The coarse Lipschitz geometry of $\ell_p \oplus \ell_q$

Nigel J. Kalton · N. Lovasoa Randrianarivony

Received: 2 May 2007 / Revised: 19 September 2007 / Published online: 1 December 2007 © Springer-Verlag 2007

Abstract We show that for $1 with <math>p \neq 2$ the space $L_p(0, 1)$ is not uniformly homeomorphic to $\ell_p \oplus \ell_2$. We also show that if $1 the space <math>\ell_p \oplus \ell_q$ has unique uniform structure, answering a question of Johnson, Lindenstrauss and Schechtman (Geom. Funct. Anal. 6:430–470, 1996).

Mathematics Subject Classification (2000) 46B25 · 46T99

1 Introduction

In this note we study some problems raised ten years ago in [11]. In [11] it was shown that ℓ_p has unique uniform structure for $1 in the sense that if X is a Banach space uniformly homeomorphic to <math>\ell_p$ then X is linearly isomorphic to ℓ_p . It is not known if the same result can be proved for the function spaces $L_p = L_p(0, 1)$ for $1 with <math>p \neq 2$ (see [11, p. 465]) It is known, however ([2, Theorem 10.5], [8]) that any Banach space X uniformly homeomorphic to L_p ($1 , <math>p \neq 2$) must be a \mathcal{L}_p -space (i.e. a complemented subspace of L_p not isomorphic to a Hilbert space). The simplest candidate space is $\ell_p \oplus \ell_2$, and the question whether $\ell_p \oplus \ell_2$ has unique uniform structure was raised in [11, p. 465].

N. J. Kalton (🖂) · N. L. Randrianarivony

Department of Mathematics, University of Missouri-Columbia, Columbia, MO 65211, USA e-mail: nigel@math.missouri.edu

N. L. Randrianarivony e-mail: lova@math.missouri.edu

The first author was supported by NSF grant DMS-0555670 and the second author was supported by NSF grant DMS-0701097.

Here we show that $\ell_p \oplus \ell_2$ is not uniformly homeomorphic to L_p ; this question was raised originally by Bill Johnson. In fact we show that if $1 \le p < 2$ it is not uniformly homeomorphic to any Banach space containing a copy of ℓ_r where p < r < 2. We also show that for $1 \le p < \infty$ and $p \ne 2$, $\ell_p \oplus \ell_2$ is not uniformly homeomorphic to any Banach space containing ($\sum \ell_2$)_{*e*}.

A related problem is the question of the uniqueness of uniform structure of $\ell_p \oplus \ell_q$ when 1 . In the case <math>p < q < 2 and 2 this is established in[11]. We show uniqueness for the case <math>p < 2 < q, answering Problem 1(e) of [11].

Our results depend on the use of two basic techniques. The first is the midpoint principle which is a classical technique in nonlinear theory [2, p. 229]. The second technique is new and depends on asymptotic smoothness ideas (see Sects. 4, 6). Roughly speaking midpoint principles can be applied to maps from ℓ_p to ℓ_q when q < p (corresponding to the case when all linear operators are compact) and asymptotic smoothness techniques apply when q > p (corresponding to the case when all linear operators are strictly singular).

2 Coarse Lipschitz maps and embeddings

Let M_1 and M_2 be unbounded metric spaces and suppose $f: M_1 \to M_2$ is any map. We define

$$\omega_f(t) = \sup\{d(f(x), f(y)) : d(x, y) \le t\}, \quad t > 0.$$

Then f is said to be uniformly continuous if $\lim_{t\to 0} \omega_f(t) = 0$. We say that f is coarsely continuous if we have $\omega_f(t) < \infty$ for some t > 0.

We will also define

$$\operatorname{Lip}_{s}(f) = \sup_{t \ge s} \frac{\omega_{f}(t)}{t}, \quad s > 0$$

and then

$$\operatorname{Lip}(f) = \sup_{s>0} \operatorname{Lip}_s(f), \ \operatorname{Lip}_{\infty}(f) = \inf_{s>0} \operatorname{Lip}_s(f).$$

f is a Lipschitz map if $\operatorname{Lip}(f) < \infty$ (and then f is uniformly continuous) and is a coarse Lipschitz map if $\operatorname{Lip}_{\infty}(f) < \infty$ (and then f is coarsely continuous).

If f is bijective then f is a uniform homeomorphism, (respectively, coarse homeomorphism, Lipschitz homeomorphism, coarse Lipschitz homeomorphism) if f, f^{-1} are uniformly continuous, (respectively, coarsely continuous, Lipschitz, coarse Lipschitz). Coarse Lipschitz homeomorphisms are essentially the same as homeomorphisms between nets as discussed in [2, 11].

If X and Y are Banach spaces, then any coarsely continuous map is automatically coarse Lipschitz since ω_f is subadditive. This leads us to the following well-known principle (known to specialists as the "Lipschitz for large distances" principle):

Proposition 2.1 Suppose X and Y are uniformly homeomorphic or more generally coarsely homeomorphic Banach spaces. Then X and Y are coarse Lipschitz homeomorphic and there is a bijection $f: X \to Y$ such that $0 < \text{Lip}_{\infty}(f), \text{Lip}_{\infty}(f^{-1}) < \infty$.

Proof We only need to prove the last statement in view of the remarks above. This follows from the following lemma. \Box

Lemma 2.2 Let X, Y and Z be Banach spaces and suppose $f : X \to Y$ and $g : Y \to Z$ are coarse Lipschitz maps. Then $g \circ f$ is coarse Lipschitz and $\operatorname{Lip}_{\infty}(g \circ f) \leq \operatorname{Lip}_{\infty}(f)\operatorname{Lip}_{\infty}(g)$.

Proof Let $\alpha = \text{Lip}_{\infty}(f)$ and $\beta = \text{Lip}_{\infty}(g)$. Thus if $\alpha' > \alpha, \beta' > \beta$ there are constants *a*, *b* such that

$$||f(x_1) - f(x_2)|| \le \alpha' ||x_1 - x_2|| + a, \quad x_1, x_2 \in X$$

and

$$||g(y_1) - g(y_2)|| \le \beta' ||y_1 - y_2|| + b, \quad y_1, y_2 \in Y.$$

Thus

$$\|g \circ f(x_1) - g \circ f(x_2)\| \le \alpha' \beta' \|x_1 - x_2\| + \beta' a + b, \quad x_1, x_2 \in X.$$

This proves that $\operatorname{Lip}_{\infty}(g \circ f) \leq \alpha \beta$.

If *X* and *Y* are Banach spaces and $f : X \to Y$ is a coarse Lipschitz homeomorphism onto f(X) then we say that *f* is a coarse Lipschitz embedding. The basic idea of the arguments in this paper is to investigate spaces which can be coarse Lipschitz embedded into a direct sum $\ell_p \oplus \ell_q$ where $1 \le p < q < \infty$. This will enable us to prove results on uniform homeomorphisms (or more generally coarse homeomorphisms), because if *X* is uniformly homeomorphic to $\ell_p \oplus \ell_q$ then any closed subspace *Y* of *X* coarse Lipschitz embeds into $\ell_p \oplus \ell_q$.

Let us also note here one very well-known result, which we restate in this language:

Proposition 2.3 If there is a coarse Lipschitz embedding of a Banach space X into a Banach space Y then X is crudely finitely representable in Y.

See Corollary 10.2 of [2] (these ideas go back to [8,16]).

3 The midpoint technique

Given a metric space X, two points $x, y \in X$, and $\delta > 0$, the approximate metric midpoint between x and y with error δ is the set:

$$Mid(x, y, \delta) = \left\{ z \in X : \max\{d(x, z), d(y, z)\} \le (1 + \delta) \frac{d(x, y)}{2} \right\}.$$

The use of metric midpoints in the study of nonlinear geometry was first introduced by Enflo in an unpublished paper where he showed that L_1 and ℓ_1 are not uniformly homeomorphic. It has since been used elsewhere, for example to complete the study of the uniform structure of ℓ_p for 1 (see e.g. [3,6,11]).

Proposition 3.1 Let X be a Banach space and suppose M is a metric space. Let $f : X \to M$ be a coarse Lipschitz map. If $\operatorname{Lip}_{\infty}(f) > 0$ then for any $t, \epsilon > 0$ and any $0 < \delta < 1$ there exist $x, y \in X$ with ||x - y|| > t and

$$f(\operatorname{Mid}(x, y, \delta)) \subset \operatorname{Mid}(f(x), f(y), (1 + \epsilon)\delta)$$

Proof This is well-known (see e.g. [2, Lemma 10.11]) but we include the proof for completeness. Notice that since X is a Banach space, $\operatorname{Lip}_{\infty}(f) = \inf_{s>0} R_s(f)$ where

$$R_s(f) = \sup\left\{\frac{d(f(x), f(y))}{d(x, y)} : d(x, y) \ge s\right\}.$$

Suppose t, δ, ϵ are given. For any $\nu > 0$ we may find s > t so that $R_s(f) < (1 + \nu) \operatorname{Lip}_{\infty}(f)$. Suppose x, y are chosen so that $||x - y|| \ge 2s(1 - \delta)^{-1}$ and $d(f(x), f(y)) > (1 - \nu) \operatorname{Lip}_{\infty}(f) ||x - y||$. Let $u \in \operatorname{Mid}(x, y, \delta)$. Then ||x - u||, ||y - u|| > s and so

$$\max(d(f(x), f(u)), d(f(y), f(u))) \le \frac{1}{2}(1+\nu)(1+\delta)\operatorname{Lip}_{\infty}(f)||x-y||.$$

But this implies

$$\max(d(f(x), f(u)), d(f(y), f(u))) \le \frac{1}{2} \frac{1+\nu}{1-\nu} (1+\delta) d(f(x), f(y)).$$

By appropriate choice of v > 0 we obtain the proposition.

Lemma 3.2 Suppose $1 \le p < \infty$ and let $(X_j)_{j=1}^{\infty}$ be a sequence of Banach spaces. Suppose $x, y \in \left(\sum_{j=1}^{\infty} X_j\right)_{\ell_p}$. Let $u = \frac{1}{2}(x + y)$ and $v = \frac{1}{2}(x - y)$. Then for $0 < \delta < 1$, there is a closed subspace E of the form $E = \{w = (w_j)_{j=1}^{\infty} : w_j = 0, 1 \le j \le N\}$ so that

$$u + \delta^{1/p} ||v|| B_E \subset \operatorname{Mid}(x, y, \delta).$$

Proof For p = 1 this is trivial; we suppose p > 1. Write $v = (v_j)_{j=1}^{\infty} \in \left(\sum_{j=1}^{\infty} X_j\right)_{\ell_p}$. Suppose $0 < v < (((1+\delta)^p - 1)^{1/p} - \delta^{1/p}) ||v||$. Pick N so that $\sum_{j>N} ||v_j||^p < v^p$. Let $E = [X_j]_{j>N}$. If $z \in E$ and $||z|| < ((1+\delta)^p - 1)^{1/p} ||v|| - v$ then $u + z \in Mid(x, y, \delta)$.

Lemma 3.3 Suppose $1 \le p < \infty$ and that $x, y \in \ell_p$. Let $u = \frac{1}{2}(x + y)$ and $v = \frac{1}{2}(x - y)$. Then for $0 < \delta < 1$, there is a compact set K so that

$$\operatorname{Mid}(x, y, \delta) \subset K + 2\delta^{1/p} ||v|| B_{\ell_n}$$

Proof Suppose v > 0. Let $v = (v_j)_{j=1}^{\infty} \in \ell_p$. Pick N so that $\sum_{j>N} |v_j|^p < v^p$. Let $E = [e_j]_{j>N}$. If $u + z \in \operatorname{Mid}(x, y, \delta)$ write z = z' + z'' where $z' \in [e_j]_{j \le N}$ and $z'' \in [e_j]_{j>N}$. Then $||z'|| \le (1+\delta)||v||$ so that $u + z' \in K := u + (1+\delta)||v||B_{[e_j]_{j=1}^N}$. Now

$$\frac{1}{2}(\|v+z\|^p + \|v-z\|^p) \ge \|v\|^p - v^p + \|z''\|^p$$

so that

$$\|z''\|^p \le ((1+\delta)^p - 1)\|v\|^p + \nu^p.$$

Observe that $(1 + \delta)^p - 1 < 2^p \delta$ for $0 < \delta < 1$. For an appropriate choice of ν we obtain the conclusion.

It is clear that Lemma 3.3 has a simple generalization to finite direct sums:

Lemma 3.4 Suppose $1 \le p_1 < p_2, \ldots < p_n < \infty$ and that $x, y \in X = (\ell_{p_1} \oplus \ell_{p_2} \oplus \cdots \oplus \ell_{p_n})_{\ell_{p_n}}$. Let $u = \frac{1}{2}(x + y)$ and $v = \frac{1}{2}(x - y)$. Then for $0 < \delta < 1$, there is a compact set K so that

$$\operatorname{Mid}(x, y, \delta) \subset K + 2\delta^{1/p_n} ||v|| B_X.$$

Proposition 3.5 Suppose $(X_j)_{j=1}^{\infty}$ is a sequence of Banach spaces and $1 \le p < r < \infty$. Suppose $f: \left(\sum_{j=1}^{\infty} X_j\right)_{\ell_r} \to \ell_p$ is any coarse Lipschitz map. Then for any t > 0, $\delta > 0$ there exist $x \in \left(\sum_{j=1}^{\infty} X_j\right)_{\ell_r}$, $\tau > t$ and a subspace $E \subset \left(\sum_{j=1}^{\infty} X_j\right)_{\ell_r}$ of the form $E = \{w = (w_j)_{j=1}^{\infty} \in \left(\sum_{j=1}^{\infty} X_j\right)_{\ell_r}$; $w_1 = \ldots = w_N = 0\}$ for some N, so that for some compact set $K \subset \ell_p$ we have $f(x + \tau B_E) \subset K + \delta \tau B_{\ell_p}$.

Proof If $\operatorname{Lip}_{\infty}(f) = 0$ the conclusion is trivial: for any t we can find $\tau > t$ so that $\operatorname{Lip}_{\tau}(f) < \delta$ and then we may take x = 0 and $K = \{f(0)\}$. We therefore assume that $0 < \operatorname{Lip}_{s}(f) = C < \infty$ for some s. Let 1 > v > 0 be chosen so that $4Cv^{1/p-1/r} < \delta$. We first use Proposition 3.1 to find $u, v \in \left(\sum_{j=1}^{\infty} X_{j}\right)_{\ell_{r}}$ so that $\|u - v\| > \max(s, 2tv^{-1/r})$ and $f(\operatorname{Mid}(u, v, v)) \subset \operatorname{Mid}(f(u), f(v), 2v)$. Let $x = \frac{1}{2}(u+v)$ and let $\tau = v^{1/r} \| \frac{1}{2}(u-v) \|$. Then by Lemma 3.2, for some closed subspace $E = \{w = (w_{j})_{j=1}^{\infty} \in \left(\sum_{j=1}^{\infty} X_{j}\right)_{\ell_{r}} : w_{1} = \ldots = w_{N} = 0\}$ in $\left(\sum_{j=1}^{\infty} X_{j}\right)_{\ell_{r}}$

we have $x + \tau B_E \subset \text{Mid}(u, v, v)$. However, by Lemma 3.3, $\text{Mid}(f(u), f(v), 2v) \subset K + 2^{1/p} v^{1/p} || f(u) - f(v) || B_{\ell_p}$ for a suitable compact set $K \subset \ell_p$. Now

$$2^{1/p} v^{1/p} \|f(u) - f(v)\| \le 4C v^{1/p - 1/r} \tau < \delta \tau.$$

Notice that the conclusion of Proposition 3.5 holds for any equivalent norm on $\left(\sum_{j=1}^{\infty} X_j\right)_{\ell_r}$. We can also replace the range by a finite direct sum of ℓ_p 's using Lemma 3.4:

Proposition 3.6 Suppose $1 \le p_1, p_2, ..., p_n < r < \infty$ and $(X_j)_{j=1}^{\infty}$ is a sequence of Banach spaces. Suppose $f: \left(\sum_{j=1}^{\infty} X_j\right)_{\ell_r} \to Z := \left(\sum_{j=1}^{n} \ell_{p_j}\right)_{\ell_{p_n}}$ is any coarse Lipschitz map. Then for any t > 0, $\delta > 0$ there exist $x \in \left(\sum_{j=1}^{\infty} X_j\right)_{\ell_r}$, $\tau > t$ and a subspace $E \subset \left(\sum_{j=1}^{\infty} X_j\right)_{\ell_r}$ of the form $E = \{w = (w_j)_{j=1}^{\infty} \in \left(\sum_{j=1}^{\infty} X_j\right)_{\ell_r}$; $w_1 = \ldots = w_N = 0\}$ for some N, so that for some compact set $K \subset Z$ we have $f(x + \tau B_E) \subset K + \delta \tau B_Z$.

4 Asymptotic smoothness arguments

Let \mathbb{M} be any infinite subset of \mathbb{N} and suppose $m \in \mathbb{N}$. Let $G_k(\mathbb{M})$ be the set of all *k*-subsets of \mathbb{M} . We now define a distance on $G_k(\mathbb{M})$ by setting

$$d((n_1, \ldots, n_k), (m_1, \ldots, m_k)) = |\{j : n_j \neq m_j\}|$$

where $n_1 < n_2 < \cdots < n_k$ and $m_1 < m_2 < \cdots < m_k$. We note that the diameter of this metric space, diam $G_k(\mathbb{M})$, is *k*. The aim of this section is to show a quantitative version of the fact that $G_k(\mathbb{M})$ cannot be well Lipschitz embedded into ℓ_p when 1 .

We remark that it is also possible for our purposes to use the (different) distance

$$d'(A, B) = \frac{1}{2} |A \Delta B|$$

where $A = \{n_1, ..., n_k\}$ and $B = \{m_1, ..., m_k\}$ in this context, but this form of the distance does not allow the generalizations we consider in the last section.

Lemma 4.1 Suppose X is a Banach space and $f : G_k(\mathbb{M}) \to X$ is any map with the property that for some compact set K and some $\delta > 0$ we have $f(G_k(\mathbb{M})) \subset K + \delta B_X$. Then for any $\epsilon > 0$ there is an infinite subset \mathbb{M}' of \mathbb{M} so that diam $f(G_k(\mathbb{M}')) \leq 2\delta + \epsilon$.

Proof We can write f = g + h where $g : G_k(\mathbb{M}) \to K$ and $h : G_k(\mathbb{M}) \to \delta B_X$. By standard Ramsey theory we can then find \mathbb{M}' so that diam $g(G_k(\mathbb{M}')) < \epsilon$ and the lemma follows.

Theorem 4.2 Suppose $1 . Let X be a reflexive Banach space with the property that if <math>x \in X$ and $(x_n)_{n=1}^{\infty}$ is a weakly null sequence in X we have

$$\limsup \|x + x_n\|^p \le \|x\|^p + \limsup \|x_n\|^p.$$
(4.1)

Then if \mathbb{M} is an infinite subset of \mathbb{N} , $\epsilon > 0$ and $f : G_k(\mathbb{M}) \to X$ is a bounded map, there exists an infinite subset \mathbb{M}' of \mathbb{M} so that

diam
$$f(G_k(\mathbb{M}')) < 2\text{Lip}(f)k^{1/p} + \epsilon$$
.

Proof We show by induction on k that given any bounded $f : G_k(\mathbb{M}) \to X$ and $\epsilon > 0$, there exist an infinite $\mathbb{M}' \subset \mathbb{M}$ and $u \in X$ so that

$$||f(n_1,\ldots,n_k) - u|| < \operatorname{Lip}(f)k^{1/p} + \epsilon/2, \quad \{n_1,\ldots,n_k\} \in G_k(\mathbb{M}').$$

In the case k = 1 we pass to a subsequence \mathbb{M}_0 of \mathbb{M} so that

$$\lim_{n \in \mathbb{M}_0} f(n) = u$$

exists weakly. Then

$$\lim_{n \in \mathbb{M}_0} \|f(n) - u\| \le \lim_{n \in \mathbb{M}_0} \lim_{m \in \mathbb{M}_0} \|f(n) - f(m)\| \le \operatorname{Lip}(f).$$

We obtain the inductive statement by discarding finitely many points from \mathbb{M}_0 .

Now assume the theorem is proved for k - 1 and $f : G_k(\mathbb{M}) \to X$ is bounded. We may then find an infinite subset \mathbb{M}_0 so that

$$\lim_{n_k\in\mathbb{M}_0}f(n_1,\ldots,n_k)=\tilde{f}(n_1,\ldots,n_{k-1})$$

exists weakly for $(n_1, \ldots, n_{k-1}) \in \mathbb{G}_{k-1}(\mathbb{M})$. The map $\tilde{f} : G_{k-1}(\mathbb{M}) \to X$ satisfies $\operatorname{Lip}(\tilde{f}) \leq \operatorname{Lip}(f)$. By the inductive hypothesis we can find an infinite $\mathbb{M}_1 \subset \mathbb{M}_0$ and $u \in X$ so that for all $(n_1, \ldots, n_{k-1}) \in G_{k-1}(\mathbb{M}_1)$,

$$\|\tilde{f}(n_1,\ldots,n_{k-1}) - u\| < \operatorname{Lip}(\tilde{f})(k-1)^{1/p} + \epsilon/4.$$

Thus, writing $\overline{n} = (n_1, \ldots, n_{k-1})$,

$$\limsup_{n_k \in \mathbb{M}_1} \|f(\overline{n}, n_k) - u\|^p \le (\operatorname{Lip}(\tilde{f})(k-1)^{1/p} + \epsilon/4)^p + \limsup_{n_k \in \mathbb{M}_1} \|f(\overline{n}, n_k) - \tilde{f}(\overline{n})\|^p.$$

 $n_k \in \mathbb{M}_1$

Now

$$\limsup_{n_k \in \mathbb{M}_1} \|f(\overline{n}, n_k) - \tilde{f}(\overline{n})\|^p \le \limsup_{n_k \in \mathbb{M}_1} \sup_{n'_k \in \mathbb{M}_1} \|f(\overline{n}, n_k) - f(\overline{n}, n'_k)\|^p$$
$$\le (\operatorname{Lip}(f))^p.$$

Thus it follows that

$$\limsup_{n_k \in \mathbb{M}_1} \|f(n_1, \dots, n_k) - u\| \le \operatorname{Lip}(f)k^{1/p} + \epsilon/4, \quad (n_1, \dots, n_k) \in G_k(\mathbb{M}_1).$$

Now we pass to a further infinite subset \mathbb{M}' so that

$$\left| \left\| f(\overline{n}) - u \right\| - \left\| f(\overline{n}') - u \right\| \right| < \epsilon/4, \quad \overline{n}, \overline{n}' \in G_k(\mathbb{M}')$$

and hence

$$||f(n_1,...,n_k) - u|| < \operatorname{Lip}(f)k^{1/p} + \epsilon/2, \quad (n_1,...,n_k) \in G_k(\mathbb{M}').$$

This completes the inductive argument and the theorem follows immediately. \Box

The assumption that X is reflexive in Theorem 4.2 is important. Note that the non-reflexive space c_0 satisfies the condition (4.1) for any p (and indeed for $p = \infty$) but every separable metric space can be Lipschitz embedded into c_0 by a result of Aharoni [1].

5 The main results

Theorem 5.1 Suppose $1 \le p_1 < p_2 < \cdots < p_n < \infty$. If $r \notin \{p_1, \ldots, p_n\}$ $(1 \le r < \infty)$ then ℓ_r does not coarse Lipschitz embed into $\ell_{p_1} \oplus \cdots \oplus \ell_{p_n}$.

Proof Let $f : \ell_r \to \ell_{p_1} \oplus \cdots \oplus \ell_{p_n}$ be a coarse embedding. It follows from Proposition 2.3 that $p_1 < r \le 2$, although, strictly speaking our proof works without this fact. We will only consider the case when $r < p_n$ (the case $r > p_n$ is easier and follows from applying only the midpoint principle).

Suppose $p_m < r < p_{m+1}$ and let $X = (\ell_{p_1} \oplus \cdots \oplus \ell_{p_m})_{\ell_{p_m}}$ and $Y = (\ell_{p_{m+1}} \oplus \cdots \oplus \ell_{p_n})_{\ell_{\infty}}$. Consider f as map into $X \oplus_{\infty} Y$ and assume that

$$||x - y|| \le ||f(x) - f(y)|| \le C ||x - y||, ||x - y|| \ge 1.$$

Let f(x) = (g(x), h(x)). Suppose $k \in \mathbb{N}$ and $\delta > 0$. Then, by Proposition 3.6, we can find $\tau > k, x \in \ell_r$ and $N \in \mathbb{N}$ so that if $E = [e_j]_{j>N}$ then $g(x + \tau B_E) \subset K + \delta \tau B_X$ for some compact subset *K* of *X*.

Let $\mathbb{M} = \{n \in \mathbb{N} : n > N\}$. Define $\varphi : G_k(\mathbb{M}) \to \ell_r$ by

$$\varphi(n_1, \ldots, n_k) = x + \tau k^{-1/r} (e_{n_1} + \cdots + e_{n_k}).$$

Deringer

Then $g \circ \varphi(G_k(\mathbb{M})) \subset K + \delta \tau B_X$. Thus by Lemma 4.1 we can find an infinite subset \mathbb{M}_0 of \mathbb{M} so that

diam
$$(g \circ \varphi(G_k(\mathbb{M}_0))) \leq 3\delta \tau$$
.

On the other hand, $\operatorname{Lip}(h \circ \varphi) \leq 2^{1/r} C \tau k^{-1/r}$ and so by Theorem 4.2 we can pass to an infinite subset \mathbb{M}' of \mathbb{M}_0 so that

$$\operatorname{diam}(h \circ \varphi(G_k(\mathbb{M}'))) \le 3 \cdot 2^{1/r} C \tau k^{1/p_{m+1}-1/r}.$$

Thus

$$\operatorname{diam}(f \circ \varphi(G_k(\mathbb{M}'))) \leq 3 \cdot 2^{1/r} \tau(Ck^{1/p_{m+1}-1/r} + \delta).$$

However

$$\operatorname{diam}(\varphi(G_k(\mathbb{M}'))) > \tau$$

and this implies that

$$\operatorname{diam}(f \circ \varphi(G_k(\mathbb{M}'))) > \tau.$$

Hence

$$1 < 3 \cdot 2^{1/r} (Ck^{1/p_{m+1}-1/r} + \delta).$$

Since $\delta > 0$ and $k \in \mathbb{N}$ are arbitrary this is a contradiction.

The following result answers a question of Bill Johnson for the case 1 .We will prove the same result in the case <math>2 below by a slightly different technique (Theorem 5.6).

Theorem 5.2 If $1 \le p < 2$, L_p is not coarsely (or uniformly) homeomorphic to $\ell_p \oplus \ell_2$.

Proof ℓ_r isometrically embeds into L_p if p < r < 2. The result follows from Theorem 5.1.

The following theorem solves a problem in [11] where the same result is established for 1 or <math>2 .

Theorem 5.3 If $1 and X is uniformly homeomorphic to <math>\ell_p \oplus \ell_q$ then X is linearly isomorphic to $\ell_p \oplus \ell_q$.

Proof Classical nonlinear theory ([8,11] or [2]) allows us to deduce that X is linearly isomorphic to a complemented subspace of $L_p \oplus L_q$. Let $J : X \to L_p \oplus L_q$ be a linear embedding and let $(x, y) \to Sx + Ty$ be a left-inverse of J where $S : L_p \to X$ and $T : L_q \to X$ are bounded operators.

By Theorem 5.1 the space ℓ_2 does not embed into X. Therefore by a result of Johnson [9] T factors through ℓ_q . This implies that X is linearly isomorphic to a complemented subspace of $L_p \oplus \ell_q$. The spaces L_p and ℓ_q are totally incomparable so that by the results of Edelstein and Wojtaszczyk ([4] or [18]) X is linearly isomorphic to $E \oplus F$ where E is a \mathcal{L}_p -space and F is complemented in ℓ_q . Since E contains no copy of ℓ_2 , E is isomorphic to ℓ_p or is finite-dimensional (see [12]). And F is isomorphic to ℓ_q or is finite-dimensional as well (see [15]). Since ℓ_p and ℓ_q have unique uniform structure [11] both E and F are infinite-dimensional.

Of course this argument works equally well for arbitrary finite sums (combining the arguments of [11]).

Theorem 5.4 If $1 < p_1, ..., p_n < \infty$ with $2 \notin \{p_1, ..., p_n\}$ and X is uniformly homeomorphic to $\ell_{p_1} \oplus \cdots \oplus \ell_{p_n}$ then X is linearly isomorphic to $\ell_{p_1} \oplus \cdots \oplus \ell_{p_n}$.

Unfortunately we do not know if $\ell_p \oplus \ell_2$ has unique uniform structure when $p \neq 2$. If p > 2 we do not know if the Rosenthal space X_p [17] is uniformly homeomorphic to $\ell_p \oplus \ell_2$; since each embeds linearly into the other, our techniques do not appear fine enough to distinguish these spaces.

Theorem 5.5 If $2 , there is no coarse Lipschitz embedding of <math>(\sum \ell_2)_{\ell_p}$ into $\ell_p \oplus \ell_2$.

Proof As in Theorem 5.1 we suppose $f: (\sum \ell_2)_{\ell_p} \to \ell_2 \oplus_{\infty} \ell_p$ is a coarse Lipschitz embedding so that

$$||x - y|| \le ||f(x) - f(y)|| \le C||x - y||, ||x - y|| \ge 1.$$

Write f(x) = (g(x), h(x)). For each *i* let $(e_{ij})_{j=1}^{\infty}$ be the canonical basis of the *i*th. co-ordinate space ℓ_2 .

We proceed similarly to Theorem 5.1. Suppose $k \in \mathbb{N}$ and $\delta > 0$. Then, since p > 2, by Proposition 3.5, we can find $\tau > k$, $x \in (\sum \ell_2)_{\ell_p}$ and $N \in \mathbb{N}$ so that if $E = [e_{ij}]_{i>N, j\geq 1}$ then $g(x + \tau B_E) \subset K + \delta \tau B_{\ell_2}$ for some compact subset *K* of ℓ_2 . Define $\varphi : G_k(\mathbb{N}) \to (\sum \ell_2)_{\ell_p}$ by

$$\varphi(n_1,\ldots,n_k) = x + \tau k^{-1/2} (e_{N+1,n_1} + \cdots + e_{N+1,n_k}).$$

Then $g \circ \varphi(G_k(\mathbb{N})) \subset K + \delta \tau B_{\ell_2}$. Thus by Lemma 4.1 we can find an infinite subset \mathbb{M}_0 of \mathbb{N} so that

$$\operatorname{diam}(g \circ \varphi(G_k(\mathbb{M}_0))) \leq 3\delta\tau.$$

On the other hand, $\operatorname{Lip}(h \circ \varphi) \leq C\sqrt{2\tau}k^{-1/2}$ and so by Theorem 4.2 we can pass to an infinite subset \mathbb{M} of \mathbb{M}_0 so that

diam
$$(h \circ \varphi(G_k(\mathbb{M}))) \leq 3\sqrt{2}C\tau k^{1/p-1/2}$$
.

Thus

$$\operatorname{diam}(f \circ \varphi(G_k(\mathbb{M}))) \le 3\sqrt{2}\tau(Ck^{1/p-1/2} + \delta).$$

However

 $\operatorname{diam}(\varphi(G_k(\mathbb{M}))) > \tau$

and this implies that

$$\operatorname{diam}(f \circ \varphi(G_k(\mathbb{M}))) > \tau.$$

Hence

$$1 < 3\sqrt{2}(Ck^{1/p-1/2} + \delta).$$

Since $\delta > 0$ and $k \in \mathbb{N}$ are arbitrary this is a contradiction.

Haydon, Odell and Schlumprecht recently proved [7] that a subspace of L_p , p > 2, that does not contain an isomorphic copy of $(\sum \ell_2)_{\ell_p}$ is isomorphically contained in $\ell_p \oplus \ell_2$. It thus follows from Theorem 5.5 that a Banach space coarsely homeomorphic to $\ell_p \oplus \ell_2$ is a \mathcal{L}_p space which linearly embeds into $\ell_p \oplus \ell_2$. A result of Johnson and Odell [13] then implies that it is isomorphic to a complemented subspace of X_p . We thank the referee for pointing this out to us.

The other half of Theorem 5.2 is now immediate:

Theorem 5.6 If $2 , <math>L_p$ is not coarsely (or uniformly) homeomorphic to $\ell_p \oplus \ell_2$.

Finally we show that Theorem 5.5 holds in the case $1 \le p < 2$.

Theorem 5.7 If $1 \le p < 2$, there is no coarse Lipschitz embedding of $(\sum \ell_2)_{\ell_p}$ into $\ell_p \oplus \ell_2$.

Proof We suppose $f: (\sum \ell_2)_{\ell_p} \to \ell_p \oplus_{\infty} \ell_2$ is a coarse Lipschitz embedding such that

$$||x - y|| \le ||f(x) - f(y)|| \le C ||x - y||, ||x - y|| \ge 1.$$

Let f(x) = (g(x), h(x)) as usual. Suppose $k \in \mathbb{N}$ and $\delta > 0$.

Consider the space $Y = [e_{ij}]_{i \le k, j \ge 1}$. Thus *Y* is linearly isomorphic to ℓ_2 and we can apply Proposition 3.5. As observed earlier, Proposition 3.5 holds for any equivalent norm on the domain space; therefore we can apply to *Y* with the subspace norm inherited from $(\sum \ell_2)_{\ell_p}$. Thus there exist $y \in Y, \tau > k$, a compact subset *K* of ℓ_p and *N* so that if $E = [e_{ij}]_{i \le k, j > N}$ then $g(y + \tau B_E) \subset K + \delta \tau B_{\ell_p}$. Let $\mathbb{M} = \{j : j > N\}$.

Define $\varphi : G_k(\mathbb{M}) \to y + \tau B_E$ by

$$\varphi(n_1,\ldots,n_k) = y + \tau k^{-1/p} \sum_{i=1}^k e_{i,n_i}.$$

Then $\operatorname{Lip}(\varphi) = \sqrt{2}\tau k^{-1/p}$.

From Lemma 4.1 we deduce that there is an infinite subset \mathbb{M}_0 of \mathbb{M} so that diam $(g \circ \varphi(G_k(\mathbb{M}_0))) < 3\delta \tau$. From Theorem 4.2 we obtain an infinite subset \mathbb{M}' of \mathbb{M}_0 so that diam $(h \circ \varphi(G_k(\mathbb{M}')) < 3\sqrt{2}C\tau k^{1/2-1/p}$.

Thus

$$1 \le \tau^{-1} \operatorname{diam}(f \circ \varphi(G_k(\mathbb{M}')))$$

$$< 3(\sqrt{2}Ck^{1/2 - 1/p} + \delta).$$

Since $k \in \mathbb{N}$ and $\delta > 0$ are arbitrary this is a contradiction.

6 Concluding remarks

It is clear that Theorem 4.2 is capable of considerable generalization. The correct concept here is *asymptotic smoothness* introduced by Milman [14] and studied in [5, 10]. Let X be a Banach space. If t > 0 we define $\overline{\rho}_X(t)$ (the modulus of asymptotic smoothness of X) by

$$\overline{\rho}_X(t) = \sup_{\|x\|=1} \inf_{\dim X/E < \infty} \sup_{y \in B_E} (\|x+ty\|-1).$$

If $x \in X$ with ||x|| = 1 and $(x_n)_{n=1}^{\infty}$ is any weakly null sequence we have

$$\limsup \|x + x_n\| \le 1 + \overline{\rho}_X(\limsup \|x_n\|).$$

If X has separable dual this formula may also be used to define $\overline{\rho}_X$. Notice that $\overline{\rho}_X$ is a convex function which satisfies the inequality

$$\overline{\rho}_X(t) \ge \max(t-1,0).$$

Thus $\overline{\rho}_X$ is an Orlicz function and we can define the Orlicz sequence space $\ell_{\overline{\rho}_X}$ which we equip with the Luxemburg norm:

$$\|\xi\|_{\ell_{\overline{\rho}_X}} = \inf \left\{ \lambda : \sum_{j=1}^{\infty} \overline{\rho}_X(|\xi_j|/\lambda) \le 1 \right\}.$$

Now assume $k \in \mathbb{N}$ and that $a_1, \ldots, a_k > 0$. For any infinite subset \mathbb{M} of \mathbb{N} we define the metric space $G_k(\mathbb{M}; a_1, \ldots, a_k)$ to be space of all k-subsets (n_1, n_2, \ldots, n_k)

with $n_1 < n_2 < \ldots < n_k$ with the metric

$$d((n_1,\ldots,n_k),(m_1,\ldots,m_k))=\sum_{n_j\neq m_j}a_j.$$

Theorem 6.1 Let X be a reflexive Banach space with modulus of asymptotic smoothness $\overline{\rho}_X$. Then if \mathbb{M} is an infinite subset of \mathbb{N} , $\epsilon > 0$ and $f : G_k(\mathbb{M}; a_1, \ldots, a_k) \to X$ is a bounded map, there exists an infinite subset \mathbb{M}' of \mathbb{M} so that

diam
$$f(G_k(\mathbb{M}')) < 2e \operatorname{Lip}(f) || (a_1, \dots, a_k) ||_{\ell_{\overline{p}_X}} + \epsilon$$

Proof Let us define a norm on \mathbb{R}^2 by

$$N_2(\xi,\eta) = \begin{cases} |\xi|\overline{\rho}_X(|\eta|/|\xi|) + |\xi|, & \xi \neq 0\\ |\eta|, & \xi = 0. \end{cases}$$

Thus we can give N_2 an alternative definition:

$$N_2(\xi,\eta) = \sup_{\|x\|=1} \inf_{\dim X/E < \infty} \sup_{y \in B_E} \|\xi x + \eta y\|$$

and from this formula it is clear that $N_2(0, 1) = N_2(1, 0) = 1$ and N_2 is an absolute norm, i.e.

$$N_2(\xi_1, \eta_1) \le N_2(\xi_2, \eta_2)$$
 if $|\xi_1| \le |\xi_2|, |\eta_1| \le |\eta_2|.$

Then define by induction a norm N_k on \mathbb{R}^k so that

$$N_k(\xi_1,\ldots,\xi_k) = N_2(N_{k-1}(\xi_1,\ldots,\xi_{k-1}),\xi_k).$$

We now prove by induction that given \mathbb{M} an infinite subset of \mathbb{N} , $\epsilon > 0$ and $f : G_k(\mathbb{M}; a_1, \ldots, a_k) \to X$ a bounded map, there exists an infinite subset \mathbb{M}' of \mathbb{M} and $u \in X$ so that

$$||f(n_1,...,n_k) - u|| < N_k(a_1,...,a_k) \operatorname{Lip}(f) + \epsilon, \quad (n_1,...,n_k) \in G_k(\mathbb{M}').$$

As in Theorem 4.2 this is elementary for k = 1. We pass to a subset \mathbb{M}_0 so that $\lim_{n \in \mathbb{M}_0} f(n) = u$ exists weakly. Then

$$\limsup_{n \in \mathbb{M}_0} \|f(n) - u\| \le \limsup_{n \in \mathbb{M}_0} \|f(n) - f(m)\| \le \operatorname{Lip}(f)a_1.$$

Thus passing to some further infinite subset \mathbb{M}' gives the result.

Assume the result is proved for k - 1. Then we pass to a subset \mathbb{M}_0 so that for every $\overline{n} \in G_{k-1}(\mathbb{M})$ the limit $\tilde{f}(\overline{n}) = \lim_{n_k \in \mathbb{M}_0} f(\overline{n}, n_k)$ exists weakly.

By the inductive hypothesis we can pass to a further infinite subset \mathbb{M}_1 so that for some $u \in X$ we have

$$\|\tilde{f}(\overline{n}) - u\| \le \operatorname{Lip}(\tilde{f})N_{k-1}(a_1, \dots, a_{k-1}) + \epsilon/2, \quad \overline{n} \in G_{k-1}(\mathbb{M}_1).$$

Note that $\operatorname{Lip}(\tilde{f}) \leq \operatorname{Lip}(f)$.

We pass to a further infinite subset \mathbb{M}' of \mathbb{M}_1 so that

$$\left| \|f(\overline{n}) - u\| - \|f(\overline{n}') - u\| \right| < \epsilon/2, \quad \overline{n}, \overline{n}' \in G_k(\mathbb{M}'; a_1, \dots, a_k).$$

Then note that for any $\overline{n} \in G_{k-1}(\mathbb{M}')$, we have

$$\limsup_{n_k \in \mathbb{M}'} \|f(\overline{n}, n_k) - u\| \le N_2 \left(\|\tilde{f}(\overline{n}) - u\|, \limsup_{n_k \in \mathbb{M}'} \|f(\overline{n}, n_k) - \tilde{f}(\overline{n})\| \right).$$

Now

$$\begin{split} \limsup_{n_k \in \mathbb{M}'} \|f(\overline{n}, n_k) - \tilde{f}(\overline{n})\| &\leq \limsup_{n_k \in \mathbb{M}'} \sup_{n'_k \in \mathbb{M}'} \|f(\overline{n}, n_k) - f(\overline{n}, n'_k)\| \\ &\leq \operatorname{Lip}(f) a_k. \end{split}$$

Hence

$$\limsup_{n_{k} \in \mathbb{M}'} \|f(\overline{n}, n_{k}) - u\| \le N_{2}(N_{k-1}(a_{1}, \dots, a_{k-1}) + \epsilon/2, a_{k})$$
$$\le N_{k}(a_{1}, \dots, a_{k}) + \epsilon/2.$$

Recalling the selection of the set \mathbb{M}' this proves the inductive hypothesis.

To complete the proof we show that $N_k(\xi_1, \ldots, \xi_k) \leq e \|(\xi_1, \ldots, \xi_k)\|_{\ell_{\overline{\rho}_X}}$ for all ξ_1, \ldots, ξ_k .

Assume $\|(\xi_1, \xi_2, \dots, \xi_k)\|_{\ell_{p_X}} \le 1$. We define $N_1(t) = |t|$. Assume that $N_k(\xi_1, \dots, \xi_k) > 1$. Then there is a least r with $1 \le r \le k$ so that $N_r(\xi_1, \dots, \xi_r) > 1$. Then we have

$$N_j(\xi_1, \dots, \xi_j) = N_2(N_{j-1}(\xi_1, \dots, \xi_{j-1}), \xi_j)$$

$$\leq (1 + \overline{\rho}_X(|\xi_j|))N_{j-1}(\xi_1, \dots, \xi_{j-1}), \quad j > r.$$

If r > 1 we have

$$N_r(\xi_1,\ldots,\xi_r) \le N_2(1,\xi_r) = 1 + \overline{\rho}_X(|\xi_r|).$$

If r = 1 then

$$N_1(\xi_1) = |\xi_1| \le 1 + \overline{\rho}_X(|\xi_1|).$$

Deringer

Thus

$$N_k(\xi_1,\ldots,\xi_k) \leq \prod_{j=r}^k (1+\overline{\rho}_X(|\xi_j|)) \leq e.$$

We believe that Theorem 6.1 may well have other applications in nonlinear theory. The connections between asymptotic smoothness and uniform homeomorphisms is explored in [5], but the results obtained there depend on the fact that one has a uniform homeomorphism between two spaces and the Gorelik principle can be applied. Theorem 6.1 allows us to still get information when one only has a coarse Lipschitz embedding, as long as the spaces are reflexive.

References

- 1. Aharoni, I.: Every separable metric space is Lipschitz equivalent to a subset of c_0^+ . Isr. J. Math. **19**, 284–291 (1974)
- Benyamini, Y., Lindenstrauss, J.: Geometric nonlinear functional analysis, vol. 1. American Mathematical Society Colloquium Publications, vol. 48. American Mathematical Society, Providence (2000)
- Bourgain, J.: Remarks on the extension of Lipschitz maps defined on discrete sets and uniform homeomorphisms. In: Geometrical Aspects of Functional Analysis (1985/1986). Lecture Notes in Mathematics, vol. 1267, pp. 157–167. Springer, Berlin (1987)
- Èdelšteĭn, I.S., Wojtaszczyk, P.: On projections and unconditional bases in direct sums of Banach spaces. Stud. Math. 56, 263–276 (1976)
- Godefroy, G., Kalton, N.J., Lancien, G.: Szlenk indices and uniform homeomorphisms. Trans. Amer. Math. Soc. 353, 3895–3918 (2001) (electronic)
- 6. Gorelik, E.: The uniform nonequivalence of L_p and l_p . Isr. J. Math. 87, 1–8 (1994)
- 7. Haydon, R., Odell, E., Schlumprecht, Th.: Small subspaces of Lp (2007, preprint)
- Heinrich, S., Mankiewicz, P.: Applications of ultrapowers to the uniform and Lipschitz classification of Banach spaces. Stud. Math. 73, 225–251 (1982)
- 9. Johnson, W.B.: Operators into L_p which factor through ℓ_p . J. Lond. Math. Soc. 14(2), 333–339 (1976)
- Johnson, W.B., Lindenstrauss, J., Preiss, D., Schechtman, G.: Almost Fréchet differentiability of Lipschitz mappings between infinite-dimensional Banach spaces. Proc. Lond. Math. Soc. 84(3), 711–746 (2002)
- Johnson, W.B., Lindenstrauss, J., Schechtman, G.: Banach spaces determined by their uniform structures. Geom. Funct. Anal. 6, 430–470 (1996)
- 12. Johnson, W.B., Odell, E.: Subspaces of L_p which embed into l_p . Compos. Math. 28, 37–49 (1974)
- 13. Johnson, W.B., Odell, E.: Subspaces and quotients of $l_p \oplus l_2$ and X_p . Acta Math. 147, 117–147 (1981)
- Milman, V.D.: Geometric theory of Banach spaces. II. Geometry of the unit ball (in Russian). Uspehi Mat. Nauk 26, 73–149 (1971). English translation: Russ. Math. Surv. 26, 79–163 (1971)
- 15. Pełczyński, A.: Projections in certain Banach spaces. Stud. Math. 19, 209–228 (1960)
- 16. Ribe, M.: On uniformly homeomorphic normed spaces. Ark. Mat. 14, 237-244 (1976)
- 17. Rosenthal, H.P.: On the subspaces of L^p (p > 2) spanned by sequences of independent random variables. Isr. J. Math. **8**, 273–303 (1970)
- Wojtaszczyk, P.: On projections and unconditional bases in direct sums of Banach spaces, II. Stud. Math. 62, 193–201 (1978)