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a2= 2, Zb2=5, Lab=3, D=1, 

and 72 32 +62 +22. 

The diagonal square matrix 

A - a 0] 
LO b] 

yields the well known formula 

(a2 + b2)2 = (a2 - b2)2 + (2ab)2 

for Pythagorean numbers. 
Formula (2) shows that the square of the sum of the squares of 

2n numbers ai, bi, some of which might be zeros, is a sum of 

2n(n- 1) 
2?+2 

squares generally. 
In the case n = 2 and Zab # 0, the same formula can be very usefull 

for authors and teachers when preparing some numerical problems 
of three-dimensional coordinate geometry. 
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3146. Quadratic forms that are perfect squares 
If a and b are given integers, for how many integral values of x is 

x2 + ax + b a perfect square ? 
If x = X is a solution, 

X2 +aX +b - Y2 

(X +-a)2 2 =- a2 - b 

(2X -2Y +a)(2X +2Y +a)=a2-4b=D say. 

(i) If D =0, then a = 2c, b = c2 

and (x2 + ax + b) =(x + c)2. 

The number of solutions is infinite. 

(ii) If a is odd, then a2 = 1 (mod 4) 

D 1 (mod 4) 

If 2X-2Y +a=f 

2X +2Y+a=f2 
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then flf2 = D and 4X =f +f2 - 2a. 

But every factor pair (fl, f2) of D is such that 

f, -f2- ? 1 (mod 4) 
since D -= 1 (mod 4) 

f, +f2- 2 (mod 4) 

.'. since a is odd 
fi +f2 - 2a -0 (mod 4). 

. To every factor pair (fl,f2) of D there corresponds a solution 
(fi +f2 - 2a). Since no two factor pairs have the same sum, these 

solutions are distinct; also, to every solution x = X, there corresponds 
a factor pair (2X - 2 Y + a, 2X + 2 Y + a). Hence the number of 
solutions equals the number of factor pairs = N, say. 

If D = 1 the factor pairs are (+ 1, + 1) and ( - 1, - 1) giving N = 2. 
If I D | =3a53 ... p" where the largest prime factor of | D | is 

p,, the nth positive prime, then the number of factors (positive or 
n 

negative) of D is 2 H[ (1 + a,), since all numbers of the form 
2 

? 325s ... pin with 0<X<r,x 
are factors. 

n 

If D is not a perfect square, there are, therefore, HI (1 + oc) factor 
2 

n 

pairs and N= -I (1 +ar). 
2 

n 

If D =z2, there are (excluding ? z) 2 HI (1 +oc) - 2 factors giving 
2 

n 
HT (1 +ar) -1 factor pairs. In addition there are the factor pairs 
2 

(+z, +z), (-z,-z). 
n 

.'. N= [(1+ar)+1. 
2 

(iii) If a is even, then a = 2c 

(X - Y +c) (X + Y +c) =c2 - b =8 say. 
Then if X-Y+c=gl, 

X + Y+c=g2, 

g1g2=8 and 2X = g+2-2c. 

.. There is a solution for every factor pair (gY, g2) of 8 if g1 + g is 
even. 
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Let 8 = 2m325 ... . 

If m = 0, every factor is odd and hence , + g2 is even for all pairs. 
n 

Hence N = I (1 + ,r) unless 8 is a perfect square, when 
2 

n 
N= fl (1 +l )+l 

2 

If m = 1, then one factor is odd and one even. 
Hence their sum is odd and N =0. 
If m>2, for pairs giving solutions, both factors must be even. 

Hence the number of solutions is the number of factor pairs of 

= 2m-23a25a... p 
n 

. N=(m-l) (1l+Lr) 
2 

unless 8 is a perfect square when 

n 
N=(m-l) r[ (l +xr)+l 1 

2 

But 48 = D = 2a13a25a ... pxn 

where cx = m + 2. 

.*. Conclusion 

(1) If D =0 then N is infinite. 

(2) IfD=lthen N=2. 

If D= ? 2a,3a2 ... pn and t be defined such that t=0 unless D 

(1 +ar) 
is a perfect square, when t = I, [thus t{1 -(-1) }] then: 

n 

(3) If a =0, N= f(l ( +,) +t. 
2 

(4) ax = 1 is impossible. 
n 

(5) If c, =2, N (1= + ) + ?t. 
2 

(6) If e1>3, N = (( - 
3)I (1 + r) + t. 

2 

54 Siward Road, N. J. KALTON 
Bromley, Kent 
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