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1. Introduction

In this paper we continue the study of Orlicz sequence spaces initiated by Lindberg
(5) and Lindenstrauss and Tzafriri (7), (8) and (9). Our main concern is to investigate
features of the theory which occur when the restriction of local convexity is lifted. It
is clear that some results will hold with identical proofs, at least when the space is
locally bounded. However, we are chiefly interested in the differences which arise.
We always assume that the Orlicz function F satisfies the A,-condition.

We essentially consider two topics: (a) the subspaces of I and (b) the complemented
subspaces of I;. After some definitions and preliminary results (sections 2-3) we study
subspaces in section 4. Here the techniques of Lindenstrauss and Tzafriri work
unchanged in locally bounded spaces (as suggested in the introduction of (9)), but
the non-locally bounded case seems harder. Thus we are able for locally bounded I,
to classify exactly those Orlicz functions G such that l; embeds into 5., and show that
I always contains a subspace I, (0 < p < c0). It is rather more interesting, however,
that the result that 1,(0 < p < c0) embeds into Iy if and only if ar < p < By is valid
even without local boundedness of I5. In particular /5 contains an infinite-dimensional
locally bounded subspace if and only if £ > 0.

The structure of complemented subspaces is significantly different from the locally
convex cage. This difference is caused partly by the failure of averaging projections to
be continuous. We study this case in sections 5-8. In section 5 we give an analytic
criterion for the inclusion map I, ¢ I, to be strictly singular. If this criterion fails
and I, < 1, then I, contains a complemented subspace isomorphic to [,,. We later use
this idea in section 8 to solve problem 1 of Lindenstrauss and Tzafriri (8), by showing
the existence of a convex Orlicz function I, such that I, is isomorphic to a comple-
mented subspace of I but 2? is not equivalent to any function in E ;. After some
technical results in section 6, we establish our main results in section 7. We show
that if I; is isomorphic to a complemented subspace of I then either @ is equivalent
to F or G is equivalent to a convex function.

If I contains no complemented subspace isomorphic to a locally convex Orlicz
sequence space, then I has (up to affine equivalence) a unique unconditional basis. In
the Banach space case it is well known that precisely three spaces have this property!,,
I, and c,, (see (6) and (10)). Here, however, we can produce many such spaces. If I < I,
then a necessary and sufficient condition for /5 to have a unique unconditional basis is

€

lim inf — )le(“)dx=oo.
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In particular, I,(0 < p < 1) has a unique unconditional basis (solving a problem of
Stiles (15)).

In section 8 we give some examples to distinguish between various conditions. In
particular we solve a problem of Lindenstrauss and Tzafriri as obszrved above.

2. Definitions

We shall use the term F-space to mean a complete metric linear space. A sequence
(x,) in an F-space is called regular if there is a neighbourhood V of 0 such that =, ¢ V
(n € N) and (topologically) normalized if it is regular and bounded.

If (x,) is a basis of an F-space X, the associated continuous linear functionals will
always be denoted by (z,); sometimes we refer to the basis as (z,; z,,). If («,,) is a basic
sequence in X then (u,) is complemented if its closed linear span is the range of a
projection P. In this case there exist linear functionals (%,) such that Pz = Zu,(z)u,
(z € X). We refer to (u,,, u,) as a complemented basic sequence.

A basic sequence (u,,) is a block basic sequence with respect to (z, ) if it takes the form

p’l
t=Pn-1+1
where p, =0 < p; < D, ... (u,, u,) is a complemented block basic sequence if in addition

DPn
Uy = X bz
{=pp_+1
An Orlicz function F is a non-decreasing function #': [0, c0) - [0, 00) continuous at
0 such that F(0) = 0 and F =£ 0. The Orlicz sequence space [ is the vector space of
all (real) sequences (z,,) such that for some ¢ > 0 ZF(|ex,|) < c0. We define

Bg(e) = {z: ZF(|,|) < €}

and then the sets {rBp(e), r > 0, € > 0} form the base for an F-space topology on /.

We shall only be interested in those cases when the unit vector basis (¢,) is a basis
of Iz. This occurs when (i) F(z) > 0 whenever z > 0, and (ii) (the A,-condition at 0)

sup 222 L o
0<:c:21 F(z)

Then Iz consists of all sequences such that X F(|z,|) < co. In fact the behaviour
of F outside a neighbourhood of 0 is irrelevant to the definition of /5, and so we may
assume, without loss of generality, that F satisfies the A,-condition on R, i.e.

F(2z)

—— < 0.
viree F@)
Hence forward, by an Orlicz function we shall understand an Orlicz function such
that F(z) > Oforz > 0 and satisfying the A,-condition on R.
Two Orlicz functions F and G will be called equivalent if
F(z)

. F(x)
0 nf ——< e .
<ol G@) S oo G =%
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3. Some basic results

In this section we list some prehmmary results, which will be required at various
stages later.

ProroSITION 3-1. Let X be an F-space with a basis (z,,z,). Let (y,) be a regular
basic sequence in X such that lim x,"(yn) = 0 for each k; then there is a subsequence (y,,)

of (y,) equivalent to a block ba.sw sequence of (z,,).

Proof. This has been established by Shapiro (14) when X is locally pseudo-convex.
~ In general it is sufficient to construct (y,,) and a block basic sequence (z;) such that
Z||Yn, —2l| < 0, where [|-]| is any F-norm defining the topology of X; we omit
the details.

If X is an F-space with a separating dual then the Mackey topology on X is the
finest locally convex topology on X weaker than the original topology (cf.(13)). The
Mackey topology is a metrizable topology. We denote by X the completion of X in
the Mackey topology.

PrOPOSITION 3-2. Let (x,) be a complemented basic sequence in X. Then
(i) (z,) ts a complemented basic sequence in X;
(i) a,z,—>0if and only if a,z, >0 for the M ackey topology;
(iii) (z,) us topologically normalized if and only if (x,) is topologically normalized for
the Mackey topology.
Proof. (i) Let E =lin(z,) and P: X >E be a continuous projection onto E. If

z € B, define n
S,z =3 zi(z) ;.
i=1

We observe that if U is a convex neighbourhood of 0 in X, then P~}(U) is a convex
neighbourhood, and hence P is Mackey-continuous. Similarly each S, P is continuous;

furthermore N (S, P)~(U) is a neighbourhood of 0 and hence (S, P:neN) is an
n=1

equicontinuous collection. Thus the maps S,,: £ — E are equicontinuous for the Mackey
topology (of X), and so (z,) is a basic sequence.

(i) If @,x,~+>0, then there is a subsequence a,, z,, such that ||a,, z,|| > e. As
z, (Pz)z,, —0 for e X, we have a;} z, (v) >0 for » eX Thus the linear functionals
@n; %, 0 P are equicontinuous on X and hence z— szp |@ny Zn, (Pz)| is a continuous

semi-norm on X and hence also for the Mackey topology. Thusa,, z,, > 0in the Mackey

topology.

(iii) Follows immediately from (ii).

Let F be an Orlicz function. Then we define ¥ to be the largest Orlicz function
such that F(z) < F (z) for all z and F is convex on [0, 1]. It is easy to show that

P) = 1nf{ ZF(x)neN, 02, <1, :;in=x}

for0 <z < 1,and F(x) =Fx) (z>1).

Clearly F is equivalent at 0 to a convex Orlicz function and so Iz is a Banach space.
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TeEOREM 3:3. Let F be an Orlicz function (satisfying the A,-condition). Then the
Mackey topology of 1. is that induced by F.

Proof. Since I, < I3, it is easy to see that the topology induced by F is weaker than
the Mackey topology. Conversely let || - || be any continuous semi-norm on /5. Then
there exists @ 0 < a < F(1) such that if

Z]IF(Ixil) <a

then ||z|| < 1. Also the set {¢,,: 7 € N} is bounded and hence there exists M < co such
that
llexl| < M (neN).

Now for any zelp with sup |zn] <1, let A <N be the set of 1eN such that
a < F(|z;|) < 1. Then

I Z z; || < M|A|
and a|d| S‘EZAF(I.’BI-D <.§1F(lxi|)'
Hence .2 sedl <3 3 Plla.
ied @ ;=1

The set N — 4 may be decomposed into a finite number of subsets o, ... o, such that

ja<XTF Ile

ie oy
and one remainder set o, ,, with

0< 3 F()) < 3a.

. TE€Tm4r
Clearly fma< 3 Fle)
i=1
and | 2 26l <1 (=1,2,...,m+1)
icoy
so that | = xiei||<m+1<-2-§}F([x1|)+1
teN—-4 @i-1
M 0
Hence llal| < =22 3 Ffay) +1

Now suppose z €l has finite support and that
S Pz <a
i=1

Then for some large enough choice of N there exist sequences (y¥)k =1,2,...,N
with 0 < % < 1, such that

%(y&"+---+y‘i”’) = |z,

1 Yo d
and 7.2 ZF0) < Sh(z)) +a < 2a.
k i=1 1
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Define 2P = (sgn x,) yP.

Then x=%(z‘”+...+z‘m)

and ||| < M;2i§1 F(y® +1.
Hence llzl| < 22 (20) +1 = 2M + 5.

a

By density ||z|| < 2M +5 for any z €l with
p F(jz) < a.
=

Hence || - || is continuous for the F-topology on I.

Remark. The Mackey topology of Lj(0, 1) is the topology of the convex minorant
of F over the whole real line. This follows from results in (4).

CorOLLARY. Huery complemented basic sequence in an Orlicz sequence space lg is
normal.

Proof. By Proposition 3-2 and Theorem 3-3 (since I3 is a Banach space).

4. Subspaces of Orlicz spaces

We shall denote by I the unit interval [0, 1] and by I, the half-open interval (0, 1].
C(I) and C(1,) will denote the spaces of continuous real valued functions on I and I,
in each case with compact convergence.

If F is an Orlicz function we define T, F = F,eC(l,) for 0 < ¢ < 1by

_ Fl(tx)
E(x)—m (0<x<1)

Note. Throughout sections 47 we shall assume that every Orlicz function ¥ has
the property that zF(x) is convex. Every Orlicz function F is equivalent to an Orlicz
function @ satisfying this condition, e.g. let G(0) = 0 and

Gl) = ;lcf:F(t)dt (@ > 0).

(Note we assume the A,-condition.) This assumption is technically convenient (see
Lemma 4-1) and is necessary in Theorems 4-5, 4-6 and 5-1. However, all the other
main theorems are preserved under equivalence of Orlicz functions, and hence the
assumption is redundant.

We shall also use the notation

|| 7 = g]l F(lzy]) (zelp).

Under the A,-condition, if u, €l then u, >0 if and only if |u,|; 0.
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LemMmMA 4-1. {F,:t € I} is relatively compact in C(1;).

Proof.If weset G(x) = 2F (z), then G'is convex and the set {G,: ¢ € I} isequicontinuous
at each z eI (see (7), p. 382). However, F () = 271G,(z) and hence {F;:t € I} is equi-
continuous at each z € I,. As Fy(z) < 1for all¢, x the set {F}: ¢ € I} is relatively compact
in C(I,).

We may therefore extend the map ¢ — F,(l;~C(l;)) to a continuous map 7—F,
(81,~ C(1,)). Each F, is increasing in z and so we may define

F (0) = lim F,(z).
z—0

The A,-condition implies that F,(x) > 0 whenever z €. F, is (the restriction of) an
Orlicz function if and only if F,(0) = 0.
We also define (cf. (9))
F(tx)

“F=S“4'o§?umev<“}

. F(tx) }

= inf [ inf > 0;.

Fr \P 0<z,t<1 F () 2P

Clearly 0 < ap < B < c0. Note that ay and gy are preserved under equivalence of
Orlicz functions.

ProrosiTioN 4-2. The following conditions on F are equivalent:

(i) 1z 28 locally bounded;

(i) ap > 0;

(iii) the map (1,z) > F,(x) (81, x I > I) is jointly continuous;

(iv) the functions (F,: t € 1) are equicontinuous at 0;

(v) there exist a, w with 0 < a, w < 1 such that F(ux) < aF(x), 0 < z < 1.

Most of these equivalences are essentially known (cf. (11), (16) and (12), ch. ITT). The
remainder are not difficult to verify.

Now let Zy ={r€pl:F,(0) = 0}, and Ep, = {F,:1e€Zg}. Observe that Zy is a
Borel subset of £1,. If 4 is a probability measure on g1, with u(fl,— Zz) = 0, let

nm=LEmwm

and let Op, be the set of such F,. Also let Cy, be the set of F, where 4 is a probability
measure on BI, such that u(l)) = u(fl,— Zy) = 0.

Iz is locally bounded if and only if Z; = £1,; if so By, is compact in C(I) and
Cp, = OB, (see (5),(T) and (8)). The results in the locally bounded case are essentially
trivial generalizations of results of Lindenstrauss and Tzafriri. In the more general
non-locally bounded case, our results are incomplete.

ProrosiTioN 4-3. Let (u,) be a topologically normalized block basic sequence with
respect to (e,) in lp. Then there is a subsequence of (u,) equivalent to the unit vector basts
of some lg, where G € Cp,.
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Proof. Since (u,,) is bounded.

lim |zu,|r = 0 uniformly in n.
—0

Hence we may find v > 0 such that |yu,|r < 1 for all n. Then let ¢, (z) = |zyu,|z,
ie.ifv, =
b O = 7 Vale) = 5 F(loa(k)]) Fro,(2),

5a(k)>0

where Y Fv,(k)|) = ¥.(1) < L

va(k)>0

Hence (,: n € N) is equicontinuous on J; by Lemma 4-1, and thus also on 7 (since
¥a(x) =0 uniformly in n). Hence there is a subsequence ¥,,—9 uniformly on I.
Clearly ¥(1) = limy, (1) > Obyregularity of (u,). By passing to a further subsequence

we may suppose S —rullo < o
ngllo 3
K
where || * || is the norm in C(I). Thus Z¢t, u,,; converges if and only if Z¢(|¢,,|) < co. But

Panl) = fﬂ F@)du(r) (0<z<1),

where p,. is a positive Borel measure satisfying u,(81,) = ¢, (1).
If v is any weak*-cluster point of y,,

Y(z) = fﬂ F(@)dv(r) (0<z<1)

and v(8]y) = ¥(1). Aslimyr(x) = 0, it follows by the Monotone Convergence Theorem
z—0
that v(8I,\Zz) = 0. Writing G = yr(1)~l4 we obtain the result.

CoroLLARY. Let (u,) be a topologically normalized symmetric basic sequence in lg.
Then (u,) is equivalent to the unit vector basis of some lg, G € Cp ;.

Proof. Use the same argument as (5), corollary 3-9 (using Proposition 3-1 of this
paper).

We now consider the converse problem: if G'e Cp,, does l; embed into 1,? We
require first a simple lemma.

LemMma 4-4. Let {f,} be a net in Cp, such that f,— f pointwise on I, where fe Cp,.
Then ||f,—f|] o ->0.

Proof. Since Cy, is compact as a subset of C(J,), f, —f uniformly on compact subsets
of I,. However, for given € > 0, choose 8 such that f(&) < 3¢ (f is continuous at 0 since
fe€Cpy) and then a, such that for & < z,, |f(8)—£,(6)] < %¢. Then for « > «, and
0 <2< 8, |f@)=Lul@)] < f@)+f(2) < f(3)+/.8) < €. As f,~f uniformly on [, 1],
there exists «, such that ||f,—f|| < efora > a;.

For 0 < 4 < oo, we shall say that G € Cp, is 4-accessible if there is a sequence
(u,) of elements of I of finite support such that

A7)~ holt) < |twalp < AGW) +E,(1) (0 <E< ),
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where h,,k,eC(I) and Z||k,||»+Z||k,]|» < 0. If @ is A-accessible for some 4,
0 < A < oo then l; is isomorphic to a subspace of I (a space spanned by such a
sequence (u,) with disjoint support). Obviously it is sufficient to assume that ||4,,||,-
and ||k,|]..—0, in the definition of 4-accessibility. If T", is the set of A-accessible
G € Cp,, then T' 4 is clearly closed in Cf; under uniform convergence on I, and hence
by Lemma 4-4 under pointwise convergence on I

Let 1 be a Borel measure on 1, whose support is contained in [a, b] < I, and suppose
6, 0 < 6 < 1, fixed. Define

7 1
Ak=f0‘+lb+ .F()d'u(t) (k=0’1’2,...),

and let u, be an element of I taking the value 6%+ precisely [A,] times. Then
lzu,|p = T [A]F(65+1ba)
k=0

< ﬁ A, F(6++1b)

F(tz)
T 0 = Efo) (1)

Conversely
|zw,|» > % Z A, F(6%+1px)

=3 3 AF(Obr)—3 3 A, F(0-ba)
k=0 A<l

© g F(0"+1bx)
————du(t A, F(6%+1b
L*+‘b+ F(t) ,u( )= k2<1 ( %)

b F(tz)
2K ), F(t)

k=0

dut)—4 T A, F(6++bz)

1
= s Fu) = %AEI A F(6%bx) (2)

(where K = K(0)is a constant such that F(z) < KF(0z), 0 < z < 1). Thus

1 12
[wt,le > spF@) -3 3 (@) ®)

THEOREM 4-5. Let F be an Orlicz function satzsfymg Z F(2—") < 0. Then if G eCp, 14
18 isomorphic to a subspace of 1.

Proof. Let

G(z) = . F () dp(r),
where u(1,) = 0. ’

Then thereis anet (v,) of probability measures with supports contained in (0,5,] < I,
such that b,~0 and v,—~>u in the weak*-topology of C(fI,)*. Hence F, (z)->G(z)
uniformly on I by Lemma 4-4, and so there is a sequence v,, with support, contained
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in (0,b,] such that F, (x) >G(z) uniformly and b, 0. Fix = §, and let u, = %, ;
thenfor0 < 2 < 1, by equations (1) and (3),

Iwnl < G(x)+( (x)—G(x))

o~ k
|t,| > 2K F, (x)— EOF((%) *1b,x)

> 57 00)+ 57 €@ - E,@) -3 £ F(G)F,).
Now G(x) — F, ()0 uniformly on I and

lim 3 F((3)*+15,) = 0.

n—>wo k=0

Hence G is 2K -accessible.

THEOREM 4-6. Suppose Iy is locally bounded. Then
(i) lg is isomorphic to a subspace of I if and only if G is equivalent to @ function in Cp;;
(i) I 7 contains a subspace tsomorphic tol, for somep, 0 < p < co.

Proof. (i) This is a straightforward generalization of results of Lindenstrauss and
Tzafriri.

By 4-5it is only necessary to consider G € Cp ;\Cy, i.e.

G(z) = LI F () dp(r)
where u(1,) > 0. Hence "
G(z) > aF(z) forsomea (0 <a <1).

Since I is locally bounded there exist 0 < § < 1, 0 < @ < } such that F(0x) < aF(x)
(0 < z < 1). Choose measures v, supported in I, such that ¥, —G uniformly on I.
Then for 6 chosen above, and b = 1, let w,, = %, . Then

|2us|p < G(2) + (F, (2) — G(z))

and by (3),
1 1
2l > 5 B2 3 1o F(@) > 5 F, (2)— 1 Fla).
Put v,, = u, + €,,(,) Where u, .,y = 0. Then

|20a| p < G(z) + F(2) + (F,, (%) — G(x))
< (1+a™) G@) +(F, (x) - G(x))

while [#0al > 5 16(2) + (B, (2) — Gle)]

and G is max (2K, 1 + a~1)-accessible.

(ii) Let S:C(I)~>C(I) be defined by Sf(x) = zf(x). Then SCp, = Cgp, and SF is
convex and satisfies the A,-condition. Hence by results of (7) SCp, contains x? for
somep > 1. Hence 27-! € Cp,, and since Cy, is equicontinuous at 0, p > 1.
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THEOREM 4-7. [,(p > 0) is isomorphic to a subspace of Iy, if and only if ap < p < fy.
Remark. Note that this theorem holds without the assumption that I is locally
bounded.

~ Proof. The necessity of ay < p < A follows as in (9), Theorem 1. If &y = £, then
lp is locally bounded and the result follows from Theorem 4-6. More generally if
arp < Py (including the case ay = 0), then, proceeding as in (9), if ap < p < By and
f(x) = F(x)[x?, there exist 0 < u, < v, < w, < 1 such that w, >0 and nf(u,) < f(v,)
and =nf(w,) < f(v,). Letting a, = u,/w, put

1
G,.(z) = C’;lf F(w, z)t—7-1dt,
an

1
where C, = f F(tw,)t-?-1dt.
an
Then G, € Cy, and G, (x) -~ 2P pointwise (and hence uniformly).
Note that on
G, (x) = A1 f F(tx)t—r-1dt,
Un
Wn
where A, =f F(t)yt-»-1dt.
Un

Thus @, = F,, where f fdu = A;2 f - f@t) F@t)t—»-1ds.
Up

Put 8 = } and b = w,, and proceed as in the discussion preceding Theorem 4-5. Fix
N so that 2-¥ > q,, > 2'*”“’ then

2 tw,
A, = A7 p-lds = — 1 (2kttp_9kp) (k=0,1,2,..,N—1)
2kt 1y, pazwy
and A, =0 (k=N+1,N+2, ...).
Let M be the largest integer such that
1
—_ (2P Mp
o il 1)2Mp < 1.

Then Y A F(2%*+Dy, z) < Z‘, 2"1’( 22:;,) F(2k+Dy, z)+ F(2-WN+Dy_g)

Ax<1 n%n
< (1+ pX 2("—Mh’) Fw, (0<z<g1l)

2p+1_ |

S 213 F( n)

We now appeal to equation (2); there exists an element u, of finite support such that

1
lxun‘F = 2K n( ) 2p+1 F(wn)

and by equation (1) |zu, | < Go(z).
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As w, >0 and G,(z) 2P uniformly, 2? is 2K-accessible for 0 < p < f5. Then z#7
is also 2K -accessible and the result is proved.

COROLLARY. [l contains an inﬁnite dimenstonal locally bounded (resp. Banach)
subspace if and only if Bz > 0(Bz >.1) (cf. (16), p. 34, corollary 2 and p. 98).

Proof. If X < lgislocally bounded (resp. Banach) and infinite-dimensional, then by
results of (3) and Proposition 3-1, X contains a basic sequence equivalent to a topo-
logically normalized block basic sequence. Hence X contains a subspace Y isomorphic
to a locally bounded (Banach) Orlicz sequence space and hence a subspace I, with
p >0 (p > 1). Thus fz > 0 (f5 > 1). The converse is the preceding theorem.

5. Strict singularity of the inclusion map

Recall that an operator 7': X - Y between two F-spaces is strictly singular if it
fails to be an isomorphism on any infinite-dimensional subspace. Suppose F and G
are Orlicz functions such that I, < I, i.e. G(z)/F(z) is bounded on I;,. Let

w(t) = GO)/F(E) (tel)
and w also denote its unique extension to SI,.

THEOREM 5-1. Suppose lz < g and l; is locally bounded. Then the inclusion map ts an
isomorphism on some infinite-dimensional subspace of lp if and only if there exists
C < o and a probability measure y on Bl such that

[ F(z)du(r) < C[w(r) G (z)dpu(r) (0<z<1).

Proof. (a) Necessity. By a standard gliding hump argument the inclusion map is an
isomorphism on the closed linear span of some topologically normalized block basic
sequence (u,,). As in the proof of Proposition 4-3 we may assume that |u,|z < 1 and
|#n|e < 1, and that lim |zu, |, = Hy(z) and lim |2u,|q = Hy(x) exist uniformly. By

n—wo n—o

passing to a further subsequence we may assume that

3 sup ||zu,|r— Hi(z)| < ©

n=1 0<z<1
and Y sup ||zu,lg— Hy(z)| < oo

n=1 <z<l
As (u,) is regular in I and l;, Hy(z) > 0 and H,(z) > 0 for z > 0. Thus 2a, u, con-
verges in I if and only if £H,(|a,|) < co and in l; if and only if ZH,(|a,|) < co. Hence
H, and H, are equivalent Orlicz functions; as they clearly satisfy the A,-condition we
have H,(z) < CH,(z) (0 < = < 1) for some C < 0.

Now,
Ixuan = f .F,(:C) d/‘n(T)’

where p,, is a positive measure with finite support contained in I, and ||%,|| < 1. Thus

Hyz) = fﬂ F(@)dur) (0<z<1)
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where u # 0 is any weak* cluster point of (x,). As

|ty 6 = fﬂ G (@) w(r) dpin(r)

we have Hy(z) = f G (z)w(r)du(r) (0 <x<1).
203

Replacing u by ||x||~x we obtain the result.

(b) Suffictency. Let (a,) be any sequence in I, such that a, 0 if x(l,) = 0 and
a, = 1 if u(I)) > 0. Then there exist probability measures x, with support in (0,a,]
such that

[ Fo(z) dpn(r) > [ Fo(z) dpu(r),
| G () w(r) dp(r) > [ G (x) w(T) du(7),

for all rational z € I,. Equicontinuity of the functions F, and w(r) G, on I, implies the
convergence is pointwise on I,. However, since [ is locally bounded G,(0) = 0 for all
7 and hence f F_(0)du(r) = 0. Thus u(fl,— Z) = 0 and we also have convergence at
0 and so convergence is uniform on 7 (see Lemma 4-4).

Since 1 is locally bounded, there exists & < 1, a < } such that G(0z) < aG(z),
0 < o < 1. Let v, = wy,,; then as in the discussion preceding Theorem 4-5, let (u,,) be
an element of I taking the value §*+la,, [A,] times where

ta,
A= [, G

Then as in the proofs of Theorems 4-5 and 4-6, by picking a subsequence we may
suppose that either (u,) or (v,) where v, = u, + e, (Where u, ,; = 0 for all j) is
equivalent in I to the unit vector basis of I;; where

H(x) = lim G (z)dv, (1) —f G (x) w(T)du(r).
n—w J g1,

(Note here thatf w(t) du(t) = 0 if and only if u(l,) = 0.)
Io

Now fotals = £ NIFO1,2)

© 6%a,

< ——dv,(t); F(OF+
ké:o{fﬂ”’aﬁ an” ()} (05 anz)
o[ [ —_—d F(OFH
14

< SN[ )| FEa,q)
< [" B0~ [ FEun,

0 A1,

Thus by picking a further subsequence we may suppose that 2H(|a,|) < co implies

Za, u, converges in Ip. This establishes the isomorphism in the case when u(l)) = 0
and (u,) is equivalent to the unit vector basis of /;;. In the other case u(l;) > 0 and
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H(z) > aF(x) where o > 0. Thus ZH(|e,|) < co implies Ze, v, converges again,
establishing the required isomorphism.

THEOREM 5-2. Suppose I < Iz and 1 is locally bounded. Then the following conditions
are equivalent:

(i) The inclusion map is strictly singular.

(ii) For any C > O there exist distinct points z, ...z, €I, and a, ... a, > 0 such that

2, a, F(z,) =2 C 2, a, G(tz;) (0<t<1).
(iii) For any C > 0, there extists a > 0 and a positive Borel measure u # 0 with support
conlained in [a, 1] such that
[ F(tz)dp(z) > C [ G(tx)dulx) (0 <t<1).

Proof. (i) = (ii). For any C > 0, and any probability measure 4 on £I,, by Theorem
51.
[ (F(x)— Cw(7) G () dp(7) > O for some zel,

Let S =co{F,—w(r)G,:7€pl} in C(Ly). Then 8 is compact (apply Lemma 4-1) and
hence also compact for the topology p of pointwise convergence. If

={feCl):flx) <0 zely}

then 7' is a closed convex set in (C(y),p) and SN T = @ . Hence there is a p-continuous
linear functional L on C(l,) such that

sup L(f) < inf L(f).
feT feS
Then L(f) = 3 a.f(@),
i=1

where z, ... z, € I, are distinct and @, ... a, # 0. Clearly a, ... a, > 0 and sup L(f) =
Thus fet

S 6, Fz) > C 3 a,0(r) G (z;) (reply).
=1 i=1

F (txl) no Gt Gtz,)

2T 2 CE%Tn e Ot
Thus 3 a,Ftz,) > C v a,Gliz) (0<t<1).
i=1

(ii) = (iii). Trivial.
(iii) = (i). Suppose v is a probability measure on £ such that

F (x)dv(7) OJW(T)G(x)dV(T) 0<z<g1),
1203
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where C > 0. Pick x a positive non-zero measure on [a, 1], where a > 0 such that
[ F(tz) dp(z) > 20 [ Q(ta)du(z) (0 <t < 1).

Then | Fyx) du(x) > 2C [w(t) Gylx)dp(x) (0 <t < 1)

and hence by continuity

[ F(x) du(x) > 20 [w(7) G (2)du(z) (7 €pL).
Thus

1 1
j f F(z) dy(z) do(r) > 20 f f w(r) G, (@) dyu(z) dv(r)
Blgd a Blyd @

1
2> 2J F (z)du(z) dv(T).
floJa

Hence F,(z) = 0 for  esupp g, 7 esupp v. This is impossible, since, as observed at the
beginning of section 4, F (x) > 0 for regl,, x €,

THEOREM 5-3. Suppose lp <1, (0 < p <00). Then the inclusion map is sirictly
singular if and only if
1
lim inf — J Fle4) g, = o

e—0 0<s<1 log(l) ¢ SPuPtl ) (*)
€

Proof. If (*) is satisfied, then given C, there exists € > 0 such that

f:;ijﬁ{d Olog() of

1
Hence ‘L Fsu) du CL %du

ypr+l

establishing (iii) of Theorem 5-2.
Conversely, if the map is strictly singular, then for any C > 0, there exist
0<z <..<wz, <landa,...a, > Osuch that

k(3 n
{; a, F(stz,) > ZC‘Zlaisptl’xf (0 < s, 1)
For0 <e < a?
1 dt
2 a, F(stz; )thrl > 20 2 a, spxpje/sz

efz;, i=1 i=1
i x
= 2Csp ( > aixf) log (?1)
=1

L 1 F(stz;)

1
r a, F(st a; d
However, o ‘=Z ( x;)tp+1 E e/z, PTL
n b F(su)
=Y a.z du
t§1 B f ezl UPTL

(3 0et) [ 200
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1 F(su log (1/e) —log (1/x,)
log(l/e)f .sif’w"+1 > 20 log (1/e) >C.

Remark. If we put ¢,(x) = e**F(e=%) (0 < x < o0), then () is equivalent to

Hence

lim inf 2 f $, (@) dz = o,

-0 u20 l

i.e. ¢, is ‘almost convergent’ to +co.

THEOREM 5-4. Suppose lp < 1, where p > 1 and lp has no complemented subspace
1somorphic to l,,. Then () is satisfied.

Proof. If (+) is not satisfied the inclusion map J:l;—1, is an isomorphism on some
infinite-dimensional closed subspace X. Then J(X) contains a subspace Y ~ I, which
is complemented in /,,, with projection P:1, - Y. This means that J=1PJ is a projection
of Iy onto J-}(Y) =~ I, which is a contradiction.

In section 8 we shall use this result to resolve a problem of Lindenstrauss and
Tzafriri ((9), problem 1) by showing that [, can be complemented in [ without z* being
equivalent to a function in Ep,.

6. Main technical results

In this section we suppose that (u,,u,) is a complemented unconditional basic
sequence in l;. By Theorem 3-3, Corollary, we may assume that (u,) is topologically
normalized. We shall call (u,) essential if

infsup [u,(e;) ei(u,)| = 0

and otherwise inessential. moE

Our first result is that if (u,,) is inessential it is equivalent to (e,). The proof of this
could be considerably simplified if we make the assumption that F is convex. How-
ever, our main results are of interest only if F is not convex. We start with an in-
equality of Paley—Zygmund type (cf. (2), p. 24). For this purpose we denote by
{r,:n = 1,2, ...} the sequence of Rademacher functions on [0, 1] (or, equivalently, any
sequence of independent random variables taking the values + 1 with probabilities }).

LEvMMA 6-1. Let m denote Lebesgue measure on I, and m x m the product measure on
Ix 1. If (a;) is an n x n matriz then
1 non 1

Proof. We are grateful to the referee for suggesting the followmg argument. Our
original proof gave the same result with {% replaced by t%. The argument is similar
to that of (2), theorem 3, p. 24.

Le n
¢ 8= 3 ayr 0 ©<i<y),
p)

(m xm){(s t): Z Z a;; r:(8) rj(t)

i=1j=1

n

and X(s,8) = ( 3 ry(s) qzs,.(t))2 0<st<1)
i=1
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Considered as a random variable, the expectation E(X) of X is given by

5®) = 3 5 ([ nonea)( [ sosoa)
P

f ($:(8)2dt = 21 'Zl |@;]2.
i=
We also have

Ex) = 5 ([ r@rnenionoas)( [ smsms0 40 dt)

47, k1
(where the suffices ¢, 5, k, [ take the values 1,2,...,n).

Thus E(X?) = Z I¢1 |“ﬂ“+6l )Y |¢1 t) $4(t)|2d¢
<i<j<n
3{21 Z l¢; (t) g;(t) |2 dt.
]_.
However,

f |:(t) ;)2 dt = Z a6 +2 3 agayaa,+ 3 ak.af
E+l k¥l
< 23X ayau0,a,+ Y akaf
k.1 ki
= 2(2 @y ay)% + (Z a%y) (zl: a3)
3(2 a%) (X afy).
Hence E(X?) < 9( T a%,)?
ik
Now by (2), p. 6, inequality II,
(m x m) {(8’ £): IX(S,t)I 2 T%EZZIGHP} P '1‘1'6

and the lemma follows.

LemMA 6-2. Let F be an Orlicz function satisfying the A,-condition with constant K.
Then there are constants C,, C, and Cy > 0 depending only on K such that

Ja<ear(J(Eler))

)dsdt

2 a;r(t)

r( /(&))< [r (|4

whenever a, ...a, eR and neN, and

(&R ) <[ Lxo

whenever (a,;) is a real n x n matriz.

;‘.4 g: a«;j"«;(s) Tj(

i=1j=1

Proof. By the Paley—-Zygmund inequality

fO‘ (Zam(t) > 1P(H(Ela?)

4K2F(J2[a i|2)-
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Conversely choose p so that 27 = K and let a = ,/(2a2). Then forz > a
F(z) < K*F(x),
where }a < 2, < a, and [ is an integer such that 2'z, = z. Hence

F@) _F&) _ ,,F(@)
~ ap .

@ af
Hence
J‘IF( %airi(t))dt=f F( g]airi(t) )dt+J‘4 F( %air‘(t) )dt
0 i=1 Tair{t)>a i= Zajrdt)<a i=1
2PF(a)
<= )| dt+Fl)

< (21’ (g+ l)é + 1) FP(a)

by Khintchin’s inequality ((1), p. 131).

The second inequality follows similarly from Lemma 6-1.

LeMMA 6-3. Let (u,,u,) be a complemented topologically normalized unconditional
basic sequence in lp. Suppose (A,:neN) is a sequence of mutually disjoint subsets of
N such that

I unlen) eifu,) =

for neN. Suppose |0,| > 6 > 0 (neN). Define

V= X el'c(un) €
kedn

v, =021 T u(e) ek
ke dn

Then (v,, v, ) 18 a complemented block basic sequence equivalent to (u,).
Proof. Clearly v;(v;) = é;; so that (v,,v;) is biorthogonal. Since (u,,%,) is com-
plemented and unconditional, it follows that if

5 e ul(x)u

i=1

7(8) = sup sup

neN €...en=%1 [2]p<8

then lim#(8) = 0. (Of course %(8) can be +oco for some 8 > 0.) The proof involves
3—0

demonstrating the continuity of two operators:

(1) S:lin(u,)~>lin(v,), Sz= § Uy (Z)V,,.
n=1
(2) T:lin(e,)~>lin (u,), Tz = Zvg(z)u,.

Once we have shown these operators continuous, they may be extended to maps
8:lin (u,)~lin (v,) and 7': Iz~ lin (u,). Then Su, = v, and Tv,, = «,, and so0 (%,) and
(v,,) are equivalent. Further ST is the projection x+— Zv.(z) v, of I into Iin (v,).
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For (1), letz = 3, £,u, €lin (u;). Then if |z|p < 4,
i=1

S Lrdtyu| < (@)
i=1 'a
and 50 'S F(l 3 )€ ej(u) )dt < 700).
0 j=1 i=1
By Lemma 6-2 G E} F(J% |§i|2|e§(’ui)lz) < 9(6).
i=1 i=1
Hence g} EA’ (JZ |§1| |ek(u;)|2) Cr17(9),

S 3 F(genw)) < Cine),
j=1ke 4

Y|, < Cr'(6),

IS‘UIF Crin(9).
As lim 9(é) = 0, S is continuous. '
80
For (2)let x = ¥ £ e; €lin (e;), where (£,,) is finitely non-zero and |z|z = 4. Then for
i=1
0<t< 1, neN,

<4

)zg‘l‘l

i€ dg

and hencefor0 <8< 1

7(3).

2 0w £ 00 T G| <
ij=1 k=1 16 dx F

> Z rj(s)’rk(t) Z guj(ei) e (u;)

=1 k=1

Thus f: 'S F( )dsdt < 7(8)

0 l=1

and by Lemma 6-2
E7( /(% 2 (5 suedw))) < oo,

l j=1 k=1 \te 4;
Hence Z‘:lF (A/(é‘l (l_ 67_.:“ giul'c(ei)e;(uk))z)) < C319(9).
Thus 3 ( J 3 16, 04(z) ¢ ( u,,)]z) Cs(6).

However, |0, > 6, for all kand so there isa constant M such that
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ar

< MCy(0).

1l n
Consider f ' % 74(t) vpl) wy
0 [x=1

@ 1 n
=3 F(\ 3 r(t) vila) € (1)
F I=1J0 k=1

Hence forsomet,0 < ¢t < 1 withr(f) = +t1fork =1,2,...,7,

|2 0| < arcie)

and 50 | 3 o) u| < (MCyn(8))
k=1 F

so that 7' is also continuous and the proof is complete.

THEOREM 6-4. If (u,,u,) 18 a topologically normalized inessential complemented
unconditional basic sequence tn I, then (u,) is equivalent to (e,,).

Proof. Let f = inf max |u,,(e;) ;(u,)| > 0. There exists a map 7: N - N such that
n k
Iu;z(eﬂ(n)) e;r(n) (un)l = IB

It follows from the fact that (e,: #n € N) is bounded that
sup 3 [uh(ey) e(u)] < ®
k n=1

(using also, of course, that (u,) is complemented and unconditional). Hence there is a
constant ! such that card 7~'{k} <1 for keN. Thus it is possible to decompose N
into a finite disjoint union B, U ... U B; of subsequences such that 7|B; is injective
(1 €t <1). It is enough to show that each (u,:% €B,) is equivalent to (e,). Hence
we may suppose that 7 is injective on N. Now let 4,, = {m(n)} and apply Theorem 6-3.
(u,) is equivalent to (e, (%,) €,m), and since both (u,) and (e,) are normalized and
unconditional, (%, ) and (e,) are equivalent. -

THEOREM 6-5. Suppose (u,) is an essential topologically normalized complemented
unconditional basic sequence lp. Then (u,) has a subsequence equivalence to the unit
vector basis of a locally convex Orlicz sequence space.

Proof. It is easy to see that we may find increasing sequences {p,:n > 0} with
Py = 0and {m,:n > 1} with m, = 1 such that

Pn
> u;n,,(ei) e;(um,,) = 011, 2 %
1=Pp-1+1

and lim max |up, (e;)ei(u,,)| = 0.
n—o i
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Now by Lemma 6-3 (u,, ) is equivalent to the complemented block basic sequence

(v,, v,) Where

Pn , Pn
V= X ey )e;= 3 ae,
i=Pn—+1 i=pn-1+1
, -1 Pn , , Pn ,
v, =0y ) umn(ei) €= 2 be;.
t=Dn—1+1 i=Ppn—1+1
Dn
Note that Y @;b; =1 and that
Dn-1+1
ﬂn = max Iaibil —)0.
Pa—1<i<Dn

We may further assume (multiplying (v,) if necessary by a bounded sequence of
scalars) that 0 < inf|v, |, < sup |v, |z < 1, and by extraction of a further subsequence
n n

that if y,(t) = |tv,|z, then there is an Orlicz function H such that if
€, = sup |H(t)—,(0)]
0<t<1

then Xe¢, < oo (see Proposition 4:3). Thus (v,) is equivalent to the unit vector basis
of I;. We shall sho 7 that H is equivalent to a convex Orlicz function. Let % be its

convex minorant ove.s [0, 1] i.e.

. 12
h(x)=1nf{;bZh(xi):neN,x1+...+xn=nx:0<x,-<1} for 0gx<1
i=1

and A(x) = H(z) for x > 1. We show H and % are equivalent.

Suppose 0 < a,, < 1 for all » and Zh(a,) < 0. Then there is an increasing sequence

m(n) such that m(n) a, = t:([n)‘i'-" +t(‘nn) (0 < t(in, < 1),

1 mn) (
—_ ) -
where () E,l H(EP) < Ma,)+2™.

Next pick an increasing sequence I(n) such that

1
Bimy < om(n) (n=1,2,...).

Then the set {py,_;+1,... 9} may be decomposed into m(n) subsets A}
such that

1
‘.Ezj’? aibi—m <€ 2—m(-7;-)- (k= 1,...,m(n)).
Let wP = 3 Jme; (kE=1,..,m(n))
fie A
and for each permutation o of {1, ...,m(n)} let

m(n)
)
xﬁ:‘) = kzl tg’(‘k) w},’”

m(n)
PPlr= X X, Fltolad)
k=1iedy

n
ees m(,n)
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and summing over all permutations

n, mn)
Sy = mn)—1)! ¥ % B

i=pymy-1+1 k=1

and so there exists 7 such that

1
|27 < m(n) Z |68 vy
m(n) kZ H(tM) + €1y

< B(oy) + 27+ €.
Put y, = 2'™. Then Zy, converges in /. Now

vi(y,) =0 if @3 I(n),
m(n)

Vi) (¥n) = ? Z £ ;b

E tf(k)( E a;b,)

154],

m(n) 1

t(‘n
W2 6 Ty

\%
SV SIS 7"

Ay

Hence Za,, vy, converges, i.e. ZH(a,) < 0o, and the proof is concluded.

7. Main results

THEOREM 7-1. Suppose lg is tsomorphic to a complemented subspace of I . Then either
G is equivalent to F, or G is equivalent to a convex function.

Proof. The usual basisof I is equivalent to a symmetric complemented unconditional
basic sequence in l. Either Theorem 6-2 or Theorem 6-3 applies.

THEOREM 7-2. Suppose lg is a non-locally convex Orlicz sequence space. Then the
following conditions are equivalent:

(1) Any two unconditional bases of I are affinely equivalent.

(ii) Any two topologically normalized unconditional bases of I, are equivalent.

(iii) g contains no complemented subspace isomorphic to some l; where G 18 a conver
Orlicz function.

(iv) Any complemented subspace with an unconditional basis is isomorphic to lp.

Proof. (i) = (ii) is trivial; (ii) = (i) follows from Theorem 3-3, Corollary.

(ii) = (iii). If I ~ I;@ X, then I ~ ;@ DX =~ 1;Dlp
and hence has a topologically normalized unconditional basis non-equivalent to the
standard basis.

(iii) = (iv). By Theorems 6-2 and 6-3.

(iv) = (ii). By Theorems 6-2 and 6-3.

10 PSP 81
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Lemma 7-3. If X is a complemented locally convex subspace of Iy, then the topology of
X induced by | | is equivalent to that induced by | |5.

Proof. Clearly the identity map ¢: (X, | |z) > (X, | |# )is continuous. We show -1 is
weakly continuous, which implies 7! is continuous since both topologies are locally
convex. If y €(X,| |)’ then o P el where P is a projection of ! onto X. Hence
by Theorem 33, Yo P is | |4 continuous on I, and hence ¢ is | |p-continuous on X.
This proves the lemma.

Remarks. In other words X has the Hahn—-Banach Extension Property.

THEOREM 7-4. Suppose for any C > O thereexistz, ...z, €lyand a, ... a, > 0 such that
n n
Sa,Fitr)>CY a,Ftz) (0<t<1).
i=1 t=1

Then lg has a unique unconditional basis (up to affine equivalence).
Proof. By Lemma 7-3 and Theorem 5-2.
In the case when 11m sup F @) < 00 we can give a necessary and sufficient condition

for the uniqueness of the unconditional basis.

THEOREM 7-5. Suppose that lim sup ——— < oo and im inf—— = 0. Then the following
x—0 F( ) x—0 F( )

conditions on I, are equivalent:
(i) Any two unconditional bases of Iy are affinely equivalent.
(ii) 1 contains no complemented subspace tsomorphic to 1.
ey 10 . F(su)
1 nf
(i) el—I:ol OisSI 108(1/6).[ su? du
(iv) If ¢(z) = e*F(e~=®) for x > 0, then

lim mf o ¢(z) dz =
>0 v v
Proof. (i) < (ii). Theorem 7-2.
(ii) = (iii). Theorem 5-4.
(iii) <> (iv). Put » = e~* in (iii), (see Remark following Theorem 5-3).
(iii) = (ii). By Theorem 53 and Lemma 7-3.

Remark 1. If liminf —— F @ > 0 then F(z) is equivalent to x and I = I,. , has a unique
z—0

unconditional basis (modulo affine equivalence) by a theorem of Lindenstrauss and
Pelczynski (6).

Remark 2. In section 8 we show that condition (iii) above is distinct from the

conditions lim ——: = 0. Clearly we have the following:
z—0 F ( )
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THEOREM 7-6. If F(z)[x — o0 a8 x 0, I has a unique unconditional basis (up to affine
equivalence).

Proof. LetFLxx) = A(z) and X(z) = inf A(y)

O<y<z

1 F(su) _ 1 1 du
log(l/e) 7 = log (1/e) fe Alsw)

1 1 du
< log (1/e) fe Afu) u

=00 since A(u)->o0 as u-—>0.

In particular [,(0 < p < 1) has a unique unconditional basis solving a problem of
Stiles (15).

8. Examples

Suppose {a,} is a strictly increasing sequence of positive integers and {6,} is any
increasing sequence of positive numbers satisfying 0 < 6, < 2%~3. Define ¥, on
[0, o0) to be a function of period 29 such that

Vale) =0 (0 <z < 2%—46,)
=}z —2%)+26, (2946, <z < 2% —20,)
= }(2% —z) (2%—20, < x < 2%).
Let yr(x) = sup ¥a(x). We observe that ¥(0) = 0 and
[¥(@)-¥ @) < He-y| (@y=20),

Y(z) = max (Y1 (%), Ya(®) ... Y(x)) (2 < 2).
If p > % we define
F(z) = 2 exp (Y(—logz)) (0 <z < 1),
F(0) = 0.

Then F is the principal part of an Orlicz function, satisfying the A,-condition. In fact
F(2x) < 2?HF(x) (0 <z <3).
If ¢,(x) = eP=F(e~=) then of course ¢, (x) = V@,

Ezample 1. There is an Orlicz function F such that

x
0 = liminf—— < hm su
mint iy < P <
and I has (up to affine equivalence) a unique unconditional basis.

Let a, =n and 8, = an? where « > 0 is chosen so that 6, < 2*~% (»n > 1) and
E 270, < 3. Letp = 1.
n=1

10-2
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Then m{z:0 < z < 2%, Y(z) + 0} < i m{z: 0 < x < 27, ¥, (z) + 0}
k=1

n
= ¥ 2nk40,)
k=1
< 271,
Here for each n, there exists z, 27! < 2 < 2% such that ¥(x) = 0. Thus hm sup F @) =1

Since ¥ is unbounded hm inf I_'(_; =0.
If2n gl < 2r2

1 o+l 1 v+ 2%
[ @ g [ b
v v
1 J‘v+2" v ()d
22— eYn'T gy
9on+l v
1 2" (
= 2n—_*_1 J; eWn ) dx

2n+1 (27 + 4(efr— 6, — 1))

>0 as m—>o0.
By Theorem 7-5, I has a unique unconditional basis.

Example 2. There is a convex Orlicz function G such that for some p > 1, 1 is com-
plemented in lg and 2P is not equivalent to any function in Eg ;.

Remark. This solves negatively a problem of Lindenstrauss & Tzafriri (8) (Problem 1).

Choose a, = 2" and 6, = 2%; fix p > §. Then F(z)/z is increasing and so F is
equivalent to a convex Orlicz function G.

O 1o
—_— =— 148
7 J, B0 =g [, o0
1 29n
= 1+—J (V@ —1)dx

n
2a > (e"'k‘x)—l)dx
" k=1

20k
= 1+— z 2%—akf e¥e® — 1) dx
2% 0 ( )

n
=144 3 2-%(ef%—1—0,)
k=1
<144 3 222 —1-2k)
k=1
< ©
and by Theorem 5-3, I; has a complemented subspace isomorphic to /.
Now suppose z? equivalent to a functionin B ,. Since G and F are equivalent, there
is a constant 4 > 1, such that for any ! > 0 there exists u = u(l) with
F(e"“x)
Fer) =

e—4dxP

LedzP (e <)
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or equivalently |[Y(w+v)—y(u)) <4 (0<v<l).
Hence [P(x)—¢y)| <24 (u<z,y<u+tl).

Now pick k > 6442and let I = 3.2%, and let u = w(l). Foru +2* < 2 < u+2.2% we
define N(z) to be the least N such that Yr(z) = ¥n(z).

First suppose 0 < y(z) < 2¥®@—24. Then there exists ye[u,u+1!] such that
Yno(y) > ¥(z) + 24, since 4.2F > 24. This is a contradiction and so we conclude
that if Y/(z) > 0, Y(z) > 2N@® 24,

Next suppose that for some z, € [u + 2%, u + 2¥+1], 2V > 84. Then

IN@I-1 < 2N — 24 < 2NG@E) 4 24 < 2N+l

and it follows from the above remarks that N(z) = N(z,) for u + 2% < z < u+2k+1,
Then () = ¥ yy(@) for n+ 2% < 2 < u+ 2+ and so there exist z, y in this range so
that

[¥(z)—¥(y)| > min (} 2V, } 2%) > 24.

Thus we conclude 2V® < 84 for all 2. Let M be the largest integer such that 2M < 84.
Then i = max (Yy, ..., ¥y) in the range w+2* < 2 < w+2.2* and this function has
period 2¥¥ < 2844 < 2k (Clearly i takes both the values 0 and 2¥ in its period.
However, 2¥ > 44, and we have a contradiction.
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