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Abstract We study sectorial operators with a special type of functional calculus,
which we term an absolute functional calculus. A typical example of such an operator
is an invertible operator A (defined on a Banach space X ) considered on the real inter-
polation space (Dom(A), X)θ,p where 0 < θ < 1 and 1 < p < ∞. In general the
absolute functional calculus can be characterized in terms of real interpolation spaces.
We show that operators of this type have a strong form of the H∞-calculus and behave
very well with respect to the joint functional calculus. We give applications of these
results to recent work of Arendt, Batty and Bu on the existence of Hölder-continuous
solutions for the abstract Cauchy problem.

1 Introduction

Let A be a sectorial operator on a complex Banach space X with domain Dom(A). It
is a well-established principle that the properties of A improve when A is considered
as an operator on the real interpolation spaces (Dom(A), X)θ,p where 0 < θ < 1
and 1 ≤ p ≤ ∞. Examples of such properties are H∞-calculus and joint functional
calculus, which are defined below. This idea goes back to Berens and Butzer [4] and
Da Prato and Grisvard [13] (see also Lunardi [21]). A typical recent result is that
of Dore [14] who shows that if A is invertible then A has an H∞-calculus on the
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260 N. J. Kalton, T. Kucherenko

interpolation space (Dom(A), X)θ,p where 1 ≤ p < ∞ and 0 < θ < 1. See also [15]
for the non-invertible case, where Dom(A) is replaced by Dom(A) ∩ Ran(A).

Let us recall that a sectorial operator A of type ω = ω(A) on a complex Banach
space X is a closed one–one operator with dense domain and range satisfying an
estimate

‖λR(λ, A)‖ ≤ Cφ, | arg λ| ≥ φ

whenever φ > ω. If f ∈ H∞(�φ) is bounded and analytic on the sector �φ = {z ∈
C\{0} : | arg z| < φ} for some φ > ω we can define f (A) as a densely defined closed
operator. We say that A has an H∞(�φ)-calculus if for every f ∈ H∞(�φ), f (A)
extends to a bounded operator and we have an estimate

‖ f (A)‖ ≤ C‖ f ‖H∞(�φ).

We then let ωH (A) be the infimum of all such φ (in general ωH (A) ≥ ω(A)).
It is an important observation that the theory of sectorial operators on a Hilbert space

is, in general, simpler and more easily applicable than in general Banach spaces. This
is mainly due to a characterization of Hilbert spaces as certain interpolation spaces
related to an operator with H∞-calculus. Therefore, let us focus on sectorial operators
with H∞-calculus on a Banach space. Such operators were first studied by McIn-
tosh in the special setting of Hilbert spaces [22]. Let D(A) denote the completion of
Dom(A) under the norm x → ‖Ax‖ and let R(A) = D(A−1). In [3], it was shown
that a sectorial operator A on a Hilbert space has an H∞-calculus if and only if X can
be identified with the complex interpolation space [D(A),R(A)]1/2, which coincides
with the real interpolation space (D(A),R(A))1/2,2, These results are proved using
certain quadratic estimates, for which there is no analogue in a general Banach space.

As another example, consider the joint functional calculus developed in [18]. Sup-
pose (A, B) are two commuting sectorial operators and that A has an H∞-calculus. If
φA > ωH (A) and φB > ω(B) then for f ∈ H∞(�φA × �φB ) the operator f (A, B)
is bounded provided the collection of operators { f (w, B); w ∈ �φ} is R-bounded
(see [18] for the definition). R-boundedness may not be easy to verify in a concrete
situation. Hence, it is important to know when a simpler condition suffices. If X is a
Hilbert space then requiring R-boundedness reduces to the much easier condition that

sup{‖ f (w, B)‖; w ∈ �φ} < ∞. (1.1)

In [18] (Theorem 7.1), it is however shown that for certain other special Banach spaces
the R-boundedness assumption can also be replaced by simple boundedness; this holds
for example if X = L1.

The aim of this paper is to provide a framework to understand the special properties
of a sectorial operator A which allow us to prove a joint functional calculus result with
only a boundedness of the type (1.1); it turns out that this has a strong connection
with real interpolation methods. We introduce the concept of an absolute functional
calculus, which is significantly stronger than an H∞-calculus.
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Operators with an absolute functional calculus 261

Suppose A is a sectorial operator of typeω and that φ > ω.We recall that H∞
0 (�φ)

consists of all those functions f ∈ H∞(�φ) which obey an estimate of the type
| f (z)| ≤ C |z|ε(1 + |z|)−2ε for some ε > 0. Then A is said to have an absolute func-
tional calculus if there exists φ > ω and g, h ∈ H∞

0 (�φ) so that for some constant C
we have the implication

‖h(t A)g(t A)x‖ ≤ ‖g(t A)y‖, 0 < t < ∞ �⇒ ‖x‖ ≤ C‖y‖ (1.2)

for x, y ∈ X. If A has an absolute functional calculus then A automatically has an
H∞-calculus and a boundedness condition of type (1.1) becomes sufficient in the joint
functional calculus (Theorems 4.2 and 6.4).

In practical situations, it is more natural to make an explicit choice for g, h in
(1.2). Let us write ϕa,b(z) = za(1 + z)−a−b for a, b > 0. We will say that A has an
(a, b)-absolute functional calculus if

‖ϕa+δ,b+δ(t A)x‖ ≤ ‖ϕa,b(t A)y‖, 0 < t < ∞ �⇒ ‖x‖ ≤ C‖y‖ (1.3)

This is a somewhat more restrictive concept (see Proposition 4.3 and the example fol-
lowing). However, this concept fits very naturally with interpolation theory. To make
this more precise, let (W0,W1) be a Banach couple; we say that an interpolation space
W is a strict real interpolation space if it is K-monotone of quasi power-type and
regular (cf. [8] and Sect. 2, Proposition 2.3 and Theorem 2.4).

Let A be a sectorial operator on the Banach space X . We show (Corollary 5.6)
that if Y is any strict real interpolation space for a couple (D(Aσ ),D(Aτ )) where
σ < τ then A has a (c, c)-absolute functional calculus on Y for some c > 0. Then
in Theorem 5.8, we show that if X is a strict real interpolation space for the couple
(D(A−b),D(Aa)) then A has a (c, c)-absolute functional calculus for some c < a +b
while conversely if A has an (a, b)-absolute functional calculus then X is a strict real
interpolation space for the couple (D(A−b′

),D(Aa′
)) for any a′ > a and b′ > b. Thus

having an (a, b)-absolute functional calculus (for some a, b > 0) is roughly speak-
ing a characteristic property of spaces obtained by strict real interpolation methods.
Typically this applies when considering standard differential operators on a space of
Besov type which are reached by real interpolation between Sobolev spaces.

In Sects. 7 and 8, we illustrate an application of these ideas by discussing the ques-
tion whether the equation Ax + Bx = y is well-posed when A is a sectorial operator
with an absolute functional calculus and B is a closed operator which commutes with
A. Our main goal for these sections is to extend and improve some results of Arendt
et al. [2]. Let T denote the unit circle (= [0, 2π)) and suppose 0 < α < 1. Let
Cα(T; X) denote the space of X -valued α-Hölder continuous functions on T. Arendt
et al. proved that if B is a closed operator on X with Sp(B) ∩ iZ = ∅ satisfying the
condition

‖(ik + B)−1‖ ≤ Ck−2/3
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then the equation

u′(t)+ Bu(t) = x(t), u(0) = u(2π)

has a unique mild solution u ∈ Cα(T; X) for every x ∈ Cα(T; X). A special case of
our results shows that the exponent 2/3 can be improved to 1/2; this was shown in
[2] only under the additional assumption that X has nontrivial type. The key reason
for these results is the observation that the differentiation operator has an absolute
functional calculus when considered on the space of functions of mean zero in the
little Hölder space Cα,00 (T; X). Our argument is based on the fact that Cα,00 (T; X) can
be identified with the interpolation space (C0(T, X),D(A))α,∞.

The results of this paper were announced in [17].

2 Banach function spaces and interpolation spaces

In this section, we review important facts about Banach function spaces and interpo-
lation.

Consider the measure space (0,∞) with measure dt/t. Let L0(0,∞) denote the
space of all measurable functions on (0,∞)where functions coinciding almost every-
where are identified; let C00(0,∞) denote the subspace of essentially bounded func-
tions of compact support in (0,∞). L0 is a Hausdorff topological vector space under
the topology of convergence in measure on sets of finite measure. We denote by
Ds : L0 → L0 the linear map Ds f (t) = f (t/s). Let E be a linear subspace of L0
equipped with a norm ‖ · ‖E so that E is a Banach space. We shall say that E is a
Banach function space if the following conditions hold:

(i) C00(0,∞) ⊂ E .
(ii) If f ∈ E then f is locally integrable.

(iii) If f, g are measurable functions with | f | ≤ |g| a.e. and g ∈ E then f ∈ E and
‖ f ‖E ≤ ‖g‖E .

(iv) The inclusion E ↪→ L0 is continuous.

We say E is admissible if, in addition, we have

(v) For each s ∈ (0,∞) the operator Ds : E → E is bounded.
(vi) C00(0,∞) is dense in E .

Sometimes for convenience we will use the notation

‖ f ‖E = ‖ f (t)‖E,t

to indicate the variable.
For an admissible space E the Boyd indices are defined as

βE = lim sup
s→∞

log ‖Ds‖
log s

αE = lim inf
s→0

log ‖Ds‖
log s
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Operators with an absolute functional calculus 263

Lemma 2.1 Let E be an admissible Banach function space. Then

1. −∞ < αE ≤ βE < ∞
2. If a < αE and b > βE then there exists a constant C = C(E, a, b) such that

‖Ds‖ ≤ C max(sa, sb)

3. If a < αE and b > βE then min(t−a, t−b) ∈ E .
4. If f ∈ E then limr→∞ ‖ f χ(0,r−1) + f χ(r,∞)‖E = 0.
5. If fn ∈ E are such that supn | fn| ∈ E and fn(t) converges to f (t) uniformly on

compact subsets of (0,∞) then limn→∞ ‖ f − fn‖E = 0.

Proof (1) and (2) are standard and we omit them. For (3) observe that χ[1,2] ∈ E and
hence so does

∑
n∈Z

min(2−na, 2−nb)χ[2n ,2n+1].
(4): given ε > 0 we can pick g ∈ C00 with ‖ f − g‖E < ε. Now

lim sup
r→∞

‖ f χ(0,r−1) + f χ(r,∞)‖E ≤ ε + lim sup
r→∞

‖gχ(0,r−1) + gχ(r,∞)‖E = ε.

For (5) note that | f | ≤ g = supn | fn| ∈ E so that f ∈ E . Then for any 1 < r < ∞
we have using (iii) that

lim
n→∞ ‖( f − fn)χ[r−1,r ]‖E = 0.

Choose 1 < rn ↑ ∞ so that

lim
n→∞ ‖( f − fn)χ[r−1

n ,rn ]‖E = 0.

Then

‖( f − fn)− ( f − fn)χ[r−1
n ,rn ]‖E ≤ 2‖g − gχ[r−1

n ,rn ]‖E

and so using (4) we have limn→∞ ‖ f − fn‖E = 0. ��
We now give a few examples to illustrate our setup.

(i) If E = L p(dt) we have ‖Ds f ‖ = (
∫ ∞

0 | f (t/s)|pdt)1/p = s1/p‖ f ‖ and so
‖Ds‖ = s1/p. Hence, αL p = βL p = 1/p.

(ii) If E = L p(dt/t) then ‖Ds f ‖ = (
∫ ∞

0 | f (t/s)|pdt/t)1/p = ‖ f ‖ and ‖Ds f ‖ =
1. So in this case we have αE = βE = 0.

(iii) If E = L p(t−θpdt/t) for θ ∈ (0, 1) then ‖Ds f ‖ = (
∫ ∞

0 | f (t/s)|pt−θp dt
t )

1/p

= s−θ‖ f ‖ and ‖Ds f ‖ = s−θ . So in this case we have αE = βE = −θ .

Let us denote by

La∞ = { f ∈ L0(R+, dt/t) : ess sup t−a | f (t)| < ∞}, ‖ f ‖La∞ = ess sup t−a | f (t)|.
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In the case a = 0, we have L∞ = L0∞. These are Banach function spaces satisfying
‖Ds‖ = s−a but are not admissible because C00 fails to be dense. However, we can
define L̂a∞ to be the closure of C00 in La∞ and this is admissible.

We recall that a pair of Banach spaces (X0, X1) is called a Banach couple if X0, X1
are both continuously embedded in a Hausdorff topological vector space V .A Banach
space X also continuously embedded in V is an intermediate space if X0 ∩ X1 ↪→
X ↪→ X0 + X1. An intermediate space X is called regular if X0 ∩ X1 is dense in X.
An intermediate space X is an interpolation space for the couple if for every linear
map T : X0 + X1 −→ X0 + X1 which restricts to a bounded operator on X0 and X1
is also a bounded operator on X . In this case, we get an estimate

‖T ‖X ≤ C max{‖T ‖X0 , ‖T ‖X1}.

The K-functional for the couple (X0, X1) is defined by

K (t, x) = K (t, x; X0, X1) = inf{‖x0‖X0 + t‖x1‖X1 : x = x0 + x1}.

It is easy to check that for fixed x the function t → K (t, x) is increasing and concave
for and each x → K (t, x) gives an equivalent norm on the sum space. An intermediate
space X is called K-monotone or a real interpolation space if for some constant C we
have that if y ∈ X and x ∈ X0 + X1,

K (t, x) ≤ K (t, y), 0 < t < ∞, �⇒ x ∈ X and ‖x‖X ≤ C‖y‖X . (2.4)

It is immediate that every K-monotone intermediate space is an interpolation space.
If E is a Banach function space containing min(1, t) then we can define X =

(X0, X1)E to be the space of all x ∈ X0 + X1 such that K (t, x) ∈ E with the norm

‖x‖X = ‖K (t, x)‖E,t .

This is clearly a K-monotone interpolation space. It is a fundamental result of Brudnyi
and Krugljak [8] that every K-monotone interpolation space is (up to equivalence of
norm) of this form and that E can be chosen to be an interpolation space for the Banach
couple (L∞, L1∞). This in turn means that by interpolation −1 ≤ αE ≤ βE ≤ 0. The
key ingredient of this result is the following principle of K-divisibility fits proved by
Brudnyi and Krugljak ([7,8]) and later refined in [10–12].

Theorem 2.2 There is an absolute constant γ < 6 with the following property. Sup-
pose (X0, X1) is a Banach couple. Suppose x ∈ X0 + X1 and K (t, x) ≤ ∑∞

n=1 ψn(t)
for all t > 0, where each ψn(t) is a positive concave function on (0,∞) and∑∞

n=1 ψn(1) < ∞. Then there exists a sequence of elements {xn} ⊂ X0 + X1 such
that x = ∑∞

n=1 xn in X0 + X1 and

K (t, xn) ≤ γψn(t)

for t > 0 and n ∈ N.
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Operators with an absolute functional calculus 265

For the choice E = L p(t−θpdt/t) where 0 < θ < 1 and 1 ≤ p < ∞ as in (iii)
above we get the (θ, p)-methods. If we take E = Lθ∞ we get the (θ,∞)-method; if
we take E = L̂θ∞ we get the inner (θ,∞)-method. These methods were originally
introduced by Lions and Peetre [20].

A K -monotone interpolation space X is said to be of quasi-power type (respectively,
admissible quasi-power type or a strict real interpolation space) if we can choose E
to satisfy the condition −1 < αE ≤ βE < 0 (respectively, to be admissible and satisfy
−1 < αE ≤ βE < 0).

Proposition 2.3 If (X0, X1) is a Banach couple then any strict real interpolation
space is regular.

Proof Let X = (X0, X1)E is a strict real interpolation space where E is admissible
and −1 < αE < βE < 0. Then for x ∈ X we have that

∑∞
n=1 K (t/2n, x) ∈ E

and
∑∞

n=1 2−n K (2nt, x) ∈ E . Note that by the monotonicity and concavity of the
K-functional these series must converge uniformly on compact subsets of (0,∞). For
n ∈ Z, let us write x = un + vn where un ∈ X0, vn ∈ X1 and ‖un‖X0 + 2n‖vn‖X1 ≤
2K (2n, x). Then yn = un − un−1 = vn−1 − vn ∈ X0 ∩ X1 and

‖yn‖X0 ≤ 2K (2n, x), ‖yn‖X1 ≤ 4.2−n K (2n−1, x)

+ 2.2−n K (2n, x) ≤ 6.2−n K (2n, x).

Thus

K (t, yn) ≤ 6 min(1, 2−nt)K (2n, x), n ∈ Z.

It follows that

∑

n∈Z

K (t, yn) ≤ 6
∑

n∈Z

min(1, 2−nt)K (2n, x) ≤ 12
∑

n∈Z

min(1, 2−n)K (2nt, x).

In particular
∑

n∈Z
K (t, yn) ∈ E .

The sequence
∑

|n|≥N K (t, yn) converges uniformly to 0 on compact subsets of
(0,∞) and hence by Lemma 2.1 we have

lim
N→∞ ‖

∑

|n|≥N

K (t, yn)‖E = 0.

Thus the sequence (
∑N

n=−N yn)
∞
N=1 converges in X . Note also that

lim
n→−∞ ‖un‖X0 ≤ 2 lim

n→−∞ K (2n, x) = 0
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and

lim
n→∞ ‖vn‖X1 ≤ 2 lim

n→∞ 2−n K (2n, x) = 0.

Hence
∑

n∈Z
yn = x in X0 + X1 so that x ∈ X. ��

Theorem 2.4 Let (X0, X1) be a Banach couple and let X be an intermediate space.
Then the following conditions on X are equivalent:
(i) X is a quasi-power type interpolation space for (X0, X1).

(ii) There exists 0 < δ < 1/2 and a constant C so that if y ∈ X, x ∈ X0 + X1 and
s > 0,

K (t, x) ≤ K (st, y), 0 < t < ∞ �⇒ x ∈ X

and ‖x‖X ≤ C max(s1−δ, sδ)‖y‖X . (2.5)

If, further X is regular then (ii) is equivalent to
(iii) X is a strict real interpolation space for (X0, X1).

Proof (i) �⇒ (ii). Suppose X = (X0, X1)E where E is an admissible function
space with −1 < αE ≤ βE < 0. Choose −1 < a < αE and βE < b < 0. Suppose
y ∈ X and x ∈ X0 + X1 are such that K (t, x) ≤ K (st, y) for some s > 0 and all
0 < t < ∞. Since K (t, x) ≤ K (st, y) for all t > 0 and K (st, y) ∈ E we conclude
that K (t, x) ∈ E and hence

‖x‖X = ‖K (t, x)‖E ≤ ‖K (st, y)‖E ≤ ‖D1/s‖E‖K (t, y)‖E

≤ C max(s−a, s−b)‖y‖X .

Choosing δ = min(−b, 1 + a, 1/2) we obtain

‖x‖X ≤ C max(s1−δ, sδ)‖y‖X .

(ii) �⇒ (i). We define E to be the space of f ∈ L∞ + L1∞ such that there exist
x j ∈ X, s j > 0 with

∑∞
j=1 max(s1−δ

j , sδj )‖x j‖ < ∞ and

| f (t)| ≤
∞∑

j=1

K (s j t, x j ) 0 < t < ∞. (2.6)

We define

‖ f ‖E = inf
∞∑

j=1

max(s1−δ
j , sδj )‖x j‖ (2.7)

where the infimum is taken over all representations of the form of (2.6).
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Operators with an absolute functional calculus 267

Now if x ∈ X it is clear that K (t, x) ∈ E and ‖K (t, x)‖E ≤ ‖x‖X . Conversely if
x ∈ X0 + X1 and K (t, x) ∈ E then we can find y j ∈ X and s j > 0 with

∞∑

j=1

max(s1−δ
j , sδj )‖y j‖ < 2‖K (t, x)‖E

and

K (t, x) ≤
∞∑

j=1

K (s j t, y j ) 0 < t < ∞.

By the Principle of K-divisibility (Theorem 2.2), for some absolute constant γ we can
write x = ∑∞

j=1 x j in X0 + X1 where

K (t, x j ) ≤ γ K (s j t, y j ) 0 < t < ∞.

Thus x j ∈ X and ‖x j‖X ≤ Cγ max(s1−δ
j , sδj )‖y j‖X and so x ∈ X with ‖x‖X ≤

2Cγ ‖K (t, x)‖E,t .

Now suppose f ∈ E and s > 0. Then we can find s j > 0 and x j ∈ X so that

| f (t)| ≤
∞∑

j=1

K (s j t, x j ) 0 < t < ∞

and

∞∑

j=1

max(s1−δ, sδ)‖x j‖X ≤ 2‖ f ‖E .

Now

| f (t/s)| ≤
∞∑

j=1

K (s j s
−1t, x j ) 0 < t < ∞

and so

‖Ds f ‖E = ‖ f (t/s)‖E ≤
∞∑

j=1

max

((
s j s

−1
)1−δ

,
(

s j s
−1

)δ
)

‖x j‖

≤ max
(

sδ−1, s−δ)
∞∑

j=1

max
(

s1−δ
j , sδj

)
‖x j‖.
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268 N. J. Kalton, T. Kucherenko

This implies ‖Ds‖E ≤ max(sδ−1, s−δ), and using δ < 1/2 we get

δ − 1 ≤ αE ≤ βE ≤ −δ.

(ii) �⇒ (iii) when X is regular. We show that E constructed in the previous proof
is admissible. This requires only that C00 is dense in E and for this we only need show
that if x ∈ X then K (t, x) is in the closure of C00. First for ε > 0 pick y ∈ X0 ∩ X1 so
that ‖x − y‖X < ε. Then ‖K (t, x)− K (t, y)‖E < ε.However, K (t, y) ≤ C min(1, t)
for some constant C. Now for τ > 1 we have

‖K (t, y)χ[0,τ−1)‖E ≤ C‖ min(1, t)χ(0,τ−1)‖E ≤ Cτ−1‖χ(0,1)‖E
and

‖K (t, y)χ(τ,∞)‖E ≤ C‖Dτ‖E‖χ(1,∞)‖E ≤ C max(τ δ−1, τ−δ)‖χ(1,∞)‖E .

It follows that limτ→∞ ‖K (t, y) − K (t, y)χ[τ−1,τ ]‖E = 0 and hence that
lim supτ→∞ ‖K (t, x)− K (t, x)χ[τ−1,τ ]‖E < ε. ��

3 Sectorial operators

We employ standard notation from Banach space theory. Throughout, X denotes a
complex Banach space.

A sector of angle 0 < φ < π in the complex plane is the open set defined by

�φ = {λ ∈ C\{0} : | arg λ| < φ}.

A closed operator A on X is called sectorial if:

(i) A is one-to-one.
(ii) The domain Dom(A) and the range Ran(A) are dense in X .

(iii) There exists 0 < φ < π so that the spectrum Sp(A) is contained in�φ and one
has the resolvent estimate:

‖λR(λ, A)‖ ≤ C, λ ∈ C\�φ. (3.8)

Notice that this definition does not require A to be invertible. It follows from this
definition that A−1 is also a sectorial operator. We define the angle of sectoriality of
A by letting ω(A) be the infimum of all φ so that (3.8) holds.

We denote by H∞(�φ) the space of all bounded analytic functions on the sector
�φ where 0 < φ < π . We define H∞

0 (�φ) to be the space of all f ∈ H∞(�φ)which

obey the estimate of the form | f (z)| ≤ C |z|δ
(1+|z|)2δ with δ > 0.

If a, b > 0 we defined

ϕa,b(z) = za

(1 + z)a+b
.

This function is in H∞
0 (�φ) for every choice of 0 < φ < π.
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Operators with an absolute functional calculus 269

For any φ > ω(A) suppose f ∈ H∞
0 (�φ). Then, we can define f (A) as a bounded

operator by a contour integral i.e.,

f (A) = 1

2π i

∫

�ν

f (ζ )R(ζ, A) dζ, (3.9)

where φ > ν > ω(A) and �ν = {|t |e−i(sgnt)ν : −∞ < t < ∞}. Notice that we get
an estimate:

‖ f (t A)‖ ≤ C

∞∫

−∞
| f (sei(sgns)ν)|ds

|s| (3.10)

where C = C(ν, A).The map f → f (A) is an algebra homomorphism from H∞
0 (�φ)

into L(X).
The following Lemma will be used many times in the sequel:

Lemma 3.1 Suppose a, b>0 and f, g ∈ H∞(�φ) where φ > ω(A). Suppose that
f, g satisfy | f (z)| ≤ |z|a(1 + |z|)−a−b and |g(z)| ≤ |z|a′

(1 + |z|)−a′−b′
where

a, a′, b, b′ > 0. Then there exists a constant C = C(A, a, b, a′, b′) so that

‖ f (ut A)g(t A)‖ ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Cumin(a,b′) t > 0, 0 < u ≤ 1, a �= b′

Cua(1 + | log u|) t > 0, 0 < u ≤ 1, a = b′

Cu− min(a′,b) t > 0, 1 ≤ u < ∞, a′ �= b

Cu−b(1 + | log u|) t > 0, 1 ≤ u < ∞, a′ = b.

Proof By (3.10) for some φ > ν > ω(A) we have

‖ f (ut A)g(t A)‖ ≤ C

∞∫

−∞
| f (use−iνsgn(s))g(se−iνsgn(s))| ds

|s|

≤ Cua

∞∫

0

sa+a′
(1 + us)−(a+b)(1 + s)−(a′+b′) ds

s

Suppose u ≥ 1. Then since (1 + us)−(a+b)(1 + s)−(a′+b′) < 1 we have,

u−1∫

0

sa+a′−1(1 + us)−(a+b)(1 + s)−(a′+b′)ds ≤
u−1∫

0

sa+a′−1ds = 1

a + a′ u−a−a′
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270 N. J. Kalton, T. Kucherenko

Since (1 + us)−(a+b) ≤ (us)−(a+b) we get

1∫

u−1

sa+a′−1(1 + us)−(a+b)(1 + s)−(a′+b′)ds ≤ u−(a+b)

1∫

u−1

sa′−b−1ds

=
{

1
a′−b (u

−a−b − u−a−a′
) if a′ �= b

u−a−b log u if a′ = b

For the last integral we also use that (1 + s)−(a′+b′) < s−(a′+b′)

∞∫

1

sa+a′−1(1 + us)−(a+b)(1 + s)−(a′+b′)ds ≤ u−(a+b)

∞∫

1

s−1−b−b′
ds = 1

b′ + b
u−a−b

Since u ≥ 1, we have u−a′ ≤ u− min(a′,b) and u−b ≤ u− min(a′,b). Therefore for a
suitable constant C > 0, we obtain the last two estimates. If u ≤ 1 we observe that
f (ut A)g(t A) = f (s A)g(u−1s A) where s = ut. Combining these two estimates we
obtain the Lemma. ��

If f ∈ H∞(�φ) then (3.9) does not necessarily converge as a Bochner inte-
gral. However for every g ∈ H∞

0 (�φ) we can define the operator ( f g)(A). Now if
x ∈ Dom(A)∩ Ran(A) then x = ϕ1,1(A)y for some y ∈ X . Therefore, we can define
f (A)x = ( f ϕ1,1)(A)y.

If we assign

vn(z) = n

n + z
− 1

1 + nz

then vn(A) = (n − 1
n )AR(−n, A)R(− 1

n , A) maps X into Dom(A) ∩ Ran(A) and it
may be shown that ( f vn)(A)x = f (A)vn(A)x . If supn ‖(vn f )(A)‖ < ∞ then we
can define

f (A)x = lim
n→∞(vn f )(A)x x ∈ X

as a bounded operator. This is equivalent to the fact that f (A) satisfies an estimate

‖ f (A)x‖ ≤ C‖x‖ x ∈ Dom(A) ∩ Ran(A).

As an alternative way to view this procedure, one can densely define f (A) by

f (A)x = 1

2π i

∫

�ν

f (ζ )ζ− 1
2 A

1
2 R(ζ, A)x dζ, x ∈ Dom(A) ∩ Ran(A) (3.11)
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where A
1
2 R(ζ, A) is a well-defined operator since z

1
2 (ζ − z)−1 belongs to H∞

0 (�φ′)
where ω < φ′ < ν. Then f (A) extends to a bounded operator if one has a norm
estimate

‖ f (A)x‖ ≤ C‖x‖ x ∈ Dom(A) ∩ Ran(A).

If f (A) is bounded for all f ∈ H∞(�φ), we say that A has H∞(�φ)-calculus.
We then have an estimate

‖ f (A)‖ ≤ C‖ f ‖H∞(�φ) f ∈ H∞(�φ).

We can define the corresponding angle of H∞-calculus by letting ωH (A) be the infi-
mum of all φ so that A has an H∞(�φ)-calculus. See [9,18] for details.

We now describe an abstract framework for defining operators f (A) for more gen-
eral analytic functions. Let us define the bounded operator T = ϕ1,1(A). Then it is
possible to define a linear space X containing X so that T extends to a linear bijec-
tion on X . Indeed let Y be the space of sequences (xn)

∞
n=0 where xn ∈ X so that

T xn = xn+1 eventually. Let X be the space obtained by factoring out the subspace
of all (xn) so that xn = 0 eventually. Then X can be identified with the subspace
generated by the sequences (T n x)∞n=0 where x ∈ X and T extends to the operator
induced by the shift (xn)

∞
n=0 → (xn+1)

∞
n=0.Notice that X = ∪∞

m=0T −m X. In concrete
situations where X is already embedded in some topological vector space V (e.g., a
space of distributions) on which T is an isomorphism we can simply identify X with
∪∞

m=0T −m X ⊂ V .
Now suppose f is an analytic function on �φ where φ > ω(A) which satisfies

| f (z)| ≤ C max(|z|m, |z|−m) z ∈ �φ
where m ∈ N. Then f (A)T n is a well-defined bounded operator if n ≥ m + 1 and we
can induce an operator f (A) on X by putting

f (A)(xn)
∞
n=0 = (yn)

∞
n=0

where yn = f (A)xn if xn ∈ T m+1(X) and 0 otherwise. Then if Dom f (A) = {x ∈
X : f (A)x ∈ X} f (A) defines a closed operator on X which becomes a bounded
operator if Dom f (A) = X. It is easy to show that the map f → f (A) is an algebraic
homomorphism into the algebra L(X ) of all linear maps on X .

If −∞ < σ < ∞, we thus may define the fractional powers Aσ . Aσ is one–one
with dense domain and range on X ; it is sectorial if and only if |σ |ω(A) < π and
then ω(Aσ ) = |σ |ω(A).We define D(Aσ ) as the space A−σ (X) ⊂ X under the norm
x → ‖Aσ x‖. Then Dom(Aσ ) is dense in D(Aσ ).

We now generalize these ideas to operator-valued analytic functions, following
ideas in [18]. We denote by A the algebra of all bounded operators which commute
with R(λ, A) for all λ in the resolvent set. For ω(A) < φ < π,we define H∞(�φ,A)
as the space of all bounded analytic functions F : �φ −→ A, so that for every x ∈ X
the map z → F(z)x is analytic (i.e., F is analytic for the strong operator topology).

123



272 N. J. Kalton, T. Kucherenko

We consider the scalar space H∞(�φ) embedded as a subspace of H∞(�φ,A) via the
identification f → f I . We denote by H∞

0 (�φ,A) the space of all F ∈ H∞(�φ,A)
which obey an estimate of the form ‖F(z)‖ ≤ Cϕδ,δ(|z|) for some δ > 0.

We can then define F(A) for F ∈ H∞
0 (�φ) by the same formula:

f (A) = 1

2π i

∫

�ν

F(ζ )R(ζ, A) dζ, (3.12)

where �ν = {|t |e−i(sgnt)ν : −∞ < t < ∞}. If F ∈ H∞(�φ) we similarly define
F(A) as a closed operator with dense range which is bounded if we have an estimate

‖F(A)x‖ ≤ C‖x‖ x ∈ Dom(A) ∩ Ran(A).

4 Operators with an absolute functional calculus

Let A be a sectorial operator on X . We say that A has an absolute functional calculus
if there are functions g, h ∈ H∞

0 (�φ) where φ > ω(A) so that for some constant C
we have the following implication

‖h(t A)g(t A)x‖ ≤ ‖g(t A)y‖ 0 < t < ∞ ⇒ ‖x‖ ≤ C‖y‖. (4.13)

It we pick δ > 0 so that h(z)/ϕδ,δ(z) ∈ H∞
0 (�φ) it is clear that we may replace

h by ϕδ,δ in this definition. We say that A has an (a, b)-absolute functional calcu-
lus if (4.13) holds for the the choice g(z) = ϕa,b(z). Thus A has an (a, b)-absolute
functional calculus if for some δ > 0,C > 0 we have

‖ϕa+δ,b+δ(t A)x‖ ≤ ‖ϕa,b(t A)y‖ 0 < t < ∞ ⇒ ‖x‖ ≤ C‖y‖. (4.14)

Let us first show the following elementary fact:

Proposition 4.1 If A is an invertible sectorial operator satisfying (4.14) then for any
t0 > 0 there exists C1 = C1(t0) so that

‖ϕa+δ,b+δ(t A)x‖ ≤ ‖ϕa,b(t A)y‖ 0 < t ≤ t0 ⇒ ‖x‖ ≤ C1‖y‖. (4.15)

Proof There is a constant C2 so that for t ≥ t0 we have ‖St‖, ‖S−1
t ‖, ‖Tt‖, ‖T −1

t ‖ ≤
C2 where

St = t (a+b)A(a+b)(1 + t A)−(a+b), Tt = ta+b+2δAa+b+2δ(1 + t A)−(a+b+2δ).

Thus we have

‖t−b−δ
0 Tt0 A−b−δx‖ ≤ ‖t−b

0 St0 A−b y‖
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Operators with an absolute functional calculus 273

which implies that

‖A−b−δx‖ ≤ C2
2 tδ0‖A−b y‖.

Now if t ≥ t0 we have

‖ϕa+δ,b+δ(t A)x‖ = ‖Tt (t
−(b+δ)A−(b+δ)x‖

≤ C2t−b−δ‖A−b−δx‖
≤ C3

2 tδ0 t−b−δ‖A−b y‖
= C3

2(t0/t)δ‖S−1
t ϕa,b(t A)y‖

≤ C4
2‖ϕa,b(t A)y‖,

and the Lemma follows with C1 = CC4
2 . ��

First, we establish that if A has an absolute calculus then it has an H∞-calculus.

Theorem 4.2 Suppose that A is a sectorial operator on X with an absolute functional
calculus. Then A has an H∞-calculus and ωH (A) = ω(A).

Proof Fix any φ > ω(A) so that g ∈ H∞
0 (�φ) (where g, h are the functions in

the definition of the absolute calculus). Suppose f ∈ H∞(�φ). Notice that for an
appropriate contour �ν with ω < ν < φ and x ∈ Dom(A) ∩ Ran(A),

‖h(t A) f (A)x‖ ≤ (2π)−1
∫

�ν

‖h(tζ ) f (ζ )R(ζ, A)x‖ d|ζ |

≤ C‖ f ‖H∞(�φ)

∫

�

|h(tζ )(ζ )|d|ζ |
|ζ | ‖x‖

≤ C‖ f ‖H∞(�φ)

∫

�

|h(tζ )|d|ζ |
|ζ | ‖x‖

≤ C‖ f ‖∞‖x‖
Now it follows that

‖h(t A)g(t A) f (A)x‖ ≤ C‖ f ‖H∞(�φ)‖g(t A)x‖ x ∈ Dom(A) ∩ Ran(A).

Thus, we have an estimate

‖ f (A)x‖ ≤ C‖ f ‖H∞(�φ)‖x‖ x ∈ Dom(A) ∩ Ran(A)

and A has an H∞(�φ)-calculus. ��
We now turn to examples. First let X be a space with an unconditional basis (en)n∈Z.

Define the sectorial operator A by

Ax =
∑

n∈Z

2ne∗
n(x)en
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274 N. J. Kalton, T. Kucherenko

with the natural domain {x : ∑
n∈Z

2ne∗
n(x)en converges}. Then A has an H∞-calcu-

lus and ωH (A) = {0}.
Proposition 4.3 A has an absolute functional calculus.

Proof Since {2n} is an interpolating sequence in any sector �φ, we can find g ∈
H∞

0 (�φ) such that g(1) = 1 and g(2n) = 0 for n ∈ Z\{0}. Suppose x, y ∈ X and

‖g(t A)2x‖ ≤ ‖g(t A)y‖ 0 < t < ∞.

Then taking t = 2−n for n ∈ Z we have

∣
∣e∗

n(x)
∣
∣ ≤ ∣

∣e∗
n(y)

∣
∣ n ∈ Z

and so

‖x‖ ≤ C‖y‖

where C is the unconditional basis constant. ��
Example Suppose X is the space of sequences with the norm

∥
∥
∥
∥
∥
∥

∑

j∈Z

ξ j e j

∥
∥
∥
∥
∥
∥

=
⎛

⎝
∑

j∈Z

|ξ2 j |2
⎞

⎠

1/2

+
⎛

⎝
∑

j∈Z

|ξ2 j−1|p

⎞

⎠

1/p

where {en} is a canonical basis and 1 < p < 2. Then A cannot have an (a, b)-absolute
functional calculus for any a, b > 0. In fact if we let y = e2 + e4 + · · · + e2n and
x = e1 + e3 + · · · + e2n−1 it is easy to verify that

‖ϕa,b(t A)x‖ ≤ C‖ϕa,b(t A)y‖ 0 < t < ∞

where C = C(a, b) is an absolute constant independent of n. This implies that for any
given δ > 0 we have

‖ϕa+δ,b+δ(t A)x‖ ≤ Cδ‖ϕa,b(t A)y‖ 0 < t < ∞

since {ϕδ,δ(t A)}t>0 is a uniformly bounded family of operators. However ‖y‖ = n1/2

and ‖x‖ = n1/p.

Part of the motivation for the study of operators with an absolute functional calculus
is the fact that for certain Banach spaces a sectorial operator has an H∞-calculus if
and only if it has an absolute functional calculus.

Theorem 4.4 Let X be a Hilbert space and let A be a sectorial operator on X. If A has
an H∞-calculus then A has an (a,b)-absolute functional calculus for any a, b > 0.
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Operators with an absolute functional calculus 275

Proof This is essentially due to McIntosh [22] (or see [3]). It is an immediate conse-
quence of the fact that if a, b > 0 we have an equivalence:

‖x‖ ≈
⎛

⎝

∞∫

0

‖ϕa,b(t A)x‖2 dt

t

⎞

⎠

1/2

.

��
Corresponding results hold for sectorial operators on L1- and C(K )-spaces, and

these are essentially contained in [18]. Recall that a Banach space X is a GT-space if
every bounded operator T : X −→ �2 is absolutely summing, i.e., there exists K > 0
such that

n∑

k=1

‖T xk‖ ≤ K max
αk=±1

‖
n∑

k=1

αk xk‖

for every collection x1, . . . , xn ∈ X . Important examples of GT-spaces are L1 and
L1/H1 (see [5,6,23]). Examples of spaces for which the dual is a GT-space are C(K )
and the disc algebra A(D).

Theorem 4.5 Let X be a Banach space so that either (i) X is a GT-space, or (ii) X∗
is a GT-space. Suppose A is a sectorial operator on X with an H∞-calculus; then A
has an (a, b)-absolute functional calculus for every a, b > 0.

Proof (i) The proof of Proposition 7.1 of [18] gives that

‖x‖ ≈
∞∫

0

‖ϕa,b(t A)x‖dt

t
.

Note here that it is not necessary to assume X has cotype two, since if X is a GT-space
then X has the Orlicz property [23, Chapter 6c] and this is sufficient for (7.2) in [18].
(It is unknown whether every GT-space has cotype two.) The Theorem now follows
as before.

(ii) A similar argument in this case shows that for the dual norm whenever a, b > 0,

‖x∗‖ ≈
∞∫

0

∥
∥ϕa,b(t A)∗x∗∥∥ dt

t
.

Then for a suitable constant C we have

∞∫

0

∥
∥ϕa,b(t A)∗x∗∥∥ dt

t
≤ C‖x∗‖, x∗ ∈ X∗.
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Suppose x ∈ X .

x = c

∞∫

0

ϕ2a,2b(t A)x
dt

t
x ∈ X

where c−1 = ∫ ∞
0 ϕ2a,2b(t)

dt
t . Thus if ‖x∗‖ = 1 is chosen so that x∗(x) = ‖x‖ we

have

‖x‖ = c

∞∫

0

〈
ϕa,b(t A)x, ϕa,b(t A)∗x∗〉 dt

t

≤ c

(

max
t>0

‖ϕa,b(t A)x‖
)

⎛

⎝

∞∫

0

∥
∥ϕa,b(t A)∗x∗∥∥ dt

t

⎞

⎠

≤ Cc max
t>0

‖ϕa,b(t A)x‖.

Thus

‖x‖ ≈ max
t>0

‖ϕa,b(t A)x‖

and the Theorem follows in this case. ��

5 Spaces obtained by real interpolation

Suppose A is a sectorial operator on X and E is an admissible Banach function space.
Let 0 �= f ∈ H∞

0 (�φ) where φ > ω(A).We let X E ( f ) be the set of x ∈ X such that
f (t A)x ∈ X for every t > 0 and t → ‖ f (t A)x‖X ∈ E and we norm this space by

‖x‖X E ( f ) = ‖‖ f (t A)x‖‖E,t x ∈ X.

Theorem 5.1 Suppose f and g both satisfy estimates

| f (z)|, |g(z)| ≤ C |z|a(1 + |z|)−a−b z ∈ �φ

where a > max(−αE , 0) and b > max(βE , 0). Then X E ( f ) = X E (g) and the norms
‖ · ‖X E ( f ) and ‖ · ‖X E (g) are equivalent.

Proof Let us define f ∗(z) = f (z) for z ∈ �φ. Pick any N > max(a, b). Then

∞∫

0

f (t z) f ∗(t z)ϕN ,N (t z)
dt

t
=

∞∫

0

| f (t)|2ϕN ,N (t)
dt

t
z ∈ �φ
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and by scaling we can assume this constant is one. Now by Lemma 3.1 we have

‖ϕN ,N (st A)g(t A)‖ ≤ C min(sb, s−a) s, t > 0.

Hence g(t A) f (st A) f ∗(st A)ϕN ,N (st A) is Bochner-integrable on (0,∞)with respect
to ds/s and clearly

g(t A) =
∞∫

0

g(t A) f (st A) f ∗(st A)ϕN ,N (st A)
ds

s
.

For x ∈ X E ( f ) we have

‖g(t A)x‖ ≤ C

∞∫

0

min(sb, s−a)‖ f (st A)x‖ds

s
.

Thus if G(t) = ‖g(t A)x‖ and F(t) = ‖ f (t A)x‖ we have

G(t) ≤ C

∞∫

0

min(sb, s−a)Ds−1 F(t)
ds

s
.

The map s → Ds−1 F is continuous from (0,∞) into E by Lemma 2.1. Now

‖Ds−1 F‖E ≤ C max
(

sa′
, s−b′) ‖F‖E

where a > a′ > −αE and b > b′ > βE . Thus

‖G‖E ≤ C‖F‖E

∞∫

0

min
(

sb−b′
, sa′−a

) ds

s

which implies x ∈ X E (g) and an estimate

‖x‖X E (g) ≤ C‖x‖X E ( f ).

The converse estimate follows trivially by interchanging the roles of f and g. ��
We can now define X E unambiguously as the space X E ( f ) as long as f satisfies an

estimate | f (z)| ≤ C |z|a(1+|z|)−a−b where a > max(0,−αE ) and b > max(0, βE ).

Suppose 0 > a > −αE or 0 > b > βE (only one can be true since αE ≤ βE ).
Fix γ ∈ R so that αE + γ < 0 < βE + γ . We can define a new admissible Banach
function space by Eγ = { f : tγ f ∈ E} with the norm ‖ f ‖Eγ = ‖tγ f ‖E . Then
‖Ds‖Eγ = sγ ‖Ds‖E and so αEγ = αE + γ and βEγ = βE + γ.
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For a suitable choice of f ∈ H∞
0 (�φ), | f (z)| ≤ C |z|a(1 + |z|)−a−b consider

g(z) = z−γ f (z). Then

|g(z)| ≤ C
|z|a−γ

(1 + |z|)(a−γ )+(b+γ )

and we can define X Eγ (g) independent of a, b and g as long as a > −αE , b > βE .
We also have

tγ ‖ f (t A)x‖ = ‖g(t A)Aγ x‖ 0 < t < ∞

where it follows that X Eγ = Aγ X E .

Therefore if 0 < αE or βE < 0 choose γ so that αE + γ ≤ 0 ≤ βE + γ and then
work with Aγ X E . It is now possible to rewrite Theorem 5.1 in the form:

Theorem 5.2 Suppose E is an admissible Banach function space and f is an analytic
function on �φ where φ > ω(A). Suppose f satisfies the estimates

| f (z)| ≤ C |z|a(1 + |z|)−a−b z ∈ �φ

where a > −αE and b > βE . Then

X E = {x : f (t A)x ∈ X, 0 < t < ∞ and ‖ f (t A)x‖X ∈ E}

and ‖x‖X E ≈ ‖‖ f (t A)x‖X‖E .

Note here that we no longer require a, b > 0 and f (t A) is regarded as an operator
on X . Of course it is natural to take f (z) = ϕa,b as long as a > −αE and b > βE .

It follows that if σ < αE ≤ βE < τ then X E ( f ) can be identified with a subspace
of D(Aσ )+D(Aτ ). If −∞ < σ < τ < ∞ then the pair (D(Aσ ),D(Aτ )) is a Banach
couple (for the ambient space V we may take T −m(X) for large enough m under the
norm x → ‖T m x‖).
Proposition 5.3 Suppose a + b > 0. Then

K (t, x;D(A−b),D(Aa)) ≈ t
b

a+b

∥
∥
∥ϕa,b(t

1
a+b A)x

∥
∥
∥

X
x ∈ D(A−b)+ D(Aa).

Proof We will show that (D(A−b),D(Aa)) is locally linearizable (see [24] pp.
91–107). Thus, we will exhibit operators V0(t), V1(t) such that V1(t) = I − V0(t) and

‖V0(t)‖D(A−b)→D(A−b) ≤ C

‖V1(t)‖D(A−b)→D(Aa) ≤ Ct−1

‖V0(t)‖D(Aa)→D(A−b) ≤ Ct

‖V1(t)‖D(Aa)→D(Aa) ≤ C.

(5.16)
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Then

K (t, x) = K (t, x;D(A−b),D(Aa)) ≈
∥
∥
∥A−bV0(t)x

∥
∥
∥ + t

∥
∥
∥Aa V1(t)x

∥
∥
∥ .

If (a + b)ω(A) < π we may take

V0(t) = t Aa+b(1 + t Aa+b)−1

but if (a + b)ω(A) ≥ π this is no longer a well-defined operator. We therefore define
a function

ψ(z) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c
∫ ∞

1

(t z)a+b

(1 + t z)2(a+b)

dt

t
z ∈ �φ

1 z = 0

(5.17)

where

c−1 =
∞∫

0

ta+b−1

(1 + t)2(a+b)
dt

and φ > ω(A) is fixed. Note that ψ ′(z) = −cza+b−1(1 + z)−2(a+b) Let

h(z) = c

1∫

0

ta+b−1(1 + t z)−2(a+b)dt.

Then h is analytic on the open unit disk and h(0) = c/(a + b).
We then have:

ψ(z) = z−(a+b)h(z−1) |z| > 1

1 − ψ(z) = za+bh(z) |z| < 1.

In particular we have that ψ(z)− (1 + z)−1, za+bψ(z)− c(a + b)−1z(1 + z)−1 and
z−(a+b)(1 − ψ(z))− c(a + b)−1(1 + z)−1 ∈ H∞

0 (�φ). If we define

V1(t) = ψ
(

t
1

a+b A
)

then it follows that (5.16) holds. Hence

K (t, x) ≈
∥
∥
∥A−b

(
1 − ψ

(
t

1
a+b A

))
x
∥
∥
∥ + t

∥
∥
∥Aaψ

(
t

1
a+b A

)
x
∥
∥
∥ .
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Now let g(z) = ψ(z)(1 + z)a+b. Then

g(z) = (1 + z)a+b(1 − za+bh(z)) = 1 + O(|z|(a+b)) |z| < 1

g(z) = (1 + z)a+bz−a−bh(z−1) = c

a + b
+ O(|z|−(a+b)) |z| > 1.

Thus

g(z)− (1 + z)−1 − c(a + b)−1z(1 + z)−1 ∈ H∞
0 (�φ)

and the operators {g(t A) : 0 < t < ∞} are uniformly bounded on X.
Similarly let k(z) = (1 + z)a+bz−(a+b)(1 − ψ(z)). Then

k(z) = (1 + z)a+bh(z) = c

a + b
+ O(|z|(a+b)) |z| < 1

k(z) = (1 + z)a+bz−a−b(1 − z−a−bh(z−1) = 1 + O(|z|−(a+b)) |z| > 1.

Thus the operators k(t A) are also uniformly bounded.
Hence for x ∈ X,

‖ψ(t A)x‖ = ‖g(t A)(1 + t A)−(a+b)x‖ ≤ C‖(1 + t A)−(a+b)x‖
‖(1 − ψ(t A))x‖ = ‖k(t A)(t A)a+b(1 + t A)−(a+b)x‖

≤ C‖(t A)a+b(1 + t A)−(a+b)x‖.

This leads to the upper estimate

K (t, x) ≤ Ct
b

a+b

∥
∥
∥ϕa,b

(
t

1
a+b A

)∥
∥
∥

X
0 < t < ∞.

For the converse estimate we note that
∥
∥
∥tbϕa,b(t A)

∥
∥
∥D(A−b)→X

,
∥
∥t−aϕa,b(t A)

∥
∥D(Aa)→X ≤ C.

��
Theorem 5.4 Suppose −∞ < σ < τ < ∞ and let Y be an intermediate space for
the Banach couple (D(Aσ ),D(Aτ )). The following are equivalent:
(i) Y = X E for some admissible Banach function space with −τ < αE ≤ βE < −σ.

(ii) Y is a strict real interpolation space for the couple (D(Aσ ),D(Aτ )).
Proof (i) �⇒ (ii). If Y = X E then letting a = τ and b = −σ we have

‖x‖Y ≈ ‖‖ϕa,b(t A)x‖X‖E ≈ ‖t−b K (ta+b, x)‖E .

thus if we define the admissible function space F by h ∈ F if and only if t−bh(ta+b) ∈
E with the norm

‖h‖F = ‖t−bh(ta+b)‖E
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we have

Y = (D(Aσ ),D(Aτ ))F .

It is readily computed that

αF = (a + b)−1(αE + σ) > −1

and

βF = (a + b)−1(βE + σ) < 0.

(ii) �⇒ (i). If Y = (D(Aσ ),D(Aτ )F we define E = {h : t
b

a+b h(t
1

a+b ) ∈ F} with
the norm

‖h‖E =
∥
∥
∥t

b
a+b h

(
t

1
a+b

)∥
∥
∥

F

and then

Y = (D(Aσ ),D(Aτ ))F = X E

and −τ < αE ≤ βE ≤ −σ. We omit the details. ��
If E is an admissible Banach function space, it now follows immediately that A is a

sectorial operator on X E with domain DomA|X E = {x : Ax ∈ X E }. In fact by inter-
polation we obtain the necessary resolvent estimates and sectoriality follows quickly
from the fact that X E is a regular interpolation space for some pair (D(Aσ ),D(Aτ )).
Theorem 5.5 Let E be an admissible Banach function space. Then A has an absolute
functional calculus on X E of type (c, c) for large enough c > 0.

Proof Suppose a > a′ > max(0,−αE ) and b > b′ > max(0, βE ) with a �= b. We
show that A has a (a + b, a + b)-absolute functional calculus on X E . For s ∈ [1/2, 2]
we consider the function

fs(z) = 1 + z

1 + sz
= 1 + 1 − s

s
· sz

1 + sz
.

Since fs(t A) is uniformly bounded for 0 < t < ∞ we have a uniform estimate

‖((I + t A)(1 + st A)−1)x‖ ≤ C‖x‖ 1/2 ≤ s ≤ 2, 0 < t < ∞.

Thus we have an estimate

‖ϕc,d(st A)x‖X =
∥
∥
∥sc fs(t A)c+dϕc,d(t A)x

∥
∥
∥

≤ C‖ϕc,d(t A)x‖X 1/2 ≤ s ≤ 2, 0 < t < ∞, x ∈ X

where C = C(c, d, A).
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Now suppose δ > 0 and x, y ∈ X E are such that

‖ϕa+b+δ,a+b+δ(s A)x‖X E ≤ ‖ϕa+b,a+b(s A)y‖X E 0 < s < ∞.

Then for fixed s > 0, using Theorem 5.2

‖ϕ2a+b+δ,a+2b+δ(s A)x‖X‖χ[s,2s)‖E

≤ C‖‖ϕa+b+δ,a+b+δ(s A)ϕa,b(t A)x‖Xχ[s,2s)(t)‖E,t

≤ C‖ϕa+b+δ,a+b+δ(s A)ϕa,b(t A)x‖E,t

≤ C‖ϕa+b+δ,a+b+δ(s A)x‖X E

≤ C‖ϕa+b,a+b(s A)y‖X E

≤ C‖ϕa+b,a+b(s A)ϕa+δ,b+δ(t A)y‖E,t

≤ C‖‖ϕa,b(s A)ϕb,a(s A)ϕa+δ,b+δ(t A)y‖X‖E,t

≤ C‖‖ min

((
t

s

)a

,
( s

t

)b
)

ϕa,b(s A)y‖X‖E,t

≤ C‖ϕa,b(s A)y‖X

∑

n∈Z

min(2na, 2−nb)‖χ[2ns,2n+1s)‖E

≤ C‖ϕa,b(s A)y‖X‖χ[s,2s)‖E

∑

n∈Z

min(2na, 2−nb)max
(
2−na′

, 2nb′)

≤ C‖ϕa,b(s A)y‖X‖χ[s,2s)‖E .

It now follows from the definition of X E that ‖x‖X E ≤ C‖y‖X E . ��
Note that if −1 < αE ≤ βE < 0 we deduce that A has a (a, a)-absolute functional

calculus for some 0 < a < 1.Combining Theorems 5.5 and 5.4 gives us the following
Corollaries.

Corollary 5.6 Suppose −∞ < σ < τ < ∞ and let Y be a strict real interpolation
space for the Banach couple (D(Aσ ),D(Aτ )). Then A has a (c, c)-absolute functional
calculus on Y for large enough c > 0.

Corollary 5.7 Let Y be a strict real interpolation space for the couple (X,D(A));
then A has a (a,b)-absolute functional calculus on Y for some 0 < a, b < 1, and
hence has an H∞-functional calculus with ωH (A|Y ) ≤ ω(A).

If A is invertible and Y is given by the (θ, p)-method this yields a result of Dore
[14] that A has the H∞-calculus on the spaces (Dom(A), X)θ,p . (To be precise if
p = ∞, one should use the inner (θ,∞)-method in order that A be sectorial on the
interpolation space).

Theorem 5.8 Let A be a sectorial operator on X. Then:
(i) If X is a strict real interpolation space for the pair (D(A−b),D(Aa)) then A

has an (c, c)-absolute functional calculus for some c < a + b.
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Operators with an absolute functional calculus 283

(ii) If A has an (a, b)-absolute functional calculus then X is a strict real interpola-
tion space for the pair (D(A−b′

),D(Aa′
)) whenever b′ > b and a′ > a.

(iii) If A has an (a, b)-absolute functional calculus and 0 �= f, g ∈ H∞(�φ)
where φ > ω(A) are such that | f (z)|, |g(z)| ≤ |z|a′

(1 + |z|)−a′−b′
for some

b′ > b, a′ > a then for some constant C,

‖ f (t A)x‖ ≤ ‖g(t A)y‖ 0 < t < ∞ �⇒ ‖x‖ ≤ C‖y‖.

Proof (i) This is immediate by combining Theorems 5.4 and Theorem 5.5.
We now turn to (ii) and (iii). We assume that

‖ϕa+δ,b+δ(t A)x‖ ≤ ‖ϕa,b(t A)y‖ 0 < t < ∞ �⇒ ‖x‖ ≤ C‖y‖.

First suppose a < a′ ≤ a + δ, b < b′ ≤ b + δ. We use Theorem 2.4. Suppose
y ∈ X , x ∈ D(A−b′

)+ D(Aa′
) and

K (t, x) ≤ K (st, y) 0 < t < ∞,

where K (t, x) = K (t, x;D(A−b′
),D(Aa′

)). We will show that x ∈ X and we have
an estimate

‖x‖ ≤ C max

(

s
a+b′
a′+b′ , s

b′−b
a′+b′

)

‖y‖. (5.18)

First we define a doubly infinite sequence (τn)n∈Z. We may assume y �= 0. We
define τn for n ≤ 0 by

τn = sup{t > 0 : ‖t A(1 + t A)−1y‖ ≤ 2n−2‖y‖}.

Then for n > 0 we define

τn = inf{t > 0 : ‖(1 + t A)−1y‖ ≤ 2−n−1‖y‖}.

It is clear that (τn)n∈Z is increasing. Let

yn = τn+1 A(1 + τn+1 A)−1y − τn A(1 + τn A)−1y.

Then for n �= 0 we have

‖yn‖ ≤ 2−|n|‖y‖

and hence

‖y0‖ +
∑

n �=0

‖yn‖ ≤ 4‖y‖.

Thus y = ∑
n∈Z yn and convergence in X is absolute.
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284 N. J. Kalton, T. Kucherenko

Since K (st, y) ≤ ∑
n∈Z

K (st, yn) we can use K-divisibility (Theorem 2.2) to
obtain the existence of xn ∈ D(A−b′

)+ D(Aa′
) so that

K (t, xn) ≤ 6K (st, yn), n ∈ Z

and such that x = ∑
n∈Z

xn in D(A−b′
)+ D(Aa′

).

Now for each v ∈ D(A−b′
) + D(Aa′

), and any α ≥ a, β ≥ b we have that
t → ϕα,β(t A)v defines a continuous map from (0,∞) into X.

Let r = s
1

a′+b′ ; then by Lemma 5.3 we have:

‖ϕa′,b′(t A)xn‖ ≤ Crb′ ‖ϕa′,b′(r t A)yn‖ 0 < t < ∞, n ∈ Z.

Then

‖ϕa+δ,b+δ(t A)xn‖ ≤ Crb′ ‖ϕa,b(r t A)yn‖ 0 < t < ∞, n ∈ Z.

Now

ϕa,b(r z) = ϕa,b(z)
ra(1 + z)a+b

(1 + r z)a+b
.

Since A admits an H∞-calculus (Theorem 4.2) this implies that

‖ϕa+δ,b+δ(t A)xn‖ ≤ Crb′
max(ra, r−b)‖ϕa,b(t A)yn‖ 0 < t < ∞ (5.19)

.
We next check that each xn ∈ X. Note that there exists a constant c = c(a, b, δ) so

that

xn = lim
r→∞ c

r∫

1/r

ϕa+δ,b+δ(t A)xn
dt

t

where the integrals converge in X but the limit is taken with respect to the norm
on D(A−b′

) + D(Aa′
). However we show that t → t−1ϕa+δ,b+δ(t A)xn is Bochner

integrable in X over (0,∞). Indeed, if K = K (s) = Crb′
max(ra, r−b),
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∞∫

0

‖ϕa+δ,b+δ(t A)xn‖dt

t
≤ K

∞∫

0

‖ϕa,b(t A)yn‖dt

t

≤ K

∞∫

0

∥
∥
∥
∥
∥
∥
ϕa,b(t A)

τn+1∫

τn

ϕ1,1(u A)y
du

u

∥
∥
∥
∥
∥
∥

dt

t

≤ K

∞∫

0

τn+1∫

τn

‖ϕa,b(t A)ϕ 1
2 ,

1
2
(u A)‖‖ϕ 1

2 ,
1
2
(u A)y‖du

u

dt

t
.

We now can use Lemma 3.1 to estimate
∥
∥
∥ϕa,b(t A)ϕ 1

2 ,
1
2
(u A)

∥
∥
∥ ≤ C min((t/u)θ , (u/t)θ )

for some θ > 0. Hence

∞∫

0

‖ϕa+δ,b+δ(t A)xn‖dt

t
≤ C K

∞∫

0

τn+1∫

τn

min((t/u)θ , (u/t)θ )
∥
∥
∥ϕ 1

2 ,
1
2
(u A)y

∥
∥
∥

du

u

dt

t

≤ C ′K
τn+1∫

τn

∥
∥
∥ϕ 1

2 ,
1
2
(u A)y

∥
∥
∥

du

u
< ∞.

It follows that xn ∈ X. Hence our assumptions give that

‖xn‖ ≤ C max
(
s

a+b′
a′+b′ , s

b′−b
a′+b′ )‖yn‖, n ∈ Z.

This implies that x = ∑
n∈Z

xn ∈ X and that

‖x‖ ≤ 4C max(s
a+b′
a′+b′ , s

b′−b
a′+b′ )‖y‖.

Now by applying Theorems 2.4 and 5.4 one obtains X = (D(A−b′
),D(Aa′

))E where
−1 < αE ≤ βE < 0. Alternatively, X = X E where −a′ < αE ≤ βE < b′.

At this point (iii) is immediate by applying Theorem 5.2. Now returning to (ii)
consider the case when a′ > a + δ or b′ > b + δ. We can now replace a, b by a′′, b′′
where a < a′′ < min(a + δ, a′) and b < b′′ < min(b + δ, b′). In view of (iii), we
replace δ by a δ′ > 0 so that a′ < a′′ + δ′, b′ < b′′ + δ′ and then (ii) will follow in
the general case. ��
Theorem 5.9 Suppose A, B are two sectorial operators such that A has an (a, b)-
absolute functional calculus for some a, b < 1.Assume D(A) = D(B) and D(A−1) =
D(B−1); then B has an (a′, b′)-absolute functional calculus for some a′, b′ < 1.

Proof X is a strict real interpolation space for the couple (D(A−1),D(A)). ��
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To conclude we discuss the results of Dore [15]. He shows that an arbitrary sectorial
operator A has an H∞-calculus on the interpolation space (X,Dom(A)∩Ran(A))θ,p
if 0 < θ < 1 and 1 ≤ p ≤ ∞. Note that Dom(A) ∩ Ran(A) = D(A) ∩ D(A−1) so
this result does not follow directly from the above theorems. However, Dore’s method
shows that we have:

Theorem 5.10 Suppose that Y is a strict interpolation space for the pair (X,D(A)∩
R(A)). Then A has an H∞-calculus on Y with ωH (A|Y ) ≤ ω(A).

Proof The argument used by Dore is to define B = A + A−1 + 2I and note B is sec-
torial and invertible and D(B) = D(A)R(A). Furthermore, he shows (Theorem 2.3
from [15]) that (effectively)

K (t, x;D(A) ∩ R(A), X) ≈ K (t, x;D(A), X)+ K (t, x;R(A), X).

There is a slight error in the exposition in [15] in the computation of ‖(t1 + A)(t1 +
b)−1‖ but is corrected by noting that

(t1 + A)(t1 + B)−1 = 1 − (1 + 2A)(1 + A)−2 B(t + B)−1.

To complete the proof one observes that this implies that if Y = (D(A)∩ R(A), X)E

then Y = (D(A), X)E ∩ (R(A), X)E and so since A has an H∞-calculus on both
these spaces by Corollary 5.7 it also has an H∞-calculus on Y. ��

We note however that this proof does not show that A has an absolute functional
calculus (in contrast to the situation in Corollary 5.7). This conclusion can be reached
under a stronger hypothesis:

Theorem 5.11 Suppose A is a sectorial operator such that ω(A) < π/2. If Y is a
strict interpolation space for the pair (X,D(A) ∩ R(A)), then A has an absolute
functional calculus on Y.

To prove this theorem, we prove the following

Proposition 5.12 Suppose A is a sectorial operator such that ω(A) < π/2. Then

(i) B = 1
2 (A + A−1) is a sectorial operator and ω(B) < π/2.

(ii) For 0 < a ≤ 1 there is a constant C = C(a) so that

1

C
‖ϕa,a(t B)x‖ ≤ ‖ϕa,a(s1 A)x‖ + ‖ϕa,a(s2 A)x‖

≤ C‖ϕa,a(t B)x‖ x ∈ X, 0 < t ≤ 1,

where s1, s2 are the roots of t z2 − 2z + t = 0.

Proof (i) Suppose �λ < 0. Then

(1 − λB)−1 = −2

λ
A(1 − ζ1 A)−1(1 − ζ2 A)−1
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where ζ1, ζ2 are the roots of λz2 − 2z + λ = 0. Note that if z + z−1 = 2/λ then
�z < 0 so that �ζ1,�ζ2 < 0.

‖(1 − λB)−1‖ ≤ C |λ|−1 min
(
|ζ1|−1, |ζ2|−1

)

for a suitable constant C . Since |ζ1| + |ζ2| ≥ 2/λ we conclude that

‖(1 − λB)−1‖ ≤ C ′ �λ < 0

and B is sectorial with ω(B) < π/2.
(ii) Let us first treat the case a = 1. We may suppose that 0 < s1 ≤ 1 ≤ s2 < ∞.

By the argument of (i) we have

(1 + t B)−1 = 2

t
A(1 + s1 A)−1(1 + s2 A)−1.

B(1 + t B)−2 = 2

t2 A(1 + A2)(1 + s1 A)−2(1 + s2 A)−2.

Thus

ϕ1,1(s1 A) = ts1

2
(1 + s2 A)2(1 + A2)−1ϕ1,1(t B).

Now since 0 < t ≤ 1 we may put s1 = 1/s2 and ts2 ≤ 2 and note that

‖(1 + s2 A)2(1 + A2)−1‖ ≤ s2
2

(‖(1 + A2)−1‖ + 2‖A(1 + A2)−1‖ + ‖A2(1 + A2)−1‖)

so that we have an estimate

‖ϕ1,1(s1 A)x‖ ≤ C1‖ϕ1,1(t B)x‖ x ∈ X, 0 < t ≤ 1.

On other hand

ϕ1,1(s2 A) = ts2

2
(1 + s1 A)2(1 + A2)−1ϕ1,1(t B).

This time we observe that ts1 ≤ 1 and that

∥
∥
∥(1 + s1 A)2(1 + A2)−1

∥
∥
∥ ≤ C ′

for a suitable constant C ′ since 0 < s1 ≤ 1. Thus

‖ϕ1,1(s2 A)x‖ ≤ C2‖ϕ1,1(t B)x‖ x ∈ X, 0 < t ≤ 1.

Combining these gives the left hand estimate in (ii) when a = 1.
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To obtain the right-hand estimate (for a = 1) we note that

ϕ1,1(s1 A)+ ϕ1,1(s2 A) = (t B + t2)(1 + t B)−2.

Now B is invertible and so

ϕ1,1(s1 A)+ ϕ1,1(s2 A) = (1 + t B−1)ϕ1,1(t B)

which gives the right hand estimate.
To extend these results to a < 1 we let Ba = 1

2 (A
a + A−a) when −1 < a < 1.

We observe that f (A) is a bounded invertible operator where

f (z) = (z + z−1)a

za + z−a
.

Here 1 − f (z) and 1 − 1/ f (z) belong to H∞
0 (�φ) as long as φ < π/2. It fol-

lows that Ba = 2a−1 f (A)Ba and B−a = 21−a f (A)−1(Ba)
−1 and in particular

D(Ba) = D(Ba), D(B−a) = D(B−1
a ). We can then use Proposition 5.3 to deduce

that

∥
∥ϕ1,1(t Ba)x

∥
∥ ≈ ‖ϕ1,1(t Ba)x‖ x ∈ X, 0 < t < ∞.

Here we use ≈ to mean the existence of a constant C independent of t, x (but depending
on a) so that

C−1
∥
∥ϕ1,1(t Ba)x

∥
∥ ≤ ‖ϕ1,1(t Ba)x‖ ≤ C

∥
∥ϕ1,1(t Ba)x

∥
∥ 0 < t < ∞.

Now suppose 0 < t ≤ 1 and s1 = s1(t), s2 = s2(t) are the roots of t z2 −2z+ t = 0
as above. We have

‖ϕa,a(s1 A)x‖ + ‖ϕa,a(s2 A)x‖ ≈ ∥
∥ϕ1,1

(
sa
1 Aa)

x
∥
∥ + ∥

∥ϕ1,1
(
sa
2 Aa)

x
∥
∥

≈
∥
∥
∥ϕ1,1

(
2

(
sa
1 + sa

2

)−1
Ba

)
x
∥
∥
∥

≈
∥
∥
∥ϕ1,1

(
2a (

sa
1 + sa

2

)−1
Ba

)
x
∥
∥
∥

≈
∥
∥
∥ϕa,a

(
2

(
sa
1 + sa

2

)−1/a
B

)
x
∥
∥
∥

≈ ‖ϕa,a(t B)x‖

since

2
(
sa
1 + sa

2

)−1/a ≈ t.

��
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Proof of Theorem 5.11 It follows from Theorem 5.8 (i) that B = 1
2 (A + A−1) has an

(a, a)-absolute functional calculus on Y for some a < 1. Thus using (iii) of Theorem
5.8 and Proposition 4.1 we have that

‖ϕ1,1(t B)y1‖Y ≤ ‖ϕa,a(t B)y2‖Y 0 < t ≤ 1 �⇒ ‖y1‖Y ≤ C‖y2‖Y y1, y2 ∈ Y.

Now suppose

‖ϕ1,1(t A)y1‖Y ≤ ‖ϕa,a(t A)y2‖Y 0 < t < ∞.

Then by Proposition 5.12 we deduce that for a suitable constant C1 we have

‖ϕ1,1(t B)y1‖Y ≤ C1‖ϕa,a(t B)y2‖Y 0 < t ≤ 1

and

‖y1‖Y ≤ CC1‖y2‖Y .

��

6 The vector-valued functional calculus for operators with an absolute
functional calculus

We next discuss the vector-valued functional calculus for a sectorial operator with
an absolute functional calculus. We will first state a result which indicates that when
A has an absolute functional calculus then the main theorems of [18] hold without
R-boundedness assumptions. Later, we will need a more delicate form of this result,
and for this we will supply a detailed proof. Recall that A is the algebra of all operators
on X with commute with the resolvent operators R(λ, A) for λ in the resolvent set
of A.

Theorem 6.1 Suppose A is a sectorial operator with an absolute functional calculus
and F ∈ H∞(�φ,A) for some φ > ω. Then F(A) is a bounded operator on X.

Proof The proof of this theorem is identical to the proof of the corresponding scalar
result, Theorem 4.2 and we therefore omit it. ��

This leads to some standard applications which are quite routine.

Corollary 6.2 Suppose A and B are commuting sectorial operators and A has abso-
lute calculus. Suppose further that f ∈ H∞(�φ ×�ρ) where φ > ω(A), ψ > ω(B)
is such that f (z, B) is a bounded operator for every z ∈ �φ and the family { f (z, B) :
z ∈ �φ} is uniformly bounded. Then f (A, B) is a bounded operator.

Proof Consider F(z) = f (z, B). Using the integral representation of f (z, B) from
Sect. 2 and commutativity of A and B, we conclude that F(z) ∈ H∞(�φ,A). It
follows from Theorem 6.1 that F(A) is a bounded operator. ��
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Theorem 6.3 Let A and B are commuting sectorial operators so thatω(A)+ω(B) <
π . Suppose A has absolute calculus. Then A + B is closed on the domain Dom(A)∩
Dom(B) and there is a constant C such that

‖Ax‖ + ‖Bx‖ ≤ C‖Ax + Bx‖, x ∈ D(A) ∩ D(B) (6.20)

and (A + B) is invertible if either A or B is invertible.

Proof Choose φ, φ′ with ω(A) < φ,ω(B) < φ′ and φ + φ′ < π . The function
f (z, w) = z(z + w)−1 is in H∞(�φ ×�φ′) and the family f (z, B) = −z R(−z, B)
for z ∈ �φ′ is uniformly bounded. By Corollary 6.2 we obtain that f (A, B) is a
bounded operator. It was shown in [18,19] that this implies the norm estimate 6.20
and hence that A + B is closed.

Now suppose that A is invertible. Then since A(A+ B)−1 is bounded, we conclude
that also (A + B) is invertible. In the case B is invertible we write I = A(A + B)−1 +
B(A + B)−1 and see that B(A + B)−1 is bounded and thus (A + B) invertible. ��

The following theorem is the analogue of the result of [19]. We omit the proof
which is similar to the previous theorem.

Theorem 6.4 Suppose A and B are commuting sectorial operators each with an H∞-
calculus and assume A has an absolute functional calculus. Then (A, B) has a joint
H∞-functional calculus. More precisely if φ > ωH (A) and ψ > ωH (B) then for
every f ∈ H∞(�φ ×�ψ), f (A, B) is a bounded operator and we have an estimate

‖ f (A, B)‖ ≤ C‖ f ‖H∞(�φ×�ψ).

7 Mild solutions and well-posed equations

Let us assume that A is a sectorial operator on X and that B is a closed operator with
non-empty resolvent set. Suppose A and B are resolvent commuting. Then the opera-
tor A + B with domain Dom(A) ∩ Dom(B) may not be closed. A + B may however
be extended to a closed operator on the domain

Dom(A + B) =
{

x ∈ X : ∃xn ∈ Dom(A) ∩ Dom(B), lim
n→∞ xn = x,

∃ lim
n→∞ Axn + Bxn := (A + B)x

}
.

To see this we need only check that if xn ∈ Dom(A) ∩ Dom(B) and limn→∞ xn = 0
and limn→∞(Axn + Bxn) = y then y = 0. But limn→∞ A(1 + A)−2xn = 0 and
limn→∞ A2(1 + A)−2xn = 0. Hence limn→∞ B A(1 + A)−2xn = A(1 + A)−2 y.
Since B is closed A(1 + A)−2 y = 0 and thus y = 0. Note that if x ∈ Dom(A + B)
then vn(A)x ∈ Dom(A) ∩ Dom(B) for all n and sup ‖Avn(A)x + Bvn(A)x‖ < ∞.

In this section, we consider two questions concerning the equation (for fixed y ∈ X )

(A + B)x = y. (7.21)
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We say that a solution x of (7.21) is mild solution if x ∈ Dom(A + B) and a strong
or classical solution if x ∈ Dom(A) ∩ Dom(B).

The closed operator (A + B,Dom(A + B)) is invertible if and only if for every
y ∈ X there is a unique mild solution of (7.21). On other hand (7.21) is said to be
well-posed if every mild solution is a strong solution. (7.21) is well-posed if and only
if there is a constant C so that

‖Ax‖ ≤ C‖Ax + Bx‖ x ∈ Dom(A) ∩ Dom(B)

and this is equivalent to the requirement that Dom(A + B) = Dom(A) ∩ Dom(B).
Let us first investigate conditions for the homogeneous equation

Ax + Bx = 0, x ∈ Dom(A + B) (7.22)

to have a unique solution.

Proposition 7.1 The following conditions imply that (7.22) has a unique solution.

(i) There exists a constant C so that for every λ ∈ C we have either λ /∈ Sp(A) and
‖(λ− A)−1‖ ≤ C or −λ /∈ Sp(B) and ‖(λ+ B)−1‖ ≤ C.

(ii) There exists a constant C so that for every λ ∈ C\{0} we have either λ /∈ Sp(A)
and ‖λ(λ− A)−1‖ ≤ C or −λ /∈ Sp(B) and ‖λ(λ+ B)−1‖ ≤ C.

Proof (i) Suppose x ∈ Dom(A)∩ Dom(B) and Ax + Bx = 0. Consider the analytic
functions F(λ) = (λ− A)−1 defined on C\Sp(A) and G(λ) = (λ+ B)−1 defined on
C\Sp(−B). If λ /∈ Sp(A) ∪ Sp(−B) then

x = (λ− A)(λ− A)−1x

= λ(λ− A)−1x − (λ− A)−1 Ax

= λ(λ− A)−1x + (λ− A)−1 Bx

= λ(λ− A)−1x + B(λ− A)−1x

= (λ+ B)(λ− A)−1x

so that F(λ)x = G(λ)x .Hence F extends to a bounded entire function and Liouville’s
theorem implies that F vanishes identically.

Now suppose x ∈ Dom(A + B) and (A + B)x = 0. Then vn(A)x ∈ Dom(A) ∩
Dom(B) for all n and (A + B)vn(A)x = 0. Thus vn(A)x = 0 and so x = 0.

(ii) is similar. ��

We shall define a contour in C to be acceptable if it can be decomposed into a finite
union of curves � j each of which may be parameterized by a Lipschitz map t → z(t)
for a < t < b where −∞ ≤ a < b ≤ ∞ and such for some constant C we have
C−1|t | ≤ |z(t)| ≤ C |t |. The main application use of this condition is that we will
have a estimate
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∫

�

min(|tζ |δ, |tζ |−δ) |dζ ||ζ | ≤ C t > 0

where C = C(δ) is independent of t.

Theorem 7.2 Let A be a sectorial operator and suppose B is a closed operator. Sup-
pose the homogeneous equation (7.22) has a unique solution. Suppose ω(A) < φ <

ψ < π . Suppose � is an acceptable contour contained in �φ ∪ {0} and with the
following properties:

sup
λ∈�\{0}

min(1, |λ|)‖(λ− A)−1‖ < ∞. (7.23)

sup
λ∈�

‖(λ+ B)−1‖ < ∞. (7.24)

∫

�

f (ζ )(ζ − A)−1dζ = f (A) (7.25)

if f, z f ∈ H∞
0 (�ψ).

∫

�

f (ζ )(ζ + B)−1dζ = 0 (7.26)

if f, z f ∈ H∞
0 (�φ). Then each of the following conditions suffices for (A + B,

Dom(A + B)) to be invertible:
(i)

∫

�

‖(ζ − A)−1‖‖(ζ + B)−1‖|dζ | < ∞, (7.27)

or
(ii) A has an absolute functional calculus and for some constant C,

‖(λ− A)−1‖‖(λ+ B)−1‖ ≤ C |λ|−1 λ ∈ �. (7.28)

If in (ii) we also have for some constant C ′,

max(‖(λ− A)−1‖, ‖(λ+ B)−1‖) ≤ C ′|λ|−1 λ ∈ � (7.29)

then Ax + Bx = y is well-posed.

Proof Before showing the details of the proof, we pause to understand the situation
graphically (Fig. 1).
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Fig. 1 This figure illustrates Theorem 7.2

First observe that, by our definition of an acceptable contour, under (7.23) and
(7.24) the conditions that f, z f ∈ H∞

0 (�ψ) implies that the integrals in (7.25) and
(7.26) exist as Bochner integrals and so does

T ( f ) = 1

2π i

∫

�

f (ζ )(ζ + B)−1(ζ − A)−1dζ.

Claim 1 If f, z−1 f, g, zg ∈ H∞
0 (�ψ) then

T ( f g) = f (A)T (g). (7.30)

Proof of Claim1 Suppose φ < ν < ψ. Then

f (A) = 1

2π i

∫

�ν

f (λ)(λ− A)−1dλ
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and so

f (A)T (g) = − 1

4π2

∫

�ν

∫

�

f (λ)g(ζ )(ζ + B)−1(λ− A)−1(ζ − A)−1dζ dλ

as a Bochner integral.
By the resolvent equation

(λ− A)−1(ζ − A)−1 = 1

ζ − λ
((λ− A)−1 − (ζ − A)−1).

We now observe that for λ ∈ �ν and ζ ∈ � we have |λ − ζ | ≥ c|λ| where c =
sin(ν − φ) > 0. Since

∫

�ν

| f (λ)| |dλ||λ| < ∞

the integrals

∫

�ν

∫

�

f (λ)

ζ − λ
g(ζ )(ζ + B)−1(λ− A)−1dζ dλ

and

∫

�ν

∫

�

f (λ)

ζ − λ
g(ζ )(ζ + B)−1(ζ − A)−1dζ dλ

both converge as Bochner integrals. The first integral vanishes by using (7.26) (inte-
grating first with respect to ζ ). Thus

f (A)T (g) = 1

4π2

∫

�ν

∫

�

f (λ)

ζ − λ
g(ζ )(ζ + B)−1(ζ − A)−1dζ dλ

= 1

2π i

∫

�

f (ζ )g(ζ )(ζ + B)−1(ζ − A)−1 dζ

= T ( f g).

This completes the proof of claim1. ��
Now suppose z f, z−1 f ∈ H∞

0 (�ψ). Then by claim 1 we have

T (z f 2) = A f (A)T ( f ) = AT ( f 2)
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and so T ( f 2) has range in Dom(A). Now

f 2(A) = 1

2π i

∫

�

f (ζ )2(ζ − A)−1dζ

and

T (z f 2) = 1

2π i

∫

�

ζ f (ζ )2(ζ + B)−1(ζ − A)−1dζ

both as Bochner integrals. Hence

f 2(A)− T (z f 2) = 1

2π i

∫

�

f (ζ )2 B(ζ + B)−1(ζ − A)−1dζ

as a Bochner integral. Since B is closed this implies that for every x ∈ X,

f 2(A)x − T (z f 2)x = B

⎛

⎝ 1

2π i

∫

�

f (ζ )2(ζ + B)−1(ζ − A)−1x dζ

⎞

⎠

and the right-integral is in Dom(B) i.e., T ( f 2)x ∈ Dom(B) and

f 2(A)x = AT ( f 2)x + BT ( f 2)x .

Since A + B is one–one to prove that (A + B)−1 is bounded it therefore suffices
to show an estimate

‖T ( f 2)‖ ≤ C‖ f 2‖H∞(�ψ)

for all functions f such that z f, z−1 f ∈ H∞
0 (�ψ). Indeed suppose we have such

an estimate and x ∈ Ran f 2(A). Then x = f 2(A)y = (A + B)T ( f 2)y for some
y ∈ X and thus x ∈ Dom(A + B)−1. Since zv2

n(z), z−1v2
n(z) ∈ H∞

0 (�ψ) we also get
v4

n(A)x ∈ Dom(A + B)−1 and

lim
n→∞(A + B)−1(x − vn(A)

4x) = lim
n→∞(T ( f 2)y − T ( f 2)v4

n y) = 0.

Thus

‖(A + B)−1x‖ ≤ lim sup
n→∞

‖(A + B)−1v4
n(A)x‖ ≤ lim sup

n→∞
‖T (v2

n)x‖ ≤ C‖x‖.

Now, our claim follows from choosing a function f such that Ran f 2(A) is dense in
X , e.g., f (z) = v2

2(z).
In case (i) this is a trivial norm estimate. We turn to case (ii).
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Assume as before z f, z−1 f ∈ H∞
0 (�ψ). Assume that g ∈ H∞

0 (�φ′) for some
φ′ > ω(A) and that 0 < δ < 1

2 are such that

‖ϕδ,δ(t A)g(t A)x‖ ≤ ‖g(t A)y‖ 0 < t < ∞ �⇒ ‖x‖ ≤ C‖y‖.

Now suppose x ∈ Dom(A
1
2 ). Let f 2 = ϕ2,1 f0 where f0, z f0 ∈ H∞

0 (�ψ). Then

T
(
z− 1

2 f 2)(A1/2x
) = 1

2π i

∫

�

ζ− 1
2 f 2(ζ )(ζ + B)−1(ζ − A)−1 A1/2x dζ

= 1

2π i

∫

�

ϕ 3
2 ,

3
2
(ζ ) f0(ζ )(ζ + B)−1(ζ − A)−1 A1/2x dζ

= ϕ 3
2 ,

3
2
(A)

∫

�

f0(ζ )(ζ + B)−1(ζ − A)−1 A1/2x dζ

= ϕ2,1(A)
∫

�

f0(ζ )(ζ + B)−1(ζ − A)−1x dζ

= ϕ2,1(A)T ( f0)x

= T ( f 2)x .

Here we applied claim 1 again since ϕ 3
2 ,

3
2
, z−1ϕ 3

2 ,
3
2
, f0, z f0 ∈ H∞

0 (�ψ).

We have

A
1
2 (ζ − A)−1 = |ζ |− 1

2 ϕ 1
2 ,

1
2
(|ζ |−1 A)((|ζ | + ζ )(ζ − A)−1 − I )

so that we have an estimate

‖ϕδ,δ(t A)A
1
2 (ζ − A)−1‖ ≤ C |ζ |− 1

2 min(|tζ |δ, |tζ |−δ)(‖ζ(ζ − A)−1‖ + 1).

If t > 0 and y = T ( f 2)x then

ϕδ,δ(t A)g(t A)y = 1

2π i

∫

�

ζ− 1
2 f 2(ζ )(ζ + B)−1ϕδ,δ(t A)A

1
2 (ζ − A)−1g(t A)x dζ.

Thus

‖ϕδ,δ(t A)g(t A)y‖ ≤ C‖ f 2‖H∞(�ψ)‖g(t A)x‖
∫

�

min(|tζ |δ, |tζ |−δ)

×(1 + |ζ |‖(ζ − A)−1‖)‖(ζ + B)−1‖)d|ζ |
|ζ |

≤ C‖ f 2‖H∞(�ψ)‖g(t A)x‖,
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using the fact that � is an acceptable contour and (7.28). Thus

‖y‖ ≤ C‖ f 2‖H∞(�ψ)‖x‖.

This completes the proof of (ii).
For the last part we observe that AT ( f 2) = T (z f 2) and use a similar argument to

give an estimate

‖Ay‖ ≤ C‖ f 2‖H∞(�ψ)‖x‖.

��
We now specialize to the case when −A is the generator of a bounded semigroup

{e−t A : t > 0}. In this case we have an estimate

‖(λ− A)−1‖ ≤ C |�λ|−1 �λ < 0.

Theorem 7.3 Suppose A is a sectorial operator such that −A is the generator of a
bounded semigroup. Suppose B is a closed operator. Assume further that Sp(B) ⊂
{z : �z > 0} and

sup
�λ≥0

‖(λ+ B)−1‖ < ∞. (7.31)

Then each of the following conditions implies that the equation Ax + Bx = y admits
a unique mild solution:

(i) A is invertible and

∞∫

−∞
‖(i t + B)−1‖2dt < ∞.

(ii) A has an absolute functional calculus and for some φ < π/2 we have Sp(B) ⊂
�φ and

sup
λ/∈�φ

‖(λ+ B)−1‖ < ∞.

(iii) A has an absolute functional calculus and

sup
−∞<t<∞

|t | 1
2 ‖(i t + B)−1‖ < ∞.

Proof First we note that from the initial hypotheses there exists α > 0 so that

sup
�λ>−α

‖(λ+ B)−1‖ < ∞
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and so the conditions of Proposition 7.1 (i) are satisfied. Thus (A + B) is injective on
its domain.

Let us prove (iii) first. For this we note that if t ∈ R and |s| < 1
2‖(i t + B)−1‖−1,

(i t + s + B) is invertible

‖(i t + s + B)−1‖ ≤ 2‖(i t + B)−1‖.

Since the function t �→ ‖(−i t + B)−1‖−1 is Lipschitz we can define an acceptable
contour by

ζ(t) =
⎧
⎨

⎩

−i t − 1
4‖(−i t + B)−1‖−1 |t | > 1

−i t − |t |
4 ‖(−i t + B)−1‖−1 |t | ≤ 1.

In summary we have the estimates

|ζ(t)| ≈ |t |, ‖(ζ(t) +B)−1‖
≤ 2‖(−i t + B)−1‖ and ‖(ζ(t)− A)−1‖ ≤ C |�ζ(t)|−1.

Therefore

|ζ(t)|‖(ζ(t)+ B)−1‖‖(ζ(t)− A)−1‖ ≤
{

C |t |‖(−i t + B)−1‖2 |t | ≥ 1

C‖(−i t + B)−1‖2 |t | ≤ 1

Figure2 is a visualization of the components in the setup of our proof.
By elementary contour integral estimates we have the conditions of Theorem 7.2,

i.e., (7.23), (7.24), (7.25) and (7.26). The result follows by Theorem 7.2(ii).

(i) If A is invertible we can modify the above contour by joining ζ(−1) to ζ(1)
by a suitable contour contained in {z : �z < 0}, so the resulting contour � is
acceptable. A similar appeal to Theorem 7.2 gives the result.

(ii) is similar, except that we use a contour �ν for some π/2 < ν < π − φ. ��

Theorem 7.4 Suppose A is a sectorial operator such that −A is the generator of a
bounded group. Suppose B is an invertible closed operator which commutes with A.
Assume further that Sp(B) ∩ iR = ∅. Then each of the following conditions implies
that the equation Ax + Bx = y admits a unique mild solution:
(i) A is invertible and

∞∫

−∞
‖(i t + B)−1‖2dt < ∞.
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Fig. 2 This figure illustrates Theorem 7.3

(ii) A has an absolute functional calculus and for some φ < π/2 we have Sp(B) ⊂
�φ ∪ (−�φ) and

sup
λ/∈�φ∪(−�φ)

‖(λ+ B)−1‖ < ∞.

(iii) A has an absolute functional calculus and

sup
−∞<t<∞

|t | 1
2 ‖(i t + B)−1‖ < ∞.

Proof As in the previous theorem we first note that the conditions of Proposition 7.1
(i) are satisfied as soon as we have sup−∞<t<∞ ‖(i t + B)−1‖ < ∞. In cases (ii)
and (iii) this is automatic. In case (i), we have limt→∞ ‖(i t + B)−1‖ = 0. For if
s = 1

2‖(i t + B)−1‖ we have
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t+s∫

t

‖(iτ + B)−1‖2dτ ≥ 1

2
‖(i t + B)−1‖.

We will first prove (iii).
In this case, we take � as the union of two contours. We set

ζ−(t) =
⎧
⎨

⎩

−i t − 1
4‖(−i t + B)−1‖−1 |t | > 1

−i t − |t |
4 ‖(−i t + B)−1‖−1 |t | ≤ 1.

and

ζ+(t) =
⎧
⎨

⎩

i t + 1
4‖(i t + B)−1‖−1 |t | > 1

i t + |t |
4 ‖(i t + B)−1‖−1 |t | ≤ 1.

These define contours �1 and �2 and it is clear that if � = �1 ∪ �2 we have the
conditions of Theorem 7.2.

(i) and (ii) are proved similarly. ��
Theorem 7.5 Suppose A is a sectorial operator such that −A is the generator of a
bounded group with e−2π A = I . Suppose B is a closed operator which commutes
with A. Assume further that Sp(B) ∩ iZ = ∅. Then each of the following conditions
implies that the equation Ax + Bx = y admits a unique mild solution:
(i) A is invertible and

∑

k∈Z

‖(ik + B)−1‖2dt < ∞.

(ii) A has an absolute functional calculus and

sup
k∈Z

|k| 1
2 ‖(ik + B)−1‖ < ∞.

Proof As usual we may verify the conditions of Proposition 7.1 (i) in both cases.
We prove (ii). The hypothesis on B implies that (i t + B)−1 exists for every t with
|t | > n for some natural number n. We then define � to the union of a finite number
of contours. First we define a contour �+− by

ζ(t) = −i t − 1

2
‖(−i t + B)−1‖−1 t < −n

and �++ by

ζ(t) = i t + 1

2
‖(i t + B)−1‖−1 t > n.
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Fig. 3 This figure illustrates Theorem 7.5

We then define �n+1 to be a suitable acceptable contour contained in the resolvent
sets of both −B and A passing between in and i(n + 1) to join ζ(−n) to ζ(n)

Similarly we define �−+ by

ζ(t) = i t + 1

2
‖(i t + B)−1‖−1 t < −n

and �−− by

ζ(t) = −i t − 1

2
‖(i t + B)−1‖−1 t > n

and then �−n−1 to be a suitable acceptable contour contained in the resolvent sets of
both −B and A and passing between −in and −i(n + 1) to join ζ(−n) to ζ(n).

Then let �k for |k| ≤ n be a sufficiently small circle around the point ik contained
in the resolvent sets of A and −B. If we let � be the union of all these contours (see
figure3) it is clear that the hypotheses of Theorem 7.2 hold and the result follows.

The proof of (i) is similar. ��
In the each of the preceding Theorems 7.3, 7.4 and 7.5 it is possible to also discuss

well-posedness by the same techniques, using the last part of Theorem 7.2. We obtain:

Theorem 7.6 Suppose A is a sectorial operator with an absolute functional calculus
such that −A is the generator of a bounded group. Suppose B is a closed opera-
tor which commutes with A. Then each of the following conditions implies that the
equation Ax + Bx = y is well-posed.
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(i) Sp(B) ∩ iR = ∅ and

sup
−∞<t<∞

t‖(i t + B)−1‖ < ∞.

(ii) e2π A = I , Sp(B) ∩ iZ = ∅ and

sup
k∈Z

|k|‖(ik + B)−1‖ < ∞.

Proposition 7.7 If A generates a bounded group then −A2 is sectorial with
ω(−A2) = 0 and satisfies an estimate:

‖(λ+ A2)−1‖ ≤ C |�λ|−1 �λ > 0.

If further A has an (a, b)-absolute functional calculus for some a, b > 0 then −A2

has an (a′, b′)-absolute functional calculus for a′, b′ > 0.

Proof If A generates a bounded group then for λ /∈ [0,∞) we have

(λ+ A2)−1 = 1

2iµ
((iµ+ A)−1 + (iµ− A)−1)

where µ2 = λ. Sectoriality follows easily and

‖(λ+ A2)−1‖ ≤ 1

|2iµ| (‖(iµ+ A)−1‖ + ‖(iµ− A)−1‖) ≤ C |µ|−1|�µ|−1.

Note that

|�µ| ≥ 1

2
|�λ||µ|−1 �λ > 0.

If A has an (a, b)-absolute functional calculus then for a large enough integer m,
X is a strict real interpolation space for (D(A−2m),D(A2m)) which then implies that
−A2 also an (a′, b′)-absolute functional calculus. ��

In view of this it is easy to modify our approach to give the following:
Theorem 7.8 Suppose A is a sectorial operator with an absolute functional calculus
such that −A is the generator of a bounded group. Suppose A has an (a, b)-abso-
lute functional calculus for some a, b > 0. Suppose B is a closed operator which
commutes with A. Assume further that Sp(B) ∩ [0,∞) = ∅. Suppose

sup
t≥0

t
1
2 ‖(t + B)−1‖ < ∞.

Then the equation −A2x + Bx = y has a unique mild solution for every y ∈ X.
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8 Applications

Let us now discuss some related results of Arendt et al. [2]. The authors consider a
closed operator B on a Banach space X and a boundary value problem with periodic
boundary conditions

u′(t)+ Bu(t) = f (t) u(0) = u(2π)

in the space Cα(T; X) of α-Hölder continuous X -valued functions on the circle (which
we identify as the 2π -periodic functions on R). We denote by û(k) the Fourier coef-
ficients

û(k) = 1

2π

2π∫

0

u(t)e−ikt .

Consider the subspace of C(T; X) denoted by C0(T; X) of all functions of means
zero. Then, restricted to this space, the differentiation operator A f = f ′ with domain
C1

0(T; X) of all C1-functions of mean zero is sectorial and generates a bounded
2π -periodic group of translations. In this case D(A) = Dom(A) = C1

0(T; X).
Now, for 0 < α < 1, we consider the inner (α,∞)-interpolation spaces, denoted

by (C0(T; X), C1
0(T; X))(α,∞), corresponding to the admissible function space

E =
{

f : sup
t>0

t−α| f (t)| < ∞, lim
t→0

t−α| f (t)| = lim
t→∞ t−α| f (t)| = 0

}

.

This space is the little Hölder space of all mean zero functions Cα,00 (T; X) such that

sup
t>s

‖u(t)− u(s)‖
|t − s|α = ‖ f ‖α < ∞

and

lim|t−s|→0

‖u(t)− u(s)‖
|t − s|α = 0.

See, for example, [21] for the non-periodic case. The following result follows from
Corollary 5.7.

Proposition 8.1 A has a (1,1)-absolute functional calculus on Cα,00 (T; X).

Now if B is a closed operator on X then B induces a closed operator B̃ on Cα,00 (T; X)
defined by

(B̃u)(s) = Bu(s) u(s) ∈ Dom(B), 0 ≤ s ≤ 2π.
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Now A + B̃ is invertible if and only if the operator

u →
∑

k∈Z

(ik + B)−1û(k)eikt

extends to a bounded operator on Cα,0
0 (T; X). By an elementary smoothing argument

this is equivalent to the boundedness of the same operator on Cα(T; X). In view of
the discussion of [2] we obtain from Theorem 7.5:

Theorem 8.2 Suppose 0 < α < 1. Suppose B is a closed operator on X such that
Sp(B) ∩ iZ = ∅. Suppose

sup
k∈Z

|k| 1
2 ‖(ik + B)−1‖ < ∞.

Then the equation

u′(t)+ Bu(t) = x(t) u(0) = u(2π)

has a unique mild solution u ∈ Cα(T; X) for every x ∈ Cα(T; X).

Here a mild solution is interpreted in the sense described in [2]. In [2] the same result
is obtained with the exponent 1/2 replaced by 2/3, using Fourier multiplier methods.
However, for spaces X of nontrivial type they also obtain the same exponent 1/2.

If we consider the same problem in C(T; X), then a similar argument gives the fol-
lowing (in this case the differentiation operator no longer has an absolute functional
calculus on C0(T; X)):

Theorem 8.3 Suppose B is a closed operator on X such that Sp(B)∩iZ = ∅. Suppose

∑

k∈Z

‖(ik + B)−1‖2 < ∞.

Then the equation

u′(t)+ Bu(t) = x(t) u(0) = u(2π)

has a unique mild solution u ∈ C(T; X) for every x ∈ C(T; X).

Notice that this condition is weaker than ‖(ik + B)−1‖ = O(k− 2
3 ).

We can also consider second-order equations of the type

−u′′(t)+ Bu(t) = x(t) u(0) = u(2π), u′(0) = u′(2π)

and derive similar results using Theorem 7.8.
The preceding discussion can easily be extended to the non-periodic case. In this

case we treat the space C0(R) of continuous functions vanishes at infinity and we
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obtain that the differentiation operator has an absolute functional calculus on the little
Hölder spaces Cα0 (R; X) of Hölder continuous functions u : R → X vanishing at
infinity and such that

lim|t−s|→0

‖u(t)− u(s)‖
|t − s|α = lim|t−s|→∞

‖u(t)− u(s)‖
|t − s|α = 0.

Let us conclude by mentioning another family of examples where our results
apply. Let X be an arbitrary Banach space and N ∈ N. Let � denote the Lapla-
cian −∑m

j=1 ∂
2/∂x2

j . Then −� (as the generator of the heat semigroup) defines a

sectorial operator on Lq(R
N ; X) for 1 ≤ q < ∞.

If we let A = I − � then the spaces D(Am) for m ≥ 1 are the Sobolev spaces
W 2m

q (RN ; X). Thus for 1 ≤ q, r, s < ∞
(

Lq(R
N ; X),W 2m

q (RN ; X)
)

s/2m,r
= Bs

q,r (R
N ; X)

is a Besov space [1]. It follows that I − � has an absolute functional calculus on
the Besov space Bs

q,r (R
N ; X) by Theorem 5.5; this may also be seen directly from

the definitions of these spaces [16]. (If we replace I − � by −� we have that −�
has an absolute functional calculus on the corresponding homogeneous Besov space).
Fourier multiplier results on Besov spaces are discussed by Amann [1] and Girardi
and Weis [16], where it is shown that in contrast to the standard L p-cases one does not
need R-boundedness assumptions in the hypotheses of these results. These results do
not follow from our results but do reflect the fact that I −� has an absolute functional
calculus on these spaces.
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