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1. Introduction.

By an orthonormal system in a general complex Banach space, we mean a collection
{ea: CX.ES/} of unit vectors such that, for each a, there is an hermitian (in the numerical
range sense, see(4))projectioni^whoserangeislin(ea)andsuch that PaPp = 0,ifa 4= f$.
This paper is devoted to the study of orthonormal systems in general Banach spaces,
and their applications to problems of characterizing isometries and hermitian
operators.

We note first that our definition of an orthonormal system differs from that of
Berkson(2), p. 116 (he requires the projections Pa to be perpendicular). However, we
show in section 7 that the definitions are equivalent, although a good deal of work
seems to be required to prove this. Orthonormal bases have been studied under the
name normalized hyperorthogonal bases in (19), 355 (cf. (7)).

Sections 2 and 3 are devoted to elementary observations concerning hermitian
projections. The most significant results of these sections are the Diagonalization
theorem (2-4) and its consequence (2-6). These are obtained by generalizing techniques
used previously in certain sequence space settings. In section 4, we obtain some results
of Berkson and Tarn by methods which seem more elementary than the original argu-
ments; also we require some generalizations for future applications.

In section 5, we prove our fundamental results on orthonormal systems. I t turns
out that, in any Banach space X, there is a unique subspace fi(X) which is the closed
linear span of any maximal orthonormal system. Furthermore, %{X) may be decom-
posed into a direct sum of Hilbert spaces, which we call the Hilbert components of X.

These results are applied in section 6 to obtain theorems concerning the possible
forms of hermitian operators and isometries on X. Some of these results have been
previously obtained by Fleming and Jamison ((7), (8)); see also (18) and Tarn (21). We
feel the proofs here are rather simpler. Some applications of these results are also given.
Thus Theorem 6-4 characterizes Hilbert spaces, while Theorem 6-5 characterizes the
hermitian operators of rank one on a Banach function space. As already remarked,
section 7 links our ideas with those of Berkson.

In sections 8 and 9, we consider a problem posed by Rolewicz(i7). A norm on a
Banach space X is maximal if there is no equivalent norm for which the group of
isometries is strictly larger. Rolewicz shows that the spaces Lp(0,1) (1 < p < oo),
lp (1 ^ P < °°) have maximal norms, and a finite-dimensional space has maximal
norm if and only if it is a Hilbert space. He asks ((17), p. 259) whether C[0,1] has
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maximal norm. In section 8 we show that C[0,1], and indeed C0(S) for a large class of
locally compact spaces S, have maximal norm. In section 9, we consider the same
problem for spaces of real functions; here the techniques are necessarily quite different
and the results rather weaker. We show that CR> 0(S) has maximal norm when S is
a manifold without boundary of dimension greater than or equal to two.

2. Hermitian decomposition and splittings.

DEFINITION 2-1. An (hermitian) splitting of a Banach space is a family {Pa: txes/}
of hermitian projections such that Pa Pp = 0, if a 4= /?. The extent of the splitting is the
closed linear span of { U Pa{X): a e s/]. If the extent of {Pa: a e sf\ is X, then {Pa: a e s/}
is called an hermitian decomposition of X.

A closed linear subspace Y of X is called split if it is the range of an hermitian projec-
tion (necessarily unique, see (2) or (16)).

We start by listing some elementary results showing first that an hermitian decom-
position is an unconditional Schauder decomposition.

PROPOSITION 2-2. Let {Pa: a e r f } be a splitting of X, and let Y <= X be its extent.
Then for xeY

x = 2 Pax-

Proof. For any finite subset !F of J / , P& = 2 Pa is an hermitian projection and so

has norm one. Thus {P&: !F <=• s#) is an equicontinuous family and so the set
{x: PjpX-t-x} is a closed linear subspace of X containing Pa(X) for a £ j / . The result
follows.

PROPOSITION 2-3. Let {Pa: txestf} be a splitting of X and let F c J be its extent.
Then the following are equivalent.

(i) For xeX,Yi Pa
x converges.

(ii) Y is split.

(iii) There is an hermitian decomposition of X containing {Pa: a esf\.

These conditions are implied by:
(iv) Y contains no subspace isomorphic to c0.

Proof. (i)=> (ii). Let Px = £ Pax, xeX. Then P is necessarily an hermitian projec-

tion whose range is Y.

(ii)=> (iii). If P is an hermitian projection onto Y, adjoin I — P to {Pa: aes/}.

(iii)=>(i). Suppose {Pa: assf) U {Pp~. fie^S) is an hermitian decomposition of X.
Then, for x e X, 2 Pax is unordered convergent and hence so is 2 Pa

x-
aesf

oo
(iv) => (i). If SPa ; does not converge, then there is a sub-series 2 Px% which does

»=i '
not converge. This is, however, weakly unconditionally Cauchy, since

II 2 M < ||4
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for !F <= JV finite. Hence Y contains a copy of c0 by a result of Bessaga and
Pelczynski(3).

Remark. Theorem 2-19 of (2) may be improved by assuming only that X contains
no copy of c0; the proof is similar to the above Proposition.

We now come to our first main theorem which is an extension of a well-known result
concerning diagonal maps on sequence spaces ((22)).

THEOREM 2-4. Let {Pa: aes/} be an hermitian decomposition of a Banach space X.
Suppose TeB(X); then 2 PaTPa converges in the strong operator topology to an operator

DeB(X) and \\D\\ < ||T||. If T is hermitian, then D is also hermitian.

Proof. We shall first prove the result for a finite decomposition {Px... Pn}\ we show
by induction that if

pp
Sp = S 2 P,TPk + 2 PiTPj (0^p< n),

3=1k=\ j=n-p+\

(summation over the empty set is taken to be zero whenp = 0 or n), then ||JSP|| < ||T||,
and if T eJ^(X) then also SpeJ4?(X). Note that So = T, and now suppose true for
p = <7,whereO < q. Then by Lemma 2-1 of (2),I — 2Pn_q is an isometry ofXinto itself,
with inverse again I — 2PTC_g. Hence

| |(/-2PB^)5f l(/-2Pn_f l) | |
and therefore

\\(I-2Pn_q)Sa(I-2Pn_q)+Sa\\

i-e- \\Sq-Pn-qSa-SqPn_q + 2Pn_QSaPn^\\ ^ \\T\\.

However, Sa - Pn_qSq - Sq P^ + 2Pn_q8Q Pn_q = Sa+1.

Also we note that if Sq e 3f(X) then so does (I - 2Pn_g) Sg{I - 2Pn_q) since

Hence, \iSqe3^(X) then so does Sq+1.

We conclude that Sn= S P^TP^ satisfies \\Sn\\ ^ \\T\\, andif TeJ?1 (X), SneJ^(X).
3 = 1

Next we pass to the infinite case. Then, given xeX and e > 0, we can find a finite
subset &e>x of s2, such that if SS n ^ > x = 0 then || £ Paz|| ^ e.

ae0S

If J1 is finite and 38[\^x= 0 then

aeSS
where Q = I— 2 Pa. Hence

| |(S PaTPa + QTQ) ( S Paa;)|| ^ e\\T\\,
0S %

i.e. IIS
•xeSSfor 8$ n -^e,z = 0 • Thus 2 -Pa -̂Pa converges to an operator D in the strong operator

topology.
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Now for & <= d finite, we let Q? = I- £ Pa. If for x eX,

sll =11(2 P.

and so the net Q^TQ^-z-0 in the strong operator topology. Hence

Z> = lim(

in the strong operator topology. In particular ||D|| < \\T\\, and if TeJff{X), De34?(X).

Remark. An examination of the proof shows that the only property of hermitian
projections we use is that \\I — 2Pa|| = 1. Therefore, we have

COROLLARY 2-5. Theorem 2-4 holds if we only assume that {Pa: cues/) is a collection
of projections such that PaPfi - 0 for a*fi,x = '2l PaxforxeX, and | | / -2PJ = lfor

aes/.

THEOREM 2-6. Suppose P and Q are hermitian projections on X such that PQ = 0.
Suppose TeJf(X). Then both PTQ + QTP and i(PTQ-QTP)

Proof. Let R = I — (P + Q) and apply Theorem 2-4 to the decomposition (P + Q, R)
and (P, Q, R). We have that

eJf(X) and PTP + QTQ+RTR+PTQ + QTP

Hence PTQ + QTP e J^{X).

Now as Pec3f (X), by Lemma 4, p. 57 of (4)

i[P(PTQ + QTP) - {PTQ + QTP)P] e jf(X)

where QP = 0 by (2) Theorem 2-13, i.e.

i(PTQ-QTP)eJif(X).

3. The hermitian elements.
DEFINITION 3-1. An element xof a complex Banach space X is said to be hermitian if

there is an hermitian projection Px whose range is the linear span ofx. The set ofhermitian
elements is denoted by h(X) and its closed linear span by fi(X).

On X we can induce a duality map X->X* (x-*-x*) with properties

(i) 11*11 = INI.
(ii) x*(x)=\\x\\*,

(iii) ifxeh{X), then||a:||aPx = a;*®*.

Note here that condition (iii) is not usually imposed but can easily be satisfied. Then
the duality map induces a semi-inner product [, ] on X defined by [x, y] = y*(x)
(see (12)). This definition is unique for yeh(X).
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PROPOSITION 3-2. h(X) is a closed subset of X.

Proof. Suppose xneh(X) and xn->x. We may suppose x =t= 0 since Oeh(X), and we
may therefore also suppose inf ||arn|| = 6 > 0. Let gn = ||a;n||~

2a:*, so that gn®xn is an
hermitian projection. We have

\\gn\\ = K I - 1 < e-1

so that there is a weak*-limit point g of {gn} in X*. Now for

Hence g(x) = 1, and g®x is a non-zero projection.
For any zeX and teR

\\z + (e«-l)gn(z)xn\\=\\z\\,

since ̂ n ®xn is an hermitian projection. Letting n-+ oo, since <7(z) is a limit point of gn{z),

\\z + (e«-l)g(z)x\\=\\z\\,
i.e. gr®a; is hermitian.

PROPOSITION 3-3. Suppose x,yeh(X) and [x,y] = 0. Then \y,x\ = 0.

Proof. Since [x, y] = 0we have Ptf a; = 0 and hence Pv Px = 0. By Theorem 2-13 of (2),
PxPv = 0,i.e.\if,x] = 0.

The following definition of an orthonormal system is related to a definition of
Berkson(2), p. 116. I t is, however, important to realize that Berkson requires the pro-
jections Px to be 'perpendicular', a formally stronger condition than being hermitian.
We shall show later that if a; is hermitian then Px is perpendicular, so that the definition
given below of a complete orthonormal system is equivalent to Berkson's Definition
4-1.

DEFINITION 3-4. A collection {ea: oces/} of elements of a Banach space X is an
orthonormal system if [ea, e^\ = S^for a,fie<s/ and {ea: a.esf\ <= h(X). The extent of
an orthonormal system is the closed linear span of the {ea: aeji/}. An orthonormal system
is complete (or an orthonormal basis) if its extent is equal to X.

DEFINITION 3-5. A closed subspace Y c: X is orthonormal if it is the extent of an
orthonormal system. A split orthonormal subspace is orthogonal. A collection (Ya:aes/)
of orthogonal subspaces ofX is mutually orthogonal if the associated hermitian projections
Pa: X-+Yaform a splitting.

An orthonormal system (ea: aes/) induces naturally an hermitian splitting denned
by Pax = [x,ea]ea for aestf. The following is simply a restatement of Propositions
2-2 and 2-3.

PROPOSITION 3-6. Let {ex: aesf} be an orthonormal system in X which has extent Y.
Then

(i) 2 ix> c J ea converges for xeY,

(ii) 2 Vx> ea\ ea converges for all xeX if and only if Y is orthogonal,
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(hi) / / Y contains no subspace isomorphic to c0, then Y is orthogonal.

Example 3-7. Let X = lm the space of bounded sequences. Then c0 is an orthonormal
subspace but is not orthogonal, as there is no bounded projection of lm onto c0 (see (20)).

We note also that a complete orthonormal system is simply an unconditional
Schauder basis for which the unconditional basis constant is one.

4. Characterizations of Hilbert subspaces.

The results of this section are very slight improvements of results due to Berkson
((1), (2)) and Tarn (21). The proofs are in some cases rather more elementary and for
this reason we give them in detail.

LEMMA 4-1. Let ||. || be a norm on O such that ||(1,0)|| = ||(0,1)|| = 1. If U Z\ is the

matrix of an hermitian operator on O , then b = a.

Proof. Let S = I, I; we suppose S =f= 0. Then exp (US) is an isometry for t e R. In

particular S2 4= 0, and so ah =)= 0. As S has only real eigenvalues, ab = c2, where c > 0.
Then

.. „. ( cosci iac~xsinct\
e x p (itS) = ( . . , . . , ± I •

\ibc~1 s i n ct cose* /
Let t = —; then

2c
0 iac-
c-i 0

is an isometry. As|(l ,0) | | = ||(0,1)|| = 1, c = \a\ = \b\ and 6 = a.

PROPOSITION 4-2. Let X be a Banach space and {ev e2} an orthonormal system in X.
Suppose there exists T e J'lf(X) such that [Te±, e2] + 0. Then whenever A = {aik)^lt 2. k= t 2

is an hermitian matrix, the operator ^ajkef<S)ek is hermitian, and for any ^ , , ^ e C ,
3,k

Proof. Let a = [Tex, e2], and fl = [Te2, e j . By Theorem 2-6, the operator aef ®e2 +
pe\ ®ex is hermitian. Restricting to lin (e1; e2), we obtain by Lemma 4-1 that ft = a.
Again by 2-6, i(ae%®e2 — cte% ®e1)e3#'(X) and so by the real-linearity of 3^(X) both
e*®e2 + ef ®ex and i{e\®ez — e% ®ex) belong to Jf(X). So also doe^ ®e1ande|®e2,
and hence the first part of the assertion is proved.

Suppose g1; £zeC and |£jJ2+ |£2|2 = 1. Then the matrix

u =
is unitary. Hence U = exp (iA), where A = (aik) is hermitian. Then Sa^A.e^®efc

and so E,x e\ ® ex + \x ef ® e2 + ^2 ef ® e2 —12 e% ® ex is an isometry. In particular applying
this operator to ex, ||Sie1 + ^2e2|| = 1, and we quickly obtain the result.

Remark. This is a slight generalization of Lemma 6 of (21).
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PROPOSITION 4-3. Suppose {ex, e2} is an orthonormal system, and there is a linear
combination ae1+yffe2eA(X) with afl 4= 0. Then there exists TeJif(X) with [Telte2] 4= 0
and the conclusions of 4-2 are valid. In particular, lin (e1; e2)

 c h(X).

Proof. Let P be the hermitian projection onto lin (aex+/3e2). Let Po be its restriction
to lin (ex, e2). Then Po must have a non-diagonal matrix and so either [Pev e2] 4= 0 or
[Pe2, ej]=t=O (and hence both are non-zero). Note that lin (e1, e2) <= h(X) follows
from Proposition 4-2.

COROLLARY 4-4. (Berkson(l).) Suppose h(X) = X; then X is isometric to a Hilbert
space.

Proof. By a result of Jordan and von Neumann ((li)) it is sufficient to show the
result for every two-dimensional subspace of X. If Xo is two-dimensional we may
select ex e Xo with || eJI = 1 and e2 such that [e2, e j = 0, with||e2|| = 1. The result follows
from 4-3.

5. The Hilbert components of X.

DEFINITION 5-1. Let {Hx: AeA} be the collection of maximal linear subspaces ofh(X).
Then {Hx: AeA} are the Hilbert components of X.

We remark that since h(X) is closed, each Hx is also closed and as h(Hx) = Hx, each
Hx is (isometrically) a Hilbert space, justifying our terminology.

LEMMA 5-2. Suppose x, yeh(X) and [x,y] 4= 0. Then lin (a;, y) c= h(X).

Proof. We may assume x and y linearly independent. Let ex = H^H"1^ and
/ = y — \l/>ei\ei- We note t h a t / 4= 0. Since y*®yeJ^{X) we may apply Theorem 2-4
to deduce that £ = P(y*®y)P + Q(y*®y)QeJ^(X), where.? = eilc®e1andQ =I-P.
Now P(y*®y)P = AP, where A 6 R since it is an eigenvalue of S. Thus Q(y* ®y) Q e
3tr{X), i.e. Q*y*®Qyeyf(X). Now Qy =f 4= 0; suppose Q*y* = 0. Then by Theorem
2-6, both P*y*®Qy and iP*y*®Qye3f{X) so that P*y*®Qy = 0. Thus P*y* = 0
and so y* = 0, which is a contradiction. Thus Q*y*®Qy 4= 0 and feh{X). Letting
e2 = I / I" 1 / we have an orthonormal system {e^ e2}. Now the lemma follows from
Proposition 4-3.

THEOREM 5-3. The spaces {Hx: Ae A} form a mutually orthogonal collection.

Proof. By Proposition 3-6, each Hx is an orthogonal subspace (select an orthonormal
basis). Next suppose xeHx and yeH^, where A 4= /* and [y,x] 4= 0 (and [x,y] 4= 0 by
3-3). Suppose also zeH^; then for some small enough aeR, \y + ctz,x] 4= 0. Hence,
lin (x, y + az) <= h(X) and lin (x, y) <= h(X); thus lin (x, z) <= h(X). As this is valid for any

By the same reasoning, for any z e H^, y + azsHx for some a, and also yeHx. Hence
Hp <=• Hx, which is a contradiction. We conclude that [x, y] = 0; it follows quickly that
the spaces {Hx} are mutually orthogonal.

I t is now easy to see that any orthonormal system decomposes into an orthonormal
system in each Hx; conversely orthonormal systems may be constructed as the unions
of such systems in each Hx. We conclude:

COROLLARY 5-4. The extent of any maximal orthonormal system is %{X).
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COROLLAEY 5-5. X possesses a complete orthonormal system if and only iffi(X) = X.
If X has an orthonormal basis, then it is possible to show (by considering finite-

dimensional hermitian operators and their associated groups of isometries) that the
norm of 2,xx, where xxeHx, depends only on {||a;A||: AeA}. I t follows easily that X

AeA

has an H-decomposition in the sense of (7); conversely such a decomposition implies
the existence of an orthonormal basis. I t follows from Theorem 4-7 of (7) that X has
an orthonormal basis precisely if XeS? (see (7) and (8) for definitions).

6. Hermitian operators and isometries.

THEOREM 6-1. Suppose X is a complex Banach space, with h(X) =t= {0}. Let (Hx: A e A)
be the Hilbert components of X. Let (II^: AeA) be the associated hermitian projection.

(i) / / U: X-+X is an isometry then U(h(X)) = h(X), and there is a Injection
y: A->A such that U(HX) = HyW.

(ii) / / T: X->X is hermitian then THX = UXT (AeA).

Proof, (i) If xeh(X) with ||a;|| = 1, then JJ-1(x*<S)x) U is hermitian and so Uxeh(X).
Hence for given A, U(HX) a h(X) and so U(HX) <= H^, some/*. However U'1^) <= Hx.
by a similar argument and hence A = A' and U(HX) = H^. Letting /i = y(A), we obtain
the desired mapping.

(ii) For * e R, exp (itT) (Hx) = H^.
T?orxeHx, and ( such that/t(£) 4= A,

||(exp(#r)-/)a;| > \\LTx(exj>(itT)-I)x\\

-N-
As lim||exp (itT) —I\\ = 0, /i(t) = A for small enough t, and hence, as Ux is unique,

*-»-o
exp(-itT)nxexp(itT) = Tlx.

Expanding, we obtain (ii).
Theorem 6-1 obviously facilitates the identification of hermitian operators when

h(X) 4= {0}. In particular, we can completely determine «3f (X) when X has an ortho-
normal basis. The following two results are known but we believe the proofs are rather
simpler.

THEOREM 6-2 (Fleming-Jamison(7)). Suppose X is a Banach space with an ortho-
normal basis. Let (Hx: A e A) be the Hilbert components ofX. Then for T e B(X), T e J f (X)
if and only if T(HX) c: Hx and T is hermitian as an operator on the Hilbert space Hx, for
each AeA.

Proof. I t is a trivial consequence of 6-1 that if TeJ^(X) then T(HX) <= Hx and T is
hermitian on Hx. Now suppose conversely that T(HX) <= Hx and T is hermitian on
each Hx. For each A, there is a net Sn> x of finite-dimensional hermitian operators on Hx

such that SnX-+T is the weak-operator topology of Hx. Then
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where (ey. 1 < j < k(n)) is an orthonormal system in HK and ^ e R. Hence
Sn XIIX: X-+X is hermitian and therefore, taking weak-operator limits, J77A is
hermitian on X. Again taking weak-operator limits, since T = "LTIIK, T is hermitian.

COBOTT.AKY 6- 3 (Tarn (21)). Suppose X is not isometric to a Hilbert space and (ea: ocestf)
is a symmetric orthonormal basis of X (i.e. for every bijection n: s#-+sf, there is an
isometry Un: X->X such that Unea = e^aj). Then T is hermitian on X if and only if T
has a representation

Tx = Y> aa{x, e J ea,

where aa e R and sup \aa\ < oo.

Proof. Let (Hx: AeA) be the Hilbert components of X, and let six = {a: eaeHA}.
Clearly if a,fies#x then n(a) and n(fi) belong to the same stf^ for every bijection
n: <s/-> JI/. Hence, either each stf^ is a singleton or there is only one Hilbert component;
the latter is impossible, since it would imply that X is a Hilbert space. Hence each six

is a singleton and each Hx is one-dimensional; the result then follows by 6-2.
Rolewicz (17) defines a norm on a Banach space X to be convex-transitive if, whenever

||xo| = 1, the unit ball of X is the closed convex cover of {UxQ: Ue&} where 'S is the
group of isometries of X. He shows that the Banach spaces Lp(0,1) for 1 < p < oo are
convex-transitive but G[0,1] is not.

THEOREM 6-4. Suppose X has a convex-transitive norm and h(X) 4= {0}. Then X is
a Hilbert space.

Proof. Suppose xoeh(X) with ||a;0|| = 1. Then {Ux0: Ue@}is contained in h(X) and
hence by convex-transitivity ^(X) = X. Thus X has an orthonormal basis. Let
(HA: A e A) be the Hilbert components of X, with the associated hermitian projections
77A. HxeH^, then for any U e&, 2 ||77A ?7a;|| = ||a;|| (since UxeH^ some/*). Hence for

A

any yeco(Ux:

In particular taking \\x\\ = 1, we see that if \\y\\ = 1 then

Hence for yeX

However, if A is not a singleton, we may take xxeHx and x2sH/l with A 4= /i and
||afj| =||a;2|| = 1. Then for UeG

max 1177^(4(^ + ̂ )11 = I

and hence for all y eco(U(^(x1 + x2)): UeG)

max
A

This is a contradiction, and so A is a singleton, i.e. X is a Hilbert space.
To conclude the section, we classify h(X) for a Banach function space. Let (£2,2,/*)
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be a cr-finite positive measure space, and let X be a Banach space of /^-measurable
functions on Q. (where we identify functions differing only on a set of/i-measure zero)
such that

(1) If/eX, g is /t-measurable and \g\ ^ | / | a.e., then geX and ||gr|| < ||/||.

(2) If fn ^ 0 and/nEX are such that fn\f a.e. and sup||/J| < oo, thenfeX and
n

Il/H = lim||/.J. (See (14) or (15) for a discussion of these conditions.)

THEOKEM 6-5. Let X be a Banach function space satisfying (1) and (2) above. Let
feX and Qo = {«:/(«) * 0}. Thenfeh(X) if and only if

(i) there is a /i-measurable function k: fio->R+ such that if g = Qon Q. — Q.oandgeX,

= f
(ii) ifgx = O on D,o, g2=g3 = 0on Q - Q o , and \\g2\\ = ||gr3|| then \\gi + g2\\ = \\gi+ga\\-

Proof. If (i) and (ii) are satisfied then the projection

is hermitian. This may be verified by showing that ||eitp|| = 1, teR.
Conversely suppose feh(X). By assumption (1) on X, if ci is /i-measurable on

Q., |c6| = 1 a.e., then the multiplication operator M^g = <j>. g is an isometry. Hence for
A eS, the projection PAg = %A .g (where %A is the characteristic function of A) is
hermitian.

Let Hj be the Hilbert component of/. By 6-1 PAfeHf for A e S. If A n B = 0 then
PA PB = 0 and hence the projections PA and PB are orthogonal when restricted to Hj.
In particular

Let v{A) = ||P^/||2 for J .eS. Then by using condition (2), v is a positive measure.
Clearly v(Q —Qo) = 0, and v is absolutely continuous with respect to fi. Hence by
Radon-Nikodym theorem v = k. | / |2 .u, where k: Q-> R+ is zero outside Qo.

If g is a simple function

= j\g.f\*kdfi.

Taking pointwise limits we obtain that if g = 0 outside Qo

112 _

To prove condition (ii) it is again only necessary in view of (2) to prove it when
sup Ifi^"1! < °° a n ( i SUP Ifl'a/"1! < °° (when % = 0). Let LK(f) be the closure of the
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space {f.g: geL^i/i)} in X. We note that if <f> is real and (peL^fji), then 31^ is an
hermitian operator on X. Then M$feHf and so L^f) <= Hf. Suppose g2, £3 e £<„(/);
then there is a finite-rank hermitian operator S on Lx(f) (which is a Hilbert space) such
that

Then Sx = £ afc,/,]/, xeLx(f)>

where fa eHf, \\fa\\ = 1 and «3-eR. Extend S to 8 on X by

Sa; = £ a^xj^fa xeX.

Then # is hermitian, and He*8! = 1.
Let 0(w) = 1 for weQ0, 0(«) = — 1 for w e O - O 0 . Then Jf̂  is an isometry and

-fl^Cf* ®fj)^ is an hermitian projection for each j , 1 ^j^n. However,

-aWf ®fj) M* = M*f*
(note Jf| = /). As Mtf, =fp My? =ff. Thus

Hence % = 0 and eiS{gx+g2) = g1+g3. Hence

Remark. Eor many examples these conditions hold if and only if O0 is a single point
(an atom).

7. Perpendicular projections (after Berkson).

In this short section we relate our notion of an orthonormal system to that of
Berkson(2), p. 116. Following Berkson ((2), p. 112) we say a collection S7 of hermitian
projections is an (i.c)-family if given Px, P^efF there exists P o

e ^ with

and if I — Pe!F whenever PetF. A projection is perpendicular if it belongs to every
maximal (i.c)-family.

THEOREM 7-1. Every hermitian projection of rank one is perpendicular.

Proof. We suppose ^ is a maximal (i.c)-family. Let (JE?A: Ae A) be the Hilbert com-
ponents of X and IIX: X-*-X be associated hermitian projections. Then H\ commutes
with every hermitian projection, and if i?A: HX->HX is an hermitian projection then
i?Ao/7A is hermitian on X (6-1 (ii) and the proof of 6-2).

If P e 3^(X) is a projection then so is

AeA,

where Ao <=• A is finite and each Rx: HX->HX is an hermitian projection. Let ^"* he
the collection of hermitian projections of this form for P e # " . We show &* is an
(i.c)-family.
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First observe

1-PQ- S nx)- S i?Ao27A = (I-P)(I- £ 77A)+ £ (7-i2A)oi7A.
A A AeA, AeA, AeA,

Next suppose Plt P2e!F and

ei = P1(/-Si7A)+S
AeA,, AeA»

«2 = i J
2 ( ^ - S ^ A ) + S l A

AeA, AeA,

(we suppose Ao is the same for both Qx and Q2 without loss of generality). Suppose
Po e^ and M{P0) = ^(Px) fl ^(P2)> and suppose for A e Ao, ifl^is an hermitian projection
on HK such that ^(i^>) = ^(-R^) fl ^(R(f). Then let

E A ) S
AeAj AeAj

Then Q o
e ^ * an

Thus «̂ "* is an (i.e.)-family and hence ̂ "* = «^\ As 0 e !F, every hermitian projection
of rank one is in &'.

8. Bounded groups of operators.

Let X be a real or complex Banach space, and let ^ be any bounded subgroup of
the general linear group GL(X) of all bounded invertible operators on X. Then X can
be renormed equivalently so that each T e ^ is an isometry, by

| | | p
Teg?

Following a definition of Rolewicz(l7), p. 251, we say that a bounded subgroup of
GL(X) is maximal if it is not contained in any larger bounded subgroup, and a norm
||. || on X is maximal if its group of isometries is maximal. By the above remark, corre-
sponding to every maximal subgroup & there is at least one maximal norm for which 'S
is the group of isometries.

Rolewicz shows ((17), pp. 251-252) that on a finite-dimensional space, a norm is
maximal if and only if it is a Euclidean norm (he demonstrates this only for the real
case, but the complex case is proved similarly). Thus the maximal bounded subgroups
of GL(X) are similar to orthogonal or unitary groups. For the (real or complex) spaces
co> lp (1 < P < oo)» L

P(Q> 1) (! < P < °°)> Pelczynski and Rolewicz ((17), pp. 252-265)
have shown that the standard norms are maximal. However, for spaces of continuous
functions less is known; in (17) p. 260 it is shown that if K is the Cantor set, then both
C(K) and CR(K) have maximal norms (by C{K) we denote the continuous complex-
valued functions on K). Rolewicz asks ((17), p. 259) if the norm on C[0,1] is maximal.

In this section, we shall settle this question by using the results of the previous
sections, and indeed we establish much more general results on spaces C(S) (for real-
valued functions, see the following section).

Let S be a locally compact Hausdorff space and let C0(8) be the space of continuous
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complex functions on 8 vanishing at infinity. The standard norm on Co{8) we denote

bylllU
||/||00 = sup|/(S)|.

The dual of C0(S), we denote by C$(8); this can be identified with the space of finite
regular Borel measures on 8. (A complex measure fi defined on the Borel sets of S is
regular if for a Borel set B and e > 0 there exists an open set G^> B and a compact set
G<=B such that \/i\ (G-G) < e.)

On C0{S), every isometry takes the form

= G(s)f(y(s)),

where 6:S->C is continuous and satisfies \d(s)\ = 1, while y:S-+8 is a homeo-
morphism (see Torrance(23) or (5) p. 93). Thus the group & of isometries on CQ(8) may
be considered as the semi-direct product of the group Ji of multipliers

MeM = 0(s)f(s),

where \d(s)\ = 1 and the group T induced by the group F of homeomorphisms of S,

THEOREM 8-1. Let || .\\bea norm on C0(S) (equivalent to \\.\\„) such that every Mee^tf is
an isometry. Then there is an equivalence relation ~ on 8 such that for some neN, we
have card {«': s' ~ s} s$ nfor all se8, and veh{C$(8)) if and only if

s'~s

for some seS, where £s. e C and ds, denotes the unit mass at s'.

Proof. For any bounded continuous complex function <f> on 8, we define

Then Cb(S) (bounded continuous functions) becomes a Banach algebra, and every real
function in Cb(8) is hermitian since, if ^ is real, Ue^l^ = 1 by assumption. Hence by
the Vidav-Palmer theorem ((4)), Cb(S) is a S*-algebra, and it follows that

|

In particular, we have ||gr|| < \\h\\ for g, heC0(8) whenever |gr| ^ \h\ everywhere.
For/t, veC0(S)* with |/t| ^ \v\ we have

= 8uV{f<f>gdfi:\\g\\ ^ 1 \\<j>\\op

32 PSP 79
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Now for seS, the map Ps: C$(S)-+C${S)

Ps/i=/i{s}8s

is an hermitian projection, since

Hence Sseh{C%{8)) for seS.
Conversely suppose /ieh(C$(8)), and consider the space JC1(|/«j) which can be

embedded in Cfi(8) by the map/->/. \/i\. This is an isometry for the || l^-norm and
a homeomorphism for the equivalent norm under consideration. We can re-norm
ix(|/i|) equivalently by

ll/ll = I/-1
Let/* = 6\fi\, where \6\ = 1, |/*| a.e. Then 8e ̂ •(-Ẑ 1(|/*J)), with the new norm. However,
with this norm l/1^!) is a Banach function space as described immediately preceding
Theorem 6-4.

If \g\ ^ | / | then \\g.\fi\\\ ^ |/.|/t||| by the preceding results. H 0 </nf/ with
fneI?-{\/i\) and sup||/ra|| < oo then clearly /ei1(|/t |) as the norm is equivalent to the
Z^-norm; also/w. |/*|->/- \fi\ weak* in C${8) and hence ||/|| < sup||/m||.

Therefore, there is a weight function k{s) on 8 such that

= f
J s

As this is equivalent to the X1-norm, i1(|/t|) is finite-dimensional ((6), p. 338) and
hence ju, is a finite linear combination of measures (S8: seS).

Thus fi(G0(S)) is precisely the closed linear span of {8S: seS}, and {#„: se8} is an
orthonormal basis of fi(C$(S)). We introduce an equivalence relation ~ on s by s ~ s'
if and only if <JS and 8# belong to the same Hilbert component of C$ (8). It is clear then
that ve h(C$(S)) if and only if it has the form specified in the theorem. Thus it remains
only to show sup card {«': s' ~ s} < oo. For this note

< m(s)k,

where m(s) = card{s': s' ~ s} and k = sup||^g|. Thus
seS

where K is a constant such that

H^ZIMI veC%{S).
In particular sup m(s) < oo.

8

Next we seek conditions under which 'S = J(Y is a maximal bounded group, i.e. the
usual norm on Co(8) is maximal.
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THEOREM 8-2. Let 8 be a locally compact Hausdorff space and suppose either

(i) there is a dense subset of 8 of points possessing a neighbourhood homeomorphic to
an open set in a Euclidean space;

(ii) 8 is infinite and possesses a dense set of isolated points.
Then & = JVY is a maximal bounded group and so the standard norm on C0(S) is

maximal.

Proof. Let || • || be any norm on Co{8) for which ^ is contained in the group of
isometries. Let ~ be the equivalence relation of Theorem 8-1. We observe that if
s ~ s' then since Ty-i is an isometry for yeF, T*-i{8s + 8s.)eh{C%{8)). Thus 5 ^ +
8^)eh(G*0(8)),i.e.y(s)~y(s').

(i) Suppose s has a Euclidean neighbourhood U and s ~ s' with s + s'. Then there
is a closed neighbourhood B of s such that JB <= int U, s'$B and B is homeomorphic
to a closed ball in Kn. Thus for any s" eintB there is a homeomorphism T: B-^-B such
that T{S) = s" and T(S) = s for sedB. Define y: 8->8 by y(s) = T{S) seB and y(s) = s
for s$B. Then y e T and y(s) = s", but y(s') = s'. Hence s" ~ s' ~ s. As this is true for
all s"eB, we have card{s': s' ~ s} = oo, a contradiction to 8-1. Thus s ~ s' implies
s' = s.

Let 80 be the set of se8 which possess Euclidean neighbourhoods. Suppose
U: C0{S)->C0(S) is an isometry. Then, for s0e80, U*8So belongs to a Hilbert component
of C%(8) of dimension one. Thus as {8S: seS} is a maximal orthonormal system,

where \9(so)\ = 1 and y is a map from So to 8. By the weak*-continuity of U*, it
quickly follows that

U*8a = 0

where 6 is continuous, \0{s)\ = 1 and y: 8-+S is continuous. As U is invertible, y is
a homeomorphism and hence U e^T.

(ii) The proof is similar. Suppose s is isolated and s ~ s' where s' # s. Let s" be any
other isolated point. Then there exists yeT such that y(s) = s", y(s") = s and y(s) = s
for s${s, s"}. I t follows that s" ~ s' and so again the equivalence class of s is infinite,
a contradiction. The remainder of the proof is as in (i).

Remarks. This settles the problem of Rolewicz by showing that the norm on C[0,1]
is maximal. In fact Co(8) has maximal norm whenever 8 is a manifold with boundary.
The only examples we know of spaces S for which C(8) is non-maximal are those which
contain a finite number of isolated points; these may be renormed by

Il/H p | |
S-S,

where So is the set of isolated points.

9. The space CRo{S).

In this final section, we use different techniques to study the maximality of the norm
in the space CR „(#) of continuous real-valued functions vanishing at infinity on a

32-2
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locally compact Hausdorff topological space S. In this case there are, in general, fewer
isometries, due to the lack of multipliers. Indeed, throughout this section we shall
suppose that 8 is a connected manifold without boundary, and in this case, every
isometry of CR> 0(8) takes the form +1 ' where y e T(S). We shall need the following
well-known lemma.

LEMMA 9-1. Suppose 8 is a connected manifold without boundary of dimension greater
than one. Then if (s1} ...,sn) and (s'lt ...,$„) are two sets of distinct points of S, there exists
yeV{S)u)ithy{si) = «J.

Now suppose || • || is a norm on CRo(S), equivalent to || -1|«, a n ( i such that every Ty,
y 6 T(S), is an isometry.

LEMMA 9-2. Under the assumption of Lemma 9-1, if /i, /\.eGR 0(8)*,/i+(8) = A+(S)and

| M | | | |
Proof. We have immediately from Lemma 9-1 that if (sv s2) and (s(, s'2) are two pairs

of distinct points in S then for a, ft ^ 0,

Define <f>{a, fi) = ||adSl - fidsj for a, /? > 0. For general /i e CR> 0(8)*, /i is in the weak*-
closed-convex hull of {/*+(-S) SSi—/i~{S) SSa: sv sz e 8} and so

Conversely for given JX, e CR> 0(S) and e > 0 we choose disjoint compact sets ̂ i and F2

such that /i > 0 on Fv fi ^ 0 on F% and 1̂ 1 ($\(.?i u F2)) < e. By compactness we may
cover Fx with a finite collection of open subsets Bv...,Bk such that each Bt is homeo-
morphic to a closed ball in Rd, where d = dim 8 and Bi n F2 — 0. Similarly we may
cover F% with Bk+1, ...,Bm such that each Bt, i > k, is homeomorphic to a closed ball
in Rd, and Bif\F1= 0, i > k. For each i ^m, pick sieBi. Then there is a sequence
y% e F(S) such that y£>(s) = s for s$Bt and lim y<j>(s) = st.

n-*">

In the weak*-topology for any A e CRt0{8)

n—>co

and hence, since the norm is weak*-lower-semi-continuous,

Applying this to /i for i = 1,2,..., m in turn we obtain

S ii(JB4\ U BA88.

Since || || is equivalent to || 1̂ ,

^\\/i\\+Ke

for some constant K, independent of u.
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Next we use Lemma 9-1 to determine a sequence yn e F(#) such that

7n(5i)-^si> * < * < * a n d yn^)-^5^. ' * + 1 < » ^ m.

Then we obtain by weak*-lower-semi-continuity of the norm,

«) SSi +fi ^ U *< \ .U

Now

and / » ( u 5 , \ U B\ < -/*-(£) + 2e.

«) i ^ .

/» (_U B?j = M^i) +/* (.U 5<\-*i

Hence ||/*+(S) SSi -f*,-(S) 8SJ ^ \\fi\\ + 5Ke

and so \/i\ > <j>{ii+(S),/i-(S)).

THEOREM 9'3. Let S be a connected manifold without boundary of dimension greater
than one. Then CR> 0 {S) has maximal norm.

Proof. We again suppose || • || is a norm on CRi0 (S) such that every Ty, y e V(S), is aa
isometry. Let K* denote the unit ball of (CR0 (8), \\ • ||). Suppose XeexK*; then A is
also an extreme point of the set {/i: /i+(S) = A+(S), fi~{8) = A~{S)} by Lemma 9-2.
Hence A = a8Si — j3SSi for a, /? ^ 0 and sx 4= s2. By Lemma 9-1 it follows that if aSSi—flS^
is an extreme point then so is aS^ —fi8s-2 for any s[ =(= s'2.

Now let U: CR>0 (<S)->CR(0 (8) be an isometric isomorphism. We note that
U*(exK*) = exK*. We shall show that supp U*(SS) contains at most two points for
each SGS.

First suppose exK* contains a point aSs — /?#g. for a #= fi. Then for any u # s
supp U*(aSs—fl$u) contains at most two points. Letting u approach s and using the
weak*-continuity of U* we see that supp U*(SS) contains at most two points.

If exK* contains no such points, then every extreme point of K* is of the form
oc(S8 — 8,,,). Hence 8 is not compact (since the function e(s) = 1 cannot belong to CRj 0 (8),
as \edfi = 0 for /ieexK*). Therefore, U*88 = lim U*(8S — 8U) has again at most two

points in its support.
Thus in general supp U*(88) contains at most two points. We may assume that for

some a, P > 0, a8s—ft88. is an extreme point, since otherwise the norm is simply a
multiple of || Ha,.

The set So of s such that supp U*(88) has two points is open in 8 and hence is either
empty or infinite. Suppose the latter, and suppose s and s' belong to 80. Then
U*[a8s—pSf) also has at most two points in its support. I t follows that

supp (U*88) n supp (£7*^) =t= 0 •

As the set {U*88: s e8} is linearly independent, at most two points can have the same
support. Therefore there exist sx, s2, s3 and sie80 such that the sets supp (U*88i) are
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distinct. If supp (U*8Si) = {%, w2}, then supp (U*8Si) and supp (U*8Ss) must be {ult u3)
and {u2, u3}, and then it is impossible to choose a two-point set A intersecting each of
these three sets. Therefore So = 0.

Therefore U*8S = 6(s) 8^), seS; by weak*-continuity y and 6 are continuous.
Furthermore \\8S\\ = ||<y| for s 4= s', and hence \6(s)\ = 1 for seS. As S is connected
6{s) s + l o r d{s) = - 1 , and U* = ±Ty.

We are grateful to Dr A. D. Thomas for calling our attention to reference (10), in
which it is shown that there is a compact connected subset P of R2 such that P has no
non-trivial automorphisms. Thus CK(P) has only two isometries, + /, and clearly has
non-maximal norm. It is not clear whether C(P) can have maximal norm. A similar
example has also been observed by A.Pelczynski (see (6)).
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