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Abstract We study sectorial operators with a special type of functional calculus,
which we term an absolute functional calculus. A typical example of such an operator
is an invertible operator A (defined on a Banach space X) considered on the real inter-
polation space (Dom(A), X)g p where 0 <6 < land1l < p < oco. In general the
absolute functional calculus can be characterized in terms of real interpolation spaces.
We show that operators of this type have a strong form of the H°°-calculus and behave
very well with respect to the joint functional calculus. We give applications of these
results to recent work of Arendt, Batty and Bu on the existence of Holder-continuous
solutions for the abstract Cauchy problem.

1 Introduction

Let A be a sectorial operator on a complex Banach space X with domain Dom(A). It
is a well-established principle that the properties of A improve when A is considered
as an operator on the real interpolation spaces (Dom(A), X)g,p Where 0 < 6 < 1
and 1 < p < oo. Examples of such properties are H°°-calculus and joint functional
calculus, which are defined below. This idea goes back to Berens and Butzer [4] and
Da Prato and Grisvard [13] (see also Lunardi [21]). A typical recent result is that
of Dore [14] who shows that if A is invertible then A has an H-calculus on the
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260 N. J. Kalton, T. Kucherenko

interpolation space (Dom(A), X)y,pwherel < p <ooand0 < 6 < 1. Seealso [15]
for the non-invertible case, where Dom(A) is replaced by Dom(A) N Ran(A).

Let us recall that a sectorial operator A of type v = w(A) on a complex Banach
space X is a closed one—one operator with dense domain and range satisfying an
estimate

ARG, ANl = Cy, [argr|l = ¢

whenever ¢ > w. If f € H®(Xy) is bounded and analytic on the sector X4 = {z €
C\{0} : |argz| < ¢} for some ¢ > w we can define f (A) as a densely defined closed
operator. We say that A has an H°(X4)-calculus if for every f € H®(Xy), f(A)
extends to a bounded operator and we have an estimate

(A = ClifllHoesy)-

We then let wy (A) be the infimum of all such ¢ (in general wy (A) > w(A)).

Itis an important observation that the theory of sectorial operators on a Hilbert space
is, in general, simpler and more easily applicable than in general Banach spaces. This
is mainly due to a characterization of Hilbert spaces as certain interpolation spaces
related to an operator with H°°-calculus. Therefore, let us focus on sectorial operators
with H°-calculus on a Banach space. Such operators were first studied by Mcin-
tosh in the special setting of Hilbert spaces [22]. Let D(A) denote the completion of
Dom(A) under the norm x — ||Ax| and let R(A) = D(A™Y). In [3], it was shown
that a sectorial operator A on a Hilbert space has an H°-calculus if and only if X can
be identified with the complex interpolation space [D(A), R(A)]1/2, which coincides
with the real interpolation space (D(A), R(A))1/2,2, These results are proved using
certain quadratic estimates, for which there is no analogue in a general Banach space.

As another example, consider the joint functional calculus developed in [18]. Sup-
pose (A, B) are two commuting sectorial operators and that A has an H*°-calculus. If
oA > wH(A) and ¢ > w(B) then for f € H® (X4, x Zgg) the operator f (A, B)
is bounded provided the collection of operators { f (w, B); w € Xy} is R-bounded
(see [18] for the definition). R-boundedness may not be easy to verify in a concrete
situation. Hence, it is important to know when a simpler condition suffices. If X is a
Hilbert space then requiring R-boundedness reduces to the much easier condition that

supf{l| f (w, B)|l; w e Xy} < 0. (1.2)

In [18] (Theorem 7.1), it is however shown that for certain other special Banach spaces
the R-boundedness assumption can also be replaced by simple boundedness; this holds
for example if X = Lj.

The aim of this paper is to provide a framework to understand the special properties
of a sectorial operator A which allow us to prove a joint functional calculus result with
only a boundedness of the type (1.1); it turns out that this has a strong connection
with real interpolation methods. We introduce the concept of an absolute functional
calculus, which is significantly stronger than an H*°-calculus.
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Operators with an absolute functional calculus 261

Suppose A is a sectorial operator of type w and that ¢ > . We recall that Hy® (Z)
consists of all those functions f € H®(X4) which obey an estimate of the type
[ f(2)| < C|z|¢(1 + |z|)~%¢ for some € > 0. Then A is said to have an absolute func-
tional calculus if there exists ¢ > w and g, h € H3® (%) so that for some constant C
we have the implication

IhtAgtAX| < IgtAYI, 0<t<oo = IIx|| =Cllyl (1.2)

for x,y € X. If A has an absolute functional calculus then A automatically has an
H °°-calculus and a boundedness condition of type (1.1) becomes sufficient in the joint
functional calculus (Theorems 4.2 and 6.4).

In practical situations, it is more natural to make an explicit choice for g, h in
(1.2). Let us write ga h(z) = 22(1 + 2~ P for a, b > 0. We will say that A has an
(a, b)-absolute functional calculus if

9a+s.b+s CAXII = llgaptAYI, 0 <t <oo = [x| =Cllyll  (1.3)

This is a somewhat more restrictive concept (see Proposition 4.3 and the example fol-
lowing). However, this concept fits very naturally with interpolation theory. To make
this more precise, let (Wp, W) be a Banach couple; we say that an interpolation space
W is a strict real interpolation space if it is K-monotone of quasi power-type and
regular (cf. [8] and Sect. 2, Proposition 2.3 and Theorem 2.4).

Let A be a sectorial operator on the Banach space X. We show (Corollary 5.6)
that if Y is any strict real interpolation space for a couple (D(A?%), D(A")) where
o < 1 then A has a (c, ¢)-absolute functional calculus on Y for some ¢ > 0. Then
in Theorem 5.8, we show that if X is a strict real interpolation space for the couple
(D(A~?), D(A?)) then A has a (c, c)-absolute functional calculus for some ¢ < a+b
while conversely if A has an (a, b)-absolute functional calculus then X is a strict real
interpolation space for the couple (DA™, D(AY)) for anya’ > aandb’ > b. Thus
having an (a, b)-absolute functional calculus (for some a, b > 0) is roughly speak-
ing a characteristic property of spaces obtained by strict real interpolation methods.
Typically this applies when considering standard differential operators on a space of
Besov type which are reached by real interpolation between Sobolev spaces.

In Sects. 7 and 8, we illustrate an application of these ideas by discussing the ques-
tion whether the equation Ax + Bx =y is well-posed when A is a sectorial operator
with an absolute functional calculus and B is a closed operator which commutes with
A. Our main goal for these sections is to extend and improve some results of Arendt
et al. [2]. Let T denote the unit circle (= [0, 27r)) and suppose 0 < o« < 1. Let
C*(T; X) denote the space of X-valued a-Holder continuous functions on T. Arendt
et al. proved that if B is a closed operator on X with Sp(B) NiZ = ¢ satisfying the
condition

ik +B)~t) < ck2/3
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then the equation
u'(t) + Bu(t) = x(t), u(0) =u2n)

has a unique mild solution u € C¥(T; X) for every x € C*(T; X). A special case of
our results shows that the exponent 2/3 can be improved to 1/2; this was shown in
[2] only under the additional assumption that X has nontrivial type. The key reason
for these results is the observation that the differentiation operator has an absolute
functional calculus when considered on the space of functions of mean zero in the
little Holder space CS"O(T; X). Our argument is based on the fact that Cg"o(’ﬂ‘; X) can
be identified with the interpolation space (Co(T, X), D(A))a.c0-
The results of this paper were announced in [17].

2 Banach function spaces and inter polation spaces

In this section, we review important facts about Banach function spaces and interpo-
lation.

Consider the measure space (0, co) with measure dt/t. Let Lo(0, oo) denote the
space of all measurable functions on (0, co) where functions coinciding almost every-
where are identified; let Coo(0, oo) denote the subspace of essentially bounded func-
tions of compact support in (0, o0). Lo is a Hausdorff topological vector space under
the topology of convergence in measure on sets of finite measure. We denote by
Ds: Lo — Lo the linear map Dsf (t) = f(t/s). Let E be a linear subspace of Lg
equipped with a norm | - ||g so that E is a Banach space. We shall say that E is a
Banach function space if the following conditions hold:

(i) Coo(0,00) C E.
(if) If f € Ethen f is locally integrable.
(iii)  If f, g are measurable functions with | f| < |g| a.e.and g € E then f € E and

Ifile <lglle.
(iv) Theinclusion E < Lg is continuous.

We say E is admissible if, in addition, we have

(v) Foreachs e (0, co) the operator Dg : E — E is bounded.
(vi) Coo(0, o) is dense in E.
Sometimes for convenience we will use the notation

Ifle=1fM®Ier

to indicate the variable.
For an admissible space E the Boyd indices are defined as

. log || Ds||

= limsup ———
Pe s—>oop logs
log |D

ag = liminf 291! Psll
s—0 logs
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Operators with an absolute functional calculus 263

Lemma 2.1 Let E be an admissible Banach function space. Then

1. —co<ap <PBg <
2. Ifa<agandb > B then there exists a constant C = C(E, a, b) such that

IDs|| < C max(s?, s°)

w

Ifa < ap andb > Bg thenmin(t—2,t~0) € E.

If f e Ethenlim; oo || f x0r-1) + fXt.00)lE = 0.

5. If fn € E aresuchthat sup, | fn| € E and f(t) convergesto f (t) uniformly on
compact subsets of (0, co) then limp_, » || f — fullg = 0.

>

Proof (1) and (2) are standard and we omit them. For (3) observe that x[1,2; € E and
hence so does >°,,.z Min(2~"&, 27M0) y o0 gniay.
(4): given € > 0 we can pick g € Cpp with || f — g|le < €. Now

limsup | f xor-1) + fxt.00)llE < € +1liMsUp IGx o r-1) + Ixr.o0)llE = €.
r—o00o r—o0

For (5) notethat | f| < g =sup,,| fn] € Esothat f € E. Thenforanyl <r < oo
we have using (iii) that

nll)”go I(F = f)xp-1lle = 0.
Choose 1 < ryy 4 oo so that

nll[go ”(f - fn)X[rnfl’rn]”E = 0.
Then

ICF = fn) = (F = Ty e = 209 = 95, 18
and so using (4) we have limn_. || f — falle = 0. .

We now give a few examples to illustrate our setup.
(i) If E = Lp(dt) we have ||Dsfll = (J3~ |f(t/s)|Pdt)/P = sV/P||f|| and so
I Ds|| = s'/P. Hence, e, = B, = 1/p.
(i) If E = Lp(dt/t) then [Dsf | = (Jo° | f(t/s)|Pdt/t)L/P = || f| and ||Dsf| =
1. So in this case we have ag = Bg = 0.
(iii) If E = Lp(t=?Pdt/t) for @ e (0,1) then |Dsfl| = (f5° | f (t/s)[Pt=0PUL)L/P
=s? f|land |Dsf| =s?. Soin this case we have ag = Bg = —6.

Let us denote by

L3 = {f € Lo(Ry, dt/t) :esssup t 3 f(t)| < oo}, | fllLa = esssupt=2|f(t).

@ Springer
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In the case a = 0, we have L, = L%, . These are Banach function spaces satisfying
| Dsll = s~@ but are not admissible because Cyp fails to be dense. However, we can
define [go to be the closure of Copp in L2, and this is admissible.

We recall that a pair of Banach spaces (Xg, X1) is called a Banach coupleif Xg, X1
are both continuously embedded in a Hausdorff topological vector space V. A Banach
space X also continuously embedded in V is an intermediate space if Xg N X3 <
X < Xg 4+ X1. An intermediate space X is called regular if Xg N X3 is dense in X.
An intermediate space X is an interpolation space for the couple if for every linear
map T : Xp + X3 —> Xg + X1 which restricts to a bounded operator on Xg and X1
is also a bounded operator on X. In this case, we get an estimate

ITIx < Cmax{[ITlIxe, ITlIx,}-
The K-functional for the couple (Xp, X1) is defined by
K(t, x) = K(t, x; Xo, X1) = inf{[|Xo[ xo + tlIXellx; : X = X0 + X1}.

Itis easy to check that for fixed x the functiont — K (t, X) is increasing and concave
forand each x — K (t, x) gives an equivalent norm on the sum space. An intermediate
space X is called K-monotone or a real interpolation space if for some constant C we
have that if y € X and x € Xp + X,

K, x) <K@y, 0<t<oo, = xeX and |X[lx <CJylx. (2.4)

It is immediate that every K-monotone intermediate space is an interpolation space.
If E is a Banach function space containing min(1, t) then we can define X =
(Xo, X1)E to be the space of all x € Xg 4+ X1 such that K (t, x) € E with the norm

[XlIx = 1K X)Et-

This is clearly a K-monotone interpolation space. It is a fundamental result of Brudnyi
and Krugljak [8] that every K-monotone interpolation space is (up to equivalence of
norm) of this form and that E can be chosen to be an interpolation space for the Banach
couple (L, Léo). This in turn means that by interpolation —1 < g < Bg < 0. The
key ingredient of this result is the following principle of K-divisibility fits proved by
Brudnyi and Krugljak ([7,8]) and later refined in [10-12].

Theorem 2.2 Thereis an absolute constant y < 6 with the following property. Sup-
pose (Xp, X1) isaBanach couple. Suppose x € Xg+ X3 and K (t, X) < Zﬁil Y (t)
for all t > 0, where each v (t) is a positive concave function on (0, o) and

> ne1¥n(l) < oo. Then there exists a sequence of elements {X,} C Xp + X1 such
that x = D071 Xn in Xo + X7 and

K(t, Xn) < yyn(t)

fort >0andn e N.
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Operators with an absolute functional calculus 265

For the choice E = L (t~?Pdt/t) where 0 < 6 < 1and 1 < p < oo as in (iii)
above we get the (6, p)-methods. If we take E = Lgo we get the (6, co)-method; if
we take E = I:ZO we get the inner (6, oo)-method. These methods were originally
introduced by Lions and Peetre [20].

A K-monotone interpolation space X is said to be of quasi-power type (respectively,
admissible quasi-power type or a strict real interpolation space) if we can choose E
to satisfy the condition —1 < ag < Be < 0 (respectively, to be admissible and satisfy
—1<OlE§/3E<O).

Proposition 2.3 If (Xp, X1) is a Banach couple then any strict real interpolation
spaceisregular.

Proof Let X = (Xp, X1)g is a strict real interpolation space where E is admissible
and —1 < ag < Be < 0. Then for x € X we have that > o2, K(t/2",x) € E
and > o2, 27"K(2"t, x) € E. Note that by the monotonicity and concavity of the
K-functional these series must converge uniformly on compact subsets of (0, co). For
n € Z, letus write X = up + vy where up € Xo, vp € X and [lunllx, + 2™ lvnllx, <
2K (2", x). Then yp = Up — Un_1 = vp_1 — vp € Xp N Xz and

Iynllxo < 2K Q2" %), [Ivnllx, < 4.27"K2", x)

+2.27"K (2", x) < 6.27"K (2", x).
Thus
K(t, yn) < 6min(l, 27 "HK 2", x), neZ.
It follows that

Z K(t, yn) < 62 min(1, 27 "t)K (2", x) < 122 min(1, 2" K (2"t, x).

nez nez nez

In particular >, ., K(t, yn) € E.
The sequence Z|n|zN K (t, yn) converges uniformly to 0 on compact subsets of
(0, o0) and hence by Lemma 2.1 we have

Jim ol > K yn)le =0.

nI=N
Thus the sequence (Z,';‘Z_N Yn)R—1 converges in X. Note also that

lim Jlunlix, <2 lim K2",x)=0
nN——o00 nN——o00o
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and
lim Jlunllx, <2 lim 27"K 2", x) = 0.
n—oo n—oo

Hence >, .7 Yo = X in Xo + Xy so that x € X. O

Theorem 2.4 Let (X, X1) be a Banach couple and let X be an intermediate space.
Then the following conditions on X are equivalent:

(i) Xisaquasi-power type interpolation space for (Xp, X1).
(ii) Thereexists0 < § < 1/2 and aconstant C sothatif y € X, X € Xp + X1 and
s> 0,

K(,x) <K(st,y), O<t<oo — xeX
and |x||x < Cmax(s'™, ") |ylx. (2.5)

If, further X isregular then (ii) is equivalent to
(iiiy Xisasdtrict real interpolation space for (Xg, X1).

Proof (i) = (ii). Suppose X = (Xp, X1)g Where E is an admissible function
space with —1 < ag < Bg < 0. Choose —1 < a < ag and Bg < b < 0. Suppose
y € Xand X € Xg + X3 are such that K(t, x) < K(st, y) for some s > 0 and all
0 <t < oo. Since K(t, x) < K(st,y) forallt > 0and K(st, y) € E we conclude
that K (t, x) € E and hence

IXlIx = IIK(t, x)lle < IK(st, e < IDyslellKt, y)le
< Cmax(s 3,57 |y|x.

Choosing § = min(—b, 1 + a, 1/2) we obtain
IXIx < Cmax(s'?,s)lylx.

(i) = (i). We define E to be the space of f € Lo, + L1 such that there exist

: 1-5 &8
Xj € X, sj > 0 with Z‘j’il max(s;~°, s) X[l < oo and

o0
1f O] <D K(sit.x)  0<t <o (2.6)
j=1
We define
o0
Iflle = inf D" max(s;~, )l 2.7)
j=1

where the infimum is taken over all representations of the form of (2.6).
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Operators with an absolute functional calculus 267

Now if x € X itis clear that K(t, x) € E and ||[K(t, X)||le < [IX||x. Conversely if
X € Xo + Xy and K(t, x) € E then we can find y; € X and sj > 0 with

o0
> max(si ™, sHlyjll < 2IK @, x)le
j=1

and

o0
K(t.x) < > K(sjt.yj) 0<t<oo.
j=1

By the Principle of K-divisibility (Theorem 2.2), for some absolute constant y we can
write X = Z‘j’ozl Xj in Xo + X1 where

K, xj) <yK(jt,y)) 0<t <oo.

Thus xj € X and |xj[lx < Cy max(s}*a
2Cy K, X et

Now suppose f € E ands > 0. Then we can find s; > 0 and xj € X so that

,sf)||yj Ix and so x € X with ||x||x <

o
)] < D K(sjt.xj) 0<t<oo

j=1
and
o0
> max(s' . ) [xjlx < 2| fle.
j=1
Now
o0
1ft/9)] < D K(sjsTHt.xj) 0<t<oo
j=1
and so

10sfle = 11 /9l = > max ((5577) " (s57)") 1

j=1

o0
< max (35‘1, 5‘8) > max (sjlfa, sf) 1 1l.
=
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268 N. J. Kalton, T. Kucherenko

This implies || Ds|le < max(s’~1, s7%), and using § < 1/2 we get
d—1<oag <P <-4

(if) = (iii) when X is regular. We show that E constructed in the previous proof
is admissible. This requires only that Cqg is dense in E and for this we only need show
that if x € X then K (t, x) is in the closure of Cyg. First for ¢ > 0 pick y € XgN Xz so
that |[x —y|lx < e. Then ||[K(t, x) —K(t, y)||e < €. However, K(t, y) < Cmin(1,1t)
for some constant C. Now for > 1 we have

1Kt Y)x0,0-1 e < ClIMIn(L, x0 .1 lle < Ct HixowllE

and

IK(t, Y)x(r.00) e < CID:lEl X100 I1E < CMax(z®~t, 770 x(w00)llE-
It follows that lim; o [[K(t,y) — K, Y)x,-1lle = 0 and hence that
lim SUP; 0 K, x) — K(t, X)X[ffl,z]”E < €. O

3 Sectorial operators

We employ standard notation from Banach space theory. Throughout, X denotes a
complex Banach space.
A sector of angle 0 < ¢ < 7 in the complex plane is the open set defined by

¥y = {2 € C\{0} : |argA| < ¢}.

A closed operator A on X is called sectorial if:
(i) Ais one-to-one.
(if) The domain Dom(A) and the range Ran(A) are dense in X. o
(iii) There exists 0 < ¢ < 7 so that the spectrum Sp(A) is contained in X4 and one
has the resolvent estimate:

IAR(, Al <C, 1€ C\Z. (3.8)

Notice that this definition does not require A to be invertible. It follows from this
definition that A~1 is also a sectorial operator. We define the angle of sectoriality of
A by letting w(A) be the infimum of all ¢ so that (3.8) holds.

We denote by H®° (%) the space of all bounded analytic functions on the sector
X where 0 < ¢ < m. We define H3°(X,) to be the space of all f € H*°(X) which

obey the estimate of the form | f (2)| < C#‘;)% with § > 0.
If a, b > 0 we defined
a

@a,b(2) = A+ 28’

This function is in H3° (%) for every choice of 0 < ¢ < .
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Forany ¢ > w(A) suppose f € H3°(Zy). Then, we can define f (A) as a bounded
operator by a contour integral i.e.,

1
f=o / FORE. A de. (3.9)

ry,

where ¢ > v > w(A)and I', = {|t]e 16DV . _so <t < oo}. Notice that we get
an estimate:

ds

5 (3.10)

o
XA =< C/ | f (€ ISV
—00

whereC = C(v, A). Themap f — f(A)isanalgebrahomomorphismfrom H5* (%)
into £(X).
The following Lemma will be used many times in the sequel:

Lemma3.1 Suppose a, b>0and f,g € H*(X4) where ¢ > w(A). Suppose that
f.g satisty [f(2)] <[22+ [z)73P and |g@)| < 2% A + |2)"¥ " where
a,a’, b, b > 0. Then there existsa constant C = C(A, a, b, &', b’) so that

Cumin(@.b’) t>0, O<u<1, a#b
Cu(l+|logu) t>0, O<u<l a=V
f(UtAgEA)| < o =
ITUtAgEA < Cuy~Mmin@.b) t>0, 1<u<oo, @#b

Cu™®@+|logu)) t>0, l<u<oo, & =h.

Proof By (3.10) for some ¢ > v > w(A) we have

o
[ futA)g(tA)| <C / | f (use™ ”39“<S>)g(se—ivsgn(8))|%5|
—0o0

o0
/ oy dS
< Cua/ s2ta (1 4 ys)~ @b (1 4 g~ @+) <
0

Suppose u > 1. Then since (1 4 us)~ @D (1 4 5)=@+b) — 1 we have,

T u-?t

/ §?Ha-1(1 4 us)~@+D) (1 4 5)~@ (s < / s+ —1ds =
0 0

1
a+a

—a—a’

u
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270 N. J. Kalton, T. Kucherenko

Since (1 + us)~ @D < (us)=@+b) e get

1 1
/ Sa+a’—l(1 + us)—(a+b)(1 + S)—(a/—s-b/)ds < y—@tb / Sa/—b—ldS
u-1 u-1
B [ﬁ(uab —u @) ifa £b
~|u@Ploguifa =b

For the last integral we also use that (1 4+ s)~@+b) < g=@+b)

o o0

/sa+a/_l(1 +us)~@) (1 4 5)~@+b)gs < u‘(a+b)/s‘1‘b‘b/ds _ L e
b+b

1 1

Since u > 1, we have u=2 < y—Min@.b) gng y=b < y=MiN@.b) Therefore for a
suitable constant C > 0, we obtain the last two estimates. If u < 1 we observe that
f (UtA)g(tA) = f(sA)g(u~LsA) where s = ut. Combining these two estimates we
obtain the Lemma. O

If f € H®(X,) then (3.9) does not necessarily converge as a Bochner inte-
gral. However for every g € Hg°(X,) we can define the operator (fg)(A). Now if
x € Dom(A) NRan(A) then x = ¢1,1(A)y for some y € X. Therefore, we can define

f(AX = (f LD (A)Y.
If we assign

1
n+z 1+nz

vn(2) =

then vn(A) = (n — HAR(—n, A)R(—%, A) maps X into Dom(A) N Ran(A) and it
may be shown that (fvn)(A)Xx = f(A)vn(AX. If sup, [[(vn T)(A)|| < oo then we
can define

f(A)X = nlijgo(”” fY(A)x xe X

as a bounded operator. This is equivalent to the fact that f (A) satisfies an estimate
I f(A)X] < CJx| x e Dom(A) NRan(A).

As an alternative way to view this procedure, one can densely define f (A) by

f(A)X = %/ f(£)c 2 AZR(z, Axd:, x € Dom(A) NRan(A) (3.11)
T
r,
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where A? R(¢, A) is a well-defined operator since 77 (¢ — 271 belongs to H5° (Z¢)
where w < ¢’ < v. Then f(A) extends to a bounded operator if one has a norm
estimate

I f(AX| < C|x|| x € Dom(A) NRan(A).

If f(A) is bounded for all f € H> (%), we say that A has H>(X)-calculus.
We then have an estimate

[TAN<Clfliem, feHT(Zg).

We can define the corresponding angle of H°°-calculus by letting wy (A) be the infi-
mum of all ¢ so that A has an H°°(X4)-calculus. See [9, 18] for details.

We now describe an abstract framework for defining operators f (A) for more gen-
eral analytic functions. Let us define the bounded operator T = ¢1 1(A). Then it is
possible to define a linear space X' containing X so that T extends to a linear bijec-
tion on X'. Indeed let )V be the space of sequences (xn);Z, Where X, € X so that
Txn = Xn41 eventually. Let X be the space obtained by factoring out the subspace
of all (xn) so that x, = 0 eventually. Then X can be identified with the subspace
generated by the sequences (T"x)3%, where x € X and T extends to the operator
induced by the shift (x,)5%y = (Xn+-1)72- Notice that X = US® T ~™X. In concrete
situations where X is already embedded in some topological vector space V (e.g., a
space of distributions) on which T is an isomorphism we can simply identify X with
U oT-MX C V.

Now suppose f is an analytic function on X4 where ¢ > w(A) which satisfies

|f(2)| < Cmax(|zZI™, |z2™™) ze€ =y

where m € N. Then f (A)T" is a well-defined bounded operator if n > m+ 1 and we
can induce an operator f (A) on X by putting

f(A)(Xn)nZo = (Yn)neo

where y, = f(A)Xp if xp € T™1(X) and 0 otherwise. Then if Dom f (A) = {x €
X f(A)x e X} f(A) defines a closed operator on X which becomes a bounded
operator if Dom f (A) = X. Itis easy to show that the map f — f (A) is an algebraic
homomorphism into the algebra £(X) of all linear maps on X.

If —oo < 0 < oo, we thus may define the fractional powers A°. A° is one-one
with dense domain and range on X; it is sectorial if and only if |o|w(A) < 7 and
then w (A%) = |o|w(A). We define D(A?) as the space A% (X) C X under the norm
X — ||A?X]|. Then Dom(A?) is dense in D(A?).

We now generalize these ideas to operator-valued analytic functions, following
ideas in [18]. We denote by A the algebra of all bounded operators which commute
with R(x, A) for all A in the resolvent set. For w(A) < ¢ < 7, we define H*(Zy, A)
as the space of all bounded analytic functions F : X4 — A, so that for every x € X
the map z — F(2)x is analytic (i.e., F is analytic for the strong operator topology).
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We consider the scalar space H>* (%) embedded as a subspace of H> (X, .A) viathe
identification f — f1.We denote by H® (X, A) the space of all F € H* (X, A)
which obey an estimate of the form ||F (2)|| < Cgs.5(|z|) for some § > 0.

We can then define F (A) for F € H7°(Zy) by the same formula:

1
f =5 / F(ORE A de, (312)
7l
Iy

where T, = {|t|e7 9"V © 00 <t < o). If F € H®(Z4) we similarly define
F (A) as a closed operator with dense range which is bounded if we have an estimate

IF(AX] < Clx|| x € Dom(A) N Ran(A).

4 Operatorswith an absolute functional calculus
Let Abe a sectorial operator on X. We say that A has an absolute functional calculus
if there are functions g, h € H3°(XZy) where ¢ > o (A) so that for some constant C
we have the following implication
[ThtA)gtAX] < l9tAYl 0 <t <oo = x| < Cllyl. (4.13)
It we pick § > 0 so that h(z)/¢;,5(2) € Hy°(Zy) it is clear that we may replace
h by ¢s.s in this definition. We say that A has an (a, b)-absolute functional calcu-

lus if (4.13) holds for the the choice g(z) = ¢a n(2). Thus A has an (a, b)-absolute
functional calculus if for some § > 0, C > 0 we have

@ats,brs CAXI < llpabtA)YI 0 <t <oo = Ix| =Clyl. (4.14)

Let us first show the following elementary fact:

Proposition 4.1 If Aisan invertible sectorial operator satisfying (4.14) then for any
to > 0 thereexists C1 = C1(fp) so that

lpatsbrs CAXI < lleabtA)YI 0 <t =<to = [IX| =Callyl. (4.15)

Proof There is a constant C; so that for t > to we have [|S |, IS, I Tell, 1Ty 2 <
C, where

S = t(a+b) A(a+b)(1 + tA)_("’H‘b), T = ta+b+25 Aa+b+25(1 + tA)—(a+b+25)_
Thus we have
Ity * 2 Ty A™P=0x | < 1ty P S APyl
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which implies that
I|A2=x] < CEt I APyl
Now if t > tg we have

I @atsbis CAX] = [[Te(t~ P+ A=BHE)x
< Cot P8 ATy
< G5t Ay
= C3(to/V’ IS pantAY
< CHllgantAYI,

and the Lemma follows with C; = CC3. o
First, we establish that if A has an absolute calculus then it has an H*-calculus.

Theorem 4.2 Supposethat Aisa sectorial operator on X with an absolute functional
calculus. Then A hasan H*-calculus and wnH (A) = w(A).

Proof Fix any ¢ > w(A) so that g € HF°(X,) (where g, h are the functions in
the definition of the absolute calculus). Suppose f € H(X4). Notice that for an
appropriate contour I', with w < v < ¢ and X € Dom(A) N Ran(A),

IhtA) f(AX] < (27[)71/ Ihts) f (R, A)x|diZ]
ry

d
SCIIfIIHw(z¢)/Ih(té)(i)l%llxll
r

d
SCIIfIIHOO(E¢)/|h(tC)|%|lxll
T

=< Cli fllsolIxll
Now it follows that
IhtAgEA) f(AXII < Cll fllHeosy) IGEAXIT X € Dom(A) N Ran(A).
Thus, we have an estimate
I CAXI = CllflHoe sy X X € Dom(A) N Ran(A)

and A has an H°(X)-calculus. O

We now turn to examples. First let X be a space with an unconditional basis (€y)ne7.
Define the sectorial operator A by

AX = Z 2"e* (x)en

nez
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with the natural domain {x : >" . 2"€;(x)e, converges}. Then A has an H>°-calcu-
lus and wy (A) = {0}.

Proposition 4.3 A has an absolute functional calculus.

Proof Since {2"} is an interpolating sequence in any sector ¥,, we can find g €
H§®(Xy) such that g(1) = 1 and g(2") = 0 for n € Z\{0}. Suppose x, y € X and

lgtA?x| < gtAy| 0 <t < cc.

Then taking t = 27" for n € Z we have
& x)| < |ey] nez
and so
IxI < Clyll

where C is the unconditional basis constant. O
Example Suppose X is the space of sequences with the norm

1/2 1/p

D =D 1g17) D] &l

JEZ JEZ JEZ

where {e,} isa canonical basisand 1 < p < 2. Then Acannot have an (a, b)-absolute
functional calculus for any a,b > 0. In fact if we lety = e, + e + --- + &5 and
X=-¢€ +6e+---+ epy_1 itiseasy to verify that

leab®AX] < CllgabtA)yl 0 <t <oo

where C = C(a, b) is an absolute constant independent of n. This implies that for any
given § > 0 we have

ll9ats.b+s CAXII = Cslleap®AYl 0 <t <oo

since {s 5 (t A)}t>0 is a uniformly bounded family of operators. However ||y|| = nl/2
and ||x|| = nl/P.

Part of the motivation for the study of operators with an absolute functional calculus
is the fact that for certain Banach spaces a sectorial operator has an H-calculus if
and only if it has an absolute functional calculus.

Theorem 4.4 Let X bea Hilbert space and let A be a sectorial operator on X. If Ahas
an H°°-calculus then A has an (a,b)-absolute functional calculusfor any a, b > 0.
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Proof This is essentially due to Mclntosh [22] (or see [3]). It is an immediate conse-
quence of the fact that if a, b > 0 we have an equivalence:

00 1/2

dt

IIX|| ~ /||§0a,b(tA)X||2T
0

]

Corresponding results hold for sectorial operators on Li- and C(K)-spaces, and
these are essentially contained in [18]. Recall that a Banach space X is a GT-space if
every bounded operator T : X — £5 is absolutely summing, i.e., there exists K > 0
such that

n n
DTl < K max || onxll
k=1 a=tl T

for every collection X1, ..., X, € X. Important examples of GT-spaces are L1 and
L1/Hj (see [5,6,23]). Examples of spaces for which the dual is a GT-space are C(K)
and the disc algebra A(D).

Theorem 4.5 Let X be a Banach space so that either (i) X isa GT-space, or (ii) X*
isa GT-space. Suppose A isa sectorial operator on X with an H*°-calculus; then A
has an (a, b)-absolute functional calculus for every a, b > 0.

Proof (i) The proof of Proposition 7.1 of [18] gives that
T dt
I ~ / ||<Pa,b(tA)X||T~
0

Note here that it is not necessary to assume X has cotype two, since if X isa GT-space
then X has the Orlicz property [23, Chapter 6¢] and this is sufficient for (7.2) in [18].
(It is unknown whether every GT-space has cotype two.) The Theorem now follows
as before.

(i) A similar argument in this case shows that for the dual norm whenever a, b > 0,

T d
t
1~ [ leanearx| T
0
Then for a suitable constant C we have

o0
/ |@a b A X* | ? < C[x*|l, x*e X*.
0
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Suppose x € X.
o0
dt
X = C/gozaggb(tA)XT xeX
0

where ¢! = fo"o <pza,2b(t)$. Thus if ||[x*|| = 1 is chosen so that x*(x) = ||X]| we
have

o0

w s dt
Xl = ¢ [ (¢abtAX, papnt A)*X >T
0

i dt
< c(mjlg( ||<pa,b<tA>x||) < / [ean®A x| T)
0

< Ccmax [lga,b(t A)X]|.
t>0

Thus

X[l =~ max [|ga,n(t A)X||
t>0

and the Theorem follows in this case. O

5 Spaces obtained by real inter polation

Suppose Ais a sectorial operator on X and E is an admissible Banach function space.

Let0 # f € H®(Xy) where ¢ > w(A). We let Xg () be the set of x € A such that

f(tA)x € X foreveryt > 0andt — | f(tA)X||x € E and we norm this space by
IXlIxecr) = I FEAXIEr x € X

Theorem 5.1 Suppose f and g both satisfy estimates

1@, 9@ < ClzZPL+12) " ze %y

wherea > max(—ag, 0) andb > max(Bg, 0). Then Xg(f) = Xg(g) and thenorms
I~ lIxecr) and || - lIxg(g) are equivalent.

Proof Let us define f*(z) = f(Z) for z € Z4. Pickany N > max(a, b). Then
o0 o0
N dt 2 dt
f(t2)f (tZ)wN,N(tZ)T = [ [f®)] €0N,N(t)T FASII)
0 0
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and by scaling we can assume this constant is one. Now by Lemma 3.1 we have
lon,N(SLAYGEA)| < Cmin(s®, s72) st > 0.

Hence g(tA) f (st A) f*(st Aypn N (St A) is Bochner-integrable on (0, co) with respect
to ds/s and clearly

o0
g(tA) :/g(tA)f(stA)f*(stA)<pN,N(stA)d?S.
0
For x € Xg(f) we have
o
. b —a ds
gt A)x| < C [ min(s®, s™)|| f(stA)XII?
0
Thus if G(t) = ||lg(tA)x| and F(t) = || f (t A)x]| we have
o0
H b ~—a ds
G() < C | min(s”, s"%)Dg1 F(t)?.
0

The map s — Dg-1F is continuous from (0, oo) into E by Lemma 2.1. Now
IDe+Flie = Cmax (s, s™) IF e

wherea > a' > —ag andb > b’ > Bg. Thus
i d
. / ' S
IGle = CIIFIe [ min (¥, s72) &
0

which implies X € Xg(g) and an estimate

IXIIxeg < ClIXIIxe(f)-
The converse estimate follows trivially by interchanging the roles of f and g. O

We can now define Xg unambiguously as the space Xg (f) aslongas f satisfies an
estimate | f ()| < C|z|2(1+ |z]) "2 P where a > max(0, —«g) and b > max(0, Bg).

Suppose 0 > a > —ag or 0 > b > B (only one can be true since ag < Bg).
Fixy e Rsothatag +y < 0 < B + y. We can define a new admissible Banach
function space by E, = {f : t”f € E} with the norm || f|[g, = [t f|g. Then
IDslle, = s”[IDs|le and s0 ¢g, = ag + y and Bg, = Be + v.
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For a suitable choice of f € Hy*(Zy), |f(2)| < C|z]2(1 + |z|)~2P consider
g(2 =77 f(2). Then

|22~
1+ |z|)(a—y)+(b+y)

lg@|=C

and we can define Xg, (g) independent of a, band g as long as a > —ag, b > Be.
We also have

|| f tAX] = [[gtA)A’X|| 0 <t < oo

where it follows that Xg, = AV Xg.
Therefore if 0 < o or Bg < 0 choose y so thatag +y <0 < Be + y and then
work with A” Xg. It is now possible to rewrite Theorem 5.1 in the form:

Theorem 5.2 Suppose E is an admissible Banach function space and f is an analytic
function on X4 where ¢ > w(A). Suppose f satisfies the estimates

1f (@] <ClzPA+12)2P zexy
wherea > —ag and b > Bg. Then
Xe={x: ftAxe X, 0 <t <oo and | f(tAX|x € E}

and [[X[Ixe ~ Il f ¢ A)XIIxIlE-

Note here that we no longer require a, b > 0 and f (tA) is regarded as an operator
on X. Of course it is natural to take f(z) = gpapaslongasa > —ag and b > BE.

It follows that if o < g < Be < 7 then Xg(f) can be identified with a subspace
of D(A?)+D(A"). If —oo < 0 < T < ocothen the pair (D(A”), D(A")) is a Banach
couple (for the ambient space V we may take T~™(X) for large enough m under the
norm x — || T™x])).

Proposition 5.3 Supposea + b > 0. Then

b a b
K(t, x; D(A™°), D(A?)) ~ ta+b

pabtTAX| X € DA™) +D(AD),

Proof We will show that (D(A~P), D(A?)) is locally linearizable (see [24] pp.
91-107). Thus, we will exhibit operators Vg (t), Vi (t) such that V1 (t) = | —Vp(t) and

”VO(t)”D(A—b)%D(A—b) <C
VAl p(a-b) peasy < Ct2 16
||V0(t)||D(Aa)_>D(A7b) < Ct

V1 (D) lp a2y D(ar) < C.
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Then
K(t.x) = K (t, x: D(A™), D(A?)) ~ H A—bvo(t)xH Tt H Aavl(t)xH .
If @+ b)w(A) < 7 we may take
Vo(t) = tARFD(1 | { ABYD)-1

but if (a+ b)w (A) > 7 this is no longer a well-defined operator. We therefore define
a function

00 (tz)a+b dt
C Ze Xy
1

(1 + tz)2@th)

V(2 = (5.17)

1 z=0
where

ta+b—1

-1
- 1+ t)2(a+b) dt
0

and ¢ > w(A) is fixed. Note that ¢/ (z) = —cz2P=1(1 4 z)=2@+b) et

1
h(z) = c / tatb=1(1 4 tz)~2@tbg,
0

Then h is analytic on the open unit disk and h(0) = c/(a + b).
We then have:

V() =z @Phiz ) |z >1
1- 9@ =22"Ph@ |zl <1.

In particular we have that (2) — (14 2)~%, 2Py (2) — c(a+ b)~*z(1 + 2! and
7@ (1 -y (2)) —c@a+b) L+ 271 € H{(Ty). If we define

Vi) = (175 A)
then it follows that (5.16) holds. Hence
K (t, X) ~ H AP (1 —y (tﬁle)) xH +t HAaw (tﬁA) xH .
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Now let g(z) = ¥ (2)(1 + 2)@tP. Then

92 = 1+ 221 — 2tPh(2)) = 1+ O(1Z1®?) |21 <1

— a+b,—a—bp -1y _ L —(a+b)
92 =1 +2""z2 % h(z )—a+b+O(IZI ) 1zl > 1.

Thus
92— 1+2 1 —cla+b 1zl + 27t e HE(Zy)

and the operators {g(tA) : 0 < t < oo} are uniformly bounded on X.
Similarly let k(z) = (1 4 2)@tPz~@*b)(1 — y(z)). Then

C
Kk - (1 a+bh - e) (a+b) 1
@=010A+2 (2 a+b+ (12| ) |z <
k(z) = (1 + 23tz 821 — 2778 Pz h) = 1+ O(|z= @) |z > 1.

Thus the operators k(t A) are also uniformly bounded.
Hence for x € X,

Iy AX| = gt A A + tA)~@Px| < CJA +tA)~@ |
(1 — Yt A)X| = KA EAZTPE +tA)~ @Dy
< Clt AP +tA)~ @D

This leads to the upper estimate

1

K (t, x) < Ctars [as (th)HX 0<t < oo.

For the converse estimate we note that

thfﬂa,b(tA)H o IT%0abtA | p o x = C.

D(AP)—
O

Theorem 5.4 Suppose —o0 < 0 < t < oo and let Y be an intermediate space for
the Banach couple (D(A?), D(A")). The following are equivalent:

(i) Y = Xg for someadmissibleBanachfunctionspacewith—t < ag < Bg < —o.
(if) Y isastrict real interpolation space for the couple (D(A?), D(A")).

Proof (i) = (ii). If Y = Xg then letting a = r and b = —o we have
IXlly ~ IllgabtAXlIxlle ~ [t K E*P, x|

thus if we define the admissible function space F by h € F ifand only if t "°h(t3+?) ¢
E with the norm

Ihile = It °h3*P)|e
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we have
Y = (D(A”), D(A"))E.
It is readily computed that
aF =@+b) ee+0) > -1
and
Br = @+b) ' (Be +0) <0.

(i) = (). 1fY = (D(A%), D(A")F we define E = {h : tﬁﬁh(tﬁﬁ) € F} with
the norm

1

e = [i#an ),
and then
Y = (D(A”), D(A")r = Xe
and —t < ag < Bg < —o. We omit the details. O

If E is an admissible Banach function space, it now follows immediately that Ais a
sectorial operator on Xg with domain DomA|x. = {x : Ax € Xg}. In fact by inter-
polation we obtain the necessary resolvent estimates and sectoriality follows quickly
from the fact that Xg is a regular interpolation space for some pair (D(A%), D(A"Y)).

Theorem 5.5 Let E bean admissible Banach function space. Then A hasan absolute
functional calculuson Xg of type (c, ¢) for large enough ¢ > 0.

Proof Suppose a > &' > max(0, —ag) and b > b’ > max(0, Bg) with a # b. We
show that A has a (a-+ b, a+ b)-absolute functional calculus on Xg. Fors € [1/2, 2]
we consider the function

1+z 1-s sz

=1 . .
l4sz + S 14 sz

fs(2) =
Since fs(tA) is uniformly bounded for 0 <t < oo we have a uniform estimate
(I +tAL+stA Hx|| <Clix|| 1/2<s<2, 0<t < 0.
Thus we have an estimate

lgc.a(stAXlx = s fst A geat AX|
< CllgcdtAX|lx 1/2<s=<2,0<t<oo, xeX

where C = C(c, d, A).

@ Springer



282 N. J. Kalton, T. Kucherenko

Now suppose § > 0 and X, y € Xg are such that

lparbrs.arbrs(SAXIxe < llatbarb(SA)Ylxe 0 <s < oo.

Then for fixed s > 0, using Theorem 5.2

lp2a+b+s.a+2b+8 (SAIXIIx I X1s.25) Il E
< Cllllpatb+s,arbts (SA)@a bt A)X]Ix X(s,25) D I E.t
< Cllga+b+s.a+b+s(SA)@a bt AX|E t
< Cll¢a+b+s.a+b+5(SA)X xe
< Cllga+b.a+b(SA)YII xe
< Cllga+b.a+b(SA)a+s.brs tAYIEt
< Clllga,b(SA)Ygb.a(SA)pats.brs A YIIXIIE 1

() (5)\P
= CJlf|min ((g) (3) ) @abSAYIxX e

< Cllgan(sA)YlIx D min@2", 27™) | xing onigllE

nez

< Cligan(sAlx lxis2slle > min(2™, 27™) max (277, 2")
nez

< Cligab(sA)YIxll xis.2s) I E-
It now follows from the definition of Xg that [ X||xz < CllYlIxe- O

Note that if —1 < ag < Be < 0 we deduce that A has a (a, a)-absolute functional
calculus for some 0 < a < 1. Combining Theorems 5.5 and 5.4 gives us the following
Corollaries.

Corollary 5.6 Suppose —o0o < o <t < oo andletY be a strict real interpolation
spacefor the Banach couple (D(A?), D(A")). Then Ahasa (c, c)-absolutefunctional
calculuson Y for large enough ¢ > 0.

Corollary 5.7 Let Y be a strict real interpolation space for the couple (X, D(A));
then A has a (a,b)-absolute functional calculuson Y for some0 < a,b < 1, and
hence has an H-functional calculus with wy (Aly) < w(A).

If Alis invertible and Y is given by the (6, p)-method this yields a result of Dore
[14] that A has the H>-calculus on the spaces (Dom(A), X)g,p. (To be precise if
p = oo, one should use the inner (6, co)-method in order that A be sectorial on the
interpolation space).

Theorem 5.8 Let A be a sectorial operator on X. Then:

(i) If Xisadtrict real interpolation space for the pair (D(A™P), D(A?)) then A
has an (c, c)-absolute functional calculus for somec < a+ b.

@ Springer



Operators with an absolute functional calculus 283

(if) If Ahasan (a, b)-absolute functional calculusthen X isastrict real interpola-
tion space for the pair (D(A™Y), D(A?)) whenever b’ > banda’ > a.
(iii) If A has an (a, b)-absolute functional calculus and 0 # f,g € H™>(Zy)
where ¢ > w(A) are such that | f (2)|, [9(2)| < 212 1 + |z))~@ Y for some
b’ > b, @ > athen for some constant C,
[ fEAXI <llgtAYl 0<t<oo = [x|| <Clyl.

Proof (i) This is immediate by combining Theorems 5.4 and Theorem 5.5.
We now turn to (ii) and (iii). We assume that

l9a+s,brs CAXI < llpap(AYl 0 <t <oo = x| =Clyll.

First suppose a < @ <a+34, b < b’ < b+ 8. We use Theorem 2.4. Suppose
y e X, x € D(A™) + D(A?) and

K(t,x) < K(st,y) 0<t < oo,

where K (t, x) = K(t, x; D(A™?), D(AY)). We will show that x € X and we have
an estimate

ath b'-b
x|l < C max (s:’+b’ , swb’) lhyll. (5.18)

First we define a doubly infinite sequence (tn)nez. We may assume y # 0. We
define 1, for n < 0 by

= sup{t > 0: [tAd +tA)tyl| < 2" ?|y|}.

Then for n > 0 we define
m=inf{t > 0 [|(L+tA) Tyl < 27" Hy||}.

It is clear that (tn)ney IS increasing. Let

Yo = i1 A + 11 ATy — AL+ T ATy,
Then for n £ 0 we have

Iynll < 27y

and hence

Iyoll + D Ivall < 4llyll.
n#0

Thus 'y = > .7 Yn and convergence in X is absolute.
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Since K(st,y) < >z K(st, yn) we can use K-divisibility (Theorem 2.2) to
obtain the existence of x, € D(A™?) + D(A?) so that

K(tvxn) §6K(St’ yn)’ nez

and such that X = 3", ¥n in D(AY) + D(AT).
Now for each v € D(A™?) + D(A¥), and any « > a, B > b we have that
t — ¢q p(t A)v defines a continuous map from (0, co) into X.

Letr = sﬁ; then by Lemma 5.3 we have:
lpa by Al < Cr¥ lga iy (ARl O <t < o0, neZ
Then
19ats.b+s CAXnll < Cr¥llgap(tAYnll 0 <t < oo, neZ.

Now

ra(l + Z)a+b

rz) = ) ——————————.
Ya,b(r2) = @an(2) (1+rz)a+b

Since A admits an H-calculus (Theorem 4.2) this implies that

lparsbrs @ AXnll < Cr¥ maxr®, r =) gaptAynll 0 <t <oo (5.19)

We next check that each x, € X. Note that there exists a constant ¢ = c(a, b, §) so
that

r

_ dt
Xn = lim c/fpa+s,b+a(tA)Xn—
r—o0 t

1/r

where the integrals converge in X but the limit is taken with respect to the norm
on D(A™) + D(A?). However we show that t — t~ga s bys(tA)Xq is Bochner
integrable in X over (0, co). Indeed, if K = K (s) = Cr? max(r2,r ),
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o
dt dt
[ 1easostAxal T <K [ lgantAmnl
0
e’} Tn+1 d dt
u
<K [ loantA [ erawmy| T
00 Tn+l du dt
u
<K [ [ loanttAiy snllivs s omyl S
0

We now can use Lemma 3.1 to estimate

for some 6 > 0. Hence

vantAp; 1A = Cmin(t/w)’, /D)

00 Tn+l

d dt
/ lassss A S < CK / / min(t/’, /0" oy s wA| T

Tntl
=0 [ o yomy] G <o

Tn
It follows that x, € X. Hence our assumptions give that

a+b’ b'—b
1%l < Cmax (357, 535 ) [ynl, N € Z.

This implies that x = >, .z Xn € X and that

b —

a+b’ b
[IX]| < 4C max(sa+v, sa+b")||y||.

Now by applying Theorems 2.4 and 5.4 one obtains X = (D(A™), D(A?))g where
—1 < ag < Be < 0. Alternatively, X = Xg where —a’ < ag < g < I

At this point (iii) is immediate by applying Theorem 5.2. Now returning to (ii)
consider the case whena’ > a+ 8 orb’ > b+ 8. We can now replace a, bby a”, b”
wherea < @’ < min(a+4§,a’) and b < b’ < min(b + 8, b’). In view of (iii), we
replace by a s > Osothata’ < a” + 8, b’ < b’ + 8§ and then (ii) will follow in
the general case. O

Theorem 5.9 Suppose A, B are two sectorial operators such that A has an (a, b)-
absolutefunctional calculusfor somea, b < 1. AssumeD(A) = D(B)andD(A™1) =
D(B1); then B hasan (&, b')-absolute functional calculus for somea’, b’ < 1.

Proof X is a strict real interpolation space for the couple (D(A™1), D(A)). O
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To conclude we discuss the results of Dore [15]. He shows that an arbitrary sectorial
operator A has an H°-calculus on the interpolation space (X, Dom(A) NRan(A))g,p
if0 <6 <1land1 < p < oo. Note that Dom(A) N Ran(A) = D(A) N D(A™L) so
this result does not follow directly from the above theorems. However, Dore’s method
shows that we have:

Theorem 5.10 Supposethat Y isastrict interpolation space for the pair (X, D(A)N
R(A)). Then Ahasan H*®-calculuson Y with wy (Aly) < w(A).

Proof The argument used by Dore is to define B = A+ A~1 4+ 21 and note B is sec-
torial and invertible and D(B) = D(A)R(A). Furthermore, he shows (Theorem 2.3
from [15]) that (effectively)

K(t, x; D(A) NR(A), X) =~ K(t, x; D(A), X) + K(t, X; R(A), X).

There is a slight error in the exposition in [15] in the computation of ||(t1 + A)(t1 +
b)~1| but is corrected by noting that

L+ A@L+B) T=1-1+2A0+ A 2Bt +B) L

To complete the proof one observes that this implies that if Y = (D(A) N R(A), X)e
then Y = (D(A), X)e N (R(A), X)g and so since A has an H*-calculus on both
these spaces by Corollary 5.7 it also has an H*-calculus on Y. O

We note however that this proof does not show that A has an absolute functional
calculus (in contrast to the situation in Corollary 5.7). This conclusion can be reached
under a stronger hypothesis:

Theorem 5.11 Suppose A is a sectorial operator such that w(A) < 7/2. If Y isa
strict interpolation space for the pair (X, D(A) N R(A)), then A has an absolute
functional calculuson'Y.

To prove this theorem, we prove the following

Proposition 5.12 Suppose A is a sectorial operator such that w(A) < 7/2. Then

(i) B=3(A+ A™l)isasectorial operator and w(B) < /2.
(ii) For 0 < a < 1thereisaconstant C = C(a) so that

1
Ellwa,a(t B)X| < llga.a(StA)X|l + ll¢a,a(S2 A)X|l
< Cllgaa(tB)x|]| xe X, 0 <t <1,

wheres;, s; aretherootsof tz2 — 2z +t = 0.

Proof (i) Suppose %ia < 0. Then

(1-2B) 1= —%A(l —aAN - ATt
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where ¢1, ¢, are the roots of Az2 — 2z + A = 0. Note that if z+ z~1 = 2/A then
Nz < 0so that N¢y, Rz < 0.

1@ = 2B) 7 = Cl~ min (lal ™, le2l ™)
for a suitable constant C. Since |£1]| + |£2] > 2/ we conclude that
I1-aB) | <C" %1 <0

and B is sectorial with w(B) < 7/2.
(i) Let us first treat the case a = 1. We may suppose that0 < <1 < < oo.
By the argument of (i) we have

1+tB)t

2
fA(1 +sA ML+ 5A 7L

2
B(1+tB)~2 t—zA(l + AL +5A 2L +A) 2

Thus
ts 2 2.—1
p11(81A) = 7(1 + AN+ A Te11(tB).
Now since0 <t <1wemayputs; =1/ andts, < 2 and note that
11+ A0+ A <5 (1A + AT+ 2Ad + AT + A2 A+ AH7H))
so that we have an estimate
ler1(s1AX] < Crllp,1(EB)X]| xe X, 0 <t <1
On other hand
ts 2 2.—1
P11(A) = 7(1 +s1A)(L+ A "e1,1(tB).
This time we observe that ts; < 1 and that
[a+saza+ ] <c
for a suitable constant C’ since 0 < s; < 1. Thus
le1,1(2A)X] < Callp1,1(tB)X]] xe X, 0 <t <1

Combining these gives the left hand estimate in (ii) when a = 1.
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To obtain the right-hand estimate (for a = 1) we note that

P1.1(81A) + 911(SA) = (B +t2) (L +tB)2

Now B is invertible and so

P11S81A) + 911(SA) = (L +tB He1(tB)

which gives the right hand estimate.
To extend these results to a < 1 we let By = %(A"" + A ®) when -1 < a < 1.
We observe that f (A) is a bounded invertible operator where

(z+z71)?

f =
@="s

Here 1 — f(2) and 1 — 1/f(2) belong to Hy°(Xy4) as long as ¢ < 7/2. It fol-
lows that B2 = 231 (A)B; and B2 = 21721 (A)~1(By)~! and in particular
D(B?) = D(By), D(B™3) = D(ByY). We can then use Proposition 5.3 to deduce
that

le1,1@BHX| ~ llpr1(tB)X|| x € X, 0 <t < oo.

Here we use ~ to mean the existence of a constant C independent of t, x (but depending
on a) so that

CH | er1BHX| < lor1(tBa)X| < C [@r1(tBHX| 0 <t < oc.

Now suppose 0 < t < lands; = s (t), S = Sp(t) are theroots of tz2—2z+t = 0
as above. We have

lpa,a(st AXI + llpaa(S2AXI = ||@11 (STA%) x| + ”901 1(SSA%) x|
~ | (2 +) 7 Ba) x|
~ o ()7 8]
< Jvas (26 + )72 8) x|
~ |lgaa(tB)x]

since

2(sf+55) Tt
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Proof of Theorem5.11 It follows from Theorem 5.8 (i) that B = 3(A + A~1) has an
(a, a)-absolute functional calculus on Y for some a < 1. Thus using (iii) of Theorem
5.8 and Proposition 4.1 we have that

le11(tB)y1lly < llgaaB)y2lly 0 <t =1 = |yally =Cliy2lly yi.¥2 €Y.

Now suppose

ler, 1ALl < ll9aatAy2lly 0 <t <oo.

Then by Proposition 5.12 we deduce that for a suitable constant C; we have

lor,1(tB)y1lly = Cillgaa(tB)y2lly 0 <t =<1

and

Iyilly < CCally2lly.

6 Thevector-valued functional calculusfor operatorswith an absolute
functional calculus

We next discuss the vector-valued functional calculus for a sectorial operator with
an absolute functional calculus. We will first state a result which indicates that when
A has an absolute functional calculus then the main theorems of [18] hold without
R-boundedness assumptions. Later, we will need a more delicate form of this result,
and for this we will supply a detailed proof. Recall that A is the algebra of all operators
on X with commute with the resolvent operators R(x, A) for A in the resolvent set
of A.

Theorem 6.1 Suppose A isa sectorial operator with an absolute functional calculus
and F € H® (X4, A) for some¢ > w. Then F(A) isa bounded operator on X.

Proof The proof of this theorem is identical to the proof of the corresponding scalar
result, Theorem 4.2 and we therefore omit it. O

This leads to some standard applications which are quite routine.

Corollary 6.2 Suppose A and B are commuting sectorial operatorsand A has abso-
lute calculus. Suppose further that f € H> (g x X,) where¢ > w(A), ¥ > w(B)
issuchthat f (z, B) isabounded operator for every z € %4 and thefamily { f (z, B) :
z € Xy} isuniformly bounded. Then f (A, B) isa bounded operator.

Proof Consider F(z) = f(z, B). Using the integral representation of f(z, B) from
Sect.2 and commutativity of A and B, we conclude that F(2) € H®(Z4, A). It
follows from Theorem 6.1 that F (A) is a bounded operator. O
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Theorem 6.3 Let Aand B arecommuting sectorial operatorssothat w (A)+w(B) <
7. uppose A has absolute calculus. Then A + B is closed on the domain Dom(A) N
Dom(B) and thereis a constant C such that

[ AX]| + IBx]| < C|Ax + Bx|l, X € D(A)ND(B) (6.20)

and (A + B) isinvertibleif either A or B isinvertible.

Proof Choose ¢, ¢’ with w(A) < ¢, w(B) < ¢’ and ¢ + ¢’ < m. The function
f(z,w) =z(z+w)Lisin H>®(Zy x Xy ) and the family f(z, B) = —zR(-z, B)
for z € Xy is uniformly bounded. By Corollary 6.2 we obtain that f(A, B) is a
bounded operator. It was shown in [18,19] that this implies the norm estimate 6.20
and hence that A+ B is closed.

Now suppose that A is invertible. Then since A(A+ B)~1 is bounded, we conclude
that also (A+ B) is invertible. In the case B is invertible we write | = A(A+ B)~1+
B(A + B)~! and see that B(A + B)~1 is bounded and thus (A + B) invertible. O

The following theorem is the analogue of the result of [19]. We omit the proof
which is similar to the previous theorem.

Theorem 6.4 Suppose A and B are commuting sectorial operatorseachwithan H*°-
calculus and assume A has an absolute functional calculus. Then (A, B) has ajoint
H°°-functional calculus. More precisdly if ¢ > wy(A) and ¥ > wpy (B) then for
every f € H® (g x Xy), f(A, B) isabounded operator and we have an estimate

I (A B < CIl Il (zyxzy)-

7 Mild solutions and well-posed equations

Let us assume that A is a sectorial operator on X and that B is a closed operator with
non-empty resolvent set. Suppose A and B are resolvent commuting. Then the opera-
tor A+ B with domain Dom(A) N Dom(B) may not be closed. A+ B may however
be extended to a closed operator on the domain

Dom(A+ B) = {x e X : Ixp € Dom(A) N Dom(B), nli)ngoxn = X,

3 1lim Ax, + Bxy i= (A+ B)x} .
n— oo

To see this we need only check that if x, € Dom(A) N Dom(B) and limp_ 0o Xn =0
and limp_ o0 (AXn 4+ Bxp) = y then y = 0. But limp_ oo A(1 + A)~2x, = 0 and
liMn_oo A2(1 + A)~2X, = 0. Hence limp_.oo BA(1 + A)2x, = Al + A)“2y.
Since B is closed A(1 + A)~2y = 0 and thus y = 0. Note that if x € Dom(A + B)
then vh(A)x € Dom(A) N Dom(B) for all n and sup || Avn (A)X + Bun(A)X]| < oc.

In this section, we consider two questions concerning the equation (for fixed y € X)

(A+B)x =y. (7.21)
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We say that a solution x of (7.21) is mild solution if x € Dom(A + B) and a strong
or classical solution if x € Dom(A) N Dom(B).

The closed operator (A + B, Dom(A + B)) is invertible if and only if for every
y € X there is a unique mild solution of (7.21). On other hand (7.21) is said to be
well-posed if every mild solution is a strong solution. (7.21) is well-posed if and only
if there is a constant C so that

|AX|| < C||AX + Bx|| x € Dom(A) N Dom(B)

and this is equivalent to the requirement that Dom(A + B) = Dom(A) N Dom(B).
Let us first investigate conditions for the homogeneous equation

AXx+Bx =0, X e Dom(A+ B) (7.22)

to have a unique solution.

Proposition 7.1 The following conditions imply that (7.22) has a unique solution.

(i) Thereexistsaconstant C so that for every A € C we have either A ¢ Sp(A) and
1. — A < Cor —i ¢ (B)and | (1 + B)!| < C.

(if) Thereexistsa constant C so that for every A € C\{0} we have either A ¢ Sp(A)
and [A(A — A1 < Cor —i ¢ S(B) and A (A + B)~!|| < C.

Proof (i) Suppose x € Dom(A) N Dom(B) and Ax + Bx = 0. Consider the analytic
functions F (1) = (A — A)~! defined on C\Sp(A) and G(1) = (A + B)~! defined on
C\Sp(—B). If A ¢ Sp(A) U Sp(—B) then

X=(—AMK-—A"1x
=2 — A Ix— - ATAX
=20k — AIX+ (h — ATIBx
=A(h— A Ix+ B — A 1x
=+ B)(n — A x

sothat F(A)x = G(1)x. Hence F extends to a bounded entire function and Liouville’s
theorem implies that F vanishes identically.

Now suppose x € Dom(A + B) and (A + B)x = 0. Then vy(A)x € Dom(A) N
Dom(B) forall nand (A + B)va(A)X = 0. Thus vh(A)x = 0and so X = 0.

(ii) is similar. O

We shall define a contour in C to be acceptableif it can be decomposed into a finite
union of curves I'j each of which may be parameterized by a Lipschitz map t — z(t)
fora <t < bwhere —oco < a < b < oo and such for some constant C we have
C~Lt| < |z(t)| < CJt|. The main application use of this condition is that we will
have a estimate
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/min(|t<‘;|8, |t;|5)ﬂ—§|' <C t>0
I

where C = C(§) is independent of t.

Theorem 7.2 Let A be a sectorial operator and suppose B is a closed operator. Sup-
pose the homogeneous equation (7.22) has a unique solution. Suppose w (A) < ¢ <
¥ < 7. Suppose I' is an acceptable contour contained in Xy U {0} and with the
following properties:

sup min(l, AN — A7Y| < oo. (7.23)
1el\{0}
sup [|(A + B) 7| < oo. (7.24)
arel’
/ FO)(C - Ade = F(A) (7.25)
r
if f,zf € HE°(Sy).
/ £(0)(c + B)tde =0 (7.26)
r

if f,zf e Hy°(Zy). Then each of the following conditions suffices for (A + B,
Dom(A + B)) to beinvertible:

i)
/ ¢ — A + B Hide ] < oo, (7.27)
I

or
(if) A hasan absolute functional calculus and for some constant C,

1. = ATHIIO.+B) Y <Cla™ rel. (7.28)
Ifin (ii) we also have for some constant C’,
max((x — ATHL 1.+ B) M) < C'Al™t el (7.29)

then Ax 4+ Bx = y iswell-posed.

Proof Before showing the details of the proof, we pause to understand the situation
graphically (Fig. 1).
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Fig. 1 This figure illustrates Theorem 7.2

First observe that, by our definition of an acceptable contour, under (7.23) and
(7.24) the conditions that f, zf € Hy°(Xy) implies that the integrals in (7.25) and
(7.26) exist as Bochner integrals and so does

1
T(h =5 / £ + BN — A de.
I

Clam1 If f,z71f, g, zg € H§*(Zy) then
T(fg) = f (AT (). (7.30)

Proof of Claim1 Suppose ¢ < v < . Then
1 -1
f(A) = —/ f)— A~ da
27i
Iy
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and so

1
(AT@ =7 / / FNGE)E +B) M — AL — A Nde da
I, T

as a Bochner integral.
By the resolvent equation

1
G=ATC-AT = ey (e AT - -A.

We now observe that for A € ', and ¢ € T" we have |A — ¢| > c|A| where ¢ =
sin(v — ¢) > 0. Since
If(k)l
/ Ill

the integrals

//g_(—g@)(uB) 10— A)tdg da

r, r

and

//g 90 +B)H ¢ — A~ de da

both converge as Bochner integrals. The first integral vanishes by using (7.26) (inte-
grating first with respect to ¢). Thus

ey
f(A)T(g) = / / ()Q(C)(CJrB) Yo — A tdeda

= 2—./ (OO E + B — At de
i
r
=T7(fg).
This completes the proof of claim 1. O

Now suppose zf, z71 f € HG°(Xy). Then by claim 1 we have
T(zf?) = Af(AT(f) = AT(?)
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and so 7'( f2) has range in Dom(A). Now
1
£2(A) = 2—./ f(02@ — Al
i
T

and

1
T(zf%) = o / cf (% +B)y ¢ — Ade
I

both as Bochner integrals. Hence

fF2(A) = T(zf?) = %/ f(©)?B( + B¢ — A~tde
r
as a Bochner integral. Since B is closed this implies that for every x € X,
f2(Ax - T(zf)x = B (% JRGLELRE A)lxdz;)
r

and the right-integral is in Dom(B) i.e., 7 (f%)x € Dom(B) and
f2(A)x = AT (f2)x + BT (f?)x.

Since A + B is one—one to prove that (A + B)~! is bounded it therefore suffices
to show an estimate

IT(£9)] < Cll 2l ez,

for all functions f such that zf, z 1 f e HF°(Zy). Indeed suppose we have such
an estimate and x € Ranf2(A). Then x = f2(A)y = (A+ B)T(f?)y for some
y € X and thus x € Dom(A+ B)~2. Since zv2(2), z 1v2(2) € HE°(Zy) we also get
vA(A)x € Dom(A+ B)~tand

lim (A+ B) 1(x — vn(A*x) = lim (T(f%)y — T(f¥viy) = 0.

n—o0 nN—00
Thus

I(A+ B) x| < limsup (A + B)tup(A)x| < limsup |7 (v2)x]l < ClIXII.
n— oo n—o0

Now, our claim follows from choosing a function f such that Ran f2(A) is dense in
X, e.g. f(2) = v3(2).
In case (i) this is a trivial norm estimate. We turn to case (ii).
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Assume as before zf, z 1 f e HF°(Zy). Assume that g € Hy° (X4 ) for some
¢' > w(A)andthat 0 < § < 3 are such that

lles,s CAGEAX] < IgtA)Yl 0 <t <oo = [IX]| = Clyl.

Now suppose x € Dom(A%). Let f2 = @2,1 fo where fo, zfg € HF°(Xy,). Then
T(z 3 12)(AY2x) /;*z 1200 + B) L@ — A TAY X dg

= o | %% g(()fo(C)(C +B) L — A 1AY2xdr

r
=933 )/fo(é)(§+5) He - ATIAYxdg
= p2a(M / fo&)(c + B) ¢ — Ay 'xde

= @2, 1(A)T (fo)x
= T(f%)x.

Here we applied claim 1 again since 3.3, _1(;)%%, fo, zfo € HG®(Zy).
We have

A=A =12y 1 (e AW+ 06 = AT =)
so that we have an estimate
los.s RAVAZ (¢ — AY < Cle| ™2 min(ite |, 1t2]72)IE ¢ — A7 + D).
Ift >0andy=7(f%)x then

1
5.5 EAGEAY = o — / £ E2(0)(¢ + B) Lo s LAV AL (L — A Lgt Ax de.
r

Thus
lps.stAYIAAYI < Cll F2 ooz, IGEAX]] / min(tz°, [tz] %)

dic|

XL+ 1211 = ATHDIE +B)7HD 7

< Cll 2 lhe(zy) l9EAX],
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using the fact that I" is an acceptable contour and (7.28). Thus

Iyl < ClI 21z, IXI.

This completes the proof of (ii).
For the last part we observe that A7 (f2) = 7 (zf?) and use a similar argument to
give an estimate

IAYI < CIl 2oz, IXI-
O

We now specialize to the case when — A is the generator of a bounded semigroup
{e A t > 0}. In this case we have an estimate

v — A7 <Cma™t %ir<o.

Theorem 7.3 Suppose A is a sectorial operator such that — A is the generator of a
bounded semigroup. Suppose B is a closed operator. Assume further that Sp(B) C
{z: %z > 0}and

sup [|(x 4+ B) Y| < oo. (7.31)
RA>0

Then each of the following conditions implies that the equation Ax + Bx = y admits
a unique mild solution:

(i) Alisinvertible and
o
/ (it + B)~1)?dt < oo.
—00
(ii) A hasan absolute functional calculusand for some¢ < 7 /2 wehave p(B) C
E¢ and
sup |(A + B) Y| < oo.
AT
(iii) A has an absolute functional calculus and

1. _
sup  [t|ZI(it + B) || < oo.

—oo<t<oo

Proof First we note that from the initial hypotheses there exists « > 0 so that

sup |(x+B)7 < o0

NA>—a
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and so the conditions of Proposition 7.1 (i) are satisfied. Thus (A + B) is injective on
its domain.

Let us prove (iii) first. For this we note that if t € R and |s| < 3[/(it + B)~}| 2,
(it + s+ B) isinvertible

It +s+B)~ < 2|lit+B).

Since the function t — ||(—it + B)~1|| =1 is Lipschitz we can define an acceptable
contour by

—it— (=it + Bt > 1
tw=7
—it— =it Bt <1

In summary we have the estimates

lL®I~ It I¢w +B)7
<2[(—=it+B)7Y and [(¢t) — ATH < CIRe®

Therefore

_ _ Cltlll(=it+B)~1> |t =1

t t+B) 7 LIeHn - AL <
IEOIIEC®) +B) It — A < [C”(_it LB2 <1
Figure 2 is a visualization of the components in the setup of our proof.

By elementary contour integral estimates we have the conditions of Theorem 7.2,
i.e., (7.23), (7.24), (7.25) and (7.26). The result follows by Theorem 7.2(ii).

(i) If Ais invertible we can modify the above contour by joining ¢(—1) to ¢(1)
by a suitable contour contained in {z : 91z < 0}, so the resulting contour T is
acceptable. A similar appeal to Theorem 7.2 gives the result.

(ii) is similar, except that we use a contour I',, for some 7/2 < v < 7w — ¢. O

Theorem 7.4 Suppose A is a sectorial operator such that — A is the generator of a
bounded group. Suppose B is an invertible closed operator which commutes with A.
Assume further that So(B) N iR = @. Then each of the following conditions implies
that the equation Ax 4+ Bx = y admits a unique mild solution:

(i) Aisinvertible and

o0
/ (it + B)~1)?dt < oco.
—0o0o
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(i) A has an absolute functional calculus and for some ¢ < /2 we have Sp(B) C

Fig. 2 This figure illustrates Theorem 7.3

Yp U (—=%p) and

I+ B) 7| < oo.

sup
AEZHU(—2gp)

Y < 0.

[ttt +B)~

sup

—oo<t<oo

(iii) A has an absolute functional calculus and

0. For

It + B)~*

1Mt 00

tomatic. In case (i), we have |

(it + B)~1| we have

IS IS au

Proof As in the previous theorem we first note that the conditions of Proposition 7.1
(i) are satisfied as soon as we have sup_. _;_. II(it + B)~Y|| < oo. In cases (ii)

and (iii) th

S

1
=2

pringer

A's
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t+s 1
/ Iz + B)~%de > St + B)~!.
t

We will first prove (iii).
In this case, we take I" as the union of two contours. We set

—it—(=it+ Bt jt| > 1
=1
—it—Ey—it+ Bt <1

and

it+ 2t +B)" Yt gt >1
i+ =1 i _—
it+ZIat+B)=7— t=<1

These define contours I'1 and I', and it is clear that if T = I'y U I'> we have the
conditions of Theorem 7.2.
(i) and (ii) are proved similarly. O

Theorem 7.5 Suppose A is a sectorial operator such that — A is the generator of a
bounded group with e 2"~ = |. Suppose B is a closed operator which commutes
with A. Assume further that Sp(B) NiZ = @. Then each of the following conditions
implies that the equation Ax 4+ Bx = y admits a unique mild solution:

(i) Aisinvertibleand

> Gk + B)~H2dt < oo.
keZ

(i) A hasan absolute functional calculus and

sup [kIZ ik + B)}|| < oco.
keZ

Proof As usual we may verify the conditions of Proposition 7.1 (i) in both cases.
We prove (ii). The hypothesis on B implies that (it + B)~1 exists for every t with
[t| > n for some natural number n. We then define T" to the union of a finite number
of contours. First we define a contour I'; _ by

; 1 —1-1
§(t)=—lt—§||(—lt+|3) [ t<-n
and 'y 4 by
C(t)=|t+§||(lt+B) I~ t>n
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Fig. 3 This figure illustrates Theorem 7.5

We then define T'n41 to be a suitable acceptable contour contained in the resolvent
sets of both —B and A passing between in and i (n + 1) to join £(—n) to ¢(n)
Similarly we define I'_, by

;(t):it+%||(it+B)‘1||‘1 t <-—n
and I'__ by
1 4
{(t):—lt—§||(|t+B) I t>n

and then I'_,_1 to be a suitable acceptable contour contained in the resolvent sets of
both —B and A and passing between —in and —i (n + 1) to join ¢(—n) to ¢(n).
Then let T'y for |K| < n be a sufficiently small circle around the point i k contained
in the resolvent sets of A and —B. If we let I be the union of all these contours (see
figure 3) it is clear that the hypotheses of Theorem 7.2 hold and the result follows.
The proof of (i) is similar. O

In the each of the preceding Theorems 7.3, 7.4 and 7.5 it is possible to also discuss
well-posedness by the same techniques, using the last part of Theorem 7.2. \We obtain:

Theorem 7.6 Suppose Aisa sectorial operator with an absolute functional calculus
such that — A is the generator of a bounded group. Suppose B is a closed opera-
tor which commutes with A. Then each of the following conditions implies that the
equation AX + Bx =y iswell-posed.
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(i) PB)NIR =@ and

sup  t(it+ B)7| < oo.

—oo<t<oo
(i) "A=1,(B)NiZ=¢and

sup |K|||(ik + B) 7| < oc.
keZ

Proposition 7.7 If A generates a bounded group then —AZ? is sectorial with
o (—A?) = 0 and satisfies an estimate:

I(x+ A~ < Cl3al™t 9ia > 0.

If further A hasan (a, b)-absolute functional calculusfor somea, b > 0 then — A2
has an (&', b’)-absolute functional calculusfor a’, b’ > 0.

Proof If A generates a bounded group then for A ¢ [0, co) we have
2,1 1. -1, 4 -1
A+ A =m((IM+A) +(pn—~A")
where 2 = A. Sectoriality follows easily and

_ 1 . _ . _ i
I+ AH7L sm(n(lwm Yrnin -7t < Clpl o™t

Note that
1 ~ -1
Sl = §|&‘)»||,U«| SA > 0.

If A has an (a, b)-absolute functional calculus then for a large enough integer m,
X is a strict real interpolation space for (D(A~2M), D(A2Z™)) which then implies that
—AZ also an (@', b')-absolute functional calculus. O

In view of this it is easy to modify our approach to give the following:

Theorem 7.8 Suppose A isa sectorial operator with an absolute functional calculus
such that — A is the generator of a bounded group. Suppose A has an (a, b)-abso-
lute functional calculus for some a, b > 0. Suppose B is a closed operator which
commutes with A. Assume further that Sp(B) N [0, co) = . Suppose

supt2|(t + B)~}| < oo.
t>0
Then the equation — A2x + Bx = y has a unique mild solution for every y € X.
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8 Applications

Let us now discuss some related results of Arendt et al. [2]. The authors consider a
closed operator B on a Banach space X and a boundary value problem with periodic
boundary conditions

u'(t) + Bu(t) = ft) u() =u@nr)

in the space C*(T; X) of a-Hdélder continuous X-valued functions on the circle (which
we identify as the 2 -periodic functions on R). We denote by G(k) the Fourier coef-
ficients

2

ak) = i/u(t)e—”‘t.
27
0

Consider the subspace of C(T; X) denoted by Co(T; X) of all functions of means
zero. Then, restricted to this space, the differentiation operator Af = f’ with domain
C&("]I‘; X) of all Cl-functions of mean zero is sectorial and generates a bounded
27 -periodic group of translations. In this case D(A) = Dom(A) = Cé(?l‘; X).

Now, for 0 < @ < 1, we consider the inner («, co)-interpolation spaces, denoted
by (Co(T; X), C&(T; X)) (.00), Corresponding to the admissible function space

E= [f csupt | f(t)| < oo, limt™|f(t)] = lim t~*|f(t)| :0].
0 t—0 t—o0

t>

This space is the little Holder space of all mean zero functions Cg-%(T; X) such that

u fJuc) —uel = fllq < o0
t>s |t - S|a
and
lut) —u(s)|l _

[t—s|—=0 |t —S|*

See, for example, [21] for the non-periodic case. The following result follows from
Corollary 5.7.

Proposition 8.1 A hasa (1,1)-absolute functional calculus on Cg"o('ﬂ‘; X).

Now if Bisaclosed operator on X then B induces a closed operator B on CS"O(T; X)
defined by

(Bu)(s) = Bu(s) u(s) e Dom(B), 0<s<2x.
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Now A + B is invertible if and only if the operator

u— D (k+B)take
keZ

extends to a bounded operator on Cg"o(']l‘; X). By an elementary smoothing argument
this is equivalent to the boundedness of the same operator on C*(T; X). In view of
the discussion of [2] we obtain from Theorem 7.5:

Theorem 8.2 Suppose 0 < o < 1. Suppose B is a closed operator on X such that
F(B) NiZ = @. Suppose

sup [k 2||(ik + B) Y| < oc.
keZ

Then the equation
u'(t) 4+ Bu(t) = x(t) u(0) = u2m)

has a unique mild solution u € C*(T; X) for every x € C*(T; X).

Here amild solution is interpreted in the sense described in [2]. In [2] the same result
is obtained with the exponent 1/2 replaced by 2/3, using Fourier multiplier methods.
However, for spaces X of nontrivial type they also obtain the same exponent 1/2.

If we consider the same problem in C(T; X), then a similar argument gives the fol-
lowing (in this case the differentiation operator no longer has an absolute functional
calculus on Co(T; X)):

Theorem 8.3 Suppose B isaclosed operator on X suchthat So(B)NiZ = @. Suppose

> ik +B)7H® < oo.

keZ
Then the equation
u'(t) + Bu(t) = x(t) u(0) =u2r)
has a unique mild solution u € C(T; X) for every x € C(T; X).

Notice that this condition is weaker than ||(ik + B) 1| = O(k*%).
We can also consider second-order equations of the type

—u”(t) + Bu(t) = x(t) u(0) =u@n), U (0) =u@2r)
and derive similar results using Theorem 7.8.

The preceding discussion can easily be extended to the non-periodic case. In this
case we treat the space Co(R) of continuous functions vanishes at infinity and we

@ Springer



Operators with an absolute functional calculus 305

obtain that the differentiation operator has an absolute functional calculus on the little
Holder spaces Cj (R; X) of Holder continuous functions u : R — X vanishing at
infinity and such that

®—uSl _ o O —uGl

t-s|>0 |t —s|®*  jt-sls>c0 |t —S[¥

Let us conclude by mentioning another family of examples where our results
apply. Let X be an arbitrary Banach space and N € N. Let A denote the Lapla-
cian — ern:l 82/8xj2. Then —A (as the generator of the heat semigroup) defines a

sectorial operator on Lq(RN; X) for 1 < q < co.
If we let A = | — A then the spaces D(A™) for m > 1 are the Sobolev spaces
WZM@RN; X). Thus for 1 < q.r.s < o0

(La®: 20, Wm@N: X)) = B @Y X)

is a Besov space [1]. It follows that | — A has an absolute functional calculus on
the Besov space B . (RN; X) by Theorem 5.5; this may also be seen directly from
the definitions of these spaces [16]. (If we replace | — A by —A we have that —

has an absolute functional calculus on the corresponding homogeneous Besov space).
Fourier multiplier results on Besov spaces are discussed by Amann [1] and Girardi
and Weis [16], where it is shown that in contrast to the standard L ,-cases one does not
need R-boundedness assumptions in the hypotheses of these results. These results do
not follow from our results but do reflect the fact that | — A has an absolute functional
calculus on these spaces.
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