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ABSTRACT 

Recently, Jawerth, Rochberg and Weiss have studied nonlinear maps arising from 

interpolation theory which satisfy commutator relationships with interpolated linear 

operators. Here we present a very general result of this type for rearrangement-

invariant Banach function spaces. 

Key words: Interpolation theory, commutators, twisted sums, Hardy spaces, re

arrangement invariant Banach function spaces. 
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1. Introduction 

In two recent papers [7], [21] the authors have explored commutator results ob

tained by considering the differential of an interpolation family of Banach spaces. In 

each case the conclusion was that an interpolated linear operator almost commutes 

with a certain nonlinear functional. 

To make these concepts precise let us suppose that E is a Polish space and fi is a 

nonatomic finite or cr-finite Borel measure on E. Suppose 1 < p0 < pi < oo and that 

T is an operator of strong type (po>Po)> (pi>Pi) i-e. T maps LPj boundedly into LPj 

for j = 0,1. Consider the nonlinear functional 

( i . i ) n ( / ) = / i o g | / | . 

Then for pb < P < Pi> Rochberg and Weiss [21] show that 

(i.2) llir,n]/||p<c||/||p 

where [T, H] / = TQ(f) — HT(/) and C is a constant which is independent of / . This 

result is obtained from the complex method of interpolation. A simple direct proof 

for the Hilbert transform or Riesz projection on the circle, without using interpolation 

theory, is given in [11]. 

In [7], Jawerth, Rochberg and Weiss use various real methods of interpolation to 

obtain similar results. For convenience suppose that E is an interval (a, b) (or can be 

Received by the editors January 5, 1987 
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2 NIGEL J. KALTON 

identified with an interval); for a measurable function / define 

rf(t) = »{s : | / («) | > | / ( t ) | or | / ( , ) | = \f(t)\,s < t} 

and 

(1.3) n ( / ) = / l o g r / 

Under the same hypotheses as above they obtain the commutation relationship 

(1.2) for this choice of fi. 

The object of this paper is to derive a very general commutator theorem including 

the above results but for a much wider choice of possible functions 0, somewhat in 

the spirit of the Boyd interpolation theorem [1], The author's interest in such a result 

was first aroused by connections with the theory of twisted sums of Banach spaces 

developed in [9],[10],[14],[15] for example. One-dimensional discrete analogues of the 

Q-functions (1.1) and (1.3) were used by the author [9] and Ribe [20] to construct ex

amples of non-locally convex quasi-Banach spaces X with a one-dimensional subspace 

L so that X/L = lx. Later the author and Peck [14] (see also [8],[10],[17]) studied the 

Banach space Zp (1 < p < oo) of pairs of sequences (txn), (vn) such that 

UK), K)ll = ( £ K - «„ log pf;lp)1/p + NIP < °° 

where ||t>||p = ( £ |v n | p ) 1 / p . The function space analogue of Zpi (called ZFp in [11]) is 

the space of pairs of functions (/, g) in LQ[E) such that 

||(/,g)|| = { / I / - ^ l o g ^ L | p ^ } 1 / p + \\g\\p < oo 
JE \\9\\P 

where \\g\\p = {/ Ig^dfj,}1^. Again we require 1 < p < oo, and this space is considered 

by Rochberg and Weiss [21] who show that the commutator relationship (l . l) - (1.2) 
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NONLINEAR COMMUTATORS IN INTERPOLATION THEORY 3 

is equivalent to the requirement that the map (/, g) —• (Tf,Tg) is bounded on ZFP. 

The spaces Zp and ZFP are examples of twisted sums of, respectively, the spaces ip 

and ip or the spaces Lp and Lp. Since many more examples can be created (cf.[14]) 

it is natural to ask for a more general result of this nature. 

Let us now describe our main result. We suppose X is a separable re-arrangement 

function space on (E,/z) (e.g. an Orlicz space or Lorentz space). Let fl : X —• Lo(fi>) be 

any map. We shall say that n is a centralizer if f2 obeys a commutation relationship 

with every multiplication operator on X. Precisely we require the existence of a 

function 6 : R+ —• R+ so that if / G X> u £ Loo with J u oo < l t h e n n ( u / ) - u n ( / ) e 

X and 

(i-4) l|n(«/)-«n(/)llx<*(||/||x) 

(or | | [M u ,n] / | |x < *( | | / | |x) where M, = uf). 

If additionally Q commutes with all re-arrangements then fi is called a symmetric 

centralizer. Precisely we require further that 

(1-5) 1 1 0 ( 5 , / ) - 5 < T n ( / ) | | x < * ( | | / | | x ) 

whenever a : E —• E is a measure preserving automorphism and S^f = / o a. 

Both maps (1.1) and (1.3) obey these conditions with £( | | / | |x) = C| | / | |x for 

some constant C, provided the Boyd indices of X are finite (following the notation 

of Lindenstrauss-Tzafriri [16]). However, many other examples can be created, as 

described in Section 3, e.g. 

(1.6) n ( / ) = / | l o g | / | | ° | l o g r , 
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4 NIGEL J. KALTON 

where 0 < a, b < a + b < l o r 

(1.7) (1(f) = /((log |/ |)2 + ir'*((logrf)2 + l)"/2 

where a 4- b < 1 and a, 6 can be negative. 

Suppose now that the Boyd indices px, qx of X satisfy Po < px < Qx < Ply and 

X is separable. Our main result (Theorem 6.10) asserts an operator T : X —• X of 

strong types (po,po), (pi,Pi) commutes with any symmetric centralizer Q : X —• Lo 

in the sense that there is a function r; : R+ —• R + such that 

(i.8) ll[r,ni/||x<»?(||/||x) 

To be precise (1.8) holds for a dense order-ideal of / G X in general, but if X is 

super-reflexive (1.8) holds for all / . 

We now briefly describe the layout of the paper. Section 2 is devoted to notation. 

Centralizers are introduced and examples are studied in Section 3. Section 4 explores 

the relationship between centralizers and twisted sums; we do not however use much 

of the general theory of twisted sums and the paper can be read without knowledge of 

this theory, except for the results of Section 8. We introduce in Section 4 the notion 

of a 'lattice twisted square' and show that commutator results correspond to results 

on the boundedness of a certain operator on a lattice twisted square. 

Sections 5 and 6 contain our main results. We introduce the symmetrized Hardy 

class H[yrn{E) in Section 6. This is the space of all complex functions / G L\(E) such 

that 

A(/) = H/llx + sup | f Wogrf)dp\ < oo 

where <f> ranges over all bounded functions <j> : R —• R with <f>(0) = 0, and \<f>(s)—<f>(t)\ < 

\s — t\ for all s, t. Hlyrn is a quasi-Banach space with quasi-norm A. Its relationship 
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NONLINEAR COMMUTATORS IN INTERPOLATION THEORY 5 

to Hi is contained in a recent result of B. Davis [4] that if E = T, a real function 

/ £ H[yrn if and only if / is the re-arrangement of a function / in $IH\. We do not 

use Davis's theorem which is actually a consequence of our results; we also give in 

Section 7 a reasonably simple direct proof. 

In Section 5, we show that if T is of strong types (po>Po)> (pi>Pi) and if po < 

Px < <7x < Pi t n e n t n e bilinear form 

BT(f,g) = Tf.g-f.T*g 

maps X x X* boundedly into H[ym. This critically uses the Boyd interpolation 

theorem. In Section 6 we show that this in turn implies our main result. 

Section 7 contains the "simple" proof of Davis's theorem alluded to above (another 

non-probabilistic proof due to J.L. Lewis was communicated to the author by A. 

Baernstein; a vector-valued version is proved in [13]). In fact we prove an earlier 

characterization of rearrangements of 2ft Hi -functions due to Ceretelli [2], and show 

that this is equivalent to Davis's theorem. Our main results for the special cases of 

the Hilbert transform or Riesz projection can then be obtained directly without use 

of interpolation theory. In Section 8, we tidy up some loose ends. 

Acknowledgement. The author would like to thank A. Baernstein II, R. Rochberg 

and G. Weiss for their helpful comments at various stages of this research. We also 

would like to thank B. Davis for calling our attention to the work of Ceretelli, which 

has apparently escaped attention in the Weat until recently. The ideas in this paper 

were initiated while the author was visiting the University of South Carolina. 
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2. No ta t ion 

In general we will work over a Polish space E, i.e. a complete separable metric 

space, and \x will be a non-atomic finite or cr-finite Borel measure on E. For applica

tions, we will take E = T, the unit circle with Haar measure, or E is an open subset 

of R n with Lebesgue measure. For any such measure space (£", JJ) there is a measure-

preserving Borel isomorphism a of E onto an interval (a, b) where — o o < a < 6 < o o . 

Frequently it will be convenient to suppose that E is an interval; however, our main 

results do not depend on this assumption. 

For terminology concerning Kothe function spaces we follow the book of Linden-

strauss-Tzafriri [18]. In general we consider spaces of complex functions. Let Lo(Et pi) 

denote the space of Borel functions on E. A Kothe function space X is a Banach space 

of (equivalence classes of) locally integrable functions / G LQ such that 

(2.1) If B is a Borel set with fi(B) < oo then 1B e X 

(2.2) l£f-+X,g-+L0 with \g\ < \f\ a.e. then g e X and ||<?||x < | | / | |x (where || • | | x 

denotes the norm on X), 

X is said to be minimal if the closed linear span [!# : ^{B) < oo] is dense in X, 

and maximal if whenever 0 < fn | / a.e. with fnEX and sup \\fn\\ < oo then / 6 X 

and 

| | / | | x=8U P | | / n | | x 
n 

(cf. [18] p. 118 for the same concepts for r.i. function spaces). 

6 
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NONLINEAR COMMUTATORS IN INTERPOLATION THEORY 7 

We invariably also suppose that X is separable and thus automatically minimal. 

Note we exclude LOO(M). If X is separable then X is also maximal if and only if X 

contains no isomorphic copy of Co. If X is separable and fn, f —+ X with | / n | < | / | 

a.e. and fn—>9 a.e. then ||/n — g\\x —• 0. This fact, which follows from the order-

continuity of X, will be used frequently. 

When X is separable, the dual space X* of X can be identified with a Kothe 

function space which is maximal. We denote by XQ the closed linear span [1B : 

JJL{B) < oo] in X*. The dual of XQ is the maximal hull Xmax of X. 

K / i G LO(EI,/J,) and ji G Lo(^2> M2) we write j \ ~ fa if for every Borel subset 

B of C \ {0}, we have 

/x1(/r1(5)) = M2(/2-1(s)). 

We also write /* for the decreasing re-arrangement of | / | , where / € Lo(E,n) i.e. 

/* : (0, 00) -> R is defined by 

f*(t) = inf sup l/MI 

A Kothe function space X is said to be a re-arrangement invariant function space (r.i. 

function space) if X is either maximal or minimal and if whenever f € X, g E Lo with 

g* < f* then geX and 

ll/llx < H/llx 

(see [18] p. 114 onwards). This is equivalent to requiring that for every measure-

preserving (Borel) automorphism a : E —* E, 5^ is an isometry where 

S*f = fov9 

or again to the assertion that / ~ g implies | | / | |x = : IM|x-
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8 NIGEL J. KALTON 

If X is an r.i. function space it will be convenient to define X(a, 6) for any interval 

(a, b) with b — a < JJLE by requiring that / G X(a, 6) if and only if there exists g € X 

with f ~ g and then setting | |/ | |x = ||<7||x- In particular, if L = JJLE then X is 

isomorphic to X(0, L). It will be convenient to use X to denote any such equivalent 

space. 

On X(0, L) we can define dilation operators D9 : X(0, L) —• X(0, L) by 

D3f{t) = f{t/s) t<Z,min( l , s ) 

= 0 Ls <t< L. 

The Boyd indices px and <?x of -X" are defined by 

log a 
px = lim 

qx = lim 

« —oo log || D , 

logs 
•-olog||Z?,|| 

and then 1 < px < £x < o°> and 

i + -L-i, 
Px ?x* 

?x Px* 

(see [18] p.131). 

Before leaving the topic of r.i. function spaces let us mention one easy lemma 

which is surely well known; we include a proof for completeness. 

LEMMA 2 .1 . Suppose ftgth € L0(Eyn) and f*tfh* e Li[0,oo). Then fgh e Lx 

and 

| / fghdfi\< [^ f*g*h*dt. 
JE Jo 
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NONLINEAR COMMUTATORS IN INTERPOLATION THEORY 9 

For two functions this is to be found in Hardy, Littlewood and Polya [5], Theorem 

368. For three functions it suffices to consider the following question. Suppose a± > 

a,2... > an > 0, 6i > . . . > bn > 0 and c± > c^ > . . . > cn > 0; we claim the 

maximum of 
n 

/,a<r(k)h(k)Ck 

over all permutations a, r of {1,2, . . . , n } is attained at a — r — identity. For the 

optimal arrangement, if k < £, we have Ck > ci and hence (Theorem 368 of [5]), 

a<7(k)br(k) > 0'cr(i)^r(i)' Thus either a^k) > aa(t) or bT(k) > bT(t) or both. Assume 

for simplicity the former inequality. Then a^^Ck > aa(^ci and hence again by [5], 

br(k) ^ bru). It follows that a and r are both monotone increasing and hence the 

identity. 

We recall that a Banach space X has type p if for some constant C we have for 

every i i r . . , i n 6 l 

(2-3) £(\\Eei*i\\)<cCthi\\P)1/p 

t = l 1=1 

where the e^ are independent random variables on some probability space satisfying 

P{t% = -f-1) = P{ti = —l) = 1/2. We say X has non-trivial type if it is of type p for 

some p > 1. This is equivalent to the statement that X is B-convex or that £J is not 

finitely representable in X. 

Similarly X has cotype p if for some c we have 

(M £(llE^II)^c(X>*llP)1/P 

X has finite cotype if P^ is not finitely representable in X. 
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10 NIGEL J. KALTON 

A separable Kothe function space X has finite cotype if and only if it satisfies a 

g-concavity condition for some q < oo i.e. 

(2.5) \\{JZ\fi\q)1'nx>c(£\\U\\q
xYlq 

t = i t = i 

for / i , . . . , /« G l 

A Kothe function space has non-trivial type if and only if it is super-reflexive, if 

and only if it satisfies both a (/-concavity condition (2.5) and a p-convexity condition 

where p > 1 

(2-6) ll(El^lP)1/PIU^C'(Ell^llx)1/P 

See [18] for details. 

We shall make very little direct use of the theory of twisted sums of Banach and 

quasi-Banach spaces developed in [9],[14] and [15], although as we indicate in Section 

4 below our results are closely related to this theory. In Section 8, we do utilize some 

ideas which we now explain. 

Let XQ be a normed space and let Y be any Banach space. A map $ : Xo —• Y 

is called quasi-linear if there is a constant fl < oo such that 

(2.7) $(ax) = a$(x) a e C, x e X 

(2.8) llftfx! + x2) - *(xi) - *(s 3 ) | | < j8(||*i|| + I M ) xu x2eX 

A Banach space X is called a K-space [15] if there is a constant C = C(X) so that 

whenever Xo C X is a dense subspace and $ : Xo —• C is a quasi-linear map satisfying 

(2.7), (2.8) then there is a linear, but not necessarily continuous, map <f> : X0 —• C 

with 

|$(x)-<£(*)| <C/?||z|| xGXo. 
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NONLINEAR COMMUTATORS IN INTERPOLATION THEORY 11 

It turns out that every Banach space with non-trivial type is a /C-space [9], while 

also every quotient of an £oo-space is a )C-space [16]. JC-spaces have the important 

property that if Y is any quasi-Banach space and N is a closed subspace of Y so that 

N is locally convex and Y/N is locally convex and a JC-space then Y is also locally 

convex (i.e. a Banach space). 

Convention. Throughout the paper we use C for a constant independent of 

/ , <?, ft, T etc., but depending on X, p, <j,etc, which may vary from line to line. 
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3. Centralizers and symmetric centralizers 

We shall suppose E is a separable complete metric space and that /x is a finite or 

a-finite measure on E. Let X be a separable Kothe space on E. A map A : X —* LQ{E) 

will be called a centralizer (on X) if there is a function 8 : R+ —• R + so that if / G X, 

u G LQQ with ||u||oo < 1 then 

(3.i) lin(«/)-«n(/)|U<«(||/||x). 

It is implicit in equation (3.1) and similar equations that ||^||x < °° implies <f> G X. 

It will be useful to introduce two stronger notions. We say Q is a strong centralizer 

if there is a least constant A = A(0) so that 

(3.2) ||n(«/)-«n(/)||x<A||/lk 

for f€X, IMU < 1. 

fl is a homogeneous centralizer if 

(3.3) Q{af) = a(l{f) a G C, / G X 

Homogeneous centralizers are automatically strong centralizers. 

If further X is rearrangement invariant then a centralizer fl is symmetric if there 

is a function rf : R + —•> R+ so that whenever a : E —> E is a measure-preserving Borel 

automorphism then 

(3-4) 1 1 0 ( 5 , / ) - 5 , ( n ( / ) ) | | x < 9 ( | | / | | x ) 

12 
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NONLINEAR COMMUTATORS IN INTERPOLATION THEORY 13 

If ft is symmetric and homogeneous we denote by A*(ft) the least constant so that 

A*(ft) > A(ft) (defined prior to (3.2)) and, for every a, 

(3-5) 110(5,/) - S„(n( / ) ) | | x < A*(ft) | | / | |x 

We shall say that a map Q : X —• LQ satisfying 

(3.6) sup | | n ( / ) | | x < o o 
ll/ll<r 

for every r > 0, is a null-centralizer. In general if fti and f22 are any two maps 

satisfying fli — 02 is a null-centralizer then fii and fl2 are equivalent. Clearly if 

the properties of being a centralizer or a symmetric centralizer are preserved under 

equivalence. 

The objective of this first section is to give examples of centralizers and symmetric 

centalizers. 

Let <f>: R —• R be any Lipschitz map. We denote by L((/>) the Lipschitz constant 

of <f> i.e. 

L[4>) = sup j - —: . 
1*1 - x2\ 

We shall also denote by Ci{£\) the collections of all (bounded) Lipschitz maps 

<t> : R -+ R with L{<j>) < 1 and ^(0) = 0. 

Let us first note that for any Lipschitz map <f> and any separable Kothe function 

space the map 

n(/) = Miog|/|) 
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14 NIGEL J. KALTON 

is a strong centralizer. In fact 

||fi(u/) - u n ( / ) | | x = | |«/(*(log|/ |) - 4>{log\f\ + log\u\))\\x 

< l M | | u l o g | u | / | | x 

< -eL(t)\\fh 

so that A(ft) < j l ( ^ ) . Furthermore if X is re-arrangement invariant Q is symmetric 

and A*(n) < e~1L(<f>). The special case 

n(/) = / io g | / | 

is studied in [21]. 

We now proceed to a much more general type of result. Now we will assume that 

E is either an interval (a, 6) or E = R (with fi Lebesgue measure). For any / G L0 

we define the rank function rj by 

rf(t) = n{s : | / 0 0 | > | / (t) | or 3 < t and | / (s) | = |/(t)|} 

Note that 0 < r/ < oo and r/ = 0 only on a set of measure zero; also if / 6 X where 

X is a r.i. function space with finite Boyd indices, it is easy to see that r/ = oo only 

when / = 0. 

THEOREM 3 . 1 . Let X be a separable r.L function space on E whose Boyd indices 

are Gnite. Then there is a constant C = C(X) with the following property. Let 

ip : R2 —• R be a Lipschitz function so that 

\$(xi,yi) - ip(x2l y2)\ < L(\xx -x2\ + \y± - y 2 | ) 

Define for f EX 

<M/) -WOogl/l.loglr/l) 

Licensed to Univ of Missouri-Columbia.  Prepared on Sat Jan 11 02:30:00 EST 2014 for download from IP 161.130.253.98.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



NONLINEAR COMMUTATORS IN INTERPOLATION THEORY 15 

[Here Q$(f)(t) = 0 when f(t) = 0]. Then Qy is a symmetric strong centralizer on X 

and 

(3.7) A ( ^ ) < CL 

(3-8) HM5,/) - SMAfHx < CL\\f\\x 

for every measure preserving a : E —> E. 

PROOF: Since the Boyd indices of X are finite we have ||D,|| < Csa for 0 < s < 1 

and some a > 0. 

Let / € X and set g = uf € X where |u| < 1 a.e. Let £x = log |/ | , ^i = log |r/|, 

6 = log |(jf|, r?2 = log |r/|. Then 

u|0^(/) - n^(u/) = ufWtu i,!) - tf (&, tfe)) 

so that 

||un*(/) - iMu/)||x < lllu/Kifx - 61 + hi - ibDHx. 

Now 

| « / I l & - 6I = I«/I log î T 

so that 

Illu/ll^-^IIU^e^ll/ilx. 

We now estimate (uf)(rji — 772). Since |u / | = 0 if either r\\ or ^2 = 00 and 

f?i = —00 or rj2 = —00 occur only on sets of measure zero we may estimate 

\\9\ri1 -rj2\\\x < Yl Mil - *l2\lAm\\x 
m€Z 
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16 NIGEL J. KALTON 

where 

Am = {t: r?i + m < r/2 < Vi + m + ! } • 

I f m > 0 and t € Am 

\m\ = 9'(rtt[t)) 

< 9*(emrf(t)) 

<r[*mr,{t)) 

so that 

| | * 1 A J | X < | | 2 > « - » . / | | X 

< C e - m a | | / | | x 

and 

\\9Ujm-V2\\\x<C(m+l)e-ma\\f\\x. 

If m < 0, and t € Am 

W)\<\f(t)\ 

< r(e~m-\{t)) 

so that 

II? UA < |P.-+i/| |x 

and 

\\gUm\f,i-fl2\\\x<{-m)t^^)\\f\\x. 
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NONLINEAR COMMUTATORS IN INTERPOLATION THEORY 17 

Combining we obtain 

Mm - V2\\\x < Ce« £ (|m| + l ) e - H | ( / | | x 

< C||/| |x 

(where C = C{X)). This leads to 

||«n^(/)-n^(«/)||x<CL||/||x. 

Now suppose (T : E —+ E is a, measure-preserving Borel automorphism. Define 

ni(/) = 5j ln*(5,/). 

Then Q̂ , is also a strong centralizer, and if / takes no value on a set of positive 

measure we have 

n*(/) = <M/). 

For general / pick g with \g\ > \f\ so that \\g\\x < 2||/| |x and g assumes no value on 

a set of positive measure. Then 

ll^(/)-/sf-1n;(?)||x<2C7i||/||x 

l|n^(/)-/?-1n^(?)||x<2Ci||/||x 

and so 

IW/)-n*(/)llx<4CL||/||x 

or 

\\S0n*(f) - <MS,/)||X < 4CL\\f\\x 
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18 NIGEL J. KALTON 

A special class is of great importance to us. If <f> : R —• R is a Lipschitz map we 

shall denote by T<f, the homogeneous centralizer 

r * ( / ) = /^ ( logr / ) 

COROLLARY 3.2 . If X is a separable r.L function space over E with finite Boyd 

indices then there is a constant C = C(X) so that if </> : R —• R is Lipschitz then Tj, 

is a symmetric homogeneous centralizer on X with 

A*(IV) < CL{4>). 

In order to recognize more general centralizers we must identify null centralizers. 

THEOREM 3 . 3 . Let X be a separable r.L function space over E with finite Boyd 

indices 1 < px < qx < oo. Suppose 0<ct<px<qx<fi<oo and let K(aifi) = 

{(x, y) : x > 0, ax + y < 0 < px + y}. 

Suppose rp : R 2 —• R is continuous and satisfies 

(3.9) For some C,k > 0, 

*(* ,y)<C7(l + |*| + |y|)* 

(3.10) i> is bounded on ±K{ct,/3) 

Then n ^ ( / ) = /^(log | / | , log rj) is a null centralizer on X. IfE has finite measure 

(3.10) may be replaced by 

(3.11) xp is bounded on K(a,P). 

PROOF: We shall prove only the first case. Fix po,qo so that a < po < px, qx < 

qo <P-
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NONLINEAR COMMUTATORS IN INTERPOLATION THEORY 19 

Now for any / S X we have 

(3.12) /*(*)< C*-1 / p o | | / | |x t<l 

KCt-^WfWx t>l 

Conversely if 

, , , , (r1^, f o r t < l 

then g E X. We omit the elementary proofs of these statements. 

Now suppose M > 1 and f G X with | | / | |x < M.. Let f = log |/ | , r\ = logr/. 

Then by (3.12) 

(3.14) Po£ + ri<p0\ogCM rj < 0 

(3.15) gof + *7 < go log CM rj>0 

We split E into three sets. Let A± = {t : £ > 0, /9f + r/ > 0}, A2 = {£ < 

0, a£ -f ry > 0 and J43 = E \ (A± U A2). 

On Ai, (£,*7) belongs to the union of if(a,/3) and a fixed bounded region in R2 

where a^ + tf > 0 but (3.14) and (3.15) hold. Thus there is a constant B\ independent 

of / so that 

\^,V)\<B1 teAx. 

Similarly on A2i (£, *7) belongs to the union of — K(a}f)) and a fixed bounded region, 

so that 

We,»?)l<$2 teA2. 
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20 NIGEL J. KALTON 

Pick S > 0 small enough so that 

[l-6)a-1-6>Po1 

(l + 6)r1+6<qo1 

Then there is a constant Co so that 

kg\1>\<Co+6{\t\ + \r,\) 

(by (3.9)). 

For t € A^j if r\ > 0 we must have f < 0 and a£ -f rj < 0. Thus 

iog|n^(/)|<e + iog|^| 

< c 0 + £ + £(-£ + »?) 

< Co - P o S 

If »7 < 0 and £ < 0 then 

l o g | n v , ( / ) | < C 0 + ( l - 5 ) ^ - ( S r / 

< C 0 - 5r? 

< Co -qolV 

If >7 < 0 and £ > 0 then Pi + r) < 0 

log |1M/)| < Co+ (1+ *)*-*» 

< Co - (£(! + * )+% 

< C 0 - go" »? 
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NONLINEAR COMMUTATORS IN INTERPOLATION THEORY 21 

Thus 

\nAf)-ut\<'°°9(r/(t)) 

where g is given by (3.13). Hence 

||n*(/) • u j < e
c°y| x < B3. 

Combining 

\\ni,{f)\\x<MB1+MB2 + B3 

and H,/, is the null centralizer. 

Theorem 3.3 now allows to perturb Theorem 3.1. 

THEOREM 3.4. Under the same notation as Theorem 3.3 suppose ip : R 2 —• R is a 

continuous function satisfying (3.9) and For some M > 0, L > 0 we have 

(3.14) |^(xi,yi) - ^(z2, y2)| < L{\z! - x2\ + |yi - y2|) 

for {xuyx), (x2,y2) e±K(ct,P) and \xx\ + \y±\, \x2\ + |y2| < M. 

Tnen H</, is a symmetric centralizer on X. 

If E has finite measure then (3.14) may be replaced by For some M > 0, L > 0 

we have 

(3.15) | #c i>y i ) - ^(z2,y2)| < Lflzi - x2 | + |yi — ys|) 

for (xi ,yi) , (z2 ,y2) € #(<*,£), |xi| + |yi|, |x2 | + |y2| > Af. 

PROOF: Simply find a uniformly Lipschitz function ipi agreeing with tp on the set 

±K(a,/3) n {(x, y) : |x| 4- \y\ > M}. Then 0^ — fi^ is a null centralizer by Theorem 

3.3. 
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22 NIGEL J. KALTON 

EXAMPLES: (1) Suppose a > 0, b > 0, a + b < 1. Set 4>{x,y) = \x\a \y\b. Then 

^ ( / ) = / U o g | / | | ° | l o g r / | b 

is a centralizer on any r.i. function space with finite Boyd indices. 

Here 

\d^\ _ „ | # l | & U i a - l _ , , / M U l a + 6 - 1 
—— = a y \x\ = a(-—- a; 
a i |rc| 

| ^ | = 6|y |^|xr = 6(j^j)-|yr+k-1 

dy Is/I 

on both bounded on any set ±if(o:,/?) Pi {(x,y) : |x| + \y\ > M}. 

(2) More generally for possibly negative values of a, 6 with a -f 6 < 1 we can take 

1>(x,y) = (x2 + l)a'2(y2 + l)b!* 

n^(/) = /((log|/|)2 + i r / 2 ( | logr;!2 + l)"/2 

(3) For a more complicated example take 

y2 + l 
i/>(x,t/) = x l o g 

;2 + l 

(4) We conclude with the remark that there are centralizers on Lp, 1 < p < oo 

which are not even equivalent to the type of centralizer given by Theorem 3.4. As the 

proof is somewhat involved we shall not pursue this remark here. 
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4. Lat t ice twis ted squares and c o m m u t a t o r s 

We first establish that the equivalence class of every centralizer contains a homo

geneous centralizer. 

PROPOSITION 4 . 1 . Let fi : X —• L0(E) be a centralizer. Then there is a homoge

neous centralizer Qf : X —• LQ which is equivalent to Q and satisfies 

n'(u/) = un(f) 

if\u\ = 1 a.e., f EX. 

PROOF: We define 

n'(/) = ll/llxsgn/n(|/|.||/||x1) 

for / ^ 0 and ft'(O) = 0. Here 

S g n / ( t ) = i 0 ) for/(<) = 0 

Suppose 0 satisfies (3.1). Then if | | / | | x < 1 

\\ny)-n(f)\\x<s(i). 

If H/llx > 1 then 

\\W\\\m1)-\\f\\x1*«*Mf)\\x<6(\\f\\x) 

and so 

||n'(/)-i.upp/n(/)||x<||/IU*(||/IU). 

23 
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24 NIGEL J. KALTON 

However 

||n(/)-i.npp/n(/)||x<*(ll/llx) 

so tha t 

l|n'(/)-n(/)||x<(||/||x + iK(||/||x). 

This implies tha t O' is a centralizer equivalent to H, and IT is clearly homoge

neous. 

LEMMA 4 . 2 . Suppose Q : X —> Lo is a strong centralizer satisfying (3.2). Then for 

fuf2ex 

(4.i) ||n(A + f2) - n(A) - n(/2)||x < ^{\\h\\x + ||/2|U) 

where A = A(Q) . 

PROOF: Let g = | / i | + I/2I and write / t = uig where |u t | < 1 a.e.(z = 1,2) and 

|ui 4- U2I < 1 a.e. Then by (3.2) 

\Mh + f2) - n(A) - n(/2)||x < 3Ay|x 

<ZA{\\f1\\x + \\f2\\x). 

Now suppose Qo is any centralizer on X. We may find a centralizer Q equivalent 

to Qo which is homogeneous and hence satisfies (4.1). Let X ©n0 X ^ e ^ n e sP&ce of 

all ( / , g) e Lo © L 0 so tha t g e l and / - n0(flf) 6 X. Then X ©Q o X = X © n X can 

be quasinormed by 

(4-2) ||(/,<7)|kn = l l / -n(<7)| |x + !M|x 

The fact tha t (4.2) defines a quasi-norm follows easily from (4.1). Now X © Q X is a 

twisted sum of X with itself (cf.[l4]). Precisely if we define j : X —• X © Q X by 

y/ = (/,o) 
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NONLINEAR COMMUTATORS IN INTERPOLATION THEORY 25 

and q : X ®Q X -+ X by 

q[f,9) =9 

then j is an isomorphic embedding and q is an open mapping. Thus the sequence 

0 — • X - ^ X e n X-3-+X—>0 

is exact. This also proves that X ®Q X is complete, i.e. a quasi-Banach space. If X 

is super-reflexive (= J?-convex for lattices) then X ®Q X is isomorphic to a Banach 

space by the results of [14], but in general X ®o X is non-locally convex. 

If u £ LQO, ^ t Mu be the multiplication operator on X given by M u / = uf. 

Notice that for each u G L^ the operator 

Mu(f,9) = (Muf,Mug) 

is bounded on X ©n -X". In fact, if \u\ < 1 a.e. 

\\{uf,ug)\\Xla = \\uf - n{ug)\\x + \\ug\\x 

= ||u(/ - n(9)||x + ||un(ff) - n(u9)||x + IMix 

<ll(/,«7)l|x,0 + A ( n ) y | x 

<( l + A(n))||(/,?)||x,n. 

The map u —• Mu is then bounded algebra homomorphism of Loo(E) into 

£ ( X ® o -X") so that the diagram below commutes: 

X — • 

X — • 

X® 

X© 

nX —• J 

nX — ; 

t -
My. 

': -0 —• X —• X © n X —y X —• 0 
Thus we can interpret X ©n X as a module over £«> in such a way that 

0 — X - ^ X e n * - * - * — 0 

Licensed to Univ of Missouri-Columbia.  Prepared on Sat Jan 11 02:30:00 EST 2014 for download from IP 161.130.253.98.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



26 NIGEL J. KALTON 

is a short exact sequence of Loo-modules. Thus X 0 n X is a twisted sum of X with 

itself X as an Loo -module. 

We shall demonstrate that every such Loo-module twisted sum is of the form 

X 0 n X. In order to do this we require some preparatory results. The first of these 

will be used frequently; it implies that strong centralizers have certain continuity 

properties. 

LEMMA 4 . 3 . Let X be a separable Kothe function space and let I be a dense order-

ideal in X. Let Q : / —• Lo be a map satisfying (3.2). Suppose h G / , h > 0 and 

H(/i) € X. Suppose fn G i* with \fn\ < h and fn—+g Jfl measure. Then 

(a) lfg = 0 l i m n _ c o | | n ( / n ) | | x = 0 

(b) Ifg^O limsupn^00\\n(g)-n(fn)\\x<6A\\g\\x. 

PROOF: (a) Let gm = supfc>m \fk\. For n > m 

lint/nJ-Zn^n^llx^AH^iix 

Now n(gm) — ^m^_ 1n(/i) € X and so £l(gm) G X. As fn9ml ~* 0 m measure and X 

is separable 

lim \\}ng^{gm)\\x = 0 
n—• oo 

and so 

l i m s u p | | n ( / n ) | | x < &\\gm\\x 
n—*oo 

Now ||^m | |x —* 0 and the conclusion follows, 

(b) Now \fn - g\ < 2\h\ and so 

lim | | n ( / n - f l f ) | | x = 0 
n—• « ) 
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NONLINEAR COMMUTATORS IN INTERPOLATION THEORY 27 

Now 

l|n(/») - n ^ i u < l|n(/„ - g)\\x + 3A(||/„||X + Nix) 

by Lemma 4.2. Thus as ||/n||x —+ IMIx w^ obtain the conclusion. 

PROPOSITION 4 .4 . Let X be a separable maximal Kothe function space on E and 

let I be a dense order-ideal in X. Let flo : i" —• £o be a map satisfying equation (3.2), 

Then there is a strong centralizer ft : X —• LQ SO that ft| J = fto. 

If fto is homogeneous^ ft can be chosen homogeneous. 

PROOF: For each / € X \ I we choose a partition An of E into Borel sets so that 

flAn e I and 

II/IA JU < 2-*||/||x. 

We then set 
oo 

ft(/) = ^T ^And0{flAn) (summation in L0) 
n = l 

and define ft(/) = n 0 ( / ) if / € L 

Note in passing that if fto is homogeneous then the selection of (An) can be made 

so that ft is homogeneous. It must now be verified that ft is a strong centralizer. Let 

us suppose / 6E X\I and g — uf where \u\ < 1 a.e. First consider the case g £ I. 

By simple induction we can prove from Lemma 4.2 which applies to fto that 

n 

n 

< 3 A £ % l A J x 

<3AX>-*||/||x 
fc=l 
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28 NIGEL J. KALTON 

Further 

\\no(glAh) ~ uUMfUJWx < AH/UJI 

< 2- f cA|| / | | x . 

Hence 

\\no{giAiu...uAn) - uiAlU...uAnn(f)\\x 

<AC£(3k + l)2-k)\\f\\x 

fc=l 

< 7A|| / | |X . 

Now 

limsup \\n0{glAlu...uAn) ~ no[g)\\x < 6A||3 | |X 
n-*oo 

< 6 A | | / | | x 

and so 

||n0(g)-«n(/)||x<i3A||/||x 

or 

||n(u/)-un(/)||x<i3A||/||x. 

Next suppose g G X\I. We may select vn with 0 < vn | 1 a.e. so that vng €. I. 

By the above argument, 

\\no(vng) - vnQ(g)\\x < l3A\\g\\x 

and 

| | n 0 K g ) - t ; n « n ( / ) | | x < 1 3 A | | / | | x . 
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NONLINEAR COMMUTATORS IN INTERPOLATION THEORY 29 

Hence 

||«n(n(ff)-«n(/))||x<26A||/||x 

and letting n —* oo we obtain, since X is maximal, 

| | n ( u / ) - u f i ( / ) | | x < 2 6 A | | / | | x . 

Now we return to the consideration of a general L^ -module twisted sum. We 

suppose that Y is a quasi-Banach space so that we have a short exact sequence 

0—>X-?->Y-2-+X—•(). 

We further suppose the existence of a bounded algebra homomorphism 

u —• Mu (L00(jEr) —• £(F)) s o t n a t *n e diagram below commutes 

0 —> X JU Y -2-

3 
M t t I Af, 

• -u x I 
0 — • 

Under these circumstances we say that Y is a lattice twisted square of X. For 

convenience denote the Loo-action on Y by Muy = uy. 

THEOREM 4.5 . Let X be a separable maximal Kothe function space on E and let Y 

be a lattice twisted square ofX. Then there is a homogeneous centralizer Q : X —• LQ 

and an isomorphism J :Y —• X ©o X so that if u G Loo ? V £ F 

J(uy) = uJ(y) 

(i.e. J is an Loo-module isomorphism). 
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30 NIGEL J. KALTON 

PROOF: Let w E X be such that w > 0 a.e. and let / be the principal order-ideal 

generated by ty. Let p : X —> Y be a map such that qp(f) = / for / G X and 

p(o/) = ap( / ) « 6 C , / e X 

IM/)l!<c||/il fex 

where C is some fixed constant (this is possible since q is open). For / G / , / t u" 1 G Loo 

and we define 0 0 : J —• X by 

no(/) = r1w/)-/«'-1pH) 
To see this definition makes sense, note that qp{f)~q{f'w~lp(w)) = f — fw~1qp(w) = 

0, since g commutes with the Loo-actions on Y and X. Oo is homogeneous. If \u\ < 1 

a.e. then 

n0(w/) - rMpfa/) ~ u/urVM) 

un0(/)=r1M/)-u/u;-VH) 

so that 

O0(«/) - ufi0(/) = J - 1 (P(«/ ) - «P(/)) 

Now 

| |p(«/)-«p(/)llr<C||/||x 

where C is independent of / . Thus OQ verifies (3.2) and by Proposition 4.4 extends 

to a homogeneous centralizer Q : X --+ i o • 

To define J, suppose y G Y satisfies q(y) G L This is a dense subspace of Y. For 

such y let Jy — (/, g) where 

/=rI(»-w»K1Ww)) 

3 = ?(y) 
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NONLINEAR COMMUTATORS IN INTERPOLATION THEORY 31 

Then 

l|Jy||x,0 = | |r1(»-P9(y))llx + ||«(y)||x 

for some C is independent of Y. 

We also note that \\Jy\\ > \\q(y)\\ and 

WJvWzwrT^v-Mvn 
zWrTHhW-cWqMW) 

so that J is an isomorphic embedding. J has dense range in X ©n X since it includes 

all (/, 0) for / G X and qJ has dense range in X. Thus J extends to an isomorphism 

between Y and X ©n X. 

If y G Y and q(y) G J, then for u G LQQ 

J(uy) = (f,g) 

where 

/ = i""1^ - i<i{uy)u>~l)p{w)) 

Thus J(uy) = w J(y) and this extends to all y G F. 

Now let X be any separable Kothe function space and suppose n : X —• LQ is 

a centralizer. We define D(n) = { / : fi(/) G X} . JD(fi) is an order-ideal in X. It is 

also dense since if / G X we can find v with 0 < v < 1 a.e. so that i>Q(/) G X. Then 

v/G£>(n). 
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Suppose T : X —• X is a bounded linear operatdr so that T maps D(Q) into 

D(Cl). Then for / G i?(n) we define the commutator [ r ,0 ] by 

(4.3) [ r ,n ] ( / ) = TO(/)-QT(/). 

We shall say that T and H commute if T(D(Q)) C D(n) and for some function 

6 : R + —• R + we have 

| | [T ,n ] ( / ) | | x<5( | | / | | x ) . 

If n is homogeneous this becomes 

(4-5) ll[r,n](/)||x<*ll/l|x 

for some constant k. Notice that if T and Q commute and H' is equivalent to O then 

T and H' commute. This via Proposition 4.1 reduces commutation problems to the 

homogeneous case. 

THEOREM 4 .6 . Let X be a, separable Kothe function space and let t : X —•• X be a 

bounded linear operator. Let Cl : X —• LQ be a homogeneous centralizer. Then the 

following are equivalent: 

(1) T and Q commute 

(2) There is a dense order-ideal I so that T(I) c D(Q) and 

sup sup | | rn ( / ) -n r ( / ) | | x = Af <oo 
/ 6 / | | / | | < l 

(3) There is a bounded operator f : X 0 n X - • X e n X so that if f G D(ft)9 geX 

f(f,g) = (Tf,Tg). 
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NONLINEAR COMMUTATORS IN INTERPOLATION THEORY 33 

PROOF: (1)=>(2) is obvious. For (2)=>-(3) define for / € I,g € X 

T0(f>9) = (Tf,Tg). 

We show To extends to a bounded operator on X ©o X. In fact 

||ro(/,ff)lkn = ||r/-n(rff)||x + ||rff||x 

= \\T(f-n(g))\\x + \\[T,n)g\\x + \\Tg\\x 

<(\\T\\+M)\\(f,g)\\x,u. 

Denote by T the extension of To to X ©n X. If / G JD(ft) and <? G X we choose 

/ n G / with fn - • / a.e. and | / n | < | / | . Then 

| | ( / - / n , 0 ) | | x , o - 0 

and so 

f ( / , f f ) = lim T0 (/„,?) = ]ha(Tfn,Tg) 
n—•<» n-+oo 

Now 

| |r(/-/n),o| |x ,n-o 

8othatf(/>flf) = (r/,rflf). 
(3)=>(l) is proved by a calculation very similar to the one given above. 

We close with some remarks. First note that every centralizer ft commutes with 

every multiplication operator Mu. Second, notice that ft is symmetric if and only if 

it commutes (uniformly) with every rearrangement operator 5^. Equation (3.4) reads 

exactly 

l|[^,n](/)Hx<n(ll/l|x) 
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while (3.1) is 

| | [M u > f i j ( / ) | |x<£( | | / | |x ) 

if H o c < 1 . 
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5. A preliminary commutator theorem 

Our next result is an important key to the methods of the paper. We first recall 

a theorem of Lozanovskii [19] that if X is a Kothe function space on E and h £ L\ 

then for every e > 0 we can find factorization h = fg with f £ X,g £ X* and 

(5.1) ll/IU llffllx- < ( l + €)Nli 

(An alternative treatment of the discrete case is in [6]). 

THEOREM 5 . 1 . Let X be a separable Kothe function space and let H be a homo

geneous centralizer on X, Then there is a homogeneous centralizer H'1' on L± so 

that 

(5.2) A(0 [ l 1) < 36A(0) 

(5.3) ||fi[11(/<7) " n(/)g|U < 18A(fi)||/||x||<7||x* 

forfeXi9eX\ 

Furthermore ifQ' is any homogeneous centralizer on L\ so that for some C < oo 

(M lin't/ffj-nt/jgiix^cii/HxIlffllx. 

then CI' and U^ are equivalent. 

PROOF: Suppose fuf2 £ X and gu g2 £ X* with figi = f2g2 = h £ L\. Let 

F= | / i | + | / 2 | G X Then 

\Mfi) - fiF-iQWWx < A\\F\\X 

35 
Licensed to Univ of Missouri-Columbia.  Prepared on Sat Jan 11 02:30:00 EST 2014 for download from IP 161.130.253.98.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms
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(where A = A(Q)). Hence 

Mfihi - hF-^Wh < A\\F\\x\\gi\\x. 

and therefore 

IM/Offi - "(/ajftllx < 2A(| | / i | |x + ||/2||x)(||ffi||x« + HftllxO 

If we replace by /2, #2 by a/2 and a~1g2 where a > 0 and minimize the right-hand 

side over a we obtain 

(5.5) \\n(h)9i - n( / 2 )g 2 | | 1 < 2A(||/1 | |x/2 | |ffi||x /? + ll/all^/3lli»ll^)a 

Now by Lozanovskii's result [19], we select for each h G L\ a factorization h = fog0 

where 

(5-6) ||/o||x||<7o|U* <2||fc||i 

in such a way that if a G C, with a =̂  0, ah is factored as (afo).go. Then define 

(5.7) n|1|(A) = n(/o)o) 

Now for any / e X, g € X*, if h = fg 

||n[11(/ff) " n( / ) f f | |x < 2A( | | / | | ^ 2 | | ? | | ^ 2 + ^ | | f e | | J / 2 ) 3 

by (5.5) so that we obtain (5.3). 

If \u\ < 1 a.e. and h G Li then if h = /o£o in (5.6) and (5.7) we obtain 

IMfo^go-Q^iuh)^ < 18A| | /0 | |x |No| |x* 

< 36A||fc||i 
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NONLINEAR COMMUTATORS IN INTERPOLATION THEORY 37 

so that 

\\UQ^{h) - n^iuh)]^ < seAWhWx 

and this gives (5.2). 

Uniqueness is also clear. If h = fogo is the factorization used in (5.6) and (5.7) 

then if 0 ' satisfies (5.4) 

lin'^-nW^jH^cii/ollxllflbllx. 

< 2C||A||i. 

Thus ft!1! and fi' are equivalent. 

COROLLARY 5.2. IfQ is symmetric then ftl1' is symmetric and A*(fil1l) < 38A*(fi). 

PROOF: Let a : E —+ E be a measure preserving automorphism. If h €E L\ is factored 

according to (5.6) and (5.7) then 

5<r/i=(5<r/0)(5<r5r0) 

and so 

\\nW{Sah) - 0 ( 5 ^ / 0 ) 5 ^ 1 1 ! < 18A||/o||x||<7o||x* 

< 36AIIAII! 

However 

l i n ^ / o J - S ^ / o J I I x ^ A ' H / o l l x 

so that 

H n W ^ / i ) -5<y(0(/o).ff)| |x < 36A||A||1 + A*||/o| |x|ko| |x-
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or 

\\nM{Sah) - S„nW{h)\\x < 38A*||A||i 

There is a partial converse to Theorem 5.1 which we will discuss later in Section 

8. We shall need to identify r U where Tj, is the special homogeneous centralizer 

introduced in section 3, i.e. 

r^(/) = Miogr /) 

where <j> : R —* R is Lipschitz (see Corollary 3.2). To this end we prove first a lemma 

on the form of the factorization given by the Lozanovskii theorem for a symmetric 

norm. 

LEMMA 5 .3 . Let || • || be a symmetric norm on R n and suppose x = (x 1 } . . . , xn) G R n 

with x\ > . . . > xn > 0. Then there exist u = ( u i , . . . , un) E R n , v — (t?i, . . . , v,x) G 

R n with 

(5.8) U{Vi — Xi 1 < i < n 

(5.9) N I I M I ^ E ^ = Nli 
t = l 

and ui > U2 > . . . > un > 0 with U{ = u t + i whenever xt = z t+i, and U{ = 0 if and 

only if xt = 0. 

Here \\ • \\* denotes the dual norm on R n . 

PROOF: By the Lozanovskii theorem and a compactness argument we can find a 

factorization x — uv satisfying (5.8) and (5.9), and with u > 0, v > 0. Amongst all 
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NONLINEAR COMMUTATORS IN INTERPOLATION THEORY 39 

such factorizations let us suppose we choose the factorization x = uv where ||u||i = 1 

and ||u||2 = \ / S lu*l2 *s minimized. We shall show that for this factorization we have 

v>i > . . . > un > 0. Indeed, suppose not; then there exists k so that Uk < Ufc+i-

We now define 

(5.10) S = l/2(u + u') 

where u' = {uu . . . ,u f c_i, u f c +i , uki.. .un). Clearly \\u\\ < ||u||, ||u||i = 1 and ||u||2 < 

HI* 
Now define v by t)t- = Vi for i ^ (A;, k + 1) and 

(5.11) vk = xfcu^ x 

(5.12) t;fc+i = Sfc+ifij^ 

Consider the vectors (*}&, Sfc+i) and (t^, Vfc+i) in R 2 . We claim there exist Ai, A2 with 

0 < A1}A2 < 1, Ai 4-A2 < 1 and 

(5.13) (vky Vk+i) = Ai(vfc, vfc+i) + A2(v*+i, vfc). 

This can be checked using Proposition 2.a.5 of [18] p. 124 (due to Hardy, Littlewood 

and Poly a). We check that Vk > f̂c+i and Vk > ffc+i (since Uk < u>k+i)- Then we 

require 

Vk < Vk 

Vk + Vk+l < Vk + Ufc+i-
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The first inequality is clear since uk > uk. For the second inequality we note 

(5.14) (u/c+i - uk)(vk - Vfc+i) > 0 

and so 

(ufc+1 + uk)(vk + vk+x) > 2(ukvk + Ufc+1t>fc+1) 

= 2(xk + x f c+i). 

Thus 

(tffc + Vfc+l) > 2( ; ) 

uk + Ufc+i 

= vk + ujk+i . 

Hence ||t)||* < ||v||*. This establishes a contradiction since ||u|| ||t>||* < ||u|| ||v||* = 

||x||i. We conclude that ui > ui > . . . > un > 0. 

It is clear further that uk = 0 whenever xk = 0. Also if xk = £fc+i then we can 

similarly define u, v, by (5.10)-(5.12) and demonstrate that (5.13) holds since clearly 

(5.14) holds. 

The deduction in this case is that ||u||2 = \\u\\2 and so u — u i.e. uk = uk+i. 

THEOREM 5.4. Let X be a separable r.i. function space with hnite Boyd indices 

deGned on E where E = R or E C R is an interval. Then there is a constant 

C = C(X) so that <j> : R —• R is a Lipschitz map and f G X, g G X* 

\\U(f9)-T+{f)9\\i<CL(*)\\f\\x\\g\\x.. 

PROOF: We compute r'1! via Theorem 5.1. Suppose h G Li is a simple function of 

the form 

n 

h = J2aJ lB, 
y=i 
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NONLINEAR COMMUTATORS IN INTERPOLATION THEORY 41 

where |ai | > (a^j > . . . > \an\ > 0 and M ( ^ I ) = ^(#2) = •• • = V>{Bn) < 00. It now 

follows from Lemma 5.3 that we may find u± > . . . > un > 0 and vi}..., vn > 0 so 

that 
n n 

I | £ ^ 1 B J X | | £ ^ 1 B J X * = IWII 

ttyvy = I ay I for 1 < j < n, uy = uJ + i whenever |ay| = |ay_f_i | and uy = 0 whenever 

ay = 0. 

By making a small perturbation we can then factorize h = fg so that 

||/||x Nix- < 2\\h\U 

and 
n 

where u'x > uf
2 > .. • > tz^ > 0, u'- = tiy+1 if and only if CLJ = a J + i , and u'- = 0 

whenever a'- = 0. 

Now 

r,(/) f f = r,(A) 

and so 

||r«(A)-rW(fc)||<c^)||/||x||j,||x. 

< CTMHMIi 

by Theorem 5.1. 

For general f E Lx we may find a sequence hn with 0 < \hn\ < | / | , /in —• / a.e., 

with each hn of the form described above. 

Suppose hn = t i n / ; then 

Licensed to Univ of Missouri-Columbia.  Prepared on Sat Jan 11 02:30:00 EST 2014 for download from IP 161.130.253.98.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



42 NIGEL J. KALTON 

\\T\p(unf) ^ifiu^YlU < CL(<p)\\fh 

and so 

\\(TAf)-^hf)W\\i<CL{4,)\\fh 

By a limiting argument, 

\\r+(f)-rli](f)h<cL{<f>)\\fh 

and now Theorem 5.1 implies the result. 

Now let us relate our result to commutators . If T : X —• X is a bounded linear 

operator we induce a bilinear form BT : X x X* —> Li by 

and | |J3T | | < 2| |T| | . 

THEOREM 5 . 5 . Let X be a separable Kothe function space and suppose Q is a 

homogeneous centralizer on X. Let T : X —* X he a bounded linear operator. Then 

T and Q commute if and only if there is a dense order-ideal I <Z X, and a dense 

order-ideal J c XQ SO that 

(5.15) T{I) c D ( f i ) , / c D ( Q ) 

and for some constant K, and for all f G / , g G J , 

(5.16) | / n^{BT{f,g))d^\ < K\\f\\x \\g\\x* 
JE 

PROOF: In fact, if we assume (5.15) then BT maps I X X* into D{Q^) by an easy 

application of Theorem 5.1, so that the integral is defined. 
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NONLINEAR COMMUTATORS IN INTERPOLATION THEORY 43 

Suppose (5.15),(5.16) hold. Then 

\\nW(BT(f,g)) -nW(Tf.g) -nM(f.T*g)\U 

< 3A(nM)\\T\\ H/llx |M|x. 

< 108A||T|| H/llx HflfHx. 

where A = A(O). 

Further 

\\nW{Tf.g) - nfr/wu < i8A||r|| ||/||X \\g\\x-

\\nW(f.T*g) - 0 ( / ) . ! T - S F | U < 18A||r| | H/llx HffHx. 

so that 

I f (n(Tf).g - n(f).rg)dn\ < K'\\f\\x \\g\\x. 

J E 

for some K\ all / G J and all g G J. Hence since 0(77) ~ ^(fi( /)) G X for / G 7 we 

conclude 

||fi(r/)-r(n(/))||x<in/llx 
and Theorem 4.6 yields that T and fi commute. 

For the converse we take I = D(Q), J = XQ. Then 

||[T,n]/||x<tfi||/||x fel 

implies 

| f (n(Tf).g-n(f).T*g)d»\ < K^fWx \\g\\x. 
J E 

and the argument given above can be reversed. 

We investigate now the special case of Q = T^ where </> is a Lipschitz function. 
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THEOREM 5 . 6 . Suppose E is an interval or E = R. Suppose 1 < po < pi < oo and 

fcnat X is an r.i. function space whose Boyd indices satisfy po < px < <Zx < Pi- TAeji 

fciiere is a constant C = C(-^)> so that whenever T : X —+ X is an operator of strong 

type (po, po) &nd strong type (pi, pi) and <f> : R —• R is a Lipschitz map then for any 

/ , g G LQO wnose supports have Gnite measure 

\JT4>{BT{f,g))dn\ < CLfob(T)||/||x Nix-

where 7 ( r ) = m a x ( | | T | | L p o l | | T | | L p i ) . 

Remark. Obviously we can relax the assumption on T to weak type by the 

Marcinkiewicz interpolation theorem. 

PROOF: Let us first observe that it suffices to prove the theorem for (f> increasing since 

every Lipschitz <f> can be expressed as the difference of two increasing functions. Let 

G be the space of all LQQ-functions of support of finite measure. Since T : Lp —• Lp 

where p > 1 it is easy to verify that BT(G X G) is contained in D{Y$) for every <f>. 

This observation allows us to restrict attention to the case when <}> is bounded. The 

general case then follows by approximation. Finally we shall suppose L(<f>) < 1 and 

argue by homogeneity. 

We introduce some notation. Let I = fiE (0 < t < oo). Let w = <£(logt). Pick 

ro, ri so that po < ro < px> Qx < f\ < Pi- Then there is a constant K so that the 

dilation operators D8 on X and X* verify 

\\D,\\x<Ks1^ s<l 

< K s1/r° s > 1 

||A,||X« < t f s 1 - l / r o S < 1 

< K sl-l'ri s > 1 
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NONLINEAR COMMUTATORS IN INTERPOLATION THEORY 45 

Fix 6 > 0 so that 6 < min(-1-, -±- - -±-, 1 - -1-, — - - ) . 
V p i ' n p i ' p 0 > po r 0 ' 

Now for 0 < 6 < 8 we introduce an equivalent norm on X 

\\f\\e = sup sup | / /flf/id^l 
IMIx*<i hew JE 

where W is the set of h G LQ with 

A* < e ~ ^ 

Let us note immediately that 

II/II, = sup / r9*t 
IMIv*<i Jo 11*11. 

• * " & 

(Here we utilize Lemma 2.1 and identify X with X(0, £)). 

We shall need some basic facts concerning || \\$. First if / €. X we shall estimate 

||/* eBw ||0. To do this let us define 

/•oo 

/x(t) = a / /*(at)s1 /p i"1d« 0 < * < £ 
Jl/2 

where 

Jl/2 

We then have 0 < /* < / i , and / i € X(0,£) can be written as a Bochner integral 

/•OO 

Jl /2 

giving the estimate 

/•oo 

| | / i | | x<<* ( / l l ^ - i l l x W ^ M a J H / l l x 
Jl/2 

/

oo 
j ra i /p . - i / r . - i^JH/ i^ 

< CH/llx 
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where C = C(X). Now if r > 0, eTt < £, 

/•OO 

h(eTt) = a / fie'sty*1-^ 
Jl/2 

/•oo 

Jl/2er 

Thus 

< e ' ( « - l / p i ) / ! ( « ) . 

We conclude that e9,"/i is decreasing and so 

| |e*V||,<||«'"7i| |* 

<ll/i||x 

i.e. 

(5-17) H ^ / l * < C||/| |x 

The other calculation we need is of the norms of the dilation operators on (X, || ||o). 

Here ii f G X, 0 < s < oo 

\\D.f\\e = \\D.r\\e 

= \\e-0wD,r\\x 

< \\D.\\x\\e-elD.-^r\\x 

Now if s > 1 we have 

e-0(D.-iw) < e-0w 
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NONLINEAR COMMUTATORS IN INTERPOLATION THEORY 47 

and so \\Ds\\e < \\D8\\X- If s < 1 

e-e(D9-lw) <3-ee-ew 

Combining we have 

\\D9\\e<K a1'** s>l 

< K s1^'6 s < 1 

Since ro > po and ( - — tf)""1 < Pi> the Boyd interpolation theorem can be applied 

uniformly to the spaces (X, || \\o) (uniformly also over choices of <f>) (see [1],[18] p. 145). 

We conclude that there is a constant C depending only on X so that for 0 < 0 < 

6, fex 

(5-18) l |Z7| |*<C 7 (T) | | / | | , 

Very similar calculations can be performed on X*. We define for g E X* 

\\g\\*,$ = sup sup / fghdfj, 
\\f\\x<l h€W JE 

and as before ||flf||*^ = ||0*e~^u; ||x*- Analogously we define 

/•oo 

gi(t)=a* / g'istfs^frods 0 < t < I 
Jl/2 

where 

a* f 5 - 1 / p o d 5 = l . 
Jl/2 

Arguing in the same way, we conclude that 0 < g* < gi, and ||<7i||x* < C|M|x*> 

but for r > 0, eTt < £, 

9i(eTt)<e^^-1^g1(t) 
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This leads to a conclusion dual to (5.17), 

(5.19) \\eewg*\L9e<C\\g\\x. 

for 0 < 0 < £. 

We also estimate the dilation operator norms 

< # s l - l / r o - * 5 < X 

Again our original choice of 6 allows us to use the Boyd interpolation theorem on 

T* which maps Lqo to Lqo and Lqi to Lqi where (<7o,<?i) are the conjugate indices of 

(pojPi)- In the same way we obtain uniform estimates on ||T*||*^ so that 

(5.20) l | r*flf | |^<C7(r) | |^ | |x- fa 

for 0 < 0 < 6. 

Now we are in a position to complete the proof. Fix f,g G G and let u = 

<£(logry), v = <f>(logrg) where u = 0 when rj = 0 or oo and v = 0 similarly if rg = 0 

or oo. For z € C we consider the analytic function 

(5.21) F(z) = [ T{ezuf).e-zvgdfi 
JE 

We shall bound F for |̂ R |̂ < 8. Suppose $lz = 0 > 0. Then 

ll«w/||*HI«""/l* 

< C | | / | | x 

by (5.17). Hence 

| | T ( e - / ) | | . < C 7 ( T ) | | / | | x 
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NONLINEAR COMMUTATORS IN INTERPOLATION THEORY 49 

by (5.18), and hence from the definition of || ||# 

| / e-"g.T(e™f)dp\<C1{t)\\f\\x\\g\\x. 
JE 

If — $lz = 9 > 0 then we similarly obtain from (5.19) and (5.20), 

im*—<,)|k*<c7(r)!M|x. 

and so 

\fVuf).T(e-»'g)d»\<C1(T)\\f\\x\\g\\x. 
JE 

Thus 

i n * ) | < C 7 ( T ) I I / U X W I J C . 

for \dtz\ < 8, and by the Cauchy estimates 

|F'(o)|<c7(r)||/||x||3|U.. 

Now 

F'(0)= [{T{uf).g-{Tf).vg)dp 
J E 

i.e. 

*"(0) - / (T4>(f).T*g-Tf.T4g))d^ 
J E 

We can now apply Theorem 5.4 to both X and XQ (since both have finite Boyd 

indices) to deduce that 

| f T4f.T*g) - U(Tf.g)dv\ < C 7 (T ) | | / | | X IM|x-
J E 

Finally the quasi-addivity of T<f> on L\ (Lemma 4.2) yields 

| / ' r * ( B r ( / > f f ) ) d / i | < C 7 ( r ) | | / | | x | | f l f | | x . 
J E 

as required. 
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50 NIGEL J. KALTON 

COROLLARY 5.7. Under the assumptions of the theorem, when X is separable, T 

commutes with each T<f> on X. 

The proof of Corollary 5.7 requires the simple observation that G C D{T^) and 

T(G) C D(T<f>) for every (j> when T satisfies conditions of the Theorem. 

Licensed to Univ of Missouri-Columbia.  Prepared on Sat Jan 11 02:30:00 EST 2014 for download from IP 161.130.253.98.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



6.The symmetric Hardy class 

We recall that C\ denotes the class of bounded Lipschitz maps <j> : R —• R with 

<f>(0) = 0 and L{<f>) < 1. Let E be an interval or E = R. Then we denote by H[yrn the 

space of all / E L\[E) so that 

(6.1) Ai(/) = H/lli + sup | f T+{f)dv\ < oo 

Let us observe that JJ\ym, which we refer to as the symmetric Hardy class, is a vector 

space and that Ai is a quasi-norm on H[ym. In fact it follows from Corollary 3.2 that 

for (f> € L\ 

\\U(fx + h) - r,(/o - rv(/2)|U < cfliAiu + \\h\\x) 

where C is independent of <f> and hence that Ai is a quasi-norm and H[yrn is a vector 

space. We also see that JJ^ym is a re-arrangement invariant, i.e. that if / E Hlym 

and a : E —• E is a measure-preserving automorphism then Saf €. H[yrn and 

A 1 ( 5 , / ) < C A 1 ( / ) 

where C is independent of a. It follows that the definition of H[ynt can be extended 

unambiguously to any Polish space E and any non-atomic cr-finite measure \x on E. 

We will let H^™ be the space of mean-zero functions in H[yrn. If / E £ i (R) is 

real-valued we shall say that / is signed-decreasing if / is non-increasing on (—oo,0) 

and on (0,oo)j is non-positive on (—oo,0) and non-negative on (0, oo). For any real-

valued f £ Li(E) there is a unique signed-decreasing rearrangement fd € £ i (R) with 

51 
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52 NIGEL J. KALTON 

/ ~ fd- In fact 

fd(t) = (f+)*(t) t>o 

We define 

M{t)=[ fd{s)ds 

M(oo) = / fdp 
JE 

LEMMA 6 . 1 . For real-valued functions f G Li(E), Ai is equivalent to 

,6.2) ,M)=pmidt+j-m)-M^idt+m 

In particular on H^™, Ai is equivalent to 

(6.3) A0(/)= ri^idt+WfW, 
Jo l 

PROOF: If </> e L\, f e L^E) with / > 0, 

/ TMW= ruin* 
J E Jo 

Hence if / is real-valued we deduce that 

/» /»co /»oo 

I / r«( / )d/ i - / T+((f+y)dt+ / T+((f-Y)dt\ < C\\f\U 
JE JO JO 

where C is dependent of <£, / . Now 

/•CO /•CO 

/ (r,((/+n-r,((/_)*))<ft= / (/«f(t) + /«i(0 + /dH))^0og0* 
/•oo 

= / Jlf'(t)0(logt)<ft 
Jo 

= _ / , 1
M ( t ) ^ ^ A + f ° (M(oo) -M( i ) ) ' 

Jo t Ji 
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NONLINEAR COMMUTATORS IN INTERPOLATION THEORY 53 

so that 

and conversely 

./o r Ji r <l>ez\ JE 

so that the lemma follows. 

Lemma 6.1 shows immediately that (i?Jy m , Ai) is complete, i.e. a quasi-Banach 

space. In fact Ao is a lower-semi-continuous function on Li(E) and this allows a 

routine proof of completeness. We state this formally as: 

PROPOSITION 6 .2 . H[yrn is a quasi-Banach space. 

Lemma 6.1 also relates H^ym to a theorem of B. Davis [3] which characterizes 

rearrangements of functions in SftiJi and justifies our terminology. Let us note that 

Davis's theorem is actually an immediate consequence of our Theorem 5.6. 

THEOREM 6 . 3 . (Davis). HX(T) is contained in Hlym(T) and hence *J?i(T) is also 

contained in # * y m ( T ) . If f G RfTi,0(T) then 

Jo t 

PROOF: The Riesz projection R : L2 —* H2 is of strong type (p,p) for 1 < p < 00 

and so by Theorem 5.6 if / , g £ L2(T), <f> € L\ 

\JT4>{f.R*g-Rf.g)dn\<C\\i\\2\\g\\2 

where C is independent of <f>. 

Licensed to Univ of Missouri-Columbia.  Prepared on Sat Jan 11 02:30:00 EST 2014 for download from IP 161.130.253.98.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



54 NIGEL J. KALTON 

Here i?* is the Banach space adjoint of R not the Hilbert-space adjoint, so R* is 

the invariant projection of L2 onto j?2- Hence if / G H2, g G if2,0 then 

\ J r*{f.g)dp\ < C\\fh \\gh 

Now by factorization if / G #1,0 

| |r«( /)dH<c| l / l l i 

whence / G j f f j y m . The remaining statements are obvious, since if / G H[yrn then 3ft/ 

a n d 9 f / G # f m . 

Remark. Davis's original proof uses Brownian motion techniques. There is an 

unpublished proof due to J.L. Lewis using properties of BMO established by Coifman 

and Rochberg [3]; I am grateful to A. Baernstein for communicating this proof to me. 

The proof given above is rather inefficient since a considerable amount of machinery 

has been developed; however, we feel it has some interest. A shorter, direct proof 

avoiding Theorem 5.6 will be given later, which will also establish an equivalent result 

of Ceretelli [2]. 

We now prove a technical lemma which will be useful in the sequel. 

LEMMA 6 . 4 . Let f be a real-valued function in H[ym[E). Then there is a sequence 

fn G H[yrn with \fn\ < | / | for n G N , fn —* / a.e., each fn bounded and of support 

of finite measure, so that 

A 0 ( / ) = lim A 0 ( / „ ) . 
n—•oo 

PROOF: It clearly suffices to prove this in the case when E — R and / is signed-

decreasing; the general case follows by rearrangement. For each n G N we construct 
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NONLINEAR COMMUTATORS IN INTERPOLATION THEORY 55 

/ „ . Let a = —, b = n. For convenience, let us assume that 

(6.4) M{a) = f f{t)dt > a{f{a) + f(-a)) 
J —a 

(6.5) M(oo) - M{b) = [ f{t)dt > 0 

J\t\>b 

The modifications necessary in the case when (6.4) or (6.5) are violated will be easily 

seen. Notice that /(&) = 0 implies M(oo) = M(b). Define d > b so that d = b if 

/(6) = 0 and otherwise 

J f(t)dt = M{oo)-M{b). 

Now define 

( M(a) • / ( - a ) , for 0 < t < a 
/ ( - a ) , for - a < t < 0 

fn{t)= { f(t), for | a | < t < |6| 
/(*), for b < t < d 

{ 0, otherwise 
fn is also signed-decreasing and 

| | / » | | i = / | / |dt + M ( a ) - 2 a / ( - a ) + / \f\dt 
J\a\<t<\b\ Jb 

that 

If 

then 

lim HAlli = H/HL 

Mn{t) = j fn{s)ds 

Mn(t) = I 

^ - t , for 0 < t < a 
M(t), for a<t<b 

M(b) + ft f(s)ds, for b<t<d 
\ M(oo), for t > d 
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Thus 

Jo t J o t 

and 

f~\Mn(t)-Mn(oo)\dt< fb \M(t)-M'(op)| f ' | M ( o o ) - M ( t ) | 
A * " Ji t Jb t 

since M(t) < Mn(*) < M(oo) for b < t < d. 

It follows easily that 

limsupA0(/rx) < A0(/) 
n—*oo 

and the lemma follows from the lower-semi-continuity of Ao-

We now state our main theorem on jy*ym. 

THEOREM 6 .5 . There is a constant C so that whenever E is a Polish space, /x is 

a cr-finite measure on E and Q is a symmetric homogeneous centralizer on LI(E,/JL) 

then 

I / n(f)dn\ < CA*(n)A!(/) 
J E 

for feHly™nD(n). 

Before proceeding with the proof of theorem 6.5, we make some initial remarks. 

First observe that we can reduce the theorem to the case when E is an interval or 

E = R. 

Next suppose H is a symmetric homogeneous centralizer on Li(E). Then D(H) 

is a dense symmetric order-ideal in Li[E)\ in particular, if fJ>(E) < oo then D(Q) D 

Loo(E). In general D(0) must include all L^-functions whose supports have finite 

measure. Further if / , g are simple functions whose supports have finite measure and 
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NONLINEAR COMMUTATORS IN INTERPOLATION THEORY 57 

/ ~ g there is a measure-preserving automorphism a of E with g = S„f. Thus 

\[ n(f)d»- f n(g)d(M\ < A I / I U 
JE JE 

where A* = A*(H). 

Now we can use Lemma 4.3(b) to deduce that in general if / , g G D(ft) and / ~ g 

then 

(6.6) | / n(/)d/x - f n{g)dfi\ < 13A*||/| |i 

We shall frequently use the inequality 

I / n(A + /2) - n(A) - n ( / 2 ) ^ | < sAfli/j! + ||/2||i) 

(Lemma 4.2). 

We shall now concentrate on the case E = [—1,1]; it will be convenient to nat

urally identify Li[—1,1] as a subspace of I a (R) . We will fix a = 3/4 and Eo be the 

<j-algebra generated by the sets ± [ a n + 1 , a n ) for n > 0. We will let P : Li[—1,1] —• 

jLi(Eo) be the conditional expectation operator. Our proof will require a number of 

preliminary lemmas. 

LEMMA 6.6 . There is a constant C so that if f G ioo[—1,1] is signed-deer easing 

then 

(6.7) Hx{f-Pf)<C\\f\\i 

Ai(P/ ) < CAi( / ) . 

PROOF: I f<^e£5 

||IV(/) - r,(/.i,0,ii) - TM-M-i,o))h < c||/||i 
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and a similar inequality holds for Pf. Now 

r*(/.i[0li])cfc = / f{t)<f>{\ogt)dt 
Jo 

while 

r^(p/ . i [ 0 , i i )*= / Pf{t)<t>{\ogt)dt 
Jo 

= / Pf(t)P[t(logt)]dt 
Jo 

= [ f{t)P[4>{\ogt)]dt 
Jo 

where for a n + 1 < t < an 

Thus 

mw-^xL^w* 

l^(ioge)l - ^(iogt)| < log | 

and so 

IJ r*(/-i(o,i]) - r^(p/.i[0ll])dt| < log \j^ f(t)dt. 

If we combine with the similar result on ( — 1, 0) we obtain 

l/iWJ-r^p/jdti^c-ii/H! 

and so 

\JT4f-Pf)dt\<C\\f\\1 

so that both (6.7) and (6.8) follow. 
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NONLINEAR COMMUTATORS IN INTERPOLATION THEORY 59 

LEMMA 6.7 . There is a constant C so that for every symmetric homogeneous cen

tralizer Q on Li[—1,1] and every f G L^ 

| j U{f)dt - J Q{f)dt\ < CA*(H) H/ll! 

where 

/'(*) = | / ( | * ) 

PROOF: First let f̂(t) = /(2* + 1) + f{2t - 1) for - 1 < t < 1. Then # ~ / and 

flfl[-i,ol ~ 0l[o,i]- Hence 

\2 J (l{gll0,i))dt - j il{f)dt\ < C7A*(n)||/||1. 

Repeating the argument if h(t) = f(4t + l) then 

|4 f(l(h)dt- [n{f)dt\<CA*{n)\\f\\i 

However / ' ~ §(<7l[o,i) *+" M s o t n a t 

11 n(f)dt - j n(f)dt\ < cA*(n) n/iu 

LEMMA 6 .8 . TAere is a constant C so that if f G Loo [—1) 1] is signed-decreasing, with 

mean zero, and Eo-measurable, and if Q is any symmetric homogeneous centralizer 

on Li[—1,1] then 

iy"n(/)*|<CAi(/)A*(n). 

PROOF: Let gr(t) = / ( t ) + / ( - * ) , - 1 < t < 1. Then 

| fn{g)dt-2 f Q{f)dt\<CA* 
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Let 
oo 

G(t) = Y2 oT+igioT+H) -oo<t<oo. 
n=0 

Then 

(6.9) g{t) = a~1G(a-1t)-G(t) 

Note that both g and G are even functions. Suppose g(t) = ^n for a n + 1 < t < an, 

where n > 0. If t > 1 and a~k < t < a~(*+1) then 

n=0 

ak+1 f1 

= / g[t)dt = 0 
1 - <* J0 

since / has mean zero. Thus G is supported on [—1, l] and clearly G G Loo[—1,1] 

Now Lemma 6.7 shows with (6.9) that 

and so 

\f(l(g)dt\<CA*({i)\\G\\i 

\JQ(f)dt\<CA'(n)(\\fh + \\Gh)-

However 
- 1 oo oo - 1 oo oo 

/ \G\dt=j2("k-«k+1)\ E ^«n~ 
J° k=0 n=/c+l 

For / we have 

M{t) = f f{s)ds = [ g{s)ds. 
J-t Jo 

Thus if a fc+1 < t <ak 

M(t)= £ (an - *n+l)ln + (t - ak+1)lk 
n=fc+l 
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and so 

r M i i < B . l 0 f i | f ; , a . . ^ ) j s r i^ifcH, 
Jak+i t a _f̂ t | Jak+i t 

< \lk\(ak - ah+1). 
n=k+l 

Hence 

Jo t a J0 J0 

so that 

||G||i < CAo(/) < CAx(/) 

and the lemma follows. 

Now we complete the proof of the theorem for E = [—1,1]. Suppose first / G 

Loo[—1,1] is real and has mean zero. We will show that for any symmetric homoge

neous centralizer fi then 

(6.10) \[n(f)dt\ < CA!(/)A*(n) 

where C is independent of / , Q. 

We claim first that for any such / we can find g G Loo[—1, l] also real-valued with 

mean-zero and such that 

(6.U) N i l < f ll/Hi 

(6.12) Ax(flf) < CH/IU 

(6-13) |M|oo < ll/lloo + H/Hl 

For any symmetric homogeneous n we have 

(6.14) | fn(f)dt- fa(g)dt\ < CA*(n)Ai(/) 
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To prove this claim, first let /^ be the signed-decreasing rearrangement of / . This 

is supported on an interval [—/?, 2 — p] where 0 < p < 2. For convenience we assume 

P < 1 and leave the reader to appropriately modify the argument if /9 > 1. Define 

f(t) = (fd^' for-0<t<l 
U \fd{t + 2), for-l<t<0 

Then / ' ~ / and so 

| J n(f)dt - j ti{f)dt\ < CA*(n)\\f\\u 

for any symmetric homogeneous Q. 

Next let 

(-/<*(*+ 2), f o r - 1 < * < - / ? 
h(t) = < /d(t - f l ) , for 0 < t < 1 - p 

[ 0, otherwise. 

Then since h is the difference of two functions with identical distributions we have 

| / n ( f c )d t |<CA*(n ) | | / | | i . 

Next let / " = f' + h. Then 

\Jn(ndt-Jn{f)dt\<CA*{n)\\f\\1. 

In particular by applying this inequality to each T^, <f> £ t\ we obtain 

A i ( / " ) < C A i ( / ) . 

/ " is also signed-decreasing, | | /"| | = \\f\\\ and 

| | / " | | o o < | | / | U + /d(l) 

<ll/ll=o + | | / l | l . 
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Let g — f" — Pf". Since /" is signed-decreasing we obtain (6.13) immediately. Lemma 

6.6 yields 

Ai( f f )<C7| | /" | | i=C| | / | | i 

i.e. (6.12). For any symmetric homogeneous Q 

\ J n(Pf")dt\<Ck1(PfM)X'(n) 

by Lemma 6.8. Thus by Lemma 6.6 

| f n(Pf")dt\ < CAi(/")A*(n) 

<CAi(/)A*(fl) . 

IJ n(g)dt - J a(f")dt - j Q(pf')dt\ < cA*(n) n/iu 

and (6.14) follows. 

Finally for (6.11) 

f\9(t)\dt=Y,r \f"(t)-Pf"(t)\dt 

< f > " - a"*1) (/"K+1) -/"(<>")) 
n=0 

oo 

= (1-a) E t tB(/"K+1)-/"(«")) 
n=0 
oo 

<(1-a) X)(«n_1 "«")/"(«") 
n = l 

1 oo r a
n 

Now 
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so that by a similar argument on ( — 1,0), 

II0II1 < ^ l l / I U 

a 

and i=a = i 
a 3 

Now use (6.1l)-(6.14) to produce a sequence / n G Loo[—1,1] of mean-zero real-

valued functions such that fo = f and 
(6-15)) | | /„+ i | | i < l\\fn\\i n > 0 

(6.16) AiC/^+x) < C||/„| | i n > 0 

(6-17) | | / n + l | | o o < | | / n | | oo + H/nlU n > 0 

For any symmetric homogeneous Q, 

(6.i8) ||n(/„+1)-n(/n)^|<cA*(n)A1(/n) 

Clearly I IAIU^S-^l l / l l ! and 

| | /»| |oo<| | / | |oo + | | | / | | i n > 0 . 

Thus fn is uniformly bounded and fn —• 0 in measure. By Lemma 4.3, 

lim | | n ( / „ ) | | 1 = 0 . 
n—• oo 

Now by (6.14) 

| f Q(f)dt - f Q(fn)dt\ < CA*(H) J2 M/*) 

fc=0 

<CA*(n)A x ( / ) . 
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Now letting n —• oo we obtain (6.10). 

Let us now complete the proof when E is a bounded interval (a, 6) (and hence for 

finite nonatomic measure fi). We clearly have for any symmetric homogeneous O and 

/ £ LQO(ai b) with mean zero 

\fan{f)dt\<cki{f)A'(n). 

Now suppose / € D(Q)C\Hly™. If / is real-valued we can find a sequence fn € L^ (a, b) 

with 0 < | / n | < | / | , fn —* f a.e. so that 

A0(/) = lim A0(/„) 
n—>-oo 

Let 

lb 
r fndt. 

Jb 

Then \cn\ < | | / | | i and fn - cn —• / a.e. Now 

I / n(/n - cn)dt\ < CK^U - cn)A*(n) 

Now by Lemma 4.2 

lim sup |/" n{fn-cn)dt- f n(/)dt|<cA*(n)||/||i 
n—»-oo J a J a 

and it follows that 

\f n(/)dt|<CA*(n)Ai(/). 
•/a 

Finally we complete the proof for JE = R or any cr-finite nonatomic measure. First 

note that if Q is a symmetric homogeneous centralizer on Li(R) and A C R is a 
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Borel set with JJLA < co then we can construct a symmetric homogeneous centralizer 

on Li(A) by 

O i ( / ) = U n ( / ) / G L i ( i 4 ) 

Indeed 

||n^(/) - n(/)IU < A-(n)||/IU 

and it quickly follows tha t 

A*(QA) < 3 A * ( H ) 

Thus if / is bounded and has support of finite measure we can deduce tha t if 

A = s u p p / 

l^n^/jdii^cA^njAif/) 

and hence 

IJ n{f)dt\ < cA*(n)Ai(/). 

The proof may now be completed in the same way as the finite case. 

PROPOSITION 6 . 9 . Let X be a separable r.i. function space on (E,fi) and let Q be 

a symmetric homogeneous centralizer on X. If f £ X satisfies f*{t)\logt\ G X then 

feD{n). 

PROOF: If we let, as usual, G consist of all Loo-functions whose supports have finite 

measure then it is easy to see that G C D(Q). If / satisfies the conditions of the 

proposition, then, since X is separable, we can find a ip : R + —> R + so tha t ip 

is monotonic, l i m ^ o V>(z) = °> linix—o ^f1 = H n ^ - c o ^r1 = oo and h = ^ ( | / | ) 

satisfies h*(t)\logt\ EX. 
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Now fix a function a G L i with a G Z^O'1 ') and 

adfj, = 1. 

For example, if fxE < oo let a be a constant function. 

In the following argument if is a constant which may vary from line to line and 

depend on / , h, Ct but not on g or <j>. We argue first that the conditions on h imply 

that if <j> : R —• R is Lipschitz with L(<f>) < 1 and $(0) = 0 then 

\\T4h)\\x<K 

Hence for g G X* 

l|r*(A).g|U < K\\g\\x. 

and so (Theorem 5.4) 

||r,(Mlli<*yix. 

Hence 

high) < K\\g\\x. 

and if 

7 = / ghdfi 
J E 

ki{9h-ia)<K\\g\\x-

Now by Theorem 6.5, 

\jnM{9h-1a)dn\<K\\g\\x* 

and hence by Lemma 4.2 

\j^%h)dii\<K\\g\\x^ 

. 
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Now by Theorem 5.1, 

\Jg.n{h)dp\<K\\g\\x. 

and we conclude that Q(/i) G X m a a ; , and so H( / ) G Xm a a ; . 

Nowfor n G N let A = {* : n" 1 < | / ( t ) | < n} . Then n{f)-n(fAA)-Q{f.lB) G X 

where B = E \ A. However f.lA G D{n) so that Q( / ) - n ( / . l 5 ) £ X 

Thus d ( Q ( / ) , X ) = d ( n ( / . l B ) , X ) . However 

f.ls = w/i 

where 

||u||oo = max{sup — , sup — - } 
\t\>n V[t) |t|<n"1 VH*J 

= ^n say. 

Then 

d{n(f.iD))x) = d{u.n{h),x) 

<Ond{Q{h),X). 

Therefore 

d(n(/),jr)<M(n(A),x) 

where 0n — 0 and so H( / ) G X i.e. / G £>(n). 

Now the main theorem of the paper is immediate. 

THEOREM 6 . 1 0 . Let E be a Polish space and let \x be a finite or cr-finite Borel 

measure on E. Let X be a separable r.i. function space on (E, fi) whose Boyd indices 

satisfy 1 < p0 < px < <ix < Pi < °° . Let T : X —> X be a bounded linear operator of 

strong types (p0,Po) and (pi ,Pi ) . 
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NONLINEAR COMMUTATORS IN INTERPOLATION THEORY 69 

Then for any symmetric centrnlizer 0 on X, T commutes with Q i.e. 

T{D(Q)) C D(Cl) 

and 

(6.i9) ll[r,n](/)||x<*(||/||x) f€D(n) 

where 6 : R + —• R+ is an increasing function. 

PROOF: By Proposition 6.9, LPo D Lpi C D(Cl) and T maps Lpo Pi LPl into itself. 

We now appeal to Theorem 5.5 with / = J = G, the space of bounded functions with 

supports of finite measure. If 

BT(f,g) = Tf.g-f.T*g f,geG 

then by Theorem 5.6 we have 

^(BT(f,9))<K\\f\\x\\g\\x. 

for some constant K. Now Theorem 6.5 implies, since 

J BT{f,g)dv = 0 

that 

rt1](BT(f,9)W<K\\f\\x\\g\\x* 

for some K. Now by Theorem 5.5, T and H commute. 

We refer the reader to Section 8 for the proof that when X is super-reflexive 

equation (6.19) is valid for all f E X (so that in particular Tfl(f) is well-defined). 

Probably this conclusion holds in general, but we have not pursued this technical 

point. 
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7. Some remarks on Hardy spaces 

In this section we give an alternative treatment, avoiding using the main Theorems 

5.6 and 6.10, to derive the conclusions of Theorem 6.10 for the Riesz projection and 

the Hilbert transform. First, we give a direct and rather simple proof of the B. Davis 

theorem 6.3 via an alternative description of H[yrn. 

PROPOSITION 7 . 1 . There is a constant C so that if 

Aa(/) = | | / | | i + sup | f /*(log|/ |)d/i | 
4>ec\ JE 

then for f G L\ with mean zero 

C _ 1 A 2 ( / ) < Ai(/) < CA2(/) 

(and A2(/) < oo if and only if Ai(/) < oo). 

Remark. For mean zero functions, A2 is a homogeneous function (i.e. k2(af) = 

|<*|A2(/)) and is hence an equivalent quasi-norm to Ai. 

PROOF: It will suffice to consider E = R and to restrict to real-valued functions 

/ . We may further assume / signed-decreasing and non-zero. Let g(t) = \f(t)\ + 

|/(—1)|, —oo < t < oo and set 

oo oo 

n = l n = 0 

where o, b are fixed with 1 < a < 2 < b. Then h is even, positive, monotone decreasing 

on (0, a) and 

\\hh<C\\f\U 

70 
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NONLINEAR COMMUTATORS IN INTERPOLATION THEORY 71 

where C = C(a, b). 

We also have \f\<h and 

ah{2t) < h{t) < bh{2t) t > 0 

Now if (f> is any bounded Lipschitz function, we can find a bounded Lipschitz ip with 

4>{klog2)=<f>{logh{2k)) keZ 

and 

Then 

|V(log t) - ^(log/i(4))l < L(4>) log6 + I(V) log2 

< CL{4>). 

Thus 

I /"(/(*) + /H)W0°g*)<tt " / /̂ (log N)*| < CI^H/lli 

Now if we set 

n*(/) = Miog|/|) 

then Qphi is a strong centralizer on Li with A*(Q^) < CL(<f>). Thus 

\\n*{f)-f*>-ln*V>)hzcL{t)\\fh 

and 

I / /^(log | / | )A - | /*(log |/i|)dt| < CL(4>)\\fh 

Also 

I /°°(/(*) + /(-t)Miog*)* - / r#(/)cft| < cx(tf)||/|| 

Licensed to Univ of Missouri-Columbia.  Prepared on Sat Jan 11 02:30:00 EST 2014 for download from IP 161.130.253.98.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



72 NIGEL J. KALTON 

and so finally 

\j f<l>{\og\i\)dt- JT^{f)dt\<CL{4>)\\f\U 

or 

\J f4>(log\f\)dt\<CL{<p)^(f) 

This yields one half of the desired inequality. 

The converse is very similar. If <f> is bounded and Lipschitz we can construct a 

bounded Lipschitz tp with 

<j>(k\og2) = V>(log(/i(2fc)) ^ Z 

and 

LW < l^LW. 

Then 

\i{logt)-j,(logh(t))\<CL(4>) 

and as before 

| J Tt(f)dt - J /V>(log |/|)dt| < CL(4>)\\fh 

whence 

Aj(/) < CA2(/) . 

The following lemma extends a similar lemma in [11] (cf.[l2j). 

LEMMA 7.2 . If f G Hh0(T) and </> e Z\ then 

\jo /(e'Xllog/^D^I^^H/IU 
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PROOF: By approximating a triangular function we can find for £ > 0 a C°°-function 

of compact support p : R —• R with p > 0 

/

CO 

p(t)dt = 
-co 

/

CO 

\p'(t)\dt 
-CO 

/ C O 

ltl/>(t)<ft 
-co 

<4 + S 
-co 

•CO ey 

For a > 0, let 

a J.oo a 

Then ^ G Z\ and 

|̂ W - #(t)| <\T{t- s)p(t-^)ds < ( | + *)a 
a J - o o a 3 

and 

I^WI = l3/ , 0 0^( iT f)* 'W J*l^1T£-
a J_oo a a 

Now consider the function x^(log |x|) on C. For z ^ 0 

( ^ + ^ ) ( x V ( l o g |z|) = | ^ ( ^ " ( l o g |«|) + 2^(log |*|)). 

Thus if we set A = ^(4 -f £) -f 2a then X\z\ — x^(log \z\) is subharmonic on C. (We 

define x^(log |2r|) = 0 at the origin). 

Now 

is plurisubharmonic and continuous on H\. If / G #1,0 then F : A —> Hi is defined 

by 

F{z)(eie) = F{zeie) 
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is analytic on A and so $ o F is subharmonic. Since $ o F is constant on circles \z\ — r 

we have 

$ o f ( l ) = l im^o J F(r ) 

> $ o F ( 0 ) = 0 . 

i.e. 

»(/"3,r/^(log|/|)^) < All/IU. 
J0 2TT 

Arguing with a / in place of / with |a | = 1 we obtain 

\£* mios\f\)^\<\\\f\u 

and so 

i f^m*** i/i)^i < (A + (1+^)11/11! 

As 8 > 0 is arbitrary and taking a — | we obtain the lemma. 

Alternative proof of Theorem 6.S. By Lemma 7.2 if / €E H\$ then A2(/) < 

4v/6||/| |i and so by Proposition 7.1, Ai(/) < C| | / | | i i.e. / e H[y™. 

Let X be a separable r.i. function space on T. Define Hx to be the subspace of 

f E X such that f(n) = 0 for n < 0 where 

THEOREM 7 . 3 . Let X be a separable r.i. function space on T and suppose fl is 

a symmetric homogeneous centralizer on X. Then there is a constant C so that if 

f<=Hx and n ( / ) € X then 

d(n(f),Hx)<cA*(n)\\f\\x. 
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PROOF: By the Hahn-Banach theorem there exists g G X* such that \\g\\x* = 

1> §(n) = 0 for n < 0 and 

Then / $ € #1,0 n D(QW) and so by Theorem 6.5 

\f*nn[1Hf9)^\<c**m\f9\U 

which implies, by Theorem 6.3, that 

|£*n(/).«^|<CA*(n)||/||x 

i.e. 

d( f i ( / ) ,J?x)<CA*(n) | | / | |x . 

Remark 1. If Q is not assumed homogeneous we obtain 

d(Q(f),Hx)<S(\\f\\x) 

for some function 5 : R + —> R + . 

Remark 2. If X is super-reflexive the Riesz projection R is bounded on X and 

we obtain that R commutes with Q very easily from Theorem 7.3 (cf.jllj). In fact, if 

/ e l a n d / e l , , , 

/ = A + A 

where A 6 Hx, A € #x,o with | | / i | | x < C | | / | | x . Also 0 (A) , n( / 2 ) € X. Then 

n(i?/) = n(A) while 

||n(/)-n(A)-n(A)lk<c||/||x 
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and 

\\Rn(f2)\\<Cd(Cl(f2),Hx,o) 

<C\\f\\x 

Thus 

||*n(/)-an(/1)||x<C'||/||x 

and 

IIJmi/o-nc/oiix^cd^/o.fTx) 

< C | | / | | x . 

We conclude 

||fin(/)-n(ii/)||x<c||/||x. 
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8. Final remarks 

Let us start by proving the promised converse for Theorem 5.1. 

THEOREM 8 . 1 . Let X be a separable Kothe function space on (i£,/i) and suppose 

X satisfies a q-concavity condition for some q < oo (or X has Bnite cotype). Suppose 

ft is a homogeneous centralizer on LI(IJL). Then there is a homogeneous centralizer ftx 

on X such that ft^ is equivalent to ft. 

PROOF: We first prove this under the additional hypothesis that X has non-trivial 

type (or is super-reflexive). In this case X is a B-convex space and it follows from [9] 

that there is a constant K so that if Zo is a dense subspace of X* and $ : Z$ —*• C is 

a quasilinear map satisfying 

(8.1) |*(0i + g2) - *(flfi) - *(0i) | < <*(ll<7i||x* + llfl&llx*) 

then there is a linear map ip : ZQ —• C with 

(8.2) Mg)-*{9)\<Ka\\g\\x f & Z0 

Now suppose f £ X. Pick u = uj > 0 a.e. so that \u\ < 1 a.e. and uft(f) G L\. 

Then ft(uf) G L±. Let Zf = {g € X* : \g\ < m\u\ for some m G N } . For g€Zfi set 

*,(*)= [ n(fgW 
JE 

and $j satisfies (8.1) with a < 3A| | / | |x , so that there exists a linear map ipf : Zf —•• C 

with 

\®f{9)-h(9)\<3KA\\f\\x\\g\\x. 

77 
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for g G Zf. It may be supposed in the above argument that if A G C \ {0} then 

Z\f = Zf and \pXf = A^/. 

Note that if \g\ < \u\ 

l*/(rtl<l|n(/rilli 

and 

ll"n(/g) - sru-^c/u)!!! < A||/||X 

Thus 

sup |$/(</)| < oo 

Also if \gn\ < \u\ and gn —• 0 a.e. then 

lim \\n[fga)\\1=0 
n—*oo 

and so 

lim | $ / W | = 0. 

It follows that 

sup |0/(fif)| < oo 
\g\<H 

and if \gn\ < |u|, with yn —• 0 a.e. 

lim \M9n)\ = 0. 
n—• € » 

Hence there exists h € Li(u./^) such that 

We shall define Clx{f) = ^- We then have 

| /" n(fg)dn- f gClx(fW\ < 3KA\\f\\x \\g\\x. 
J E J E 
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NONLINEAR COMMUTATORS IN INTERPOLATION THEORY 79 

for / € X, g G Zf. By our method of selection Qx is homogeneous. 

Now suppose |v| < 1 a.e. Then for g £ Zf D Zvf 

| f n(fgv)d»- f gvnx(f)d»\<3KA\\f\\x \\g\\x. 
J E J E 

and 

| / n(fgv)d»- f 9nx(vf)d»\<3KA\\f\\x \\g\\x. 
JE J E 

Thus 

I f g(vQx(f) - Qx(vf))dfi\ < 6KA\\f\\x \\g\\x.. 
JE 

As Zf n Zvf is a dense subspace of X* we conclude 

| | « n x ( / ) - n x ( « / ) | | x < 6 f f A | | / | | x 

so that Qx is a centralizer. 

Finally if \v\ < 1 a.e. 

| / n{fgv)dn- f gvnx(f)dn\<3KA\\f\\x \\g\\x. 
JE J E 

and so 

| / tl(fg)vdv- f gvQx(f)dfi\<4KA\\f\\x \\g\\x. 
JE JE 

so that 

\\n(fg)-g.nx(f)h<4KA\\f\\x\\g\\x. 

so that f2j£ is equivalent to Q. 

Now let us relax the type assumption. Suppose merely that X verifies a q-

concavity condition. Let us denote the 2-convexification of X (cf. [18]) by 

Y = {/ € U : | / | 2 € X} 
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We norm Y by 

\\f\w = m/i2iii 

Then Y is a 2-convex and 2g-concave lattice and is therefore of non- trivial type ([18]). 

Then by the first part there is a homogeneous centralizer Qy on Y so that Qy is 

equivalent to Q. 

Let us define for / £ X 

n x ( / ) = ( s g n / ) | / | 1 / 2 n r ( | / | 1 / 2 ) 

If |u| < 1 a.e. 

n x ( u / ) - sgn «.sgn / l u / l ^ f l r d u l 1 / 2 ! / ! 1 / 3 ) 

and so 

nx(u/)-unx(/) = sgn(«/)|u/|1/2(nr(|«|1/2|/|i/2)_|u|i/2ny(|/|i/2)) 

If we let 

itfi = \uf\ 

w2 = (QY(\u\^\f\^)- N^Hrd/l1/2))2 

Then 

||nx(u/)-unx(/)||x = ||^/2
W2

1/2||x 

< ll»illx/3 ll^llx72 

< ll/llx/2 ll^llx72-

However 

ll^llx/a = ll^(H1/al/lI/a)-HI/3nr(l/lI/allv 

<A(QY)\\\fnY 

= A(Oy)||/||j/3. 
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NONLINEAR COMMUTATORS IN INTERPOLATION THEORY 81 

Thus fix is a centralizer and A(Ox) < A(fiy). 

Next suppose g e X* and / e X. Then if h € Y, l/l1/2 / i g l a n d 

\\\f\1/2h\\x < \\f\\T IIA3II5/3 

= ll/llx/2 ll̂ llr-

Hence 

lkl/|1/aA||1<||/||J/3||ff||x.||A||r 

so that 3I/I1/2 € F* and 

lkl/|1/2||r- < \\f\\T Ikllx-

Now 

3.nx(/) = Nn/)?l/r /2nr(|/|1/2) 

\mfg)-gnx{f)\\l<C\\\f\1f2g\\Y. | | |/ | l/a | |y 

< Cll/llx HffHx-

and the result is proved. 

If X is super-reflexive and 0 is a homogeneous centralizer, then X ® n -X" is iso

morphic to a Banach space (cf.[9j). Now applying Theorem 8.1 to H'1' and X* yields 

a dual centralizer fi* : X* —• Lo with 

(8.3) ll/.n'ff-n/.ffiix^cii/Hx Nix-

Now for ( A , / 2 ) e X 2 , ( sn ,S2)e (**) 2 define 

(8-4) {{fi,f2),{9i,92))= [ (fiS2-92fi)dn 
JE 

and 
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Then (8.3) yields that 

|<( / i , / 2 ) , (gu92))\<C\\(fuf2)\\n\\(gu92)h* 

provided (/i , f2) G X ©Q X, (gu g2) G X* ©o* X*. It is then not difficult to identify 

(X©n X)* with X* ©Q* X* via the duality (8.4). We omit the details. Special cases 

of this calculation are established in [10] and [14]. 

Let us use the idea of the dual centralizer to show that if X is super-reflexive the 

conclusion of Theorem 6.10 can be improved to read in place of (6.19). 

(8-5) l|Tn(/)-nr(/)| |x<s(| |/ | |x) }ex 

It suffices to consider the case when Q is homogeneous. In this case if g G Lqo nL(J1 

then by Proposition 6.9, g G D(fl*) and hence if / G X, tl{f).g G Lx. Thus (1(f) G 

LPo -f LPl whenever / G X and in particular TCl(f) is well-defined. 

Now let fn be a sequence in G so that | | / n ~ / | | x < 2~n , and hence | |T/n—T/| |x < 

2 " n . We may find h G X with \\h\\x < C\\f\\x and 

N > | / n | n G N 

| f t | > | T / n | n G N 

Now 

||TO(/n)-nr(/„)||x<c||/|U 

so that 

Wnuh-^ih)) - (Tfjh-inwwx < c\\f\\x. 

Letting n -—• oo and using the fact that the X-unit ball is closed in Lpo -f Lpi we 

obtain 

\\T(fh~ln(h)) - {Tfth-inwwx < c\\f\\x 
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and it follows that 

||[r,fi](/)||x<c||/||x 

We state this conclusion formally: 

THEOREM 8.2 . Under the hypotheses of Theorem 6.10, if X is super-reflexive then 

we may replace (6.19) by 

(8-6) ll[r,n](/)llx<*(||/||x) fex 

Let us conclude with the observation that Theorems 5.1 and 8.1 together indicate 

a correspondence between centralizers on X and centralizers on L\ at least when X 

has finite cotype. If X is not locally convex (e.g. X = Lp for 0 < p < 1) it is unclear 

whether such a correspondence can in general be established. To make this precise 

we ask whether if Q : Lp —• LQ is a homogeneous centralizer one can always find a 

homogeneous centralizer fil1' : L\ —• LQ SO that H is equivalent to 
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