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THE EXISTENCE OF VALUE IN DIFFERENTIAL GAMES 

Robert J. Elliott and Nigel J. Kalton 

ABSTRACT 

In the manner described in the Introduction we show the existence of 

value for all two person, zero-sum differential games of prescribed duration. 

Using the concept of relaxed controls from control theory we relate the 

approaches to differential games of A. Friedman (j. Differential Equations 7 

(1970), 69-91) and W. Fleming (j. of Maths, and Mechanics 13 (1964) 987-1008). 

We show that if the 'Isaacs' condition' (see §5 below) is satisfied then the 

game has a value in the sense of Friedman. Over the relaxed controls the 

Isaacs' condition is always satisfied and so the game always has a value in 

this setting. We do not need Friedman's hypothesis that the two sets of 

control variables appear separated in the dynamical equations and payoff. 

The introduction of probabilistic ideas into differential games by relaxed 

controls thus gives a value, as the introduction of mixed strategies by 

von Neumann does for two person zero-sum matrix games. 

These results were announced in 'Values in Differential Games", 

Bull. Amer. Math. Soc., Vol.8 No.3 (1972). 

(ii) 
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VALUE IN DIFFERENTIAL GAMES 

INTRODUCTION 

Two person, zero-sum game theory was developed to study competitive 

contests in a static situation. Optimal control theory, on the other hand, 

investigates one player optimization problems in dynamical situations, that is, 

in situations described by differential equations. The subject of this paper 

is two person, zero-sum differential games and it can be considered as control 

theory with two opposing controllers or players. We, therefore, consider a 

dynamical situation described by differential equations, and, at the end of 

some fixed time, say after one unit of time, a payoff is computed. The game 

is zero-sum, meaning one player is trying to maximize and the other to minimize 

the payoff. 

Differential games were first studied by Isaacs in the 1950's, but Isaacs 

did not publish his results until his book [13] appeared in 1965. One of 

Isaacs' main contributions was to derive heuristically a differential equation 

that the value of the game should satisfy. Unfortunately this so-called 

Isaacs-Bellman equation is nonlinear and highly degenerate and we cannot say 

in general that it has a solution. Mention should also be made here of 

Berkovitz, who studied differential games using methods similar to those of 

the calculus of variations. See, for example, [l]. 

Throughout a differential game each player has a continuum of moves and a 

strategy for each player is, roughly speaking, a rule telling the player what 

to do next on the basis of what has happened in the game so far. Because time 

is continuous difficulties arise in making this notion precise; in a sequence 

of papers [4], [5], [6], [7], Fleming circumvented this problem and studied 

differential games by considering a sequence of games with discrete time, and 

also by approximating the differential equations by difference equations. 

+ 
Each approximating game has an upper value W , and a lower value W depend-

n n 

1 

Licensed to Univ of Missouri-Columbia.  Prepared on Sat Jan 11 02:34:54 EST 2014 for download from IP 161.130.253.98.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



2 R.J. Elliott and N.J. Kalton 

ing on whether the minimizing or maximizing player moves first at each step. 

There are then two problems: first, do W and W tend to limits W 
n n 

and W as the time 8 = l/2 between steps approaches zero; this is called 

the 'convergence problem' by Fleming: second, are, in fact, these two limits 

+ 
equal: i.e.: does W = W , so that the game has a 'value' ? 

Using discrete approximation methods Fleming [4] first gave positive 

answers to both the above questions when the opposing control variables are 

separated in both the differential equations and the payoff, (see §12 below). 

Although it is not known whether the Isaacs-Bellman equation has solutions, 

if a small amount of 'noise' is introduced into the game, the upper (or lower) 

value functions will satisfy a non-linear parabolic equation and, in the 

situation under investigation, work of Friedman [8] tells us that such equa­

tions do have unique solutions. Therefore, for more general differential 

games Fleming [5], [6] introduced 'noise' into the game and so into the approx­

imating discrete difference games. He was then able to show that the upper 

and lower values of the approximating games approached the solution of the 

corresponding non-linear parabolic equation, and was also able to prove the 

convergence of these values as the amount of noise decreased to zero. Thus 

again his convergence problem had a positive answer. However, the functions 

in Fleming's differential equations and payoff had to satisfy a constant 

Lipschitz condition. 

Following earlier work by Varaiya and Lin [17], in a recent series of 

papers [10], [ll], [12], Friedman has studied differential games directly, 

not approximating them by difference equations. Friedman, however, did find 

it necessary to approximate the idea of a strategy by upper and lower strate­

gies varying at only a finite number of division points in the interval 

(see §3). 
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VALUE IN DIFFERENTIAL GAMES 3 

Again, depending on which player chooses his control function over the 

next interval first at each division point Friedman obtains upper and lower 

+ , + 
values V , V . It is immediate from Friedman s definitions that V , V 

n n n n 

are monotonic decreasing (respectively, increasing), and so they converge to 

+ - . + -, 
limits V and V (not necessarily the same as W and W ) . However, in 

i t + order to prove his game has value , that V = V , Friedman also has to 

assume the restrictive hypotheses that the opposing control variables appear 

'separated' in both the differential equations and payoff, (again see §12 

below). Friedman, though, only requires that the functions occurring satisfy 

weaker, variable Lipschitz conditions, and his payoff is more general than 

Fleming. 

Von Neumann [18] introduced the idea of a mixed strategy, a probability 

over the possible plays, in order to obtain a value for two person zero-sum 

matrix games. Relaxed controls are obtained by choosing a probability measure 

on the space of control values at each point in time. Young [21] introduced 

relaxed controls into the calculus of variations and Warga [20] and McShane 

[14] applied them in control theory. In an earlier paper with L. Markus [3] 

we have used relaxed controls to obtain saddle points for certain linear games. 

In the paper below, following Roxin [16], we first define strategies and 

then give a re-formulation of Friedman's results. Using certain approximating 

games and relaxed controls, without any 'separation' hypotheses, we relate 

Friedman's upper and lower values to those of Fleming. 

Thus, our principal results are that if the 'Isaacs' condition' is satis­

fied the game has a value in the sense of Friedman. Over the relaxed controls 

the 'Isaacs' condition' is always satisfied and so the game always has a value 

in this setting. These results are first proved under the 'constant 

Lipschitz' conditions of Fleming, but, by approximation arguments we are able 
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4 R.J. Elliott and N.J. Kalton 

to prove our results under the weaker hypotheses and for the more general 

payoff of Friedman. The paper ends with a discussion of saddle points for 

approximate strategies and the attainability of the value. 

1. DEFINITION OF THE GAME G 

We consider a differential game G played by two players J and J 

for the fixed time interval I = [0,1]. At each time t G I , J picks an 

element y(t) from a fixed topological space Y , which is compact and 

metrizable, and J picks z(t) from a similar space Z , in such a way 

that the functions t -> y(t) and t -> z(t) are measurable (i.e. for 

continuous maps cp: Y -* R and \|r: Z -» R , the functions t -» cp(y(t)) and 

t -* ij/(z(t)) are measurable in the ordinary Lebesgue sense). The dynamics 

of the game are given by the differential equation 

| 2 = f(t,x,y(t),z(t)). (1) 

Here x G R and 

f: I x Rm x Y x z -» Rm 

is a continuous function satisfying a Lipschitz condition 

Ilf(t,x1,y,z) - f(t,x2,y,z)|| < k( t) 1 ^ - x^l (2) 

whenever x , x G R , t G I , y G Y and z G Z ; k is a Lebesgue 

measurable function on I such that 

1 
k(t)dt = A < oo. (3) 

0 
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VALUE IN DIFFERENTIAL GAMES 5 

Under conditions (2) and (3), equation (l) has a unique solution x(t) 

corresponding to any given initial condition x(o) = x . We consider, for 

the time being, that the initial condition x(o) = 0; the resulting solution 

x(t) is called the trajectory corresponding to (y(t),z(t)). We then 

compute a "-payoff" P(y,z) given by 

P(y,z) = fi(x(t)) + I h(t,x(t),y(t),z(t))dt. (4) 
JO 

Here h: I x R x Y x Z -> R is continuous and \± is a continuous real-valued 

function on the Banach space [c(l)] of continuous function x: I -*• R . 

The game is zero-sum so that the object of player J is to maximize 

the payoff P , while J aims to minimize P . At each time t , player 

J is aware of the complete history of the game from time 0 to time t , 

while J9 is in a similar position. 

2. THE CONCEPT OF VALUE 

We denote by At the set of all measurable functions y: I -» Y (in the 

sense of §1), modulo the identification of any two functions equal almost 

everywhere; f\ is similarly defined with Z replacing Y . We need the 

following lemma for future reference; this explains our restriction to 

metrizable spaces Y and Z . 

LEMMA 2.1 Two measurable functions y: I -> Y and y : I -> Y are equal 

almost everywhere if and only if for every continuous function cp: Y -> R 

9(y(t)) = q>(y'(t)) a.e. 
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6 R.J. Elliott and N.J. Kalton 

PROOF 

Let d be a metric on Y describing the topology. As Y is compact 

and metrizable, Y has a countable dense subset If) ', k = 1,2,... }; 

consider the functions 

By assumption for each k 

and so 

<pk("n) = d(«n,Tik ) . 

9k(y(t)) = <pk(y'(t)) 

\(y(t)) = <pk(y'(t)), k = l , 2 f . . . , a.e. 

It follows easily that, almost everywhere, 

y(t) = y'(t). 

We are grateful to P. Stefan for the following example. Suppose Y is 

the non-metrizable space I with the product topology; we define two 

functions y: I -> I and y : I -» I by 

(y(t))s = 0 V t e I, S G I 

(y/(t))g = 1 if t = s 

= 0 if t + s . 

By the Stone-Weierstrass theorem, the algebra generated by the co-ordinate 

maps and the constant functions is dense in c(I ), and so by expressing 

cp E c(l ) as the limit of a sequence of polynomials in these functions, we 

may show that there exists a countable subset I of I such that 

9 

•n = n' s G I 
's 's cp 

implies 

cp(-n) = q>(T]') . 
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VALUE IN DIFFERENTIAL GAMES 7 

Hence 

<p(y(t)) = <p(y'(t) t G i - i^ 

and so 

9(y(t)) = <p(y'(t)) a.e. 

This counter-example shows that metrizability is necessary in Lemma 2.1, 

and demonstrates our reason for asking that Y and Z be metrizable. 

However, if we took the conclusion of Lemma 2.1 as the definition of "equal 

almost everywhere" then we could extend our approach to non-metrizable Y 

and Z . 

The elements of AL are called Qontrol functions for J , and similarly 

f\ is the set of control functions for J . Any map 

a: n2 - ^ 

is a pseudo-strategy for J . It prescribes a rule by which J may 

determine his own control function given J 's choice of control function. 

Each pseudo-strategy has a value 

u(ot) = inf p(ocz , z) 

z e * 2 

giving the worst possible result for J if he adopts the pseudo-strategy a. 

We may similarly define a pseudo-strategy for JQ as a map (3: t\ -> At and 
^ 1 2 

i t s value i s given by 

v(p) = sup P(y,(3y). 
y^A^ 

In practice, not all pseudo-strategies are "reasonable", for they imply 

foreknowledge of the other player's choice of control function. Hence we 

say a: f\ -> AL is a strategy if whenever 0 < T <. 1 and 

z1(t) = zg(t) a.e. 0 < t < T 
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8 R . J . E l l i o t t and N . J . K a l t o n 

t h e n 

ocz ( t ) = <xz ( t ) a . e . 0 < t < T . ( 5 ) 

We make a similar definition of strategy for J . The set of all strategies 

for J is denoted by r , and the set of strategies for J by A • 

The value of the game to J is the best he can force by adopting a 

strategy, i.e. 

U = sup u(a) 
ocer 

w h i l e t h e v a l u e t o J i s 

V = i n f v ( p ) . 
(3<EA 

If U = V , then the game has a value, in the sense that neither player 

can force a better result than V, and both players can (almost) force V. 

In general it is not true that U = V , and the following classical example 

of Berkovitz [2] precisely demonstrates the reasons for this and the defects 

of this definition. 

Example 2.2 Let Y = Z = [-1,1] and suppose the dynamics of G are given 

by 

dx f s2 
dt = ( y" z ) 

where x G R . Let the payoff be 

rl 
P = x(t)dt. 

0 

It is easy to see that a 'best' strategy a for J is given by 
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VALUE IN DIFFERENTIAL GAMES 

ctz(t) = 1 if z(t) < O 

= -1 if z(t) > O , 

while a best strategy p for J is given by 

py(t) = y(t) . 

Then 

where 

Hence 

U = u(a) 

= P(az ,z ) v o' oy 

z (t) = 0. ov J 

U = tdt 
JO 

Similarly 

and U ^ V . 

V = v(P) 

= O , 

A further problem is that a and p cannot in any reasonable sense be 

played against each other . If J1 elects to adopt strategy a , while J 

adopts p then we cannot determine any outcome to the game; there are no 

control functions y and z with 

otz = y 

py = z. 
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10 R.J. Elliott and N.J. Kalton 

3. THE VALUE IN THE SENSE OF FRIEDMAN 

In this section we describe an alternative definition of value used by 

Friedman ([10]) and relate it to our own definition. 

— N + 
Let N be an integer and let 8 = 2 ; we shall define a game E . 

Let 

Ix = [0,6] 

Ij = ((J-1)6, J6] j = 2,3,...,2N. 

+ 
The game E has the same dynamics, initial condition and payoff as G 

(given by equations (l)-(4)) but is played in the following manner: J first 

selects his control function on I.. and then J selects his control function 

on I1 , and the players then play alternately, J selecting his function on 

I . before J selects his function on I . at the jth step. 

Let Al and At denote the spaces of measurable functions I . -> Y 
i. Z J 

and I . -> Z respectively, in which, as before, two functions equal almost 

everywhere are identified (Friedman [10] does not make this identification, 

but this makes no difference to the discussion). A strategy for J in the 

+ 
game E is then a collection of maps 

N 

where 

( v ... ^N) 

£ .: AT*' x ••• x Mo "* ̂ i j z z I 

and a strategy n for J in E is an element z of Al together 

with a collection of maps (n , . . . , II M) 
2 2N 

n. : ^ 1 } x . . . x ^ J " 1 ) . ^ . j 1 1 2 
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VALUE IN DIFFERENTIAL GAMES 11 

Z then determines a rule of procedure for J and n determines a rule for 

J . Given two such rules ( E , U ) there is an outcome to the game (i.e. a 

pair of control functions determined by E and n ) and a payoff P( E , n ) ; 

it follows from the theory of alternate move games that 

inf sup P(E,n) = supinf P ( E, n) 

n E E n 

= V*, say. 

+ + , r .. 
Then the game E has value V (see Friedman [10\ for the details of this 

approach). 

+ + 
It follows quickly that V ;> V for all N and so we may define 

+ + 
V = lim V T . N 

N-»oo 

+ 
V is the upper value of G in the sense of Friedman. 

+ 
If we define E as the game played as E except that at each step 

J plays first, we may show E has a value V and define 

V" = lim V~ , 

N-»oo 

the lower value of G . 

We have immediately 

and so 

V" < V* for all N 
N N 

V < V . 

We say G has value in the sense of Friedman if V = V . 

We next present a re-interpretation of the Friedman values V and V + 
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12 R.J. Elliott and N.J. Kalton 

in terms of pseudo-strategies. For -1 <, s <, 1 , we define r(s) as the 

set of pseudo-strategies a for J.. such that whenever 

z (t) = z (t) a.e. 0 < t < T , where T > 0 , 
1 <& 

then 

az (t) = az (t) a.e. 0 <, t < min(T+s, l). (6). 

We define A(s) similarly for player J . Thus r(s) is the set of 

pseudo-strategies available to J if he has a reaction time s (which may 

be negative, in which case he is 'anticipating' his opponent's moves). 

Let 

U(s) = sup u(oc) 
aer(s) 

V(s) = inf v(p) . 
peA(s) 

Then U and V are monotone functions of s and so we may define 

U+(s) = lim U(t) 
t-*s + 

if (s) = lim U(t) 
t->s-

V+(s) = lim V(t) 
t->s+ 

V~(s) = lim V(t) . 
t->s-

We shall show that V (o) = V and V~(o) = v" later. 

THEOREM 3.1 For all s , -1 < s < 1 , 

V+(s) = u"(-s) , 

V"(s) = U +(-s). 
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VALUE IN DIFFERENTIAL GAMES 13 

PROOF 

p 
Let s = — be dyadically rational and positive; we consider a game 

+ 2 
E (s) played thus: the dynamics, initial condition and payoff are as in 

+ 
E . but now J selects his control function initially on I. U ... U I ,. , 
N 2 1 p+1 

and then J selects his function on I. , then <T on I _ , etc. until 
1 1 2 p+2 ' 

J finally selects his control function on I and then J on -

I „T U ... U I „. As before E (s) has value which we denote by V (s) . 
N N N N 
2 - p 2 

A strategy for J in E
N(s) is given by a collection of maps 

Z = (Z1 , ..., 2 ) where 
2 - p 

S j: M
(
2
1} x ... x ^ + P ) - , ^ ) . 

Clearly £ determines a pseudo-strategy a for J and a G r(-s-6) , 

where 6 = 2 ; conversely if a G r(-s) , we may determine a strategy 2 

in E (s) corresponding to oc. By this reasoning we conclude that 

u(-s-8) > v^(s) >. u(-s) , 

and a similar argument yields 

v(s+5) ;> V^(s) ^ V(s) . 

Let us now assume that s is any real number O <, s <, 1 , and that 

Pn 

s I s is a sequence of dyadic rationals decreasing to s ; let s = — . 
n ^ n 2n 

Then we have 

u"(-s) = lim V (s 
n ny 

n-> oo 

and 

V+(s) = lim V+(s ) 
n->oo 
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14 R.J. Elliott and N.J. Kalton 

so that 

lf(-B) = V+(s) . 

We similarly obtain for 0 < s < 1 that 

U+(-s) = V"(s) 

and by the same method, we obtain the same relationships for s <, 0 (it is 

necessary to consider a game like EM(s) in which J plays first). 

+ / \ + 

Before establishing that V (0; = V , we require a technical lemma 

establishing bounds on the possible trajectories in the game G . 

LEMMA 3.2 There exists a constant L < oo such that for any traijectory 

x( t) in G 

s u p l l x ( t ) | | < L . 
t e i 

PROOF 

Since f is continuous and I x Y x Z is compact we have 

s u p sup sup || f ( t , 0 , y , z ) | | = B < oo . 
t e i y G Y z G Z 

Let x(t) be trajectory corresponding to the control functions 

(y(t), z(t)); then we have 

rt • 
«x(t)ll < Hx(t)Hds 

JO 

t 
||f(s,x(s),y(s),z(s))||ds 

O 

< Bt + k(s)llx(s)|| ds 
JO 

by equation (2). 
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VALUE IN DIFFERENTIAL GAMES 15 

Let 

A(t) = 
rt 
k(s)ds. 

Then 

Bte 
A(t) _ 

^ ( B e ^ 8 ^ Bsk(s)eA(s))ds 

and hence 

Now let 

> Bt + [ Bsk(s)eA^S^ds 
JO 

B t e * ^ - ||x(t)i; 
rt 
k(s)(BseA(s)- ||x(s)||)ds. 

JO 

<p(t) = B t e ^ - (|x(t)|| ; 

we have that cp is continuous and cp(o) = 0 . Let 

T = sup(t: cp(s)>0, O < s < t ) 

and suppose T < 1 . Choose 8 such that T + 6 < 1 and 

rT+8.i 

O < k(s)ds < 1 . 

For T < t < T + 6„ 

<p(t) > I k(s)cp(s) 
JO 

ds 

rt 
k(s)cp(s) ds 

where 

2. Y k(s) ds 
JT 

Y = inf jcp(s); T < s < t] < O . 
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16 R.J. Elliott and N.J. Kalton 

Hence 
T+61 

<p(t) £ Y k(s)ds 

and 
T+8X 

Y £ Y k(s)ds . 
JT 

This contradicts the fact that y < ° > a n d s o w e have T = 1 , i.e. 

||x(t)|| < BteA(t) 

< BeA 

for all t . 

LEMMA 3.3 The set of all trajectories in G is relatively compact in the 

Banach 8paoe [C(l)] of continuous functions x: I -» R ; the functional 

\i is uniformly continuous on the set of trajectories. 

PROOF 

As f i s c o n t i n u o u s on t h e compact s e t C = [||x|| < L } x l x Y x Z we 

have 

sup IIf ( t , x , y , z ) | | = B ' < oo . 
( t , x , y , z ) e C 

For any trajectory x(t), by Lemma 3.2 , 

•llx(t) - x(s)|| < B'|t- s| 

where 1 >, t > s >, 0 . Thus the trajectories are equicontinuous and bounded, 

and so relatively compact in [c(l)] by the Ascoli-Arzela Theorem. It 

follows immediately that \i is uniformly continuous on the trajectories. 

THEOREM 3.4 + + 

V = V (0) = U"(0) , 

and 

v~ = v"(o) = u+(o) . 
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VALUE IN DIFFERENTIAL GAMES 17 

PROOF 

Let 8 = 2 for N ̂  1 and consider the game E (with value V ) ; 

a pseudo-strategy (3 in A ( 8 ) for J induces as in Theorem 3.1 a strategy 

+ 
II in E„ , and we conclude that 

N 

v; < v (6 ) , 

and so letting 6 -» 0 

v+ < v+(o) . (7) 

Conversely suppose e > O ; we shall show that there exists a strategy 

(3 for J in U ( A ( S ) ; S > 0) such that 

v((3 ) < V + e . 

Let L , B / and A(t) be defined as above; in add i t ion l e t 

h = sup sup sup sup | h ( t , x , y , z ) | , 
||x||<L t e i yGY zGZ 

and choose r\ > 0 such t ha t i f ||x|| < L , | |x' | | < L and Hx-x^l < r\ 

then 

| h ( t , x , y , z ) - h ( t , x ' , y , z ) | < e/5 , ( s ) 

for (t,y,z) G I x Y x Z (using uniform continuity of h ) . We also assume 

r) is small enough so that if x(t) and x'(t) are any two trajectories with 

sup llx(t) - x^( t ) | | <. j] 
t e i 

then 

\\i(x(t)) - * i ( x ' ( t ) ) | < e / 5 , (9) 

(using Lemma 3 . 3 ) . 

~N 
Choose 8 = 2 such that 

+ + / 
VN - V < e/5 

and a strategy n for J in E such that 

Licensed to Univ of Missouri-Columbia.  Prepared on Sat Jan 11 02:34:54 EST 2014 for download from IP 161.130.253.98.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



18 R.J. Elliott and N.J. Kalton 

sup P(y, ny) < V* + e/5 . 

This induces a strategy (3 in G for J with 

v((3) < V+ + 2e/5 . (10) 

Let z be a fixed member of Z and suppose r\ < 1 , and 

2hr\ < e/5 , (ll) 

'H < o - 2B 

We define (3 by 

P y(o) = z . 

P*y(t) = Z Q I J6 < t < (j + no)6 , 

N 
for j = 0,1,2,...,2 - 1 , and 

P*y(t) = py(t), (j + T]o)6 < t < (j+i)6, (13) 

for j = 0,1,2,... 2N- 1 . 

Then it is clear that (3 G A(T) S) , 

and so 

V+(0) < v(p*) . 

Let y(t) be a control function for J. and let x(t) and x (t) be 

the trajectories corresponding to (y, py) and (y, (3 y) ; then we have 

-|j(x*(t) - x(t)) = f(t>x*(t),y(t),p*y(t)) - f(t,x(t),y(t),py(t)) 

and so from the definition of p (l3) and the Lipschitz condition (2) 

satisfied by f we have 

l|x*(t) - x(t)ll < e(t) , 

where 6(t) satisfies the differential equatic 
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VALUE IN DIFFERENTIAL GAMES 

g = k(t)6 + 2B^(t) 

Here X is "the characteristic function of the set U [j6, ( 
j>0 

and 0(o) = 0. Hence we obtain, solving (l4 

e ( t ) = 2B'eA ( ; t ) fVAH(s)ds, 

' A/ 
rl 

and so, |6(t)| < 2B e ( X(s) ds) for 0 < t < 1 . 

2B e T] by (12) 

Therefore 

and so, by (9) 

I I x ( t ) - x( t ) i i < -n 

||a(x*(t)) - n(x(t))| < e/5. 

F u r t h e r m o r e , by (J 

2 N - 1 
< Z [2hri 8 

J=o ° 

3 ) , 

rl 

| h ( t , x * , y 
0 

r ( j + l ) 8 

+ J(j+rio)6 
|h(t,x ,y,(3y) - h(t,x,y,(3y)| 

< 2hr]o + (l-rio)e/5 

< 2e/5 . 

Combining (l5) and (l6) 

|p(py,y) - P(p*y,y)| < 2e/5 + e/5 = 3e/5 , 

and therefore 

|v(p) - v(p )| < 3e/5 
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20 R.J. Elliott and N.J. Kalton 

and so v(|3 ) < V + e by (lo). 

i.e. V (o) < V + e 

and so V (o) = V , by (7) . 

COROLLARY. v" < U , V < V . 

Theorem 3.1 and Theorem 3.4 raise several issues of interest. We see 

+ 
that V is to be interpreted as the value of the game G to the player 

J if he is, in some sense, almost able to anticipate J9's play in the 

future (for V - U (o)) . The value V is the value to J provided that 

his reactions are instantaneous. The smallest value V is the realistic 

value of the game to J ; it is obtained by giving J a reaction time and 

letting this reaction tend to zero. V is the only value appropriate to 

J unless he is assumed to be superhuman. 

One might ask whether it is reasonable to hope for a value if we assume 

in G that each player has a certain reaction time; suppose J has 

reaction time s. > 0 and J' has reaction time s9 >̂ 0 . The existence 

of value requires that 

U(3l) = V(s2) 

(both in the sense described in §2 or in the sense of Friedman) so that for 

0 < s < s we have 

U(sx) > U
+(s) 

= v7-s) 

Z V(s2) 

and hence 

U(8l) = U
+(s) 

for 0 < s <, s . In particular 
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VALUE IN DIFFERENTIAL GAMES 21 

U(sx) = V~" 

so that, if this game, with reaction time, has value, then player J does 

not lose ground by having a reaction time. This can clearly only happen in 

pathological situations. In particular, if we take s > 0 and s~ = 0 we 

may interpret this as follows: while J obviously loses ground by having a 

positive reaction time (i.e. u(s ) < u(o)) , J cannot exploit his advantage, 

for he can never vary from his best strategy in G in case JL , by accident, 

hits upon the correct line of defence. For this reason, we are unable to 

understand precisely what is intended in §9 of [10] . 

Let us now consider a variation of G in which J selects his control 

function on the interval -s <, t <. 1 - s (where s > 0 ) and the dynamics are 

given by 

g = f(t, x(t), y(t-s), z(t)), (17) 

subject to the initial condition x(o) = 0 and the payoff is given by (4). 

This game is effectively G subject to the restriction that J has a 

reaction time s , and J9 has a negative reaction time -s . For at time 

t , J is not only aware of the value of y(t - s ) but also of y(t - s) 

for t < t < t + s . This game has value if 
o "" o 

U(s) = v(-s). 

As U and V are monotone functions their discontinuities are 

countable, and so we conclude that except for a countable number of values 

of s 

U+(s) = U"(B) 

= V+(-s) 

= V-(-s) 
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22 R.J. Elliott and N.J. Kalton 

and so 

U(s) = v(-s) . 

Thus this variation of G has a value for almost every choice of s ; we 

conjecture that U and V are continuous for s ^ 0 and so u(s) = v(-s) 

for s / 0 . 

4. ANOTHER FORMULA FOR THE FRIEDMAN UPPER AND LOWER VALUES 

+ 
In this section we show the Friedman values V and V of the game 

+ 
G may be obtained by considering discrete versions H and H of the 

games E and E . We shall assume throughout this section that the payoff 

function (equation (4)) takes the special form 

P(y,z) = g(x(l)) + h(t,x(t),y(t),z(t))dt (18) 
0 

where g: R -> R is a continuous function; that is we assume 

H(x(t)) = g(x(l)) 

+ 
We now define the game H . Let N be a positive integer and let 
-N 

8 = 2 ; the players J and J select their control functions alternately 

N + / 
on the intervals I . , j = 1,2,...,2 as in E (see description at the 

beginning of §3). As in E , J plays first at each step. The dynamics 

+ 
of H are given by 

<0) = 0 

t . 
r 3 

x' J 
(tj) = x(tj_1) + |^ f(tj_1,x(t._1),y(t),z(t))dt (19) 
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VALUE IN DIFFERENTIAL GAMES 23 

where 

t . = j 6 0 < j < 2 . 

The payoff is given by 

h(t x(t ),y(t),z(t))dt (20) P(y(t),z(t)) = g(x(l)) + S 
t J"1 J" 
J-l 

(We recall that G is assumed to have a payoff given by (l8).) 

Once again we use the general theory of alternate move games to deduce 

+ + 
[ has a value which we denote by S . 
+ + 

that the game H has a value which we denote by S 

THEOREM 4.1 lim S^ = V . 
N-*oo 

PROOF 

We shall in fact show that 

lim (VN " SN) = °' 
n ->oo 

Suppose e > 0 ; then in order to show that 

it is only necessary to show that for any pair of control functions 

(y(t), z(t)) 

|PE(y,z) - PH(y,z)| < e 

where P (y,z) denotes the payoff in E corresponding to (y(t),z(t)) 

and P (y,z) is the payoff in H . This is readily seen since the method 
H N 

of selection of control functions is identical in the two games, and so for 

/ \ + + 

any pair of strategies ( E, II) for E or H we should then have 

| P E ( Z , n) - P H ( 2 , n ) | < e . 
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?4 R.J. Elliott and N.J. Kalton 

From this it follows easily that |V - S | < e . We shall apply this 

principle again to relate values of different games later on. 

Let B' be as in Lemma 3.3 and suppose that D > 0 is any constant; 

as f is continuous, it is uniformly continuous on the set 

I x (||x|| < D + L) x y x z . Therefore let 

p(8) = sup sup sup sup ||f(t',x,y,z) - f(t,x,y,z)|| 
| t '- t| < 8 ||x||< D+L y z 

so we have 

lim p(8) = 0. 
6-> 0 

—N 
Now fix 8 = 2 such that 

and 

6 i i e " A ( ^ F ) ( 2 1 ) 

p(S) < ie""AD (22) 

Suppose (y(t),z(t)) is any pair of control functions for J and J9 

and let x(t) be the trajectory corresponding to them in E (or G , as 

G has the same dynamics) and let x(t) be the trajectory in H . Let 
N 

£_. = l l x ( t j ) - x ( t . . ) | | , j = 0 , 1 , 2 , . . . 2 N 

^ = 0 , 

P r o v i d e d E . A < D , we have 
.1-1 ~ 

llx(t. J | | < | |x( t . J | | + D 

< L + D 

and so 

Licensed to Univ of Missouri-Columbia.  Prepared on Sat Jan 11 02:34:54 EST 2014 for download from IP 161.130.253.98.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



VALUE IN DIFFERENTIAL GAMES 

|f(t,x(tj_1),y(t),z(t)) - f(tj_1x(tJ_1),y(t),z(t)l 

< p(S) 

llf(t,x(t),y(t),z(t)) - f(t,J(t ),y(t),z(t))ll 

< k(t)l|x(t) - xCtj^)!! 

< k(t)(? j_ 1 + B ' 6 ) . 

25 

Hence 

t . 

? - ? I < f ||f(t,x(t),y(t),z(t)) - f(t x(t ),y(t),z(t))l|dt 
J t 

j-l 

<  8p(8 ) +  (H._1 + B% k(t)dt 

j-l 

= 6p(6) + ( ? J _ 1 + B^6)a J 

where 

t . 
k(t)dt = A(t .) - A(t . , ) . 

j-l 

have Provided ? x , ? 2 > . . . ,?, t < D we 

S j ~ ( 1 + a j ) V i + a j B / 6 + 5 p ( 6 ) 

< ( 1 + a j ) ( 1 + a j - i ) ^ j - 2 + ( l + a ^ C a ^ B ^ + S p ( 8 ) ) + a _.B "6 + 8p( 8) 

j - l 
< 2 (1 + a .) . . . ( l + a ) ( a B '6 + 8 p ( 8 ) ) + a .B '6 + 6 p ( 6 ) . 

i = l 

But 

(1 + a ) . . . ( 1 + a ) < n ( 1 + a ) 
J i = l x 
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26 R.J. Elliott and N.J. Kalton 

2 N 

< exp( £ a. ) 
i=l 1 

A 
= e 

and so 

A J 

g . < e s (a.B'6 + 6p(6)) 
J i=l 1 

< -A eA(AB'8 + p(8)) . 

In view of (2l) and (22) we see that if £_, . . . , g .__ < D then 

g . <, D , and so by induction we have 

max g < eA(AB/6 + p ( 6 ) ) . , . 0N J r w 
1<J<2 

As g and h a re continuous funct ions they are uniformly continuous 

on the s e t s [||x|| < L + D] and I x {||x|| < L + D] x y x Z r e s p e c t i v e l y . 

Then, given e > 0 we may choose 8(e) = 2 to s a t i s f y (2 l ) and (22) and 

a l so 

whenever 

and 

whenever 

|g(x) - g(xOI < % (23) 

| |x- x'll < eA(AB'8 + p(6)) + B'6 

| h ( t , x , y , z ) - h ( t ' , x ' , y , z ) | < 8 / 9 , (24) 

and 

, |x- x'll < eA(AB /8+ p(6)) + B ' 6 

I t - t ' l < 8 

Then for any pair of controls (y(t),z(t)) describing trajectories 

x(t) and x(t) in E and H we have 

| |x( t) - x ( t )|| < eA(AB /8+ p ( 8 ) ) + B ' 8 

whenever 
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VALUE IN DIFFERENTIAL GAMES 27 

t . - < t < t . , 

and so we have by (24) 

h(tj_l,x(tJ__1),y(t),z(t))dt -2 

Similarly by (ll) 

so that 

h(t,x(t),y(t),z(t))dt| < / . 
0 ^ 

|g(x(l)) - g(x(l))| < % 

l p
E ( y » z ) - p

H ( y , z ) l - e 

for N chosen to satisfy (2l), (22), (23) and (24). 

A similar analysis g;ives us that 

lim S" = V" 
N->oo 

where SXT is the value of the game H in which J. moves first at each 
N N 1 

step. 

5. THE VALUE IN THE SENSE OF FLEMING 

We suppose G has a payoff of the form (l8); we now consider the game 

H but impose the further restriction that both players must choose constant 
N 

+ 
functions at each step; this game will be denoted by K . Thus the players 

move alternately with J2 playing first, and at the completion of the game 

J will have selected a sequence (y1f...,y XT)
 o f elements of Y and J 

1 1 oN £> 

will have selected a sequence (z..,...,z N) of elements of Z. The 

trajectory will then be determined by x(o) = 0 and 

*(* . , ) = x ( t
j _ 1 ) + 6 f ( t

J - i ' x ( t j - i ) ' y j , z j ) ( 2 5 ) 
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28 R.J. Elliott and N.J. Kalton 

and the payoff by 

2 N 

P = g(x(l)) + 8 2 h(t x(t ),y z ). (26) 
-:—. 1 J J J J 

As usual we can see that K will have a value which we denote by W . 
N N 

Similarly the game K (in which J plays first at each step) has value 

V 
We may also consider K starting at time t = k8 and with initial 

condition x(t, ) = x; we thus obtain K (t ,x) in which the players select 

sequences (yv,, «,..., y M) and (z ..,..., z ) and the trajectory is given by 
2 2 

(23) subject to the initial condition x(t ) = x. The payoff in K (t ,x) 

is given by 

2 N 

P = g(x(l)) + 8 E h(t ,x(t J . Y ^ z ) . (27) 
j=k+l J J J J 

This game has a value which we denote by w (t ,x) . 

An easy argument from the theory of alternate move games gives us that 

W+(t x) = min max (**(t , x ' ) +. 8h( t x , y , z ) ) (28) 
N k

 z e Z yGY N k + 1 ^ 

where 

and 

xy = x + 8 f ( t k , x , y , z ) 

W^(l,x) = g ( x ) . (29) 

Considerations of this kind led Isaacs [13] to derive heuristically the 

so called Isaacs-Bellman differential equation for the 'upper value' R(t,x) 

of the game G , subject to the initial conditions 

x(t) = x 

and with payoff given by 
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VALUE IN DIFFERENTIAL GAMES 29 

P = g(x(l)) + 
rl 
h(s,x(s),y(s),z(s))ds . (30) 
t 

This partial differential equation is given by 

| | + F+(t,x,VR) = O (31) 

where 

+ 
F (t,x,p) = min max ( Z P. f.(t,x,y,z) + h(t,x,y,z)) 

z y i = 1 

= min max (p.f + h) (32) 

z y 

for p = (p.) ^ R i x G R and t G I . R must also satisfy the boundary 

condition 

R(l,x) = g(x) . (33) 

Unfortunately the Isaacs-Bellman equation (3l) is highly degenerate and 

we have no theorems guaranteeing either the existence or uniqueness of 

solutions of (3l). However, Fleming ([5], [6], [7]) has developed an 

approach circumventing this difficulty to produce a 'reasonable' solution of 

(3l). For Fleming's approach it is necessary to assume conditions 

(Fl) - (F3) where: 

(Fl) f is uniformly Lipschitz in x , i.e. 

sup| k(t) I = k < 00 

(where k(t) is the function defined in (2)). 

(F2) h is uniformly Lipschitz in x, i.e. 

| h ( t , X l , y , z ) - h ( t , x 2 , y , z ) | < M l l x ^ x2H 

f o r t G I , x x G Rm , y G Y and z G Z . 

(F3) g is Lipschitz in x , i.e. 
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30 R.J. Elliott and N.J. Kalton 

| g ( X l ) - g ( x 2 ) | < MS8e!lxi - x2ll . 

However, we do not require the full force of Fleming's method and so we impose 

two further restrictions: 

(F4) f and h satisfy uniform Lipschitz condition in t , i.e. there 

exists Q > 0 with 

H f C t ^ x ^ z ) - f(t2,x,y,z)|| < Q| t1 - t2| 

I h C t ^ x ^ z ) - h(t2,x,y,z)| < Q|tx- t2| . 

(F5) g is twice continuously differentiable and its derivatives 

<9g d s 
- — , - — 2 — each satisfy Lipschitz conditions in x . 
dx. ' dx.dx . J 

i i J 

If G satisfies (Fl) - (F5) we shall say that G is of type (F) . 

For games of type ( F ) , Fleming considers the parabolic equation. 

2 

i-V 2R + |f + F+(t,x,VR) = 0 , (34) 

subject to R(l,x) = g(x). Quoting results of Friedman ([8 ] or [9]) or 

Oleinik and Kruzhkov [15], he observes that (34) has a unique solution 

W. (t,x) for X > 0, and W is continuously differentiable in t and 

twice continuously differentiable in the space variable x . Furthermore 

aw* aw* <92w* 
WA and its derivatives -rr- , - — and — each satisfy Holder 

A dt dx. dx.dx . J 

* i J 
condi t ions of the form 

| + ( t , x ) - • ( t ' . x O I < Q l l t - t ' | ± + | x - x ' | ] • 

-N 
For \ > O and 8 = 2 with N an integer, Fleming considers a 

stochastic difference equation related to (28) 

Kx^i'^ = m i n m a x te^T^i+t'*') + ^^i.x.y.2))! < » 
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VALUE IN DIFFERENTIAL GAMES 31 

where 

x' = x + 6f(t.,x,y,z) + 5¥\r] . . 

Here (r\ . . . r\ ) is a sequence of normalized mutually independent 

Gaussian random variables (and 2f denotes the expectation) . W ~ is 

N 
determined for t . = j 8 j =0,1,2,...,2 by the boundary condition 

iyx(i,x) = g(x) . 

Fleming obtains the following theorems (see [7]) . 

THEOREM 5.1 lim W N ^(t,x) = W^(t,x) for X > 0 and dyadioally rational t , 
N^oo ' 

uniformly on oompaota. 

THEOREM 5.2 lim W .(t,x) = W (t,x) uniformly in N for each dyadioally 
\-»0 ^ N 

-N 
ratto7ra7/ t , arid N suoh that t = p. 2 with p an integer, 

From t h e s e he deduces : 

THEOREM 5 . 3 l im W ( t , x ) = l im W ( t , x ) for all dyadioally rational t . 
\ - » 0 N->oo 

+ + 
lim T" 
N->oo 

In particular W = lim W exists. We may also deduce that 

lim W*(t,x) = W+(t,x) 

exists for all t E. I and x €E R . Fleming shows that the function W is 

a generalised solution of the Isaacs-Bellman equation (3l), in the sense that 

it is a Lipschitz function satisfying (31) almost everywhere. 

DEFINITION 5.4 The generalized solution of (3l) obtained in this way is 

called the Fleming solution of the Isaacs-Bellman equation (3l). 

We observe that the Fleming solution of (34) depends only on the 
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32 R.J. Elliott and N.J. Kalton 

function F (t,x,p) (and the boundary condition g(x)), for it is the limit 

of the unique solutions of the equations (34) for X -» O. 

We may apply the same analysis to the values W of the games K and 

deduce that 

W~ = limW~ 

N-»oo 

where W = W (0,0) and the function W (t,x) is the Fleming solution of 

the equation 

H + F (t ,x,VR) = 0 , (36) 

where 

F~"(t,x,p) = max min (p. f + h) , (37) 

y £ Y z G Z 

subject to the boundary condition 

W"(l,x) = g(x) . 

If G satisfies (F) and also the Isaacs condition 

F+(t,x,p) = F"(t,x,p) (38) 

for 0 <, t < 1, x <E R and p e R , then as the Fleming solution of (3l) 

or (36) is uniquely determined by the equation, we may deduce 

THEOREM 5.5 If G satisfies (F) and the Isaacs condition (38) then 

W + = W~ . 

6. AN ESTIMATE FOR W - w" 

A slightly stronger form of Theorem 5.5 will be required later on, and 

in this section we develop this result. We wish to show that if F (t,x,p) 

and F (t,x,p) are close then W - W is small. Once again we assume G 

satisfies (F) . 
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VALUE IN DIFFERENTIAL GAMES 33 

LEMMA 6.1 For \ > O and (t,x) G I x Rm 

HVW*(t,x)ii < e2A(M+M*) , 

(see (3), (F2) and (F3) for the definitions of A , M , M*) . 

PROOF 

Let 8 = — and t . = j8 as before: for e <^0 we choose 
2N J 

Sj S (tj-l'tJ) (J = 1'2>-"'2N) 

such that 

k(s .) < k(t) + e 

for t . . < t <, t . . Let s_ = 0 and s „ = 1 , and then define 
J-l J 0 2N+1 

% ( s
 N ,x) = g(x) 
2 +1 

Q
N(

sj»x) = m i n m a x ^(n(sJ+1,xO + 8Jh(sJ,x,y,z)) 

where 

8 . = s ., i - s . 

*' = x + & f(s ,x,yfz) + \6* r\ 

and rj . . . r] is a sequence of mutually independent normalized Gaussian 

random variables. 

Using the method of Theorem 1 of [6] we may show 

|nN(Sj,x) - w x( B j fx)| = 0(6) 

uniformly in x and j , as 8 -» 0 . 

We now show that Q satisfies a Lipschitz condition in x, i.e., for 

J > 1 

|rVSj'Xl) " nN^Sj»X2^ ~ MJI|X1 " X2!l (39) 

where 
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34 R,J. Elliott and N.J. Kalton 

M . = (M + M 2 8.)exp( 2 6.k(s.)). 

Clearly (39) is valid for j = 2 + 1 ; we prove the result by induction. 

Suppose it is true for j + 1 and fix y G Y , z G Z , x , x 0 e R . Let 
1 £ 

x' = x. + 8 .f( s .,x„ ,y,z) + X82. n . 

X2 = X2 + S/(Sj.x2>y,z) + X 8 ^ j 

so that 

?(iix;-x'ii) < i i x - x , i i ( i + 6 . k ( s . ) ) . 
1 2 ' 1 2 v J J 

Hence 
|?(0N(sJ+1,xp + djhCsj.Xj.y.z)) - S

,(0N(sj+1,x2
/) + 8jh(sj)x2,y,z)| 

< [(l+6jk(Sj))Mj+1 + MS . \\\KX-X2\\ 

and so we deduce 

|nN(Sj)Xl) -n N( S j )x 2)| < ((i+bx(S:.))u.+l + M & J ) ! ^ - x2ll. 

However 

(l + 5 .k(s .))M .,„ + M6 . < exp(8 .k(s .))M . « + M8 . 

< M . 
J 

and so the inductive hypothesis (39) is proved. 

Next we observe that 8 . < 28 and so 
J 

2 N 2 N 

E 6,k(s.) < 2 E 8k(s .) 
j=l J J j=l J 

< 2 (k(t) + e)dt 
0 

2A + e . 
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VALUE IN DIFFERENTIAL GAMES 35 

Now YL is a continuous solution of (34). For fixed x , x9 and t 

we may choose s . such that |t- s .| < 8 and then, by uniform continuity in 

l^t,x 1) - W*(t,x2)| < o(6) + llJsj.Xj) - W*( S j,x 2)| 

<. °(s) + loN(sj)Xl) - n N( S j,x 2)| 

< (o(5) + (11 + M*)e2A+e)||Xl-x2ll. 

Letting 5 -» 0 , as s is arbitrary we obtain 

|W+(t,Xl) - W*(t,x2)| < (M+M*)e
2A||Xl-x2ll 

and so we obtain, for all (t,x) e I x R 

IIVW^(t,x)|| < (M+ M*")e2A. 

The following estimate will be used in §9 . 

LEMMA 6.2 Suppose G satisfies (F1) - (F5) and f,g,h each vanish outside 

some compact set. If, whenever 

we have 

then 

Ipll < e2A(M+M*) 

|F+(t,x,p) - F""(t,x,p)| < e 

W^(t,x) - W^(t,x) < ee 

for X > 0 and (t,x) e I x Rm. Consequently 

W+ - W < ee . 

PROOF 

It is easy to show (e.g. by using the difference equation for W ^ J 

that as ||x|| -» oo W.(t,x) -* 0, and W~(t,x) -> 0, since f, g and h vanish 

outside a compact set. 
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36 R.J. Elliott and N.J. Kalton 

Consider 

6(t,x) = et(w^(t,x) - W~(t,x)) . 

Then 

6(1,x) = 0 

for x G R , and 0(t,x) -> 0 uniformly in t as ||x|| -» oo . 

0(t,x) > 0 for some t, x then 0 must take its maximum at 

where 0 <. t < 1 . Clearly 

2 

V v2e(t ,x ) +H(t .x ) < o 

and 

However 

so that 

where 

by Lemma 6.1. 

Hence 

V0(t ,x ) = 0, v o* oy 

V0 = et(W^ - VW~ ) 

VW*(t ,x ) = VW"(t ,x ) 
Xv o' oJ \K o' oJ 

PQ J say , 

|p || < e A(M+M*) 

T v*e + H = e+V(t,x,vw") - F+(t,x,vw+)] 

so that at (t ,x ) we have 
v o o 

t + 
0(t ,x ) < e (F (t ,X ,p ) - F (t ,x ,p )) v o oy "* v v o o oy o' o* oJ J 

to 

< ee 

Hence for all (t,x) G I x R 

0(t,x) < ee 

W*(t,x) - W~(t,x) < ee. 
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VALUE IN DIFFERENTIAL GAMES 37 

The last part follows, letting X -> O . 

7. RELAXED CONTROLS 

Relaxed controls were introduced into control theory in [20] and into 

differential game theory in [3]; we refer the reader to [3] for a more 

detailed discussion. 

We denote by A ( Y ) and A(z) the sets of regular probability measures 

on Y and Z . By the Riesz representation theorem we may consider A ( Y ) 

as a subset of C ( Y ) and thus give it the weak*-topology C(C(Y) , C ( Y ) ) . 

If Y is metrizable, then C(Y) is separable and A ( Y ) is a compact 

metrizable space. We may further identify Y as a closed subset of A ( Y ) 

by identifying y G Y with the probability measure 8 concentrated at y . 

We treat A(z) in a similar fashion and then extend the definitions of f 

and h thus: 

f: I x Rm x A(Y) X A(z) -> R
m 

f (t,x,cr,i;) = J | f (t,x,y,z)da-(y)dT(z) (40) 
JzJ Y 

i = 1,2,...,m 

h: I x Rm x A(Y) x A ( Z ) -> R 

h(t,x,cr,T) = h(t,x,y,z)dcr(y)dT(z) (4l) 
Y 

(The order of integration is immaterial by Fubini's Theorem.) 

It is easy to verify that the extended f and h will satisfy 

Lipschitz and continuity conditions of the same type as satisfied by the 

original f and h . We may therefore consider four versions of G , which 
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38 R.J. Elliott and N.J. Kalton 

we denote by G , G , G , G . G is the original game described in §1, 

while in G.. J is allowed the use of relaxed controls, i.e. he may choose 

o" G A ( Y ) at each instant of time; in G , J may use relaxed controls, 

and in G , both players may use relaxed controls. We may treat all four 

games as in the preceeding discussion (§1 - 6); henceforward we denote by a 

subscript 1,2 or 12, that a particular quantity or object refers to the 

game G , Gg or G 1 2 . 

One great advantage of relaxed controls is demonstrated by 

THEOREM 7.1 If G satisfies (F1 )-(F5) then 

(i) Wx = W 

(ii) W~ = W" 

C111* < 2 = W12 = W2 = V 

PROOF 

(i) W = W (0,0) where W (t,x) is the Fleming solution of the Isaacs-

Bellman equation (3l), subject to W (l,x) = g(x). Similarly W = W1(o,o) 

where W (t,xj is the Fleming solution of 

| | + F^(t,x,VR) = 0 (42) 

subject to W (l,x) = g(x), 

where 

F (t,x,p) = min max (p.f + h ). 
zGZ 0-GA(Y) 

Thus as the Fleming solution of the equation (3l) or (42) is uniquely 

determined by the equation (see Definition 5.4 and the remarks preceeding 

Theorem 5.5) it is enough to show that 

F^(t,x,p) = F+(t,x,p) 
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VALUE IN DIFFERENTIAL GAMES 39 

for f € I , x G Rm and p e Rm, 

Now clearly 

F (t,x,p) >, min max (p.f + h) 
zGZ yGY 

= F+(t,x,p) . 

However for fixed z G Z 

Z p. f. (t,x,cr,z) + h(t,x,or,z) 
1 1 t 

i=l 

m 
Z p.f (t,x,y,z) + h(t,x,y,z)dO-(y) 

Yi=l 

by (40) - (41) 

m 
< max ( Z p f (t,x,y,z) + h(t,x,y,z)) 
y(EY i=l 

so that 

and so 

F*(t,x,p) < F+(t,x,p) 

F*(t,x,p) = F+(t,x,p) . 

(ii) is proved similarly. 

(iii) : We have 

F
1 9(

t» x»p) = m i n m a x (P»f + n) 
TGA(Z) CTGA(Y) 

F-ipC^jXjP) = m a x m i n (P»f + h) • 
CTGA(Y) TGA(Z) 

For fixed ( t , x , p ) e i x R * R , p . f + h is a continuous function on Y x Z 

and so we may use a well-known result from game theory, due to Wald [19], that 

F^(t,x,p) = F~2(t,x,p) 

and hence deduce as in (i) 

< 2 = W12-

If we apply (i) to G we obtain 
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40 R.J. Elliott and N.J. Kalton 

< 2 = W+2< 

while by applying (ii) to G , we obtain 

12 2 

8. THE EXISTENCE OF VALUE UNDER CONDITIONS (Fl) - (F5) 

In §2 - 5 , we introduced six different value concepts for G , i.e. 

U, V (§2), V , V~ (§3) and W+, W~ (§5); the last two refer only to the case 

when G satisfies (Fl) - (F5) (although they may be defined provided only 

that G satisfies (Fl) - (F3)). Let us note first that as V~ < U, V < V , 

+ + 

we need only consider V , V , W and W . 

THEOREM 8.1 If G satisfies (Fl) - (F5), then V+ < W + and V~ > W~ . 

PROOF 

We recall that (Theorem 4.l) 
+ + 

V = lim SXT 
N-co N 

+ + 
where S„ is the value of the game H T . Let us now introduce a variant of 

N N 

H , called H , with the same dynamics, initial condition and pay-off, but 
N N 

with the restriction that at each step J must choose a constant function, 

while J is still free to choose any function. Clearly H has a value 

S , and is more favourable to J , i.e. 

S +
 Z S+ . 
N * N 

We compare H with K (see §5; the subscript 1 denotes, as usual, that 

J. may use relaxed controls). For any control function y(t) on I . , (see 
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VALUE IN DIFFERENTIAL GAMES 

§3), we can define a probability measure cr on Y by 

41 

r - i f J 

cpdcr = 8 cp(y(t))dt (43) 

for 9 <E C(Y ) ; clearly cr e A ( Y ) . We now show that if J chooses at the 

jth step the constant control z, and J replies, in H , with the 

function y(t), then J\ could achieve the same result by choosing the 

constant relaxed control cr in K , where c is given by (33). For 

IN , 1 

t . 

x(tj) = xftj^) + f f(tJ__1,x(tj^1),y(t),z)dt , 

J-l 

(the dynamics of H are given by (19)), 

Similarly 

x(t ) + 8 f(t x(t ),y,z)dO-(y) (by (43)) , 

= ^j - i ) + 6 f ( t
J - i » x ( t j - i ) > c r » z ) ( f ey ( 4 ° ) ) 

h(tJ__1,x(tJ_1),y(t),z)dt = 8h(tj<_1,x(tj_1),cr,z) 

j-l 

Thus J can exactly duplicate the effect of any control function in 

— + + / 
H by a control function in K (which is, of course a sequence 

[cr . . ,cr ] of elements of A(y)). In particular, K is at least as 

favourable to J as H , i.e. 
1 N 

•=+ ...+ 

— + + 
S < W 
N " N,l 

(in fact S = W , but this we do not require. 
N N, 1 
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42 R.J. Elliott and N.J. Kalton 

Thus we have 

and taking limits 

By Theorem 7.1, 

+ + 
V < W 

+ + 
V < W ( 

The other inequality is a dual result. 

THEOREM 8.2 If G satisfies (Fl) -(F5) and the Isaacs condition (28) 

i.e. 
F (t,x,p) = F (t,x,p) 

for all 0 < t < 1, x e Rm, p e Rm , then V+ = V~ . 

PROOF 

This follows from Theorems 5.5 and 8.1. 

THEOREM 8 

PROOF 

.3 If G satisfies (Fl) - (F5) then V* = V~ 
12> \ *. 

As in Theorem 7.1, we observe that G satisfies the Isaacs condition, 

and so this theorem is a direct consequence of Theorem 8.2. 

Thus even when G fails to satisfy the Isaacs condition (36) we may 

+ 
introduce relaxed controls and obtain a value to the game V.2 = V = V . 

THEOREM 8.4 V~ < V < V . 

PROOF 

+ + + 
We prove V <. V . First we show that V = V ; we consider the game 

H (see Theorem 4.3). Letting 8 = 2 and t . = j8 for 0 < j < 2 , we 

consider the game ^vjC^i,^) a s the game H with initial condition x(t,) = x. 

The dynamics of H (t ,x) are given by (l9) and the pay-off by 
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VALUE IN DIFFERENTIAL GAMES 43 

2 N
 f*J 

P(y(t),z(t)) = g(x(l)) + 2 h(t x,5<t ),y(t),z(t))dt. (44) 

It is easy to see that H (t ,x) has a value S (t ,x) and that we have the 

relationship 

• (45) s j t k , x ) = Inf. 
z(1 

if supjf h(t x,y(t) ,z(t))dt + S*(t k + 1 , O i 

t)y(t)Utk
 k N k+1 J 

where 

f V i 
x = x + f(tk,x,y(t),z(t))dt . 

Similarly we consider G in place of G . We obtain 

+ , r ( t k + 1 + 1 
SN l ( t i c » x ) = i n f s u p \ h ( t x , c r ( t ) , z ( t ) ) d t + S ( t k + 1 , x ' ) 

N' k z(t) y(t) Ut k N | 1 k + 1 J 

(46) 

where 

x = x + 
k+1 

f(tk,x,cr(t),z(t))dt. 

We shall show that for any k, x 

< / V x ) = S N(V X ) ; 

we observe that 

S N , 1 ( 1 ' X ) = SN^'x) = gW 

and proceed by induction. Suppose that for all x 

SJ fl(W>
 = SN^k +l'

X) ; 

then for a fixed relaxed control function cr(t) on (t.jt 1 ) , we may by 

Corollary 4.5 of [3] determine a sequence y (t) of control functions on 
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44 R«J« Elliott and N.J. Kalton 

(t, , t, ) such that v k k+ly 

tk+l A+l 
f(tk,x,yn(t),z(t))dt -> h(tk,x,cr(t),z(t))dt 

k k 

for any control function z(t) for J . We thus obtain from (45) and (46) 

It follows that 

and so by Theorem 4.3 

Now clearly 

so that 

+ + 
S = S 
N,l N 

+ + 
v =V 

+ + 
v = v < v 
12 12 ~ 1 

V < V+ . 
12 - * 

9 THE EXISTENCE OF VALUE WITHOUT CONDITIONS (Fl) - (F5) 

In this section we dispense with conditions (Fl) - (F5) in Theorem 8.2. 

However, we still require the pay-off in G to be of the form (l8); the 

relaxation of this condition is given in §10. Let us first observe, as by 

Lemma 3.2 the set of all x € R which are 'attainable' by a trajectory in 

G is bounded, that we may assume that the functions f, g and h vanish 

outside compact sets. We shall show first that f and h may each be 

approximated by functions satisfying conditions ( F ) . 

LEMMA 9.1 If f: I x R x Y x z -> R is continuous and of compact support, 

and satisfies a Lipschits condition in x , 
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||f(tfx1>y,z) - f(t,x2,y,z)ll < k(t)||x1-x2H 

where 

-1 
k(t) = A < oo , 

O 

f(n). j .. r̂ m. then there is a sequence of continuous functions fv";: I x R"lx y x 

such that 

(• \ f ( n ) 
I 1 / * satisfies a Lipschitz condition in t for each n , 

l l f^t^x.y.z) - fW(t2)x,y)Z)|| < q W | t l - t 2 | , 

(ii) f̂  satisfies a Lipschitz condition in x 

l f ( n ) ( t , x 1 ( y > Z ) - / n ) ( t , x 2 , y , z ) | | < k ^ ) ( t ) | | X l - x 2 l l , 

iifiere 

sup 
O < t< 1 

| k W ( t ) | = k n < oo, 

and 

k ^ n ' ( t ) d t < 6A each n , 
O 

( i i i ) f^n' -> f uniformly 

PROOF 

Le t 6 = 2 and t . = j 6 O < j < 2 ; we c h o o s e s . f o r 
J J 

j = 1 , 2 , . . . , 2 such t h a t 

( a ) t . , < s . < t . 

k ( s . ) f
t j 

(b) -f- < 2 k ( t ) d t 
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46 R.J. Elliott and N.J. Kalton 

Then we define for 0 < t <. s 

^ n\t,x,y,z) = f(Sl,x,y,z) ; 

for s . < t < s ., „ j=l,2,...,2 n-l 
j - j+1 

s . , - t t- s 
flnj(t,x,y1(z) = J+ _ s f(s x,ylrz) + ^ - f(s x.y^z) ; 

'j+1 "J J " Sj+1 "j 

for t > s 
2 n 

(n) 
fK ;(t,x,y,z) = f(s ,x,y,z) . 

2 

It is clear, by using the uniform continuity of f ( f has compact support) 

that f̂  ' -» f uniformly. Secondly f̂  ' is Lipschitz in t for each n . 

Finally the functions k̂  (t) in (ii) may be chosen such that 

k'n'(t) = k(sx) 0 < t < sx ; 

k^n)(t) < max[k(Sj),k(sJ+1)] S j < t < s J + 1 ; 

k^n)(t) = k(s ) s < t < 1 ; 
2 n 2 n 

r 1 r ) 2* 
so that k W ( t ) d t < 2 k(s .)(s . - s ) 

JO j=l J J J~ 

where s = 0 and s^n , , - 1 . 
o 2 + 1 

1 2 n 

f k^(t)dt< Z k(s ) \ 
JO j=l 2 

< 6A by (47) . 

THEOREM 9.2 Let G be a differerat ial game satisfying only (l) - (3) and 

with a pay-off given by (l8). Then if G satisfies the Isaacs condition (38) 

F+(t,x,p) = F~(t,x,p) 

for (t,x,P) e I x R
m x R m, then V+ = v" . 
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VALUE IN DIFFERENTIAL GAMES 47 

(i.e. G has a value in the sense of Friedman [10], 

PROOF 

We prove Theorem 9.2 initially under the assumption that g satisfies 

the conditions (F3) and (F5). We also make the assumption throughout the 

proof that f, g and h vanish outside some compact set, (this was 

justified in the opening remarks of this section). 

Using Lemma 9.1 we construct a sequence f̂  ' of functions converging to 

f uniformly and satisfying (i) - (iii) of 9.1. We may also determine a 

( n ) m 

sequence of functions h . I x R x y x z -> R converging uniformly to h 

and each satisfying (F2) and (F4) . For convenience we write f = f̂  ' 

and h = h K 

Then for 1 < m < oo and 1 <, n <, oo , 

we consider the game G^ ' ' with dynamics 

ft = ̂ (t.x.y.z) (48) 

initial condition 

x(0) = 0 

and pay-off 

p(m'n)(y(t),z(t)) = g(x(l)) + f h(m)(t)x(t),y(t),zCt))dt. (49) 

(Thus 0 = 0^'°°).) 

We shall use the following notation : 

(i) g satisfies (F3) with constant M ; 

(ii) br ' satisfies (F2) with constant M : 

(iii) sup ||f(t,x,y,z) - f W ( t ,x,y ,z) II = r\n ; 
t,x,y,z 

(iv) sup |h(t,x,y,z) - h W ( t ,x,y ,z) | = e^. 
t,x,y,z 
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48 R.J. Elliott and N.J. Kalton 

Now let (y(t),z(t)) be any pair of control functions and let 1 < m < oo 

and 1 < n < oo; let x(t) be the trajectory determined by (y(t),z(t)) in 

G(m,oo) a n d l e t x / ^ b e t h e t r a j e c t o r y i n G(m,n) ^ 

Then 

dx^tl _ dx^t),, + |, f ( t > x/ ( t ), y ( t ), z ( t ) ). f(t,x(t),y(t),z(t))| 
dt dt " ̂  'n 

< T]n + k(t)l|x'(t) " X(t)|| 

and arguing as in Theorem 3.4 or Lemma 3.1 we obtain for 0 <, t <, 1 

||x'(t) - x(t)|| < T!ne
A. 

Then 

|h^)(t,x/(t),y(t),z(t)) - hHt,x(t),y(t),z(t-)) I dt 

rl 
M T) e dt 

N m 'n 

while 

so that 

= M r\ e 
m 'n 

|g(x'(l)) - g(x(l))| < M \ e A 

|P(m,n)(y(t),z(t)) - P^'^(y(t),z(t))| i (M* +MjT, e A . 

Thus if a is a pseudo-strategy for J (see §2), then we compare its values 

^(ct) in G^'") and G^'a) to 

u(m'nV) " u(m,M)(a)| < (M*+M )TI 

(m.n)/ \ , (m,oo)/\ . fm.n) . _(mfoo) uv ' '(a) and uv ' J(a) in Gv ' ] and Gv ' J to obtain 

and hence we have 

where 

|U(m'n)(s) - U(m'00)(8)| < (M*+M )T, e A 

TT(m,n)/ s (m,n)/ N 

IT ' \s) = sup uv ' '(a) 
aer(s) 
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VALUE IN DIFFERENTIAL GAMES 49 

Hence by Theorem 3.1 

|v+(m}n) _ v+(m,co) < * + } eA ( } 

and 

|v-(m,n) _ v-(m/»;! < ( M* + M } eA ( g l ) 
v m7 'n v ; 

where V ^ ' ' is the upper Friedman value of G^m,n', etc. 

A similar but simpler argument gives us 

| V
+( m' M) - v+| < e (52) 

|v-(m,oo) . v"| < e (53) 

m 

(m n) 
In G consider the Isaacs functions 

+ ( m , n ) / . \ . , Jn) , 1 (m)x 
F v ' ^ ( t j X j p ; = mm max (p.fv J + hK J) 

Z E Z  ye y 

P " ( m ' n ) ( t f x , p ) = max m i n ( p , f W + h W ) . 
yGY z £ Z 

We have 

K p . f ( n ) + h ( m ) ) - ( p . f + h ) | < pll T) + e 'n m 

for any (t,x,p,y,z)eixR x R x Y x Z and so we may deduce 

pllri + e 
'n m 

< lip rn + e 'n m 

| F + ^ ' n ) ( t , x , p ) - F + ( t , x , p ) | < 

| F - ( m ' n ) ( t , x , p ) - P " ( t , x , p ) 

a n d , a s G s a t i s f i e s t h e I s a a c s c o n d i t i o n ( 3 6 ) , we have 

| F + ( m ' n ) ( t , x ) P ) - F " ( m ' n ) ( t , x , p ) | < 2 ( | | p | |T ) n + em ) . 

The game Or ' ' satisfies (Fl) - (F5) and so by Lemma 6.2 we have 

+(m,n)_w-(m,n)| < 2 e ( e12A ( M + M * + 

1 ' ~ K v m J 'n nr 

(note that by Lemma 9.1 Ĝ  ' ' satisfies (2) and (3) with A replaced by 

6A). 
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50 R.J. Elliott and N.J. Kalton 

Hence by Theorem 8.1 

+(m,n) _ y-Cm.n)! < 2 e ( M + M*)e12A + g } 
x m 7 'n m J 

By ( 5 0 ) , ( 5 1 ) , ( 5 2 ) and ( 5 3 ) we o b t a i n 

| V + - V ~ | < 2e(M + M*x,e12Ar] + e ) + 2e + 2(M1 + M*)ri e A , x m ' 'n my m v m 'n ' 

f o r a l l 1 < m < oo , 1 < n < oo. 

Letting n -> oo we obtain, keeping m fixed 

|V+ - V"| < 2e (e + 1) 

and so letting m -> oo 
+ 

V = V 

It remains only to remove the conditions on the function g. Suppose, 

then, that g does not satisfy (F3) and (F5); then we may take a sequence 

ĝ  ^ of functions satisfying (F3) and (F5) and such that ĝ  -> g 

uniformly (we recall that g has compact support). Consider the game G/ N 

with dynamics given by (l) and pay-off 

rl 
P(m)(y(t),z(t)) = g

(m)(x(l)) + h(t,x(t),y(t),z(t))dt. (54) 
0 

Then as 

P(m)(y(t),z(t)) - P(y(t),z(t)) 

uniformly in the control functions (y(t),z(t)), by the standard argument, 

applied above, we obtain 

However 

and so 

+ + 
V/ N -> V 
(m) 

V/ x -> V 
(m) 

+ 
^( \ ~ ^( \ for eacn m > > ) - V(m) 

+ 
V = V 
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VALUE IN DIFFERENTIAL GAMES 51 

10. GAMES WITH GENERAL PAY-OFF 

In this section we refine Theorem 9.2 further by replacing g by a 

general functional \i on the Banach space of trajectories. For a fixed 

function f satisfying (l) - (3) we observe that the set X of trajectories 

is relatively compact in [C(l)] (Lemma 3.3). Let us consider the Banach 

space c(x) of all continuous real-valued functions on X (in the uniform 

norm); by the Stone-Weierstrass Theorem the set of functions p G c(x) of 

the form 

p(x) = g(x(t1),...,x(tn)) (55) 

with t = 1 , is dense in c(x). 
n ' v J 

THEOREM 10.1 Let G be the differential game defined by equations (l) - (4). 

Then if G satisfies the Isaacs ocndition (38), we have V = V , i.e. G 

possesses a value in the sense of Friedman [10], 

PROOF 

The functional [i by the preceding remarks may be approximated uniformly 

on the set of trajectories by the functional of the type (55). By the 

argument used in Theorem 9.2 it is only necessary to establish the result for 

functionals of this type; the full result will then follow by an approxima­

tion procedure. We proceed by induction on the number n in (55); suppose 

that when k < n and 

H(x) = g(x(t1),...,x(tk)) 

+ 
where t = 1 , we have V = V . Let us now assume 

k 

JI(X) = g(x(t1),...,x(tn),x(tn+1)) 

where t . = 1 . For fixed x. ,x0...x e R 
n+1 1' 2 n 

consider the game G(x ..,x ) with dynamics given by (l), initial 
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52 R.J. Elliott and N.J. Kalton 

condition 

<t ) = x , v n n ' 

and pay-off 

P = g(x1,x2,...,xn, x(l)) + 
r 1 

h(t,x(t),y(t),z(t))dt . (56) 
t 

As G satisfies the Isaacs condition (28) for O <, t <, 1 , so does 

G(xi ....,x ) for t < t < 1 , and hence by Theorem 9.2, G(x„,...,x ) has 

a value v(x. ,. . . ,x ) = V (x. ,. . . ,x ) = V (x. , . . . ,x ) . We show that v 1' ' n/ K 1* ' n7 x 1' ' n/ 

V(x-,...,x ) is a continuous function on (R ) . Suppose that 

( x ^ , . . ^ ) G (R )' ; then for 8 > 0, there exists 8 > 0 such that 

( i ) whenever IIx- x II <, 6 , t h e n 

| h ( t , x , y , z ) - h ( t , x / , y , z ) | < 6 / 2 , 

(ii) whenever IIx - x/' II < 8 k = l,2,...,n+l 

18(xl. •••.<+!) " s(V--..* n + 1)l ~ S/2 • 

(We assume as in Theorem 9.2 that h vanishes outside some compact set, so 

that (i) is justified by uniform continuity of h). 

Now suppose 

l|xk~ Xk" - 6 e~ k = 1 ' 2 " - ^ n 

where 

A = k(t)dt . 
JO 

Let (y(t),z(t)) be any pair of control functions on [t ,l] 

determining trajectories x(t) in G(x , ...,x ) and x7(t) in 

Gfx/,...,x/) . Then we have 
"1 n 
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VALUE IN DIFFERENTIAL GAMES 

llx'(t) - x(t)ll < be~Aexp { I , k ( , ) a s } 

Hence 

< 8 t < t < 1 . - n — ~ 

r 1 
h(t,x(t),y(t),z(t)) - h(t,x"(t),y(t),z(t))dt| < e/2 

and 

|g(xlf...,xn,x(l)) - g C x ^ . ^ . x ^ x ^ l ) ) ! < V 2 • 

Therefore the pay-offs P(y,z) in G(X 1,...,X ) and p'(yfz) in 

G(x1
/
>.. . ,x^) satisfy 

|P - p'| < e . 

A standard argument on pseudo-strategies as in Theorem 7.1 yields 

|v(Xl,...,xn) - V(x^,...,x^\ < e , 

so that V is continuous. 

We may treat the function u(s) for G(x ,...,x ) in a similar 

we denote this by u(s,x,...,x ), and obtain U is continuous in x 
ny 

We also have as s ̂  O 

lim U(s,xlf...,x ) = V(x1,...,xn) 
s~»0 

monotonically. By Dini's Theorem 

lim U(-S,x1,...,xn) = V(xx,...,x ) 
s-»0 

uniformly on compacta. 

,(s) Let us now consider the game GK J with dynamics given by 

ft = f(t,x(t)1y(t),z(t)) 

initial condition 
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54 R.J. Elliott and N.J. Kalton 

x(0) = 0 

and pay-off 

t 

P = U^xC^),...^^)) + I" h(t,x(t),y(t),z(t))dt. (58) 

By the inductive hypothesis G^ ' has a value which we denote by u(s) , and 

by the usual argument, equation (57) yields that 

lim U(s) = V (59) 
s->0 

where Vn is the value of the game G whose dynamics and initial condition 

(s) 
are as in G^ J , but whose pay-off is given by 

t 

r n 

P = V(x(t ) ... x(t )) + h(t,x(t),y(t),z(t))dt. 
J 0 

We now consider the sets AL and H of control functions (modulo 

functions equal almost everywhere) as direct sums of control functions on 

[0,t 1 and [t ,11 . 
L n J L n» J 

Thus if z(t) G M , then we may write z = [z^ ,zr '] where 

zx ' : [0, t ] -» Z . We write JV for the space of measurable functions 

z^ . [0,t ] -» Z and N for the space of measurable functions 

(2) 
ẑ  ;: [t ,1] -» Z (so that, in the sense above f\ = JV ©JV n o). Similarly 

For s > 0 , an s-delay strategy a for J in the game G is a map 

a: fl -» A^ 

satisfying (6), and induces a map 

(s) 
where a is an s-delay strategy in Gv J . 
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VALUE IN DIFFERENTIAL GAMES 

For fixed z(t) G tf we define a : N -> # by 

a[z,w] = [az,a2w] . 

Then (az,z) determine a trajectory x(t), 0 <, t < t , and a is an 

n z 
s-delay strategy in G(x(t ),...,x(t )) . 

55 

infP oc (z,w), (z,w) h(t,x(t),az(t),z(t))dt 

+ inf J h(t,x(t),a w(t),w(t))dt .{J W ^ 2 2 U t n 

+ g(x(t1)...x(tn),x(l))l 

= u(a ) + 
x zy 

h(t,x(t),az(t)^z(t)) dt 

so that 

< U ^ x ^ ) . . ^ ^ ) ) 

u(oc) <. u (a) 

h(t,x(t),az(t)z(t))dt 

where u (a) is the value of a in G^ '. Thus we have 
sv J 0 

and letting s -> 0 , by (49) 

U(s) < U(s) 

v" < v_. 

Conversely, suppose x .#.x are given; then there exists an s-delay 

strategy for J , a (x .x ), for s < 1- t , in G(x ...x ) such that 

u(a*(x1...xn)) >. U(s,x1#..xn) - s 
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56 R.J. Elliott and N.J. Kalton 

Given an s-delay strategy a in G we define a by 

a [ z , w ] = [ a z , a w] 

where 

a w = a ( [ z , w ] ) ( t ) t < t < t + s 
z u ' J A y n ~ " n 

= a*(x(t1)...x(tn))w(t) tn+ s < t < 1 , 

and x(t), 0 <, t <, t , is the trajectory determined by 

(az,z). 

Suppose x(t) and x ( t ) , t <. t <. 1 , are the trajectories corresponding 

to (a w,w) and (a (x(t1)...x(t ))w,w) . Then we may show, by a method 

similar to that in Theorem 3.4 that 

||x(t) - x*(t)|| < 2B//seA 

where 

B" = sup||f(t,x,y,z)|| 

(as in Theorem 9.2, we can assume that f is bounded, since the set of 

attainable x G R is relatively compact). Hence we have 

|u(fiz) - u(a*(x(tl)...x(tn)))| < T,(S) 

where T)(s) -> 0 as s-»0. Then 

t 

i n f P o t [ z , w ] , [ z , w ] = u ( a )+ h( t ,x ( t ) , a z ( t ) , z ( t ) ) d t 
wGJV21

 L J Z J 0 

^ U ( s , x ( t 1 ) . . . x ( t n ) ) - r ] ( s ) - s 

t_ 
n 

h ( t , x ( t ) , a z ( t ) , z ( t ) ) d t 
J 0 

and so 

u ( a ) 2. u ( a ) - s - ^ ( s ) . 
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VALUE IN DIFFERENTIAL GAMES 57 

Hence as oc is an s-delay strategy we may deduce 

U(s) > U(s) - s - -n(s) 

so that, taking limits as s -> 0 

V~ > lim(u(s) - s - T](s)) 
s-»0 

= vo 

by (59). Hence V = V and we similarly conclude that V = V . 

11. OPTIMAL STRATEGIES AND SADDLE POINTS 

The problem which naturally follows the proof of the existence of value 

for differential games satisfying Isaacs condition is that of determining the 

existence of optimal strategies for the two players. In the setting of 

relaxed controls we may show that each player possesses a strategy achieving 

the value of the game (in relaxed controls). 

We treat therefore the game G. , which by Theorem 10.1 possesses a 

value, as the Isaacs condition is always satisfied in relaxed controls. We 

consider the space AL and f\ of relaxed control functions for the two 

players (modulo functions equal almost everywhere); following [3] we assign 

topologies to AL and AI , so that At is identified as a subset of the 

dual of the Banach space L ( C ( Y ) ) of integrable functions cp: I -> C ( Y ) in 

the weak topology. The duality is given by 

<cp(t),cr(t)> = I Jf <p(t)do-(t)ldt (60) 

where cr(t) is a relaxed control function. It follows that AL is 
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58 R.J. Elliott and N.J. Kalton 

compact in this topology (and also that AL is dense in f\ ) . Similarly 

M is compact as a subset of [L (c(z))] . 

LEMMA 11.1 Tfi,e pay-off junction P:AL xAt 2-*R is separately Gontirvuou,a. 

PROOF 

See [3] (an example to show that P is not necessarily jointly 

continuous is also given). 

THEOREM 11.2 In G , J possesses a strategy oc and J a strategy (3 

such that 

u(oc) = u((3) = V 1 2. 

PROOF 

We 

We prove 11.2 only for J Let a be a strategy for J such that 

u K j ^ v i 2" i -
/ * N^2 identify a as a member of (At ) with the product topology; by 

Tychonoffs theorem this space is compact and so we may produce a subset 

* At o 
(OL) of (a ) such that OL converges to some a in (AL ) . For 

ir(t) e At* 

?(oyu,T) > u(ax) 

and so by Lemma 11.1 

P(<XT,T) ^ lim sup u(a ) 

X -> oo 

* V12-

Then 

u(a) 2 V ^ 

and hence 

u(a) = V 1 2. 
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VALUE IN DIFFERENTIAL GAMES 59 

We also can see that a: M -> At is indeed a strategy, for if 

T (t) = ̂ 2(t) a.e. 0 < t < T 

then 

OLT (t) = °^T2(t) a.e. O < t < T 

Suppose cp: [0,T] -» c(Y-) is. integrable; then we have 

lim (cp , a T y = lim (<P,OLT > 

where 

9(t) = cp(t) 

for O < t < T , and zero for T <, t <, 1 . 

Hence 

< 9 » a T x >  =  < 9 , a T 2 > 

and as this is true for all such cp we have, taking 

<p(t,y) = e(t)*(y) 

for 6 e L*(l) and i|r G C(Y) , 

rT 
f 9(t)[ f(y)daT (t,y) 
Jo JY 

3(t) l(y)daT (t,y) . 

So 

t(y)da-u1(t, y) = t(y)daT2(t,y) a.e. 0 < t < T , 

As in Lemma 2.1, using the metrizability of Y , we may deduce from this, 

that 

OCT (t) = (XT (t) a.e. 0 < t < T. 

THEOREM 11.3 In G , J possesses an optimal strategy a such that 

u(a) - v j . 

PROOF I d e n t i c a l . 
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QQ R.J. Elliott and N.J. Kalton 

Although we have produced optimal strategies in G , it does not follow 

that we have any reasonable saddle point solution. For, although, a and 

P have the same value, we cannot necessarily (see Example 2.2) produce an 

outcome to the game if J elects to use a and J to use p . There 

is only one case in which we have any guarantee of an outcome to two 

strategies. If a and p are assumed to be continuous for the given 

topologies on AL and H9 , then pa: At -> M is continuous and maps a 

compact convex subset of L (c(z)) into itself; we may therefore quote the 

Schauder fixed point theorem to deduce the existence of ir(t) such that 

pa{T(t)} = T(t) . 

Then (O.T( t) ,u( t)) is the outcome of the strategies oc and p. However, 

it is unlikely that the optimal strategies of 1J.2 are continuous. 

To circumvent these difficulties we introduce a weaker saddle point idea. 

We shall say that a sequence (a ) of — delay strategies (i.e. oc G r(—)) 

for J in G is an approximate strategy; similarly a sequence ((3 ) 

where p G A ( ~ ) is an approximate strategy for J . It is easy to verify 

that there exists a unique pair of control functions (y (t),z (t)) such 

that 

a z (t) = y (t) n nv J Jnx J 

P y (t) = z (t) . 

This is done by an induction process - first ot determines the control 

function y ft) for 0 < t < — , which in turn determines z (t) for 

JnK J ~* ** n ' nv 7 

0 < t < - , etc. We define the pay-off P[(a ),((3 )] as the set of all 

limit points of the sequence p[y (t),z (t)J. We shall say that the sequences 

(a. ) and (p ) from a saddle point for approximate strategies if for any 

approximate strategies (a ), (P ) 
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(where for sets of real numbers A and 9> we have A < % if and only if 

a < b for a G A , b <E # ). 

THEOREM 11.4 If G satisfies the Isaacs condition then there exists a 

saddle point for approximate strategies in G . 

PROOF 

* , 1 s 

By Theorem 10.1 G has a value V and we may determine a^ € I\~J 

(3* G A(-) with 

n N n ' 

n n ' 

u ( a ) - V - e 

v(B*) = V + 8 v r i r n 

where e -*• 0 and 8 -> 0 . Then i f 
n n 

ex z = y 
n n n 

B y = z Mn ; n n 

so t h a t 

i . e . 

u(oc*) < P ( y * , z * ) < v((3*) , v n y - u n ' n ; " V h n y ' 

l im P ( y n , \ ) = V , 
n->co 

pi(<),(0^ = w-
For any other approximate strategy (ot ) for J. , suppose 

a z = y 
n n Jn 

p y = z n n n 

so that 
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62 R.J. Elliott and N.J. Kalton 

P(y ,z ) < v(6 ) KJn' ny - v tn y 

= v + 8 

n 

and so 

pK«n),(P*)] <. ivj. 

The result follows easily. 

Clearly the method of 11.4 shows that a saddle point over the appropriate 

strategies exists if and only if the game G has a value in the sense of 

Friedman; see Friedman [lO] for alternative notions of saddle point. 

12. RELATIONSHIP WITH THE WORK OF FRIEDMAN 

In this section we relate our results to those of Friedman [10]; he 

makes the assumption both f and h split in y and z , i.e. 

f(t,x,y,z) = f ^ t ^ y ) + f2(t,x,z) (6l) 

and 

h(t,x,y,z) = h (t,x,y) + h2(t,x,z). (62) 

Under assumptions (6l) and (62), the Isaacs condition (38) holds automatically, 

and so Theorem 10.1 shows that the game G will have a value. Thus our 

Theorem 10.1 includes the main theorem of [10], 

However the approach used by Friedman is much simpler than the one 

adopted here. The main improvement due to the splitting of (61) and (62) is 

expressed in the following lemma. 

LEMMA 12.1 Let a be a pseudo-strategy for J and for 0 < 8 < 1 define 

ot~z(t) = otz(t- 8) t > 8 
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VALUE IN DIFFERENTIAL GAMES 63 

= yo(t) t < 6 

where y (t) ia some fixed control function. Then 

lim P(oc z(t),z(t)) = P(az(t) ,z(t)) 
S->0 5 

uniformly in oc and z(t) when (6l) and (62) are satisfied. 

We omit the proof, but remark that intuitively this is a clear consequence 

of (61) and (62). The slight reaction time 8 is unimportant since the 

effects of y and z do not interact; contrast the situation in Example 

2.2 where the delay of an optimal strategy may be disastrous. 

THEOREM 12.2 Assuming (61) and (62), the functions u(s) and v(s) are 

continuous. In particular 

U(s) = v(-s) for any -1 < s < 1 . 

PROOF 

From Lemma 12.1 we conclude that 

u(a§) -> u(a) 

for any pseudo-strategy a. If a e r(s) then a~ e r(s+ 8) , and so 

u(a~) < U(s+ 8) < u(s) 

and 

lim supu(oCr-) = u(s) 
8->0 ex 

so that 

lim U(s+ 8) = U(s) 

S-»o 

and so U is continuous on the right . To show that U is continuous on 

the left we need an anticipatory version of Lemma 12.2; define 

oc ̂ z(t) = ocz(t + 8) t < 1 - 6 

= yJt) t > 1-8. 
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Then as in Lemma 12.1 

lim P(<x z(t),z(t)) = P(ocz(t),z(t)) 
6->0 "° 

uniformly in z(t) and oc . It follows immediately that U is continuous. 

The implication u(s) = v(-s) is deduced as in the remarks at the end 

of §3. 

Another simplification due to (61) and (62) worth observing is (see 

Lemma 11.1): 

PROPOSITION 12.3 Assuming (61) and (62) the pay-off in G P: A^ x ̂ 2 -» R 

is jointly continuous. 

We omit the details of the proof of this result. The main step is to prove 

that if or (t) -* cr(t) in M. and T (t) -> qr(t) in At then the correspon­

ding trajectories x (t) converge uniformly to the trajectory x(t) induced 

by tf"(t) and t(t); this is very similar to the result proved by Warga [20]. 

The assumptions (61) and (62) do allow us under certain circumstances to 

show the existence of an optimal strategy for J . We assume also that the 

set 

K(t,x) = J n ; y e= Y 
ft I \Z,X, 

\ \ hX(t,x, 

is convex in R for each (t,x) G I x R , and also that Y is a subset 

of some Euclidean space R . 

THEOREM 12.4 Under the assumptions above, there is an optimal strategy a 

for J such that u(oc) = v(=V = V~). 

PROOF 

By Theorem 11.3 there is an optimal strategy a for J in G ; we 

Licensed to Univ of Missouri-Columbia.  Prepared on Sat Jan 11 02:34:54 EST 2014 for download from IP 161.130.253.98.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



VALUE IN DIFFERENTIAL GAMES 65 

shall construct a strategy a in G with the same effect using Zorn's 

Lemma. Suppose that a: M -» /t has been determined for a subset At of 

M and that z(=z(t)) G At - At ; let 

T = sup[s; 3z /G Al, z'(t) = z(t) a.e. 0 < t < s} . 

Then we may determine z E/1 such that 

z(t) = z/(t) a.e. 0 < t < (l- -) T, 

and let 

az(t) = az'(t) a.e. ( I - - 1 - ) T < t < (l--)T n = 2,3,..., \ / n\ J \ n - l / v n 7 t i t 

This will determine az(t) for 0 < t < T. 

Now (a z,z) determines a trajectory x(t) in G and for t > T 

/f
1(t,x(t),a*z(t))x 

G K(t,x(t)). 
\h (t,x(t),a z(t))/ 

By the Filippov Implicit Function Theorem, we may determine a measurable 

function y(t), t £ T, such that 

f1(t1 x(t), y(t)) = f
1(t1 x(t),a*z(t)) 

hX(tx x(t), y(t)) = h
1(t1 x(t),a*z(t)) 

Then we define 

az(t) = y(t) t ̂  T. 

It is clear that (az,z) determines the same trajectory and pay-off as 

(a z,z) . Using Zorn's Lemma we build up a in this way and clearly a is 

a strategy with 

u(oc) = u(<x ) = V . 

Licensed to Univ of Missouri-Columbia.  Prepared on Sat Jan 11 02:34:54 EST 2014 for download from IP 161.130.253.98.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



BIBLIOGRAPHY 

BERKOVITZ, L.D. 'A variational approach to differential games'. 

In 'Advances in Game Theory', Annals of Math. Study 52, 

pp 127-174, Princeton University Press, Princeton 1964. 

'A differential game with no pure strategy 

solution'. loc. cit. pp 175-194. 

ELLIOTT, R.J., KALTON, N.J. and MARKUS, L. 'Saddle points for 

linear differential games', J. S.I.A.M., Series A, Control, 

to appear. 

FLEMING, W.H. 'The convergence problem for differential games'. 

J. Math. Analysis and Applications 3 (l96l) pp 102-116. 

'The convergence problem for differential games. II1 

In 'Advances in Game Theory', Annals of Math. Study 52 

pp 195-210. Princeton University Press, Princeton 1964. 

'The Cauchy problem for degenerate parabolic equations', 

J. Math, and Mechanics 13 (1964) pp 987-1008. 

'Non-linear partial differential equations -

probabilistic and game theoretic methods' Centro Inter-

nazionale Matematico Estivo IV Ciclo Varenna, Agosto 1970 

Coordinatore G. Prodi. Edizioni Cremonese, Roma 1971. 

FRIEDMAN, A. 'On quasi-linear parabolic equations of the second 

order. II' J. Math, and Mechanics 9 (i960) pp 539-556. 

'Partial differential equations of parabolic type' 

Prentice Hall, Englewood Cliffs N.J. 1964. 

'On the definition of differential games and the 

existence of value and saddle points'. J. Diff. Eqns. 

7(1970), pp 69-91. 

'Existence of Value and saddle points for differential 

games of pursuit and evasion'. J. Diff. Eqns. 7(1970) 

pp 92-110. 

'Existence of value and saddle points for differential 

games of survival'. J. Diff. Eqns 7(l970) pp 111-125. 

Licensed to Univ of Missouri-Columbia.  Prepared on Sat Jan 11 02:34:54 EST 2014 for download from IP 161.130.253.98.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



67 

13. ISAACS, R. 'Differential Games'. John Wiley and Sons, New York, 

London, 1965. 

14. McSHANE, E.J. 'Relaxed controls and variational problems'. 

J. S.I.A.M. Ser. A., Control, 5(l967), pp 438-485. 

15. QLEINIK, O.A. and KRUZHKOV, S.N. 'Quasilinear parabolic equations 

of second order with many independent variables', 

Uspekhi Mat. Nauk, 16(l96l) pp 115-155. 

16. ROXIN, E. 'The Axiomatic approach in differential games'. 

J. Optimization Theory and Applications. 3(l969) pp 153-163. 

17. VARAIYA, P. and LIN, J. 'Existence of saddle points in differential 

games'. J. S.I.A.M. Series A, Control, 7(l969) pp 141-157. 

18. von NEUMANN. J. and MORGENSTERN, 0. 'Theory of Games and Economic 

Behaviour'. Princeton University Press, Princeton, 2nd ed. 

1947. 

19. WALD, A. 'Statistical Decision Functions'. John Wiley and Sons, 

New York, London. 1950. 

20. WARGA, J. 'Functions of relaxed controls'. J. S.I.A.M. Series A, 

Control, 5(1967), pp 628-641. 

21. YOUNG, L.C. 'Generalized curves and the existence of an attained 

absolute minimum in the calculus of variations', C.R. Soc. 

Sci. Lettres Varsovie, CLlll, 30(l937) pp 212-234. 

Mathematics Institute 

University of Warwick. 

Licensed to Univ of Missouri-Columbia.  Prepared on Sat Jan 11 02:34:54 EST 2014 for download from IP 161.130.253.98.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



Licensed to Univ of Missouri-Columbia.  Prepared on Sat Jan 11 02:34:54 EST 2014 for download from IP 161.130.253.98.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms


	Contents
	Introduction
	1. Definition of the game G
	2. The concept of value
	3. The value in the sense of Friedman
	4. Another formula for the Friedman upper and lower values
	5. The value in the sense of Fleming
	6. An estimate for W[sup(+)] - W[sup(-)]
	7. Relaxed controls
	8. The existence of value under conditions (Fl) - (F5)
	9. The existence of value without conditions (Fl) - (F5)
	10. Games with general payoff
	11. Optimal strategies and saddle points
	12. Relationship with the work of Friedman
	Bibliography

