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Yaz=2, Yb2=5, Yab=3, D=1,
and 72 =32 462 +22

The diagonal square matrix

i

yields the well known formula
(02 +b2)% = (a® - b?)? + (2ab)?

for Pythagorean numbers.
Formula (2) shows that the square of the sum of the squares of
2n numbers a;, b;, some of which might be zeros, is a sum of

n(n—1)

2+ 5

squares generally.

In the case n =2 and Zab # 0, the same formula can be very useful
for authors and teachers when preparing some numerical problems
of three-dimensional coordinate geometry.

Department of Mathematics Dr. B. CverrOV
Unaversity of Queensland
Brisbane, Australia

3146. Quadratie forms that are perfect squares
If a and b are given integers, for how many integral values of x is
2% +ax +b a perfect square?
If z =X is a solution,
X2+aX +b=1Y?

(X +3a)?-Y2=%a2-b
(2X -2Y +a)(2X +2Y +a)=a2-4b=D say.

(1) If D=0, then a =2¢, b=c?
and (2 +ax +b)=(x +c)2.
.". The number of solutions is infinite.
(i) If a is odd, then a?=1 (mod 4)
. D=1 (mod 4)
If 2X -2Y +a=f;
2X +2Y +a=f,
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then f,f, =D and 4X =f, +f, — 2a.
But every factor pair (f,, f,) of D is such that
fi=fy=+1(mod 4)
since D=1 (mod 4)
fi+f2=2 (mod 4)

‘. since a is odd
fi +f2 —2a=0 (mod 4).

.. To every factor pair (f,, f,) of D there corresponds a solution
% (fi +f; —2a). Since no two factor pairs have the same sum, these
solutions are distinet; also, to every solution # = X, there corresponds
a factor pair (2X -2Y +a, 2X +2Y +a). Hence the number of
solutions equals the number of factor pairs=XN, say.

If D=1 the factor pairs are (+1, +1)and (-1, - 1) giving N =2.

If | D |=8%5% ... p;» where the largest prime factor of | D| is
Pp, the nth positive prime, then the number of factors (positive or

negative) of D is 2 ﬁ (1 +a,), since all numbers of the form
2

+3P5Ps ... b with 0<B, <o,
are factors.
If D is not a perfect square, there are, therefore, ﬁ (1 +e,) factor
2
n
pairs and N = H 1+a,).
p)
n
If D=22 there are (excluding +2z) 2 H (1 +a,) —2 factors giving
2

n

1 +a,) -1 factor pairs. In addition there are the factor pairs
11 +a) P p

2

(+2,+2), (—2, —2).

o N=J[(L+a)+1.
2

(iii) If @ is even, then a =2¢
(X-Y+¢)(X+Y +c)=c%-b=3 say.
Then if X-Y+c=g,,
X+Y +c=g,
g:9,=8 and 2X =g, +g,~2c.

.. There is a solution for every factor pair (g,, g,) of 8 if g; +¢, is
even.
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Let 8=2M3%5% ... pin.
If m =0, every factor is odd and hence ¢, +¢, is even for all pairs.

Hence N = ﬁ (1 +a,) unless 8 is a perfect square, when
2
n
N=T](1+e,)+1
2

If m =1, then one factor is odd and one even.

Hence their sum is odd and N =0.

If m>2, for pairs giving solutions, both factors must be even.
Hence the number of solutions is the number of factor pairs of

15 =2m93mbn | pon
n

L N=(m-1)T[(+e,)
2

unless & is a perfect square when
n
N=(m-1) H (1+ea,)+1

But 48 =D =2%3%5% .. pi»
where o, =m +2.
*. Conclusion
(1) If D=0 then N is infinite.
(2) If D=1 then N =2,
If D= +2%3% ... pi» and ¢ be defined such that {=0 unless D

_ 1 (1+ar)
is a perfect square, when ¢ =1, [thus {=%{1-(-1)" }] then:
n
() If ey =0, N=[] (1 +e,) +2.
2
(4) «, =1 is impossible.

(6) X @ =2, N = [ (L +a) +2.
2
(6) I 2,3, N = (o —-3) [] (1 +a,) +1.
2

54 Siward Road, N. J. Kavron
Bromley, Kent
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