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1. Introduction

In this paper we continue the study of Orlicz sequence spaces initiated by Lindberg
(5) and Lindenstrauss and Tzafriri (7), (8) and (9). Our main concern is to investigate
features of the theory which occur when the restriction of local convexity is lifted. It
is clear that some results will hold with identical proofs, at least when the space is
locally bounded. However, we are chiefly interested in the differences which arise.
We always assume that the Orlicz function F satisfies the A2-condition.

We essentially consider two topics: (a) the subspaces of lF and (b) the complemented
subspaces of lF. After some definitions and preliminary results (sections 2-3) we study
subspaces in section 4. Here the techniques of Lindenstrauss and Tzafriri work
unchanged in locally bounded spaces (as suggested in the introduction of (9)), but
the non-locally bounded case seems harder. Thus we are able for locally bounded lF

to classify exactly those Orlicz functions G such that la embeds into lF, and show that
lF always contains a subspace lp (0 < p < oo). It is rather more interesting, however,
that the result that lp(0 < p < oo) embeds into lF if and only if aF < p ^ /SF is valid
even without local boundedness of lF. In particular lF contains an infinite-dimensional
locally bounded subspace if and only if ftF > 0.

The structure of complemented subspaces is significantly different from the locally
convex case. This difference is caused partly by the failure of averaging projections to
be continuous. We study this case in sections 5-8. In section 5 we give an analytic
criterion for the inclusion map lF c> lp to be strictly singular. If this criterion fails
and lF <= lpt then lF contains a complemented subspace isomorphic to lp. We later use
this idea in section 8 to solve problem 1 of Lindenstrauss and Tzafriri (8), by showing
the existence of a convex Orlicz function lF such that lp is isomorphic to a comple-
mented subspace of lF but xp is not equivalent to any function in EF1. After some
technical results in section 6, we establish our main results in section 7. We show
that if la is isomorphic to a complemented subspace of lF then either G is equivalent
to F or G is equivalent to a convex function.

If lF contains no complemented subspace isomorphic to a locally convex Orlicz
sequence space, then lF has (up to affine equivalence) a unique unconditional basis. In
the Banach space case it is well known that precisely three spaces have this property llt

l2 and c0, (see (6) and (10)). Here, however, we can produce many such spaces. If lF <= lx

then a necessary and sufficient condition for lF to have a unique unconditional basis is

. . . . 1 CF(sx)J
hm inf —r- -^dx = oo.
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In particular, lp(0 < p < 1) has a unique unconditional basis (solving a problem of
Stiles (15)).

In section 8 we give some examples to distinguish between various conditions. In
particular we solve a problem of Lindenstrauss and Tzafriri as obssrved above.

2. Definitions

We shall use the term F-space to mean a complete metric linear space. A sequence
(xn) in an .F-space is called regular if there is a neighbourhood V of 0 such that xn$V
(n e M) and (topologically) normalized if it is regular and bounded.

If (xn) is a basis of an .F-space X, the associated continuous linear functionals will
always be denoted by (x^); sometimes we refer to the basis as (xn; x'n). If (un) is a basic
sequence in X then (un) is complemented if its closed linear span is the range of a
projection P . In this case there exist linear functionals (u^) such that Px = S u'n(x) un

(xeX). We refer to (un, u^) as a complemented basic sequence.
A basic sequence (un) is a block basic sequence with respect to (xn) if it takes the form

Pn

where p0 = 0 < p1 < p2 ... (un, u'n) is a complemented block basic sequence if in addition

< = .= 2 Mi-

An Orlicz function F is a non-decreasing function F: [0, oo) -> [0, oo) continuous at
0 such that F(0) = 0 and F^O. The Orlicz sequence space lF is the vector space of
all (real) sequences (xn) such that for some e > 0 £.F(|ea;n|) < oo. We define

BF(e) = {x:XF(\xn\) < e}

and then the sets {rBF(e), r > 0, e > 0} form the base for an .F-space topology on lF.
We shall only be interested in those cases when the unit vector basis (en) is a basis

of lF. This occurs when (i) F(x) > 0 whenever x > 0, and (ii) (the A2-condition at 0)

F(2x)
S UP -W7ZT < °°-

Then lF consists of all sequences such that S ^(|a;n|) < oo. In fact the behaviour
of F outside a neighbourhood of 0 is irrelevant to the definition of lF, and so we may
assume, without loss of generality, that F satisfies the A2-condition on R, i.e.

F(2x)
sup '. --• < oo.

0<*<oo F{X)

Hence forward, by an Orlicz function we shall understand an Orlicz function such
that F(x) > 0 for x > 0 and satisfying the A2-condition on R.

Two Orlicz functions F and G will be called equivalent if

. . F(x) F(x)
0 < inf 777-̂  ^ sup •—{ < oo.
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3. Some basic results
In this section we list some preliminary results, which will be required at various

stages later.

PROPOSITION 3-1. Let X be an F-space with a basis (xn,x'n). Let (yn) be a regular
basic sequence in X such that lim x'k{yn) = Ofor each k; then there is a subsequence (ynk)

n~>oo

of (yn) equivalent to a block basic sequence of (xn).
Proof. This has been established by Shapiro (14) when X is locally pseudo-convex.

In general it is sufficient to construct (ynk) and a block basic sequence (zk) such that
S||ynj, — zk\\ < oo, where || -|| is any i^-norm defining the topology of X; we omit
the details.

If X is an J^-space with a separating dual then the Mackey topology on X is the
finest locally convex topology on X weaker than the original topology (cf. (13)). The
Mackey topology is a metrizable topology. We denote by X the completion of X in
the Mackey topology.

PROPOSITION 3-2. Let (xn) be a complemented basic sequence in X. Then
(i) (xn) is a complemented basic sequence in X;
(ii) an xn -*• 0 if and only if anxn-+0 for the Mackey topology;
(iii) (xn) is topologically normalized if and only if (xn) is topologically normalized for

the Mackey topology.
Proof, (i) Let E = lin(xn) and P:X->E be a continuous projection onto E. If

x eE, define n
Snx= S %'i(x)Xi-

We observe that if U is a convex neighbourhood of 0 in X, then P-1( U) is a convex
neighbourhood, and hence P is Mackey-continuous. Similarly each Sn P is continuous;

furthermore f) ("S«-̂ >)~1(̂ ) *s a neighbourhood of 0 and hence (SnP:neN) is an
71 = 1

equicontinuous collection. Thus the maps Sn:E-+E are equicontinuous for the Mackey
topology (of X), and so (xn) is a basic sequence.

(ii) If anxn-\*~0, then there is a subsequence ankxnk such that ||anta;njl.|| ^ e. As
x'nk{Px) xnk-> 0 for x GX, we have a~*x'nk{x) -> 0 for x eX. Thus the linear functional
anlx'oP are equicontinuous on X and hence xi->sup |a~Ja;^A(Px)| is a continuous

k

semi-norm on X and hence also for the Mackey topology. Thus ank xnk -}> 0 in the Mackey
topology.

(iii) Follows immediately from (ii).
Let F be an Orlicz function. Then we define P to be the largest Orlicz function

such that P(x) < F(x) for all x and F is convex on [0,1]. It is easy to show that

P(x) = inf{- S F{Xi):neN, 0 < xi sS 1, -Ea;f = x)

for 0 < x ^ 1, and P(x) = F{x) {x > I).

Clearly P is equivalent at 0 to a convex Orlicz function and so lp is a Banach space.
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THEOBEM 3-3. Let F be an Orlicz function (satisfying the ^-condition). Then the
Mackey topology oflF is that induced by P.

Proof. Since lF <= 1$, it is easy to see that the topology induced by F is weaker than
the Mackey topology. Conversely let 11 • 11 be any continuous semi-norm on lF. Then
there exists a 0 < a < F(l) such that if

then 11a;11 < 1. Also the set {en: n e M} is bounded and hence there exists M < oo such
t h a t \K\\^M (nsN).

Now for any xelF with sup|#n| < 1, let A c [̂) be the set of ieN such that
a < FttxA) < 1. Then n

' l' II X
ieA

and a\A\

Hence II S *i«i|| < ̂  2 ^(N)-
ieA a i=l

The set N — A may be decomposed into a finite number of subsets a1...am such that

\a < £ #(|^|) < a

and one remainder set erm+1 with

Clearly \ma ^ S -^(|*i|)

and H S ^ e i H ^ l (j = 1,2,

so that || S artCiH < + l <

Hence | H | ^

Now suppose xelp has finite support and that

Then for some large enough choice of N there exist sequences (yf^)k = 1,2, ...,N
with 0 < y(i> ^ 1, such that

and ^ S S ^(»?') < SH\*i\) +« < 2o.
" * ! 1 i l
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Define dp = (sgn xt) yfK

Then x = 1

and
a ,= i

M 4-9
Hence | |« | | ^ ^-^(2a) + l = 2Jf + 5.

By density \\x\\ ^ 2ikf + 5 for any a ; e^ with

Hence 11 • 11 is continuous for the ^-topology on lF.

Remark. The Mackey topology of LF(0,1) is the topology of the convex minorant
of F over the whole real line. This follows from results in (4).

COROLLARY . Every complemented basic sequence in an Orlicz sequence space lF is
normal.

Proof. By Proposition 3-2 and Theorem 3-3 (since lF is a Banach space).

4. Subspaces of Orlicz spaces

We shall denote by / the unit interval [0,1] and by IQ the half-open interval (0,1].
C(I) and C(I0) will denote the spaces of continuous real valued functions on / and /„
in each case with compact convergence.

If F is an Orlicz function we define Tt F = Ft e C(/o) for 0 < t < 1 by

Note. Throughout sections 4-7 we shall assume that every Orlicz function F has
the property that xF(x) is convex. Every Orlicz function F is equivalent to an Orlicz
function G satisfying this condition, e.g. let G(0) = 0 and

(Note we assume the A2-condition.) This assumption is technically convenient (see
Lemma 4-1) and is necessary in Theorems 4-5, 4-6 and 5-1. However, all the other
main theorems are preserved under equivalence of Orlicz functions, and hence the
assumption is redundant.

We shall also use the notation

\x\F — 2J Fdx^)

Under the A2-condition, if unelF then«n->Oif and only if |itn|F->-0.
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LEMMA 4-1. {Ft: t elo} is relatively compact in C(I0).

Proof. If we set G(x) = xF(x), then G is convex and the set {Gt :telo} is equicontinuous
at each x el (see (7), p. 382). However, Ft(x) = x^G^x) and hence {Ft: telo} is equi-
continuous at each x e Io. As Ft(x) < 1 for all t, x the set {Ft: t e Io} is relatively compact
in C(/o).

We may therefore extend the map t->Ft(I0-*C(I0)) to a continuous map T->FT

(/?/„ -> C(/o)). Each FT is increasing in x and so we may define

x—M)

The A2-condition implies that FT(x) > 0 whenever xelo. FT is (the restriction of) an
Orlicz function if and only if FT(0) = 0.

We also define (cf. (9))
F(tx)

SUP zv7T^ < 0 °

PF = inflp: inf

Clearly 0 ^ aF < fiF < oo. Note that aF and ftF are preserved under equivalence of
Orlicz functions.

PROPOSITION 4-2. The following conditions on F are equivalent:
(i) lF is locally bounded;
(ii) aF > 0;
(iii) the map {T,X)\-*FT{X) (/?/„ x / -> / ) is jointly continuous;
(iv) the functions (Ft: telo) are equicontinuous at 0;
(v) there exist a, u with 0 < a, u < 1 such that F(ux) ^ aF(x), 0 < a; < 1.
Most of these equivalences are essentially known (cf. (li), (16) and (12), ch. III). The

remainder are not difficult to verify.
Now let ZF = {re/2I0:FT(0) = 0}, and EF1 = {FT:reZF}. Observe that ZF is a

Borel subset of /?/„. If /i is a probability measure on /?/„ with /u(fiI0 — ZF) = 0, let

f

and let Cp x be the set of such F^. Also let (7^ be the set of F where /i is a probability
measure on /?/0 such that fi(I0) = fi(filo - ZF) = 0.

lF is locally bounded if and only if ZF = /?/„; if so EF1 is compact in C(I) and
CF1 = coEF x (see (5), (7) and (8)). The results in the locally bounded case are essentially
trivial generalizations of results of Lindenstrauss and Tzafriri. In the more general
non-locally bounded case, our results are incomplete.

PROPOSITION 4-3. Let (un) be a topologically normalized block basic sequence with
respect to (en) in lF. Then there is a subsequence of (un) equivalent to the unit vector basis
of some la, where G e CF1.
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Proof. Since (un) is bounded.

lim \xun\F = 0 uniformly in n.
x->0

Hence we may find y > 0 such that |ywn|F < 1 for all n. Then let i/rn(x) =

where 2 -P(|t;B(i)|) = ^B(l) < 1.
(ft) 0

Hence (i/rn:n e N) is equicontinuous on 70 by Lemma 4-1, and thus also on / (since
\jrn(x)-+0 uniformly in n). Hence there is a subsequence i/rnk->-iJr uniformly on I.
Clearly ^(1) = lim^njt(l) > 0 by regularity of («n). By passing to a further subsequence
we may suppose _ ,, , , .,

k

where 11 • 11 „ is the norm in C(I). Thus ~Ltk un~k converges if and only if "Lxjr( \tn\) < oo. But

fnk{x)= [ FT(z)d/ik(T) ( 0 < * £ l ) ,
Jfilo

where fik is a positive Borel measure satisfying fik(ftlo) = ^n t ( l ) .
If v is any weak*-cluster point of /ih,

= f
Ifih

and v(ftIQ) = ^r(l). As lim^(a;) = 0, it follows by the Monotone Convergence Theorem

that v(fiI0\ZF) = 0. Writing G = f{i)~xf we obtain the result.
COROLLARY. Let (un) be a topologically normalized symmetric basic sequence in lF.

Then (un) is equivalent to the unit vector basis of some lG, G s CF1.

Proof. Use the same argument as (5), corollary 3-9 (using Proposition 3-1 of this
paper).

We now consider the converse problem: if GeCFrl, does la embed into lFl We
require first a simple lemma.

LEMMA 4-4. Let {/a} be a net in CF1 such that / a - > / pointwise on Io, where feCF1.
Then\\fa-f\\^0.

Proof. Since CF1 is compact as a subset of C(I0),fa ->/ uniformly on compact subsets
of 70. However, for given e > 0, choose S such that/(<J) < £e (/is continuous at 0 since
feCFil) and then a0 such that for a < a0, \f(S)— fa{8)\ < £e. Then for a > a0 and
0 < x ^ S, \f(x)-fa(x)\ ^f(x)+fa(x) ^f(S)+fa(S) ^ e. As / a -> / uniformly on [S, 1],
there exists a.1 such that | \fa —f\ \ ^ e for a > txv

For 0 < A < oo, we shall say that GeCFl is A -accessible if there is a sequence
(un) of elements of lF of finite support such that

) - hn(t) < \tun\F < AG(t) + kn(t) (0 < << 1),



260 N. J . K A L T O N

where hn,kneC(I) and S11 Aw j | oo -+- S j [ A;̂  | j OT < oo. If G is A -accessible for some A,
0 < A < oo then lo is isomorphic to a subspace of lF (a space spanned by such a
sequence (un) with disjoint support). Obviously it is sufficient to assume that ||AB||oo'
and H&JJII^-^O, in the definition of A -accessibility. If TA is the set of A -accessible
G e CF lt then TA is clearly closed in Cp 1 under uniform convergence on I, and hence
by Lemma 4-4 under pointwise convergence on 70.

Let /i be a Borel measure on/?/0 whose support is contained in [a, b] <= Io, and suppose
d, 0 < 6 < 1, fixed. Define

P &^ (* = 0.1.2,...),

and let u^ be an element of lF taking the value 6k+1b precisely [Ak] times. Then

k=0

Conversely

= i j Aj F(6k+1bx) - 1 J

co rg

'6 +

(2)

(where K = Z(0) is a constant such that F(x) «S KF(6x), 0 < a; s£ 1). Thus

|aw^|, ^ ^F^x) - \ S (^fc+1^). (3)

00

THEOEEM 4-5. ie< ^ 6e an Orlicz function satisfying 2 F(2~n) < oo. TAere i/(?e CF, la

is isomorphic to a subspace of lF.

Proof. Let

0{z) = f FT(x)dMr),f
where fi(I0) - 0.

Then there is a net (va) of probability measures with supports contained in (0,6 J cz IQ

such that 6a->0 and vo->/i in the weak*-topology of C(filo)*. Hence Fv (x)-+G(x)
uniformly on / by Lemma 4-4, and so there is a sequence vn with support, contained
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in (0,6J such that FVn(x) ->G(x) uniformly and &n->0. Fix d = \, and let un = uVn;
then for 0 < x < 1, by equations (1) and (3),

Now G(x) — Fv {x) -> 0 uniformly on I and

lim X n(h)k+1bn) = 0.
n—>-<x> fc=0

Hence G is 2-fiT-accessible.

THEOREM 4-6. Suppose lF is locally bounded. Then
(i) lQ is isomorphic to a subspace oflF if and only if G is equivalent to a function in CF1;
(ii) lF contains a subspace isomorphic to lp for somep, 0 < p < oo.

Proof, (i) This is a straightforward generalization of results of Lindenstrauss and
Tzafriri.

By 4-5 it is only necessary to consider G e CF1\CF, i.e.

G(x)=( FT(x)d/i(T)
Jfilo

where /i(I0) > 0. Hence

G(x) > ocF(x) for some a (0 < a < 1).

Since lF is locally bounded there exist 0 < 6 < 1,Q < a < \ such that F(dx) < aF{x)
(0 < x < 1). Choose measures vn supported in 70 such that Fv -+G uniformly on / .
Then for 6 chosen above, and b = 1, let un = uv . Then

\xun\F^G(x) + (Fyn(x)-G(x))
and by (3),

Put vn = un + em(n) where unMn) = 0. Then

\xvn\F < G(x)+F(x) + (Fyn(x)-G(x))

while \xvn\F > ± {G(x) + {FVn(x) - G(x))]

and G is max (2K, 1 +a~1)-accessible.
(ii) Let S:C(I)-+C(I) be defined by Sf(x) = xf(x). Then SCF1 = CSF;1 and SF is

convex and satisfies the A2-condition. Hence by results of (7) SCF x contains xp for
somep > 1. Hence xv~x e CF1, and since CF1 is equicontinuous at 0, p > 1.
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THEOREM 4-7. lp{p > 0) is isomorphic to a subspace oflF if and only if acF < p 4. fiF.

Remark. Note that this theorem holds without the assumption that lF is locally
bounded.

Proof. The necessity of a^ < p < fiF follows as in (9), Theorem 1. If aF = fiF, then
lF is locally bounded and the result follows from Theorem 4-6. More generally if
aF < (iF (including the case aF = 0), then, proceeding as in (9), if <xF < p < flF and
f(x) = F(x)lxv, there exist 0 < un < vn < wn < 1 such that wn -> 0 and nf(un) < f(vn)
and nf(wn) <f(vn). Letting an = ujwn put

n(x) = C~l r F{twnx)t-P~ldt,
J On

= P F(twn)t-"
Jan

where Cn = F(twn)t-P-ldt.
Jan

Then On e CF1 and On{x) -> xv pointwise (and hence uniformly).
Note that

\
Un

fWn
where An =

Thus On = F,, where fd/i = A~* f(t) F(t) t-v^dt.

Put 6 = \ and b = wn and proceed as in the discussion preceding Theorem 4-5. Fix
N so that 2~N 2an> 2-<N+»; then

and A& = 0 (* = ^ + 1 , ^ + 2, ...).

Let ifcf be the largest integer such that

M I 2V — 1 \
Then 2 A4Jf(2-»+«wB *) < 2 2k" —, = JI(2-»+«wB a;) + F(2-W+»wn x)

A»<1 &=0 \PAnwn/
1 M \

< ( 1 + 2 2*-M>»').*l(wn) (0 ^ a; ^ 1)

We now appeal to equation (2); there exists an element un of finite support such that

1 2"+1 — 1
\ \ > G ^ ) F ( )

and by equation (1) \xun[F ^ ®n(.x)-
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As wn->0 and Gn(x) -+xv uniformly, xv is 2^-accessible for 0 < p < fiF. Then x?'
is also 2iiL-accessible and the result is proved.

COROLLARY. lF contains an infinite-dimensional locally bounded (resp. Banach)
svbspace if and only iffiF > 0 (fiF ^ [1) (cf. (16), p. 34, corollary 2 and p. 98).

Proof. IfXczlF is locally bounded (resp. Banach) and infinite-dimensional, then by
results of (3) and Proposition 3-1, X contains a basic sequence equivalent to a topo-
logically normalized block basic sequence. Hence X contains a subspace Y isomorphic
to a locally bounded (Banach) Orlicz sequence space and hence a subspace lp with
p > 0 (p ^ 1). Thus fiF > 0 (fiF ^ 1). The converse is the preceding theorem.

5. Strict singularity of the inclusion map

Recall that an operator T.X-+ Y between two jf-spaces is strictly singular if it
fails to be an isomorphism on any infinite-dimensional subspace. Suppose F and G
are Orlicz functions such that lF <= lG, i.e. G(x)/F(x) is bounded on 70. Let

w(t) = G(t)/F(t) (telo)

and w also denote its unique extension to /?/„.

THEOREM 5-1. Suppose lF <= lG and la is locally bounded. Then the inclusion map is an
isomorphism on some infinite-dimensional subspace of lF if and only if there exists
C < oo and a probability measure /i on ftlo such that

\FT{x)dfi{T) < CJw(T)GT(x)d/i(r) (0 < x < 1).

Proof, (a) Necessity. By a standard gliding hump argument the inclusion map is an
isomorphism on the closed linear span of some topologically normalized block basic
sequence (un). As in the proof of Proposition 4-3 we may assume that \un\F < 1 and
\un\o ^ *> a n ( i t n a t 1™ I^^MIF = Hi(x) an<i l im \xun\o = H2(x) exist uniformly. By

passing to a further subsequence we may assume that

00

2 SUp WxUnlp-H^XJl < CO
n = l 0 < < l

a n d S S U P
n=l

As (un) is regular in lF and la, H^x) > 0 and H2(x) > 0 for x > 0. Thus ~Lanun con-
verges in lF if and only if 'LH1{\a.n\) < oo and in la if and only if I>H2( \an\) < oo. Hence
Hx and H2 are equivalent Orlicz functions; as they clearly satisfy the A2-condition we
have H^x) < CH2(x) (0 < x < 1) for some G < oo.

Now, .
| * « * | F = FT(x)d/tn{T),

Jfilo

where fin is a positive measure with finite support contained in 70 and | \/in\ | < 1. Thus

H1(x)= f FT(x)d/i{T) ( 0 < a ; ^ l ) ,
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where /i ^ 0 is any weak* cluster point of (fin). As

Jfilo

we have H2{x) = G7(x) w(r)d/i(T) (0 < x < 1).
Jfilo

Replacing /i by | \/i\ | -1/i we obtain the result.

(6) Sufficiency. Let (an) be any sequence in /„ such that an-+0 if /i(l0) = 0 and
an = 1 if ji(I0) > 0. Then there exist probability measures /in with support in (0, an]
such that

fFT(x)dpn(T)-+fFT(z)d/i(T),

j GT{X) W(T) dfln(T) -+JGr(x) W(T) dfl(T),

for all rational x elo. Equicontinuity of the functions FT and W{T) 0T on Io implies the
convergence is pointwise on /„. However, since la is locally bounded GT(0) = 0 for all
T and hence [-^.(0)^(7-) = 0. Thus fi(/iI0 — ZF) = 0 and we also have convergence at
0 and so convergence is uniform on / (see Lemma 4-4).

Since la is locally bounded, there exists 6 < 1, a < £ such that G(6x) < aG(x),
0 < x ^ 1. Let vn = w/in; then as in the discussion preceding Theorem 4-5, let (un) be
an element of lF taking the value 6k+1an, [A.k] times where

relan i
= L 7uT\

Then as in the proofs of Theorems 4-5 and 4-6, by picking a subsequence we may
suppose that either (un) or (vn) where vn — un + em(n), (where «BjfBy) = 0 for all j) is
equivalent in la to the unit vector basis of lH where

GT(x)dvn(r)= f Gr(x)w(T)d/i(r).
o Jfih

I Note here that w(t) d/i{t) = 0 if and only if/*(/0) = 0.1

fc=0

^ y, \ \ —dv I

iljei+".

0->f r̂

Thus by picking a further subsequence we may suppose that 2£f(|an|) < oo implies
San un converges in lF. This establishes the isomorphism in the case when ji(I0) = 0
and (un) is equivalent to the unit vector basis of lH. In the other case /i(I0) > 0 and
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H(x) ^ a.F(x) where a > 0. Thus Z#( |an | ) < oo implies 2a n u n converges again,
establishing the required isomorphism.

THEOREM 5-2. Suppose lF <= lo and la is locally bounded. Then the following conditions
are equivalent:

(i) The inclusion map is strictly singular.
(ii) For any C > 0 there exist distinct points x1...xnelo and a1...an > 0 such that

£ OtFitei) >C S atGitxt) (0 < t < 1).

(iii) For any C > 0, there exists a > 0 arad a positive Borel measure fi ¥= 0 with support
contained in [a, 1] such that

JF(tx)d/i(x) 2s CJG(tx)d/i(x) (0 < t < 1).

Proof, (i) => (ii). For any C > 0, and any probability measure fi on /?/0, by Theorem
5-1.

| ^T(a;) - CM>(T) GT(X)) d/i{r) > 0 for some x e Io.

Let S = co {.FT-M>(T)GV:T £/?/„} in (7(/0). Then S is compact (apply Lemma 4-1) and
hence also compact for the topology p of pointwise convergence. If

then T is a closed convex set in (C(/o), p) and $ n 2" = 0 . Hence there is ap-continuous
linear functional L on C(/o) such that

supL(/) < inf i ( / ) .
feT feS

Then L(f) = £ a./fo),
i = l

where x1...xnelo are distinct and ax...an^ 0. Clearly ax . . .an ^ 0 and supL(f) = 0.
Thus feT

| a t^(x,) £ C £ a,W(T) GT(a;4) (T e
t=i

Restricting to 70 we have

V a F{iXi) >CYa °{t) G{tXi) (0 < t < I)
P(<) P ( 0 («)

Thus V. a^ltx,) > C V. oj

(ii) => (iii). Trivial.
(iii) => (i). Suppose v is a probability measure on /?/0 such that

f ^(a;) dv{r) ^ C f W(T) 0T(a:) &»(T) (0 < a: ^ 1),
J/S/o J
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where C > 0. Pick/f a positive non-zero measure on [a, 1], where a > 0 such that

lF(tx)d/i(x) > 2GJG(tx)dfi(x) (0 < t < 1).

Then /Ft(x)dji(x) > 2C\w(t) Gt(x)dfi(x) (0 < < < 1)

and hence by continuity

]FT{x) d/i(x) > 2CJW(T) GT(X) dfi(x) (r e/?70).
Thus

I FT(x) d/i{x) dvlj) > 2G \ I W(T) ^ ( X ) d/i(x) dv(r)

r r1

> 2 i^.(x)d/<(x)^(T).

Hence -FT(a;) = 0 for x e supp/<, T e supp v. This is impossible, since, as observed at the
beginning of section 4, FT(x) > 0 for T efilo, xelo.

THEOREM 5-3. Suppose lF c lp (0 < p < oo). TAew <Ae inclusion map is strictly
singular if and only if

e-M)

Proof. If (*) is satisfied, then given C, there exists e > 0 such that

J \ / Je u

Hence J A ^ ^

establishing (iii) of Theorem 5-2.
Conversely, if the map is strictly singular, then for any C > 0, there exist

0 < xx < ... < xn < 1 andax...an > Osuchthat

S aiF(stxi) ^ 2C 2 diSHPz? (0 < a,« < 1).
i=l (=1

For 0 < e < a;|

JelXli=l tPr <=1 Je/a, '



Orlicz sequence spaces without local convexity 267

Hence * f' ^du > 2C ^ ^ f ^ f ^ > C.
l ( l / e ) J e ^ + 1 l g ( l / )log(l/e)

Remark. If we put 0p(a;) = evxF{e~x) (0 ̂  x < oo), then (*) is equivalent to

lim inf y ^ ( s ) ^ = °o,

i.e. 0p is 'almost convergent' to + oo.

THEOREM 5-4. Suppose lF <= lp where p > 1 arcd ZF faw no complemented subspace
isomorphic to lp. Then (*) is satisfied.

Proof. If (*) is not satisfied the inclusion map J: lF-+lp is an isomorphism on some
infinite-dimensional closed subspace X. Then J(X) contains a subspace Y s lp which
is complemented in lp, with projection P: lp -> Y. This means that J~XPJ is a projection
of lF onto J - 1 ( Y) ~ lp, which is a contradiction.

In section 8 we shall use this result to resolve a problem of Lindenstrauss and
Tzafriri ((9), problem 1) by showing that lp can be complemented in lF without xp being
equivalent to a function in EF1.

6. Main technical results

In this section we suppose that (un, u'n) is a complemented unconditional basic
sequence in lF. By Theorem 3-3, Corollary, we may assume that (un) is topologically
normalized. We shall call (un) essential if

infsup|<(efcK(«n)| = 0
n k

and otherwise inessential.
Our first result is that if (un) is inessential it is equivalent to (en). The proof of this

could be considerably simplified if we make the assumption that F is convex. How-
ever, our main results are of interest only if F is not convex. We start with an in-
equality of Paley-Zygmund type (cf. (2), p. 24). For this purpose we denote by
{rn: n = 1,2,...} the sequence of Rademacher functions on [0,1] (or, equivalently, any
sequence of independent random variables taking the values + 1 with probabilities \).

LEMMA 6-1. Let m denote Lebesgue measure on I, and mxm the product measure on
Ixl. If (a{j) isannxn matrix then

Proof. We are grateful to the referee for suggesting the following argument. Our
original proof gave the same result with ^ replaced by j ^ . The argument is similar
to that of (2), theorem 3, p. 24.

Let n

&(O=S«« 'y(O (<U<<1) ,

and X(a,t) = ( S ri(s)<l>i(t)Y (0 < s,t < 1).
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Considered as a random variable, the expectation E(X) of X is given by

= £ £ ( P *•<(*) r,(s)efe)( P Ut)
» = i y = i \ J o /\Jo

= 5 f1(^(*))2*= £ £ k-i2-
<=i jo j=i j=i

We also have
r^r^r^r^dsU fa

o / \ Jo
(where the suffices i,j, k, I take the values 1,2,...,n).

Thus E(X*)= £
i = l

i=li=lJO

However,

f1 |
JO k=¥l k+l

«tt aa ajk aiX + 2 a\k 4
fc.Z fc.I

k

A;

Hence E{X*) < 9( 2 a\k?
i,k

Now by (2), p. 6, inequality II,
(mxm){(s,t):\X(s,t)\ > j ^ ^ a ^ } > &

and the lemma follows.
LEMMA 6-2. Let F be an Orlicz function satisfying the ^-condition with constant K.

Then there are constants Cx, C2 and C3 > 0 depending only on K such that

whenever a1...aneR and neN, and
/ I n n \ ri ri /\ n n

C3F[ / s 2 I%|2U \ F 2 Sfly^WM
Wi=u=i / Jo Jo \|t=ii=i

whenever (a^) is a real nxn matrix.

Proof. By the Paley-Zygmund inequality
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Conversely choose p so that 2P = K and let a = ̂ /(Sa|). Then for x > a

F(x) < K*F(x0),

where | a < x0 < a, and I is an integer such that 2lx0 = x. Hence

Hence

0 \ | t=l 1/ JSOir,<t)>a \ | t=l | / JSairJfKa \\i=l

n

i = l

by Khintchin's inequality ((l), p. 131).
The second inequality follows similarly from Lemma 6-1.
LEMMA 6-3. Let (un,u'n) be a complemented topologically normalized unconditional

basic sequence in lF. Suppose (An:neN) is a sequence of mutually disjoint subsets of
N such that

u'n(ek)e'k{un) = 6n

for neN. Suppose \0n\ > 6 > 0 (n e N). Define

keAn

K = 0nX 2 K(ek)e'k.
k<= An

Then {vn, v'n) is a complemented block basic sequence equivalent to (un).

Proof. Clearly Vi(v}) = Sti so that (vn,v'n) is biorthogonal. Since (un,u'n) is com-
plemented and unconditional, it follows that if

y{8) = sup sup
m e IN t = l F

then limw(S) = 0. (Of course y(S) can be +CXD for some S > 0.) The proof involves
«-»o

demonstrating the continuity of two operators:

(1) S:lin(un)->lin(»„), Sx =

(2) T: lin (e j ->lin («n), Tx =

|

Once we have shown these operators continuous, they may be extended to maps
S: lin(un) ->lin (vn) and T: lF-+hn(un). Then Sun = vn and Tvn = wn and so (un) and
(«n) are equivalent. Further ST is the projection xi-» Sw^^) wn °f ^F m
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For (1), let x = 2 ii^i elin (i^). Then if \x\F < 8,

2 &'<(<)«,

WlP 2 Wl 2',(*)&«;(««)
o j=i \|i=i

and so

By Lemma 6-2 Cx 2

n / / n

Hence 2 2 -**( / 2
j^lkEA, W(=l

i.e. rW),

As limi?(5) = 0, S is continuous.

For (2) let a; = 2 ii *% elin (ej, where (£n) is finitely non-zero and \x\F = 8. Then for

0 < t ̂  l ,»eN,

2 rk(t) 2
fc=l

and hence for 0 < s

Thus

and by Lemma 6-2

2 ••,(«)«;( 2 r*(0 2 lie\*i
j = l \ft=l ie^lt /

f l f l » / I n » | \

2 - ^ 2 2 rt(8) rk(t) 2 ii «;(«i) «f'(«y) <beft
J0 JO « = 1 \|/=lfc=l fe^i |/

5
1=1

2
fe=l

Hence

Thus ^S ^ ( y j ^ |<?fct>i(a:) e,' («fc)|«) < CS"^(*).

However, \6k\ ^ ̂ , for all k and so there is a constant M such that

1 I 1 F ULh \v>k{x) e*/(wfc
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Consider
/•I n

s
Jo fc=i

n

s
CO

f 1=1 •

fl / n

/0 \|fc=l

Hence for some t, with rfc(<) = + 1 for k = 1,2,..., ?i,

i f C2

and so

so that T is also continuous and the proof is complete.

THEOREM 6-4. / / (un, u^) is a topologically normalized inessential complemented
unconditional basic sequence in lF, then (un) is equivalent to (en).

Proof. Let ft = inf max \u'n(ek) e'k(un)\ > 0. There exists a map n:N-^N such that
n Jc

Jl > p.
I t follows from the fact that (en: n e N) is bounded that

CO

SUp £ |<(Cfc)4(«B)| < 00
k n=l

(using also, of course, that (un) is complemented and unconditional). Hence there is a
constant I such that cardn-^k) ^ I for keH. Thus it is possible to decompose N
into a finite disjoint union B1 u ... U Bt of subsequences such that 7^2^ is injective
(1 ^ i ^ I). I t is enough to show that each (un:neBt) is equivalent to (en). Hence
we may suppose that n is injective on M. Now let An = {ir(n)} and apply Theorem 6*3.
(un) is equivalent to (e!^n)(un)e^n)), and since both (un) and (en) are normalized and
unconditional, (un) and (en) are equivalent.

THEOREM 6-5. Suppose (un) is an essential topologically normalized complemented
unconditional basic sequence lF, Then (un) has a subsequence equivalence to the unit
vector basis of a locally convex Orlicz sequence space.

Proof. I t is easy to see that we may find increasing sequences {pn:n ^ 0} with
p0 = 0 and {mn: n ^ 1} with mx = 1 such that

and lim max = 0.
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Now by Lemma 6-3 (a%) is equivalent to the complemented block basic sequence

< = ^ S t4B(et)eJ= S

Note that 2 aibi = \ and that
Pn-i+1

/?„ = max la^l

We may further assume (multiplying (vn) if necessary by a bounded sequence of
scalars) that 0 < inf \vn\F ^ sup \vn\F ^ 1, and by extraction of a further subsequence

n n
that if ^rn(t) = \tvn\F, then there is an Orlicz function H such that if

en= sup \H(t)-irn(t)\

then Sen < oo (see Proposition 4-3). Thus (vn) is equivalent to the unit vector basis
of lH. We shall sho / that H is equivalent to a convex Orlicz function. Let h be its
convex minorant ove/ [0,1] i.e.

{1 n \

- 2 hfrJ-.neN,x1 + ... +xn =nx:0 ^ xi < 1} for 0 < xand h(z) = ^(x) for a; > 1. We show H and A are equivalent.
Suppose 0 ^ an < 1 for all n and 2A(an) < oo. Then there is an increasing sequence
N h t h t

1 m(»)
where — - S

m\n) i-l

Next pick an increasing sequence l(n) such that

Then the set {i>j(n)_i + l, •••Pi(n)}
 m a y be decomposed into m(n) subsets

such that

m(n) 2m(n)

Let

and for each permutation cr of {1,...,m(w)} let
m(n)

= S
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and summing over all permutations
PUn)

S |a£>|, = (m(n) -1)1 S
o- i=P«n)-i

and so there exists T such that
1 m(n)

Put yn = x(?\ Then S«/B converges in lF. Now

«i(yn) = 0 if »=H(n),
m(n)

. ) = S S a 6
fc=l
m(n)

= S
fc=l

1 m(n)

Hence SanwJ(n) converges, i.e. T,H(an) < oo, and the proof is concluded.

7. Main results

THEOREM 7-1. Suppose la is isomorphic to a complemented subspace of lF. Then either
G is equivalent to F, or G is equivalent to a convex function.

Proof. The usual basis of la is equivalent to a symmetric complemented unconditional
basic sequence in lF. Either Theorem 6-2 or Theorem 6-3 applies.

THEOREM 7-2. Suppose lF is a non-locally convex Orlicz sequence space. Then the
following conditions are equivalent:

(i) Any two unconditional bases of lF are affinely equivalent.
(ii) Any two topologically normalized unconditional bases of lF are equivalent.
(iii) lF contains no complemented subspace isomorphic to some la where G is a convex

Orlicz function.
(iv) Any complemented subspace with an unconditional basis is isomorphic to lF.

Proof, (i) => (ii) is trivial; (ii) => (i) follows from Theorem 3-3, Corollary.
(ii) => (iii). If lF ~ lo®X, then lF ~ la®lo@X ~ lo@lF

and hence has a topologically normalized unconditional basis non-equivalent to the
standard basis.

(iii) => (iv). By Theorems 6-2 and 6-3.
(iv) => (ii). By Theorems 6-2 and 6-3.

io PSP 8i
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LEMMA 7-3. If X is a complemented locally convex subspace of lF, then the topology of
X induced by \ \Fis equivalent to that induced by \ \p.

Proof. Clearly the identity map i: (X, | \F)-+(X, | |j? )is continuous. We show i-1 is
weakly continuous, which implies i~l is continuous since both topologies are locally
convex. If i/re(X, | 1 )̂' then i/roPel'F where P is a projection of lF onto X. Hence
by Theorem 3-3, rjroP is | \F continuous on lF and hence i/r is | ^-continuous on X.
This proves the lemma.

Remarks. In other words X has the Hahn-Banach Extension Property.

THEOREM 7-4. Suppose for anyC > 0 there exist xx ... xn e Io and a1... an > Osuchthat

2 a^itXi) ^C S «f-^(tei) (0 < t ^ 1).

Then lF has a unique unconditional basis (up to affine equivalence).

Proof. By Lemma 7-3 and Theorem 5-2.

In the case when lim sup -=-- < oo we can give a necessary and sufficient condition
o J> (x)

for the uniqueness of the unconditional basis.

THEOREM 7-5. Suppose that lim sup -^j—r < oo and lim inf -=—- = 0. Then the following

conditions on lF are equivalent:
(i) Any two unconditional bases of lF are affinely equivalent.
(ii) lF contains no complemented subspace isomorphic to lv

....... . - 1 C1F(su)J

(m) lim inf -——y- J du = oo.
e-o o<8<ilog(l/e)Je su2

(iv) / / 4>{x) = exF(e~x)for x ^ 0, then

lim inf y J
v+l

<j>(x)dx = oo.
v

Proof, (i) o (ii). Theorem 7-2.
(ii) => (iii). Theorem 5-4.
(iii) o ( iv ) . Put u = e~x in (iii), (see Remark following Theorem 5-3).
(iii) => (ii). By Theorem 5-3 and Lemma 7-3.

or
Remark 1. If lim inf > 0 then F(x) is equivalent to x and lF = lv lx has a unique

M) £ {%)
unconditional basis (modulo affine equivalence) by a theorem of Lindenstrauss and
Pelczynski(6).

Remark 2. In section 8 we show that condition (iii) above is distinct from the

conditions lim p = 0. Clearly we have the following:
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THEOREM 7-6.I{F(x)/x-+ao as #-> 0, lF has a unique unconditional basis (up to affine
equivalence).

Proof. L e t ^ = X(x) and J(x) = inf A(y)
x 0<

F(su), 1

-sr(l"-to^i)J.A(ai

= oo since J.(u)-+co as

In particular lp(0 < p ^ 1) has a unique unconditional basis solving a problem of
Stiles (15).

8. Examples

Suppose {an} is a strictly increasing sequence of positive integers and {#„} is any
increasing sequence of positive numbers satisfying 0 < 6n < 2a"~3. Define rjrn on
[0, oo) to be a function of period 2a« such that

= i(x - 2°n) + 26n (2°* -46n^x^2an- 2dn)

= \(2an-x) (2°»-20 n < x <

Let \jr(x) = sup frn(x). We observe that ^"(0) = 0 and
neIN

^\x-y\ (x,y ^ 0),

f(x) = max (f^x), i/r2(x) ...$n{x)) (x <
If p > \ we define

•F(z) =a;Pexp(^(-logx)) (0 < x < 1),
±= 0.

Then J1 is the principal part of an Orlicz function, satisfying the A2-condition. In fact

F(2x) sS 2P+iF(x) (0 < x ^ \).

If </>p(x) = ePxF(e~x) then of course <j>p{x) = e^x\

Example 1. TAere is ow Orlicz function F such, that

0 = iiminf-=—; < limsup-^r—- < oo

and lF has (up to affine equivalence) a unique unconditional basis.
Let an = n and 6n = an2 where a > 0 is chosen so that 6n < 2n~3 (n ^ 1) and
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Then m{x: 0 < x < 2n, f{x) * 0} < 2 m{a;: 0 < a; ^ 2", ̂ fc(a;) * 0}

= £ 2"-*(40fc)

Here for each n, there exists a;, 2n~x < x < 2n such that i/r(x) = 0. Thus lim sup •=— = 1.

Since iA is unbounded lim inf T—— = 0.
Y

 x-*o F(x)
If 2n < Z

o+2»

2 ^ Jo

->oo as n->oo.
By Theorem 7-5, Ẑ  has a unique unconditional basis.

Example 2. There is a convex Orlicz function O such that for some p > 1, lp is com-
plemented in lo and xp is not equivalent to any function in EO1.

Remark. This solves negatively a problem of Lindenstrauss & Tzafriri (8) (Problem 1).
Choose an = 22n and 8n = 2n; fix p > f. Then F(x)/x is increasing and so F is

equivalent to a convex Orlicz function G.

1 n /"2

^ "fc=i Jo
1 n /«2aJ:

S 2 a a i (eWx) - 1 ) dx
Jo:

= 1 + 4 £

2-22V*-1-2*)
< oo

and by Theorem 5-3, la has a complemented subspace isomorphic to lp.
Now suppose xv equivalent to a function in EG1. Since G and F are equivalent, there

is a constant A ^ 1, such that for any I > 0 there exists u = u(l) with

^ p p U ê B* (e~« < a: ^ 1)
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or equivalently \xjr(u + v)-\jf(u)\ < A (0 < v < I).

Hence \^r(^) — iri3i)\ < 24 (u < x,y < u + l).

Now pick k Ss 6442andleU = 3.2fc,and let u = u(l). For«+2 f c < x < u + 2.2k we
define 2V(a;) to be the least ^ such that ijr(x) = irN[x).

First suppose 0 < -̂(a;) < 2JV<X) — 24. Then there exists ye[u,u + l] such that
i/rN(x)(y) > i/r(x) + 2A, since \.2k > 2A. This is a contradiction and so we conclude
that if f(x) > 0, rjr{x) > 2JV<x>-24.

Next suppose that for some x0 e [u + 2k, u + 2*+1], 2iV<xo> > 84. Then

2Arfcco)-i < 2N(-Xo>-2A

and it follows from the above remarks that N(x) = N(x0) for u + 2k^x^u + 2fc+1.
Then \jr(x) = ^six^x) f ° r » + 2 f c ^ a ; < M + 2k+1 and so there exist x, y in this range so
tha t

2A.

Thus we conclude 2JV(x) < 84 for all x. Let I f be the largest integer such tha t 2M < SA.
Then \jr = max (ijrx,..., ifrM) in the range u + 2k^.x^u + 2.2k and this function has
period 2VM < 26iA* < 2fc. Clearly ^ takes both the values 0 and 2M in its period.
However, 2M > 4 4 , and we have a contradiction.
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