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1. Introduction.

By an orthonormal system in a general complex Banach space, we mean a collection
{e,: @ € &7} of unit vectors such that, for each «, there is an hermitian (in the numerical
range sense, see (4)) projection F, whoserangeislin (¢,) and such that P, Py = 0,ifa + 4.
This paper is devoted to the study of orthonormal systems in general Banach spaces,
and their applications to problems of characterizing isometries and hermitian
operators.

We note first that our definition of an orthonormal system differs from that of
Berkson(2), p. 116 (he requires the projections P, to be perpendicular). However, we
show in section 7 that the definitions are equivalent, although a good deal of work
seems to be required to prove this. Orthonormal bases have been studied under the
name normalized hyperorthogonal bases in (19), 355 (cf. (7)).

Sections 2 and 3 are devoted to elementary observations concerning hermitian
projections. The most significant results of these sections are the Diagonalization
theorem (2-4) and its consequence (2-6). These are obtained by generalizing techniques
used previously in certain sequence space settings. In section 4, we obtain some results
of Berkson and Tam by methods which seem more elementary than the original argu-
ments; also we require some generalizations for future applications.

In section 5, we prove our fundamental results on orthonormal systems. It turns
out that, in any Banach space X, there is a unique subspace 4(X) which is the closed
linear span of any maximal orthonormal system. Furthermore, 4(X) may be decom-
posed into a direct sum of Hilbert spaces, which we call the Hilbert components of X.

These results are applied in section 6 to obtain theorems concerning the possible
forms of hermitian operators and isometries on X. Some of these results have been
previously obtained by Fleming and Jamison ((7), {8)); see also (18) and Tam (21). We
feel the proofs here are rather simpler. Some applications of these results are also given.
Thus Theorem 6-4 characterizes Hilbert spaces, while Theorem 6-5 characterizes the
hermitian operators of rank one on a Banach function space. As already remarked,
section 7 links our ideas with those of Berkson.

In sections 8 and 9, we consider a problem posed by Rolewicz(17). A norm on a
Banach space X is maximal if there is no equivalent norm for which the group of
isometries is strictly larger. Rolewicz shows that the spaces L,(0,1) (1 < p < ),
I, (1 <p < o0) have maximal norms, and a finite-dimensional space has maximal
norm if and only if it is a Hilbert space. He asks ((17), p. 259) whether C[0, 1] has
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maximal norm. In section 8 we show that C[0, 1], and indeed C,(S) for a large class of
locally compact spaces S, have maximal norm. In section 9, we consider the same
problem for spaces of real functions; here the techniques are necessarily quite different
and the results rather weaker. We show that Cg ((S) has maximal norm when S is
a manifold without boundary of dimension greater than or equal to two.

2. Hermitian decomposition and splittings.

DeriniTION 2-1. An (hermitian) splitting of @ Banach space is a family {P,: cc€ o}
of hermitian projections such that F, Fy = 0, if a + . The extent of the splitting is the
closed linear span of {U P,(X): a € }. If the extent of {P,: ae L} is X, then {P,: a €}
18 called an hermitian decomposition of X.

A closed linear subspace Y of X is called split if it is the range of an hermitian projec-
tion (necessarily unique, see (2) or (16)).

We start by listing some elementary results showing first that an hermitian decom-
position is an unconditional Schauder decomposition.

ProrosITION 2-2. Let {P,: a €2/} be a splitting of X, and let Y = X be its extent.

Then for xe Y
= Pz

aesf

Proof. For any finite subset & of &/, Pz = ¥ P, is an hermitian projection and so
aeF

has norm one. Thus {Psz: % < &} is an equicontinuous family and so the set
{x: Pzz—>x} is a closed linear subspace of X containing F,(X) for « € /. The result
follows.

ProrosITioN 2-3. Let {P,: €7} be a splitting of X and let Y < X be its extent.
Then the following are equivalent.

(1) ForzelX, Y P,x converges.
acsf

(i1) Y is split.
(i) T'here is an hermitian decomposition of X containing {F,: a € o/}.
These conditions are implied by:

(iv) Y contains no subspace isomorphic to c,.

Proof. (i)= (ii). Let Pz = X P,z, z€X. Then P is necessarily an hermitian projec-
tion whose range is Y. e

(ii) = (iii). If P is an hermitian projection onto Y, adjoin I — P to {F,: a € .2/}.

(iii) = (i). Suppose {P,: a €L} U {Fy: f B} is an hermitian decomposition of X.

Then, for xe X, 3 P,z is unordered convergent and hence sois ¥ P,z.
SVB aes

(iv)= (i). If Z.P,2 does not converge, then there is a sub-series ¥, F, x which does
i=1

not converge. This is, however, weakly unconditionally Cauchy, since

.3 Pl <1l
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for # < & finite. Hence Y contains a copy of ¢, by a result of Bessaga and
Pelezyniski (3).

Remark. Theorem 2-19 of (2) may be improved by assuming only that X contains
no copy of ¢,; the proof is similar to the above Proposition.

We now come to our first main theorem which is an extension of a well-known result
concerning diagonal maps on sequence spaces ((22)).

THEOREM 2-4. Let {F,: a €/} be an hermitian decomposition of a Banach space X.

Suppose T € B(X); then Y, P, T P, converges in the strong operator topology to an operator
aecd

DeB(X)and |D| < ||T|. If T is hermitian, then D is also hermitian.

Proof. We shall first prove the result for a finite decomposition {£, ... P,}; we show
by induction that if

n—pn—op n
8,=3% ¥ BTR+ X PBTP (0<p<n),
i=1 k=1 j=n—p+1

(summation over the empty set is taken to be zero when p = 0 or »), then ||S, | < |7,
and if 7' e 5#(X) then also S, e/ (X). Note that Sy = T, and now suppose true for
p = g, where 0 < ¢. Then by Lemma 2-1 of (2), I —2F,_, is an isometry of X into itself,
with inverse again I — 2P, . Hence
h (I - 2Pn—q) Sq(I - 2Pn—q)“ < ”T“
and therefore
I —2F, o) SI ~ 2P, o) +8,| < 2|T],

ie. “Sq—Pn—qu_San—q'l'?‘Pn—quPn—q“ <||7|.
However, Sy—= B q8;—8, P4 +2F, S, F,_, =S¢

Also we note that if S, € #(X) then so does (I —2F,_,)S,(I —2F,_,) since
exp (s(I — 2P, ) S(I —2P,_,)) = (I -2F,_,)exp (itS,) (I - 2P, ).
Hence, if S,€ #(X) then so does S, ;.
We conclude that S, = 5 P, TP, satisfies |:S,]| < |T||, and if T #(X), 8, e #(X).
i=1
Next we pass to the infinite case. Then, given x€ X and € > 0, we can find a finite
subset &, , of &, such thatif #nZ, , = @ then|| ¥ P,z <e.
acd
If # is finite and #n &, , = & then
|5 BTP+QT0l < 7).
ae
where @ = I— Y P,. Hence
it EQPGTPG +QTQ)( prax)" < e T},
ae ae

ie. | = P.TP,z| < ¢|T|
ac®

fordn#. ,= @.Thus 3 P,TPF, converges to an operator D in the strong operator
aco

topology.
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Now for # < o/ finite, welet Qg =I~ T P, Ifforze X, F > Z, ,
acF

1@ TR | =||( Zyl)aTPa"'Q}'TQﬁ)Qfx”
ac

171l Qs =]

e| 7

and so the net @z T@z— 0 in the strong operator topology. Hence

D=lim(Y P,TP,+QsTQg)
F ac¥F

in the strong operator topology. In particular | D|| < | 7|, and if 7' e 5#(X), De #(X).

<
<

Remark. An examination of the proof shows that the only property of hermitian
projections we use is that |I — 2P,|| = 1. Therefore, we have

CoROLLARY 2-5. Theorem 2-4 holds if we only assume that {P,: a € &} is a collection
of projections such that P, Py =0 fora + 8,z = ¥ P,z for zc X, and |I ~2P) = 1 for
aes

acs.

THEOREM 2-6. Suppose P and @ are hermitian projections on X such that PQ = 0.
Suppose T € #(X). Then both PTQ + QTP and i{(PTQ— QT P)cs#(X).

Proof. Let R = I — (P + @) and apply Theorem 2-4 to the decomposition (P + @, R)
and (P, @, R). We have that

PTP+QTQ+RTRe#(X) and PTP+QTQ+RTR+PTQ+QTPec#(X).

Hence PTQ +QTPec#(X).
Now as Pes#(X), by Lemma 4, p. 57 of (4)

i[P(PTQ+QTP)— (PTQ+QTP)Ple #(X)
where QP = 0 by (2) Theorem 2-13, i.e.
(PTQ-QTP)es#(X).
3. The hermitian elements.

DEFINITION 3-1. An element x of a complex Banach space X is said to be hermitian if
there is an hermitian projection P, whoserange is the linear span of z. The set of hermitian
elements s denoted by h(X) and its closed linear span by h(X).

On X we can induce a duality map X — X* (z—a*) with properties

@ fe*] ==,
(ii) #*(=) =|=[?
(iii) if zeA(X), then ||z|2 P, = z*@®z.

Note here that condition (iii) is not usually imposed but can easily be satisfied. Then
the duality map induces a semi-inner product [,] on X defined by [z,y] = y*(z)
(see (12)). This definition is unique for y e A(X).
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ProrosITION 3-2. h(X) 238 @ closed subset of X.

Proof. Suppose z, € i(X) and z,—+z. We may suppose z + 0 since 0€h(X), and we
may therefore also suppose inf|z,| = 8 > 0. Let g, = ||z, 2«%, so that g,®z, is an

hermitian projection. We have
lgall = fzall ™ < 6

so that there is a weak*-limit point g of {g,,} in X*. Now for net"

|1_gn(x)| = |gn(x—xn)|
< 0Yz—=,)|—+0.

Hence g(z) = 1, and g®xz is a non-zero projection.
For any ze X and teR '
2+ (% — 1) gn(2) 2]l = |2,

since g, ®x, is an hermitian projection. Letting n—> co, since g(z) is a limit point of g,,(2),

_ , 2+ (e~ 1) g(2) ]| = 2],
i.e. g®x is hermitian.

ProrosiTioN 3-3. Suppose z,ye(X) and [z,y] = 0. Then [y,z] = 0.

Proof. Since [z, y] = 0 we have P, = 0 and hence P, P, = 0. By Theorem 2-13 of (2),
PP, =0,ie.[y,z] =0.

The following definition of an orthonormal system is related to a definition of
Berkson(2), p. 116. It is, however, important to realize that Berkson requires the pro-
jections P, to be ‘perpendicular’, a formally stronger condition than being hermitian.
We shall show later that if z is hermitian then P, is perpendicular, so that the definition
given below of a complete orthonormal system is equivalent to Berkson’s Definition
4-1.

DErFInNITION 3-4. A collection {e,: a €2} of elements of a Banach space X is an
orthonormal system if [e,, e5] = 8,4 for o, e o and {e,: a e/} = h(X). The extent of
an orthonormal system is the closed linear span of the {e,: o € &7}. An orthonormal system
is complete (or an orthonormal basis) if its extent is equal to X.

DerFintTIiON 3-5. A closed subspace Y < X is orthonormal if it is the extent of an
orthonormal system. A split orthonormal subspace is orthogonal. 4 collection (Y,: o € &)
of orthogonal subspaces of X is mutually orthogonal if the associated hermitian projections
P,: XY, form a splitting.

An orthonormal system (e,: « € &) induces naturally an hermitian splitting defined
by P,z = [z,¢e,]e, for a€.2/. The following is simply a restatement of Propositions
2-2 and 2-3.

ProrosrTioN 3-6. Let {e,: a € 57} be an orthonormal system in X which has extent Y.
Then

(i) X [z e,]e, converges for ze Y,

acal

(i) X [z,e,]e, converges for all x € X if and only if Y is orthogonal,
aesl
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(iii) If Y contains no subspace isomorphic to c,, then Y is orthogonal.

Example 3-7. Let X = [, the space of bounded sequences. Then ¢, is an orthonormal
subspace but is not orthogonal, as there is no bounded projection of /,, onto ¢, (see (20)).

We note also that a complete orthonormal system is simply an unconditional
Schauder basis for which the unconditional basis constant is one.

4. Characterizations of Hilbert subspaces.

The results of this section are very slight improvements of results due to Berkson
((1), (2)) and Tam (21). The proofs are in some cases rather more elementary and for
this reason we give them in detail.

Lemma 4-1. Let || .|| be @ norm on C? such that ||(1,0)|| =||(0, 1)|| = 1. If (b 0) is the

matriz of an hermitian operator on C2, then b = a.

Proof. Let 8 = (2 g) ; we suppose 8 =+ 0. Then exp (¢4S) is an isometry for feR. In

particular 82 + 0, and so ab = 0. As § has only real eigenvalues, ab = c%, where ¢ > 0.
Then

exp (itS) = cosct sac—1ginct
p ~ Ubc1sinct cosct

(‘18 _( 0 iac*l)
CXP*2:°) T\t 0

is an isometry. As ||(1,0)|| =/(0,1)| =1,¢ = |a| = |b| and b = a.

Tett = then

ProproSITION 4-2. Let X be a Banach space and {e,, e;} an orthonormal system in X.
Suppose there exists T € (X ) such that [Te,, e;] & 0. Then whenever A = (Ay,)j-1,2; k=1, 2
is an hermitian matriz, the operator Y, a,.e¥ ®e,, is hermitian, and for any §&;, £,eC,

ik

€201+ Ezeall® = [£3|* + [ el

Proof. Let a = [Te,, e,], and B = [Te,, ¢,]. By Theorem 2-6, the operator aef ®e, +
fe% ®e, is hermitian. Restricting to lin (e;, ¢,), we obtain by Lemma 4-1 that f =a.
Again by 26, i(ae% ®e, —aef ®e,) € #(X) and so by the real-linearity of 5#°(X) both
€% e, + et ®e, and (e ®e,— €% @ey) belong to H°(X). So also do €% ®e, and €3 Re,,
and hence the first part of the assertion is proved.

Suppose £;, £,€C and |£;|2 + |£,|? = 1. Then the matrix

v-( 73

is unitary. Hence U = exp (:4), where 4 = (a;;,) is hermitian. Then Za, e} Qe e 7#'(X)
and 50 £, 6X®e, +& 5 e, + £, ek @ e, — Ey6f Qe is an isometry. In particular applying
this operator to ey, [|£1e, +£z¢,| = 1, and we quickly obtain the result.

Remark. This is a slight generalization of Lemma 6 of (21).
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ProrosiTiON 4-3. Suppose {e,,e,} is an orthonormal system, and there is a linear
combination e, + fle, € h(X) with aff + 0. Then there exists T € S (X) with [Te,,e,] + 0
and the conclusions of 4-2 are valid. In particular, lin (e, e,) < A(X).

Proof. Let P be the hermitian projection onto lin (xe, + fe,). Let F, be its restriction
to lin (e,, €,). Then F, must have a non-diagonal matrix and so either [Pe,, e,] & 0 or
[Pesy, e,] £ 0 (and hence both are non-zero). Note that lin(e,,e,) < A(X) follows
from Proposition 4-2.

COROLLARY 4-4. (Berkson(1).) Suppose M(X) = X; then X is isometric to a Hilbert
space.

Proof. By a result of Jordan and von Neumann ((11)) it is sufficient to show the
result for every two-dimensional subspace of X. If X, is two-dimensional we may
select e, € X, with ||e,|| = 1 and e, such that [e,, e,] = 0, with ||e,|| = 1. The result follows
from 4-3.

5. The Hilbert components of X.

DEFINTTION 5-1. Let {H,: A € A} be the collection of mazximal linear subspaces of h(X).
Then {H,: A€ A} are the Hilbert components of X.

We remark that since k(X)) is closed, each H, is also closed and as k(H,) = H,, each
H, is (isometrically) a Hilbert space, justifying our terminology.

Lemma 5-2. Suppose z, y e h(X) and [z,y] + 0. Then lin (z, y) < A(X).

Proof. We may assume z and y linearly independent. Let e, = |z|| 2z and
f=y—1y,e]e;. We note that f & 0. Since y*®y e (X) we may apply Theorem 2-4
todeduce that § = P(y*®y) P+ Qy*®@y)@ 5 (X), where P = ¢f ®e;and @ = I —P.
Now P(y*®y)P = AP, where AeR since it is an eigenvalue of S. Thus @(y* ®y) Qe
H(X),ie. Q*y*®Qye H#(X). Now Qy = f + 0; suppose @*y* = 0. Then by Theorem
2-6, both P*y*® @y and iP*y*®Qye #(X) so that P*y*®@Qy = 0. Thus P*y* =0
and so y* = 0, which is a contradiction. Thus @*y*®Qy + 0 and feh(X). Letting
e; = | f|~2f we have an orthonormal system {e,,e,}. Now the lemma follows from
Proposition 4-3.

THEOREM 5-3. The spaces {H,: A€ A} form a mutually orthogonal collection.

Proof. By Proposition 3-6, each H, is an orthogonal subspace (select an orthonormal
basis). Next suppose x € H, and ye H,, where A + x and [y, %] + 0 (and [z,y] + 0 by
3-3). Suppose also ze€ H,; then for some small enough aeR, [y +az,2] + 0. Hence,
lin (z, y + @2z) < A(X) and lin (z, y) < A(X); thus lin (z, 2) < A(X). As thisis valid for any
zeH,, xe H,

By the same reasoning, for any ze H,, y + az € H, for some a, and also y € H,. Hence
H, < H,, which is a contradiction. We conclude that [z, y] = 0; it follows quickly that
the spaces {H,} are mutually orthogonal.

It is now easy to see that any orthonormal system decomposes into an orthonormal
system in each H,; conversely orthonormal systems may be constructed as the unions
of such systems in each H,. We conclude:

COROLLARY 5-4. The extent of any maximal orthonormal system is h(X).
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COROLLARY 5-5. X possesses a complete orthonormal system if and only if X)) = X.
If X has an orthonormal basis, then it is possible to show (by considering finite-
dimensional hermitian operators and their associated groups of isometries) that the

norm of ¥ z,, where x, € H,, depends only on {||z,|: A€ A}. It follows easily that X
AeA

has an H-decomposition in the sense of (7); conversely such a decomposition implies
the existence of an orthonormal basis. It follows from Theorem 4-7 of (7) that X has
an orthonormal basis precisely if X €4 (see (7) and (8) for definitions).

6. Hermitian operators and isometries.

THEOREM 6-1. Suppose X is a complex Banach space, with h(X) + {0}. Let (H,: AcA)
be the Hilbert components of X. Let (II: A€ A) be the associated hermitian projection.
() If U: X>X is an isometry then U(h(X)) = h(X), and there is a bijection
v: A=A such that U(H,) = H,.
(i) If T: X X is hermitian then TII, = I1,T (AeA).

Proof. (i) If zeh(X) with ||z|| = 1, then U-1(2*®z) U is hermitian and so Uz e 4(X).
Hence for given A, U(H,) < k(X) andso U(H,) < H,, some u. However U~1(H,) < H,
by a similar argument and hence A = A" and U(H,) = H,. Letting x = y(A), we obtain
the desired mapping.

(ii) For teR, exp (¢tT) (Hy) = H,y).

For z€ H,, and ¢ such that x(t) + A,
| (exp (5tT) — I)z| > || T (exp (GT)—1I)=||
= |-
As lim ||exp (##T) — I|| = 0, u(t) = A for small enough ¢, and hence, as II, is unique,
t—0
exp (— ¢TI, exp (¢tT) = II,.
Expanding, we obtain (ii).

Theorem 6-1 obviously facilitates the identification of hermitian operators when

k(X) #+ {0}. In particular, we can completely determine #(X) when X has an ortho-

normal basis. The following two results are known but we believe the proofs are rather
simpler.

THEOREM 6-2 (Fleming-Jamison(7)). Suppose X is a Banach space with an ortho-
normal basis. Let (Hy: A€ A) bethe Hilbert components of X. Then for T € B(X), T € 5#(X)
if and only if T(H,) < H, and T is hermitian as an operator on the Hilbert space H,, for
each AeA.

Proof. 1t is a trivial consequence of 6-1 that if T' € 5#(X) then T(H,) < H, and 7T is
hermitian on H,. Now suppose conversely that T'(H,) < H, and T is hermitian on
each H,. For each A, thereis a net S, , of finite-dimensional hermitian operators on H,
such that S, ,— T is the weak-operator topology of H,. Then

k(n) £
Sn,/\ = jZ a; €y ®ej:
=1
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where (e;: 1 < j < k(n)) is an orthonormal system in H, and a;eR. Hence
821l : XX is hermitian and therefore, taking weak-operator limits, 717, is
hermitian on X. Again taking weak-operator limits, since 7' = ZT'I],, T' is hermitian.

CoROLLARY 63 (Tam (21)). Suppose X isnot isometricto a Hilbert space and (e,: a € )
s a symmetric orthonormal basis of X (i.e. for every bijection m: &7 —Z, there is an
isometry U,: X —> X such that U,e, = e,,). Then T is hermitian on X if and only if T

has a representation
Tz =X a,lz,e,.le,,

xesf
where a,€R and sup |a,| < co.

Proof. Let (Hy: AcA) be the Hilbert components of X, and let &, = {a: e, € H,}.
Clearly if &, fe <, then m(x) and 7(8) belong to the same &7, for every bijection
m: &/ — o/ . Hence, either each 2, is a singleton or there is only one Hilbert component;
the latter is impossible, since it would imply that X is a Hilbert space. Hence each &/,
is a singleton and each H, is one-dimensional; the result then follows by 6-2.

Rolewicz (17) defines a norm on a Banach space X to be convez-transitive if, whenever
| o] = 1, the unit ball of X is the closed convex cover of {Uz,: U ¢ %} where ¢ is the
group of isometries of X. He shows that the Banach spaces L,(0,1) for 1 < p < co are
convex-transitive but C[0, 1] is not.

THEOREM 6-4. Suppose X has a convex-transitive norm and h(X) # {0}. Then X is
a Hilbert space.

Proof. Suppose xyeh(X) with ||zg)| = 1. Then {Uz,: U € %} is contained in A(X) and
hence by convex-transitivity 4(X) = X. Thus X has an orthonormal basis. Let
(H,: A€ A) be the Hilbert components of X, with the associated hermitian projections
II,. If xe H, , then for any Ue ¥, ,\Z |II, Uz| = ||=|| (since Uz € H, some ). Hence for

any yeco(Uz: Ue %),

S < .
In particular taking ||z| = 1, we see that if ||y| = 1 then
Si) < 1.
Hence for ye X
Iol = STl

However, if A is not a singleton, we may take z,€ H, and z,€H, with A % 4 and
|z = || = 1. Then for Ue @

max ML U3z, + )| = %
and hence for all yeco(U(4(z, +2,)): Ue@)
max| Ty < &

This is a contradiction, and so A is a singleton, i.e. X is a Hilbert space.
To conclude the section, we classify A(X) for a Banach function space. Let (2,2, #)
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be a o-finite positive measure space, and let X be a Banach space of z-measurable
functions on Q (where we identify functions differing only on a set of x-measure zero)
such that

(1) If fe X, g is u-measurable and |g| < |f]| a.e., then ge X and ||g| < || f]|-
(2) If f, > 0 and f,€X are such that f,]f a.e. and sup|f,| < oo, then feX and
n

£l = Lim| f,||- (See (14) or (15) for a discussion of these conditions.)
n—w

THEOREM 6-5. Let X be a Banach function space satisfying (1) and (2) above. Let
feX and Q, = {w: f(w) % 0}. Then feh(X) if and only if
(i) there is a u-measurable function k: Qy—R* such that if g = 0 on Q — Qyand ge X,

lole = [ ol aus

(ii) if g1 =0 0n Qo, g5 = g3 = 0 on Q—Q, and |igs|| = |igs| then |lg,+gall = g1 +9s-
Proof. If (i) and (ii) are satisfied then the projection

Pg = Uﬂ afk dﬂ}f

is hermitian. This may be verified by showing that ||¢*P|| = 1, teR.

Conversely suppose feh(X). By assumption (1) on X, if ¢ is g-measurable on
Q,|¢| = 1 a.e., then the multiplication operator M;g = ¢.gis an isometry. Hence for
A eZ, the projection P,g = x.g (where y, is the characteristic function of 4) is
hermitian.

Let H, be the Hilbert component of f. By 6-1 P,fe H.for AeZ.If An B = & then
P, Py = 0 and hence the projections P, and Py are orthogonal when restricted to H,.
In particular

I 2 f112+]| Paf? = || Pau oS

Let v(A4) = | Pyf|? for AeX. Then by using condition (2), v is a positive measure.
Clearly v(Q—Q,) = 0, and v is absolutely continuous with respect to x. Hence by
Radon-Nikodym theorem v = k. |f|2. s, where k: Q— R+ is zero outside Q.

If g is a simple function

lo-f12 = [lofa
- [lo.s1kdn.

Taking pointwise limits we obtain that if g = 0 outside Q,
lol® = [ lol*%a

To prove condition (ii) it is again only necessary in view of (2) to prove it when
sup |gof~1| < o0 and sup |gsf~1| < co (when 9, = 0). Let L,(f) be the closure of the



Orthonormal systems in Banach spaces 503

space {f.g: g€ L,(u)} in X. We note that if ¢ is real and ¢ e L,(x), then M is an
hermitian operator on X. Then M,fe H, and so L(f) < H,. Suppose g, g5€ Lo(f);
then there is a finite-rank hermitian operator § on L, (f) (which is a Hilbert space) such
that

€*5gy = gs.

Then Sz =3 afw.flf, zeLolf)
i=1

where f;eH,, |f;| = 1 and a;eR. Extend S to S on X by

Sz = f‘,l oz filf; zeX.
iz

Then § is hermitian, and ||e®S|| = 1.

Let ¢(w) =1 for weQy, $(w) = —1 for e Q—Q,. Then My is an isometry and
MZ(ff ®f;) My is an hermitian projection for each j, 1 < j < n. However,

MUfF ®f;) My = M3fF ® M,f;
(note M3 = I). As Myf; = f;, M%f¥ = ff. Thus
[gl:fj] = [-M¢91:fj]
=-[gfi] 1<j<n

Hence Sg, = 0 and €¥(g; + g,) = g, +gs. Hence ||g; +go|| = |1+ -

Remark. For many examples these conditions hold if and only if Q, is a single point
(an atom).

7. Perpendicular projections (after Berkson).

In this short section we relate our notion of an orthonormal system to that of
Berkson (2), p. 116. Following Berkson ((2), p. 112) we say a collection & of hermitian
projections is an (7.c)-family if given P,, P, & there exists F e & with

A(Fy) = Z(F) N Z(F,),

and if I — Pe % whenever P €% . A projection is perpendicular if it belongs to every
maximal (i.c)-family.

TEEOREM 7-1. Every hermitian projection of rank one is perpendicular.

Proof. We suppose & is a maximal (i.c)-family. Let (H,: A€ A) be the Hilbert com-
ponents of X and IT,: X X be associated hermitian projections. Then II, commutes
with every hermitian projection, and if R,: H,— H, is an hermitian projection then
R, 01II, is hermitian on X (61 (ii) and the proof of 6-2).

If Pes#(X) is a projection then so is

PI—-3Y IL)+ ¥ Ryoll,,
AcA, Ach,
where A, < A is finite and each R,: H,~ H, is an hermitian projection. Let & * be
the collection of hermitian projections of this form for Pe#. We show #* is an
(i.c)-family.
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First observe

I-P(I-3% II,)- X Ryoll, =(I—-P)(I- X II,)+ X (I-R,)o[I,.
AeA, Ae A, AeA, AeA,

Next suppose P, P,e ¥ and
@, = R(I- p2 HA) AEAOR(}\)OHA

Q, = Po(I - Z HA) tZ ERoIT,
€A,
(we suppose A, is the same for both @, and ¢, without loss of generality). Suppose
FBye&F and #(P,)) = Z(P,) n Z(P,),andsuppose for A €Ay, R is an hermitian projection
on H, such that Z(RQ) = Z(RY) n Z(R%). Then let

Qo = By(I - 2 H,\) +A2 RQo1T,.
€A
Then Q,€ F * and 2(Q,) = Z(Q,) N A(Qy)-
Thus # *isan (i.c.)-family and hence # * = &% . As0€.%, every hermitian projection
of rank one isin Z.

8. Bounded groups of operators.

Let X be a real or complex Banach space, and let 4 be any bounded subgroup of
the general linear group G'L(X) of all bounded invertible operators on X. Then X can
be renormed equivalently so that each 7 €  is an isometry, by

| * = sup | 7] .
Teg

Following a definition of Rolewicz(17), p. 251, we say that a bounded subgroup of
GL(X) is mazximal if it is not contained in any larger bounded subgroup, and a norm
| .|| on X is maaimal if its group of isometries is maximal. By the above remark, corre-
sponding to every maximal subgroup ¥ there is at least one maximal norm for which ¢
is the group of isometries.

Rolewicz shows ((17), pp. 251-252) that on a finite-dimensional space, a norm is
maximal if and only if it is a Euclidean norm (he demonstrates this only for the real
case, but the complex case is proved similarly). Thus the maximal bounded subgroups
of GL(X) are similar to orthogonal or unitary groups. For the (real or complex) spaces
Cos Ip (1 < p < 00), L,(0,1) (1 < p < ), Pelezynski and Rolewicz ((17), pp. 252-265)
have shown that the standard norms are maximal. However, for spaces of continuous
functions less is known; in (17) p. 260 it is shown that if K is the Cantor set, then both
C(K) and Cr(X) have maximal norms (by C(K) we denote the continuous complex-
valued functions on K). Rolewicz asks ((17), p. 259) if the norm on C[0, 1] is maximal.

In this section, we shall settle this question by using the results of the previous
sections, and indeed we establish much more general results on spaces C(S) (for real-
valued functions, see the following section).

Let 8 be a locally compact Hausdorff space and let Cy(S) be the space of continuous
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complex functions on S vanishing at infinity. The standard norm on Cy(S) we denote

by | |«
1fllo = sup | £(s)].

The dual of Cy(S), we denote by C#(S); this can be identified with the space of finite
regular Borel measures on S. (A complex measure g defined on the Borel sets of § is
regular if for a Borel set B and € > 0 there exists an open set @ > B and a compact set
C < B such that |¢| (G—C) < €.)
On Cy(8), every isometry takes the form
Uf(s) = 0(s) f(y(s),
where §: 8—C is continuous and satisfies |0(s)| = 1, while y: §—8 is a homeo-

morphism (see Torrance (23) or (5) p. 93). Thus the group ¢ of isometries on C,(S) may
be considered as the semi-direct product of the group . of multipliers

Mef(s) = 0(s)f(s),
where |6(s)| = 1 and the group f induced by the group I"' of homeomorphisms of S,
T, f(s) = f(y(s)).

THEOREM 8:1. Let || .|| be @ norm on Cy(S) (equivalent to | .|| ) such that every My e 4 is
an isometry. Then there is an equivalence relation ~ on S such that for some neN, we
have card {s': s’ ~ 8} < n for all s€ 8, and ve h(CF(8S)) if and only if

v= 3§, 0,

8'~g
for some s€ 8, where £, € C and 08, denotes the unit mass at s'.
Proof. For any bounded continuous complex function ¢ on S, we define

Illop = sup(lé-fI: 117 < 1).

Then Cy(8S) (bounded continuous functions) becomes a Banach algebra, and every real
function in Cy(8) is hermitian since, if ¢ is real, | ®?|,,, = 1 by assumption. Hence by
the Vidav—Palmer theorem ((4)), C,(S) is a B*-algebra, and it follows that

[#1ep = sup (o).

In particular, we have ||g| < 4| for g, ke Cy(S) whenever |g| < || everywhere.
For u, veCy(S)* with [¢| < |v| we have
el = sup { fgdu:|g| < 1}
= sup { [ggdp: |g] < 1]¢llop < 1}
= sup { [ |g| d|u:llgll < 1}
< sup {[|g|dl»:|lg} < 1}
=|vll-

32 PSP 79
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Now for se 8, the map P,: C¥(8)—>C¥(S)

Fp = ﬂ{s} S
is an hermitian projection, since

le¥Popl] = lle* s} 5+ (u— p{s} 8,)|
= || le*ufs} 8+ (u— (s} &)l |
= 11wl =
Hence §,eh(C%(S)) for seS.

Conversely suppose ueh(C§(S)), and consider the space L!(|x|) which can be
embedded in C§(S) by the map f—f.|x|. This is an isometry for the || |,-norm and
a homeomorphism for the equivalent norm under consideration. We can re-norm
L'(|p]) equivalently by

141 = f- bl

Let 4 = 0|u|, where |0| = 1, || a.e. Then 0 € h(L*(|x|)), with the new norm. However,
with this norm L(|x|) is a Banach function space as described immediately preceding
Theorem 6-4.

If |g| < |f| then |lg.|u|| <|f-|#|| by the preceding results. If 0 < f,]f with
fn€LY(|p|) and sup| f,|| < co then clearly fe L'(|x|) as the norm is equivalent to the
L'-norm; also f, . |u| —f. |#| weak* in CF(S) and hence | f|| < sup| fal-

Therefore, there is a weight function %(s) on § such that

1912 = | ko) o)2dlul o).

As this is equivalent to the L'-norm, L(|¢|) is finite-dimensional ((6), p. 338) and
hence p is a finite linear combination of measures (,: s€S).

Thus A(C,(S)) is precisely the closed linear span of {3,: s&S}, and {6,:8€8}is an
orthonormal basis of #(C¥(S)). We introduce an equivalence relation ~ on s bys~s’
if and only if 8, and &, belong to the same Hilbert component of C§(S). It is clear then
that v e A(CE(S)) if and only if it has the form specified in the theorem. Thus it remains
only to show sup card{s’: s’ ~ 8} < oo. For this note

8€

126,12 = X |1&]2
8 ~8 8§ ~8
< m(s)k,

where m(s) = card{s': 8’ ~ s} and k = sup||J;|. Thus
s€eS

ﬂzafs'lh =m(s) < Kyky(m(s)),

where K is a constant such that

IVl < K|y »eC3(S).
In particular sup m(s) < co.
8

Next we seek conditions under which & = #1' is a maximal bounded group, i.e. the
usual norm on C,(S) is maximal.
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THEOREM 8-2. Let S be a locally compact Hausdorff space and suppose either

(i) there is a dense subset of S of points possessing a neighbourhood homeomorphic to
an open set in a Euclidean space;

(i) S s infinite and possesses a dense set of isolated points.
Then ¥ = AT is a maximal bounded group and so the standard norm on CyS) is
maximal.

Proof. Let ||| be any norm on Cy(S) for which ¥ is contained in the group of
isometries. Let ~ be the equivalence relation of Theorem 8-1. We observe that if
8 ~ s’ then since T)-1 is an isometry for yel', T5-1(d,+ &;) e h(CF(S)). Thus J,¢+
Oy ER(CE(S)), i.e. ¥(s) ~ y(s").

(i) Suppose s has a Euclidean neighbourhood U and s ~ s’ with s # s’. Then there
is a closed neighbourhood B of s such that B < int U, s'¢ B and B is homeomorphic
to a closed ball in R®. Thus for any s” eint B there is a homeomorphism 7: B— B such
that 7(s) = s” and 7(5) = 5 for §€0B. Define y: S— 8§ by y{(s) = 7(s) se B and y(s) = s
for s¢ B. Then y €I’ and y(s) = s”, but y{s') = s’. Hence s” ~ 8’ ~ s. As thisis true for
all s"e B, we have card{s': s’ ~ s} = 00, a contradiction to 8-1. Thus s ~ s’ implies
s =s.

Let S, be the set of seS which possess Euclidean neighbourhoods. Suppose
U: Co(8)— Cy(S) is an isometry. Then, for s,€.8,, U*J; belongs to a Hilbert component
of C§(8) of dimension one. Thus as {§,: s€ S} is a maximal orthonormal system,

U*8,, = 0(s0) 8,55

where |6(s,)| = 1 and 7y is a map from §, to S. By the weak*-continuity of U*, it
quickly follows that
U*83 = 0(8) 87(3),

where 6 is continuous, |6(s)| = 1 and y: §—§ is continuous. As U is invertible, y is
a homeomorphism and hence Ue #T'.

(ii) The proof is similar. Suppose s is isolated and s ~ s’ where s’ & s. Let s” be any
other isolated point. Then there exists y € I' such that y(s) = s”, y(s") = sand y(5) =3
for 3¢ {s,s"}. It follows that 8" ~ s’ and so again the equivalence class of s is infinite,
a contradiction. The remainder of the proof is as in (i).

Remarks. This settles the problem of Rolewicz by showing that the norm on C[0, 1]
is maximal. In fact Cy(S) has maximal norm whenever S is a manifold with boundary.
The only examples we know of spaces S for which C(S) is non-maximal are those which
contain a finite number of isolated points; these may be renormed by

171 = sup| £l + 4/ Z [f&)]%),
S-8, 8eS,

where 8, is the set of isolated points.

9. The space Cy ((S).

In this final section, we use different techniques to study the maximality of the norm
in the space Cy ((S) of continuous real-valued functions vanishing at infinity on a

32-2
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locally compact Hausdorff topological space S. In this case there are, in general, fewer
isometries, due to the lack of multipliers. Indeed, throughout this section we shall
suppose that § is a connected manifold without boundary, and in this case, every
isometry of Cg ((S) takes the form +7,, where y eT'(S). We shall need the following
well-known lemma.

Lemma 9-1. Suppose 8 is a connected manifold without boundary of dimension greater
than one. Then if (s,,...,8,) and (s, ..., s,) are two sets of distinct points of S, there exists
v e'(8) with y(s;) = s;.

Now suppose || - || is a norm on Cy (S), equivalent to | ||, and such that every T,
v eI'(S), is an isometry.

Levma 9-2. Under the assumption of Lemma 9-1,if u, A€Cy (S)*, ut(S) = AH(8) and
#=(8) = A~(8) then |l x| = | Al

Proof. We have immediately from Lemma 9-1 that if (s, 8,) and (s], s3) are two pairs
of distinct points in § then for a, £ > 0,

llocds, — B8, || = [|ds; — Ao
Define ¢(a, B) = ||ad,, — B8,,|| for a, B > 0. For general ueCy o(S)*, u is in the weak*-
closed-convex hull of {#*(8) d; —u~(8) 0;,: 8,,8,€ 5} and so
lall < ¢@t(S), #(9)).

Conversely for given u € C} o(S) and € > 0 we choose disjoint compact sets F; and F,
such that 4 > 0 on F}, 4 < 0 on F, and |x| (S\(F, U F},)) < €. By compactness we may
cover F, with a finite collection of open subsets By, ..., B, such that each B, is homeo-
morphic to a closed ball in R, where d = dim S and B;n F, = &. Similarly we may
cover F, with By, ..., B,, such that each B,, i > k, is homeomorphic to a closed ball
in R¢, and B;n F, = &, ¢ > k. For each ¢ < m, pick s;€B,. Then there is a sequence
¥D e T'(8S) such that y{¥)(s) = s for s¢ B, and lim y{¥(s) = s,.

n—xo

In the weak*-topology for any A€ CR (S)

and hence, since the norm is weak*-lower-semi-continuous,
1A(Be) 85+ Azl < [|A]-
Applying this to g for ¢ = 1,2, ...,m in turn we obtain

m i-1

£ (B U B) ot o < Il
=

Since || | is equivalent to || |,

m i—-1
H Zp (-Bt \U Bj) O || < el + Ke
=1 =1

for some constant K, independent of z.
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Next we use Lemma 9-1 to determine a sequence 7y, € I'(S) such that
Yul8)=>s,1 <2<k and vy,(s8))>s,, k+1<ig<m.

Then we obtain by weak*-lower-semi-continuity of the norm,

k m k
o (8 2)m (850§ o < o ke

% k

Now w( 0 BJ) =By +u( U BAF)
> ut(S)—2e

and 3 ( L"j B;\ LkJ Bi) < —pu~(S)+2e.

i=1  i=1
Hence [l e*(8) &, — = (S) &, || < ||f| +5Ke
and so Il = Slet(S), £=(S)).

THEOREM 9-3. Let S be a connected manifold without boundary of dimension greater
than one. Then Cg_, (S) has maximal norm.

Proof. We again suppose || - || is a norm on Cy 4 (S) such that every 7,, y e T'(S), is an
isometry. Let K* denote the unit ball of (C% ( (S), | -||). Suppose AeexK*; then A is
also an extreme point of the set {x: u*(8) = A*(S), p=(S) = A~(S)} by Lemma 9-2.
Hence A = ad, —f9, fora, f > 0and s, # s,. By Lemma 9-1itfollows thatif «d, — 44,
is an extreme point then so is ady; — 44; for any s; =+ s;.

Now let U:Cg o (S)>Cro(S) be an isometric isomorphism. We note that
U*(exK*) = exK*. We shall show that supp U*(8,) contains at most two points for
each sef.

First suppose exK* contains a point ad,— 86, for a & . Then for any u =*s
supp U*(ad,— £6,) contains at most two points. Letting « approach s and using the
weak*-continuity of U* we see that supp U*(d,) contains at most two points.

If ex K* contains no such points, then every extreme point of K* is of the form
(0, — 6,). Hence S isnot compact (since the function e(s) = 1 cannot belong to Cy 4 (8),
as _[-ed,u, = 0 for peexK*). Therefore, U*§, = lim U*(6,—4,) has again at most two

U—0

points in its support.

Thus in general supp U*(8,) contains at most two points. We may assume that for
some ¢, £ > 0, ad,— 6, is an extreme point, since otherwise the norm is simply a
multiple of || || .

The set S, of s such that supp U*(J,) has two points is open in S and hence is either
empty or infinite. Suppose the latter, and suppose s and 8’ belong to §;,. Then
U*(ad, — fy) also has at most two points in its support. It follows that

supp (U*4,) nsupp (U*S,) + @

As the set {U*6,: s €8} is linearly independent, at most two points can have the same
support. Therefore there exist s,, 8, 85 and s,€ .S, such that the sets supp (U*d,,) are
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distinct. If supp (U*4,) = {u,, %5}, then supp (U*4,,) and supp (U*4,,) must be {u,, us}
and {u,, 43}, and then it is impossible to choose a two-point set 4 intersecting each of
these three sets. Therefore S, = @.

Therefore U*d, = 0(s)d,,, s€S; by weak*-continuity y and 6 are continuous.
Furthermore |8, = ||6y] for s & s’, and hence |6(s)| = 1 for s€ 8. As § is connected
O0@)=+1orf(s)=—1,and U* = +T,.

We are grateful to Dr A. D. Thomas for calling our attention to reference (10), in
which it is shown that there is a compact connected subset P of R2 such that P has no
non-trivial automorphisms. Thus Ci(P) has only two isometries, + I, and clearly has
non-maximal norm. It is not clear whether C(P) can have maximal norm. A similar
example has also been observed by A. Pelczynski (see (6)).
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