I,-norm, and so the closure of @, in I, has e,,_,+e,,—2"%, as a basis,
equivalent to the usual /,-basis. However ¢ ¢G, since if

ey= D, y (Cam—i+rm— 2'%%,,)

m=1
then solving co-ordinatewise c¢;=—2711, ¢,=¢;=2"Y, ¢,=cy=c5=c;,=—27N
ete. and

oo c r_ i 21|—_[—ﬂf/q: .
k§| kl Z had

n=1
Thus the spaces K, are mutually non-isomorphic and even more, so are the

spaces I,(E,). Now by Theorem 8.4 of [11], the spaces L,(E,) are mutually non-
isomorphie.

Remarks. It can be shown that the containing g-BaNACH space of E, is isomor-
phic to L,

Also we note that if G, is the kernel of a quotient map of [, onto L,(&,) then
the spaces G, are mutually non-isomorphic discrete £,-spaces. For suppose
8 :@,—~@, is an isomorphism. Then since @, is locally complemented in /,, and [,
is an ultra-summand, Theorem 4.2 gives an extension §,:7,~I, of 8. Similarly
8~1 has an extension 8,:1,~1, and 8,8, :1,~1, extends the identity from G, to
itself. Since G, is weakly dense, 8,8;=1, and similarly §,8,=1 so that [,/G,=
=1,/@,, a contradiction.

8. Lifting theorems for continuous £,-spaces

Lemma 8.1. Let X be a continuous £,-space and let Y be an ultra-summand.
Then L(X, Y)={0}.

Proof. X is isomorphic to a locally complemented subspace of L,(0, 1);
L,(0, 1) is isomorphic to a locally complemented subspace of L,[(0, 1)"] (where I'is
any set whose cardinality exceeds that of ') by Theorem 7.2. Hence by Theorem
4.2 it suffices to consider maps T : L,[(0, 1)"]— Y. Suppose f€ L,[(0, 1)7] is simple.
Then there is a set of functions (r, : y€I") mutually independent and independent
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1
of fso that g (r,= +1)=4(r,= — 1)25 [We denote by i the product measure

in (0, 1)7]. By KHINTCHINE’S inequality,
1

(8.1.1)  |[Za,(rf)]=C(Zla,l?)?

for some constant C whenever a, is finitely non-zero. Since |I'|>|Y]|, there are
infinitely many y with 7'(r,f)=g for some g€ Y. By (8.1.1) we must have g=0.
Thus for some y€I', T(r,f)=0, and |[(1+7,) f|,=2"""||f|. Thus | Tf|=2'~?||T] -
- |Ifl- Hence || T||=2'~"#|T), i.e. T =0.

Theorem 8.2. Let X be a p-BaNAcH space, and let N be a closed subspace of X
such that X/N is a continuous £,-space. Let Z be any quasi-BANACH space and let
T : N—~Z be a bounded linear operator. Each of the following conditions implies T
has a unique extension Ty : X +~Z

(1) T is compact (and then T is compact)

(2) Z is g-convex for some q=>p

(8) Z is an ultra-summand.

Proof. Let @:1,(I)»X be a quotient map, and consider §:@Q~4(N)-Z.
Then @~ 1() is locally complemented and so in cases (1) and (3) S has an extension
8y :1,(I)-~Z which is compact in case (1). In case (2) we appeal to the non-separ-

able version of Theorem 5.1. There is a uniformly bounded set of finite-rank oper-
ators V,: [ (I) -Q~1(N) so that V,x—~2 for z€Q~{N). Since Q~YN) is weakly

a D
dense, we have ||V, x—x|, ~0 for x€l,(I) where ||-||; is the /;-norm on [,(I).

If u€¢Q~1(N) and |ul;<e then we can write v=v +...+v, where the vs
have disjoint support and & =|jv,||? = 2¢? for i =n—1, with ||v,||’ =2¢?. Thus

n 1
1S Vauilé( S/ IIV.,viH") =2"Pp! |V | & .
i=1

Hence
(S| = 212 Cn e
where C=sup ||V,|. Now
(n— 1) =[juf7e
so that
S| =2"7C (1 +||w||Pe~?)" % .
We conclude that if x¢€l,(I), since {¥,x} is bounded and !,-Cavcny, SV x
converges in Z. Defining Sp::li:n 8V x for x€l,(I) we obtain our extension.

The extension §; factors to 7', : X ~Z. In each case the extension is unique.
In case (1) there are no compact operators on X/ since (using Theorem 3.4) there
are no compact operators on L, [8]. In case (2) use Lemma 8.1. In case (3) unique-
ness follows from the construection.
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Theorem 8.3. Let X be a continuous £,-space and let Z be a p-BANACH space. Let
N be a closed subspace of Z which is either q-convex for g=>p or an ultra-summand.
Then any bounded linear operator T :X —+Z/N has a unique lift Ty: X ~Z (so
that qT'y =T where q: Z ~Z/N 1is the quotient map).

Proof. Let V:1,—~X be a quotient map. Then there is a lifting §:1, ~Z of
TV:X-~Z/N. Consider S:ker V—+N. Since ker V is weakly dense and locally
complemented in lp, then in either case theré is an extension §; : I, ~N. Consider
(8—8,):1,~Z; 8—8, factors to the desired lift 7. Again uniqueness follows
from £(X, N)={0}. In the case when N is ¢g-convex this follows from using 8.2
to extend to any operator from X into N to an operator from I, into N.

Bemarks. Compare Theorem 4.2 of [17] with Theorems 8.2 and 8.3. It is
possible to derive a statement similar to that of Theorem 4.2 in [17] from Theorem
8.2 for £,-spaces when p<1, but it no longer characterizes £, -spaces. This is
because (see Example 6.7) the (CEP) does not imply local complementation for
subspaces of [, when p<1.

9. Some applications to H,

Now we consider the space L,(§, m) where § is the unit circle in the complex
plane and dm =d0/2n is normalized Lebesgue measure on the circle. The closure
of the polynomials in L,() is denoted by H,. It is easy to show for 0 < p<eo that
H, has (BAP), and it has recently been shown that it has a basis [23]. Also H, is a
pseudo-dual space.

In [15] it is shown that H; is not an £,-space.

Proposition 9.1. H, is not a £,-space for 0<p<1.

Proof. H, has (BAP) but does not embed into I, since it contains copies of
1, (see Theorem 6.4).

Let us denote by H, the space of polynomials in %, i.e. the space of complex
conjugates of H,-functions. Let J,=H,NH, the linear span of the real H,-
functions. Recently Aleksandrov [1] showed that H,+H,=L,(§) if 0<p<l1
(this is clearly false when p=1 but true trivially for 1 <p<es).

This means we can set up a map U : H,® H, ~ L,(3) defined by U(f, g)=f+g.
Then ker U={(f, g) : f= —g} is isomorphic to J,,.

Proposition 9.2, (1) J, is not an ultra-summand and is therefore non-isomorphic
to H, '
(2) J, has a basis.

Proof. These remarks follow from the fact that the ker U must be locally
complemented in H,& H,, butis clearly weakly dense. We use of course Theorems
6.1, 4.4, 5.1 and 5.7. For (2) we use the fact that H, has a basis [23].
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Theorem 9.3 (see [24]). The spaces L,(8)/J,, L,(8)/H, and H,|J, are isomorphic.

*" Proof. By considering the automorphism z—Z of the circle, we clearly obtain
L,/H,=L,/H,. If we define projections in L, by

Pie)=4 (@) +f (=)

1

Q@) = (fl)—f (—2))

then P and @ each leave H, invariant. Thus L,/H,= P(L,)/P(H,)®Q(L,)/Q(H,).
Now if Tf(z)=f(2?), T maps L, onto P(L,) and H, onto P(H),), isometrically.
Similarly T',f(z)=2f(z?) maps L, onto @(L,) and H, onto Q(H,). Thus L,/H,=
=L,/H,®L,/H,.

Now use the ALERsANDROV map U: H,®@H,~L,. Since U~{(H))=J,6H,,
we have L,/H,~H,J, Since U-4J,))=J,®J,, L,/J,~H,/J,&H,/J, How-
ever Ep/Jngp/Hp, by the above reasoning and so Lp/Jszp/Hngp/Jp.

Theorem 9.4. Suppose X is an ultra-summand or i3 q-convex for some g>p and
T:J,~X is a bounded linear operator. Then T can be expressed in the form

Tf=8f+8of feJ

where Sy: H, ~X and 8,: H, - X are bounded linear operators.
Proof. Define T : ker U ~X by
Tl(fr _f)sz fEJp
Extend 7T'; by Theorem 8.2 to give an operator V: H,® H, - X. Write
S8f=V({f.0) [eH,
S2f: - V(O) f) fEHp .

Corollary 9.5. (ALEKSANDROV). Every continuous linear functional ¢ on J, is
the form
o) =y () +va()

where y, € HY and p,c HY.

Remark. ALEESANDROV proves this directly [1].

Finally we apply our methods to characterize translation-invariant operators
on J,. An operator T': X —L,, where X is a translation-invariant subspace of
L,, is translation-invariant if

T(f.)=(Tf), we§
where f,(2) =f(wz) .

OBERLIN [19] has shown that every translation-invariant operator T': L, — L,
is of the form
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where 3} |c,|” <<, and w,€§. Clearly any such operator restricts to a transla-
n=1
tion-invariant endomorphism of .J,.
For fcH,, f can be realized as the boundary values of a function } analytic
in the open unit disc. Denote by 8y(f) the value of f at 0. Then the map f | — 0,(f) - 1
is a translation-invariant linear operator on J,, as is f | - 0,(f) - 1 (where we ex-

ploit the fact the € H, for fe¢J,) Let 0..(f) =0,(/).

Theorem 9.6. Let T': J, —J, be a translation-invariant linear operator. Then
takes the form:

(9.6.1)  Tf(z)= )} caf(wn2)+asBo(f) +a0.(/)

n=1
where w, €, XZjc,|? < and a;, a,€C.
Proof. First define 7' : ker U —J, by
T (f. —H=Tf.
Thensince H,, isan ultra-summand, we can find a unique extension 8, : H,,® H p~H,.
If wcd, then (f,9) | —(Si(f, 9))n extends (f, —f) | (T)la=T1 (fo, —fa), a8
does (f, g) | - 8i(f., 9.)- Hence by uniqueness (S((f, 9))=81(f0 9u)-
For n=0 choose g,(z)=2z""¢H,. Then 8,(0, g,),=» "84(0,9) and S(0, g)€
€H,. Hence 84(0, g,) =0 if n>1, and §(0, g) is constant. We conclude that
81(0, fy=ab.(f) .
for some «¢C. Thus we have

Si(f, 9)=Vif +ab.(9)

where V, : H,— H, is translation-invariant. Similarly 7'; extends to a translation

invariant operator S, : H 1,@17 »— H » of the form

So(f, 9)=B0() + Vof .
On ker U 8;=48,. Thus there is an operator R : L,(§)— L,(§) such that
RU = S1 —Sz
and R is clearly translation-invariant. Hence R is of the form

Rf(z)= 2 Cnf(@y?)

n=1

where X|c,|? <o and ®,€9.
If fe H,,
Rf=Vf —p64(f) -
Hence
Vif = Rf + pbo(f)
and if f¢J,
Tf=8, (f, —f)=Bf +p8(f) — «0.(f)
which is of the form (9.6.1).
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