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Abstract. We prove comparison theorems for theH∞-calculus that allow to transfer the prop-
erty of having a bounded H∞-calculus from one sectorial operator to another. The basic tech-
nical ingredient are suitable square function estimates. These comparison results provide a new
approach to perturbation theorems for the H∞-calculus in a variety of situations suitable for
applications. Our square function estimates also give rise to a new interpolation method, the
Rademacher interpolation. We show that a boundedH∞-calculus is characterized by interpola-
tion of the domains of fractional powers with respect to Rademacher interpolation. This leads to
comparison and perturbation results for operators defined in interpolation scales such as theLp-
scale. We apply the results to give new proofs on theH∞-calculus for elliptic differential oper-
ators, including Schrödinger operators and perturbed boundary conditions. As new results we
prove that elliptic boundary value problemswith bounded uniformly coefficients have a bounded
H∞-calculus in certain Sobolev spaces and that the Stokes operator on bounded domains �
with ∂� ∈ C1,1 has a bounded H∞-calculus in the Helmholtz scale Lp,σ (�), p ∈ (1,∞).

1. Introduction

It is well established by now that theH∞-functional calculus of a sectorial operator
has important applications in the spectral theory of partial differential operators
and the theory of evolution equations, e.g., in determining the domain of frac-
tional powers of a partial differential operator in the solution of Kato’s problem
(e.g. [55], [16], [26], [8], [4]), in connection with maximal regularity of parabolic
evolution equations (e.g. [41], [42], [43], [30], [28], [51]) and certain estimates in
control theory ([44], [27]). An essential tool in verifying the boundedness of the
H∞-calculus for a partial differential operator are perturbation theorems. While
sectoriality (and R-sectoriality, [40]) are preserved under relatively bounded per-
turbations, it is well known that this is not true for the boundedness of the
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H∞-calculus (cf. [47]). In this paper we offer a systematic study of additional
conditions, that – together with relative boundedness – lead to useful perturbation
theorems.

Our results are based on a characterization of the boundedness of theH∞-cal-
culus in terms of “square function estimates”, which are similar to the ones known
for Hilbert- andLp-spaces (see [15], [45]) but can be formulated in general Banach
spaces and refine the results of [30]. They are formulated in terms of Rademach-
er averages and connect therefore nicely with R-boundedness and related tech-
niques from Banach space theory (see Section 4). For many of our results we need
a weaker form of R-sectoriality, which is necessary for the boundedness of the
H∞-calculus without any restrictions on the underlying Banach space. This notion
of “almost R-sectoriality” requires that {λAR(λ,A)2 : λ ∈ �} is R-bounded for
some sector �, it is studied in Section 3.

One main theme of our paper, discussed in Sections 5 and 6, is to show how the
boundedness of theH∞-calculus in “encoded” in the fractional domain spaces of
a sectorial operator. For example we show in Section 5 that ifD(Aα) andD(Bα)
coincide (with equivalent norms) for two different values of α with 0 < |α| ≤ 3/2
where A has a bounded H∞-calculus and B is (almost) R-sectorial then B has a
bounded H∞-calculus, too (Theorem 5.1). This leads to characterizations of the
coincidence ofD(Aβ) andD(Bβ) for certain values of β in terms of R-bounded-
ness conditions on the resolvent ofB in the scale defined byD(Aα) (Theorem 5.7)
and to perturbation theorems where the perturbation is not just relatively bounded
on D(A) but with respect to two norms of the scale D(Aα) (see Theorem 6.1).
We also give results modeled after perturbation theorems for forms, i.e. the per-
turbation maps from D(Aα) to D(Aα−1). If α ∈ (0, 1), even one relative bound
suffices (see Theorem 6.6). In the Hilbert space case, some of our comparison
theorems recover theorems in [56] and [5], which were the starting point of our
investigation.

Our second main theme concerns operators defined in a whole interpolation
scale, such as Lp-spaces or Helmholtz-spaces. We want to show that, if two oper-
ators A and B are “well understood” in one space of the scale (usually a Hilbert
space) then one relative boundedness condition suffices to obtain a perturbation
result for the remaining spaces of the scale. This is of particular interest when
A and B are accretive operators in a Hilbert space extending to an Lp-scale (see
Section 8 for details). For this we need a new interpolation method 〈·, ·〉θ —
also formulated in terms of Rademacher averages — which interpolates the scale
of domains of fractional powers “correctly”, i.e., ˜D(Aγ ) = 〈 ˜D(Aα), ˜D(Aβ)〉θ ,
γ = (1 − θ)α + θβ if and only if A has an H∞-calculus (˜ denotes completion
for the homogeneous norm, see Section 7 for details and precise assumptions).
For Hilbert space and the complex interpolation method, this result is already
contained in [5], but for Banach spaces other than Hilbert spaces it is neither true
for the complex nor for the the real interpolation method. We also show that, for
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every (almost)R-sectorial operator, the part ofA on the Rademacher interpolation
space 〈X, ˜D(A)〉θ , θ ∈ (0, 1), has always a bounded H∞-calculus.

In Section 9 we illustrate our results by giving short proofs for the bounded-
ness of theH∞-calculus for some classes of partial differential operators.Whereas
some of these results are known and shown with different proofs as before (e.g.,
for partial differential operators on R

n with Hölder continuous coefficients or for
elliptic boundary value problems with Hölder continuous coefficients), we obtain
new results for elliptic boundary value problems with bounded uniformly contin-
uous coefficients in Sobolev spaces, for certain operators in divergence form, and
for the Stokes operator on bounded domains with a C1,1-boundary.

In the following Section 2 we give some necessary definitions and preliminary
results concerning fractional powers of sectorial operators and the scales of their
domain spaces.

2. Preliminaries on sectorial operators and fractional powers

ByX and Y we always denote complex Banach spaces and by B(X, Y ) the space
of bounded linear operators from X to Y . We write B(X) for B(X,X).

Recall that a closed densely defined operator A on X is a sectorial operator
of type 0 ≤ ω < π if A is one–to–one with dense range, the spectrum σ(A) of A
is contained in the closed sector �ω where �ω = {λ ∈ C \ {0} : | arg(λ)| < ω},
and, for all σ > ω, the set τσ = {λR(λ,A) : λ �= 0, | arg(λ)| ≥ σ } is bounded.
The infimum over all ω for which A is sectorial of type ω is denoted by ω(A).

Since the dual operator A∗ of a sectorial operator A may not have a norm–
dense domain and norm–dense range in X∗, we denote by A� the part of A∗ in
X� = D(A∗)

X∗
∩R(A∗)

X∗
. If we want to emphasize with respect to which secto-

rial operatorA the spaceX� is constructed we writeX�A. It is clear thatX�A = X
�

A−1 ,
and it is well known (cf. [33, Thm. 3.7], [15]) thatA� is a sectorial operator inX�.
In particular,D(A�)∩R(A�) is dense inX�. Note thatD(A∗)∩R(A∗) normsX:
Letting ϕn(z) = n

n+z− 1
1+nz (cf. also the beginning of Section 4), this follows from

〈ϕn(A∗)x∗, x〉 = 〈x∗, ϕn(A)x〉 → 〈x∗, x〉 as n → ∞ where x ∈ X, x∗ ∈ X∗.
Notice thatϕn(A) = n(n+A)−1−n−1(n−1+A)−1 = A((n+A)−1−(n−1+A)−1)

is a uniformly bounded sequence in B(X) if A is sectorial.
Since A� is sectorial in X�, we conclude that also D(A�) ∩ R(A�) norms X.

Recall that A� = A∗ and X� = X∗ if X is reflexive.
For the theory of fractional powers Aα, α ∈ C, of a sectorial operator A we

refer to Komatsu ([Ko1] – [Ko5]).
Wenow define a scale of Banach spaces related to fractional powers. This scale

turns out to be fundamental for our later considerations. For a sectorial operator
A on X and α ∈ R we define Ẋα as the completion of D(Aα) with respect to the
norm ‖x‖α = ‖Aαx‖, i.e.

(Ẋα, ‖ · ‖Ẋα ) := (D(Aα), ‖Aα · ‖X)∼.
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In particular we have Ẋ0 = X. Only if 0 ∈ �(A) these spaces do coincide with
the usual Sobolev tower as defined, e. g. in [23], where one takes the graph norm
on D(Aα) for α > 0 (cf. also Remark 5.9 for further details). If X = Lp(R

n)

and A = −� then the Ẋα are Riesz potential spaces, whereas the Sobolev tower
defined in [23] consists of Bessel potential spaces.

If we want to emphazise the operatorA, whose fractional domains we consider,
we write Ẋα,A.

It is easy to check that Aα : D(Aα) → R(Aα) extends to an isomorphism
˜Aα : Ẋα → X whose inverse (˜Aα)−1 is an extension of the operator A−α :
R(Aα) → D(Aα). Observe that one has to distinguish this extension which acts
as an isomorphsim X → Ẋα from the extension ˜A−α which acts as an isomor-
phism Ẋ−α → X.

It is not hard to see that X�Aα = X
�

A for any α �= 0. If X is reflexive one also
has (Ẋα,A)∗ = (X∗)·−α,A∗ and Ẋ−α,A = ((X∗)·α,A∗)∗ with respect to the duality
〈X,X∗〉.

For further considerations we recall the following fundamental property of
the fractional powers of a sectorial operator A (cf. [33, Sect.7]): For arbitrary
α, β ∈ C we have

AαAβ ⊂ Aα+β and D(AαAβ) = D(Aβ) ∩D(Aα+β) (1)

is a core for Aα+β . In particular we have for α, β ∈ R with αβ ≥ 0 that AαAβ =
Aα+β . For α ∈ R we define the operator Ȧα in Ẋα by Ȧα := (˜Aα)−1A˜Aα. Then
Ȧα is similar to A and

Ȧα ⊃ A−αAAα ⊂ A

For α > 0 we haveAAα = A1+α = AαA, and for α < 0 we haveA−αA = A1−α,
which by (1) leads to

D(A−αAAα) =
{

D(A1+α) , α > 0
D(Aα) ∩D(A) , α < 0 .

On this set we have coincidence ofA and Ȧα. Moreover, this set is a core for both
operators A and Ȧα.

Later on we shall need the following result on “shifting” in the scale Ẋα.

Proposition 2.1. LetA be a sectorial operator inX and α ∈ R. Define Y := Ẋα,A
and B := Ȧα. Then we have, in a canonical way, Ẏβ,B = Ẋα+β,A and Ḃβ = Ȧα+β
for any β ∈ R.

Proof. We may assume αβ �= 0. First we notice

Bβ = (Ȧα)
β = (˜Aα)−1Aβ˜Aα.
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Using (1) the same argument as above shows that Bβ and Aβ coincide on

D := D(A−αAβAα) =
{

D(Aα+β) , αβ > 0
D(Aα) ∩D(Aβ) , αβ < 0

which is a core for Bβ in Y and for Aβ and Aα+β in X. Thus for y ∈ D we have
Bβy = A−αAβAαy ∈ D(Aα) and

‖Bβy‖Y = ‖AαBβy‖X = ‖AβAαy‖X = ‖Aα+βy‖X
which completes the proof. ��

Since we shall use interpolation in our scale (Ẋα)we quote the following from
[32]: For anym ∈ N the pair (Ẋm ∩ Ẋ−m, Ẋm + Ẋ−m) is an interpolation couple.
This is obtained by letting Y(−m) := (X, ‖(A(1 +A)−1)m · ‖X)∼. It turns out that,
in a natural way, Ẋm + Ẋ−m = Y(−m) and Ẋm ∩ Ẋ−m = D(Am) ∩ R(Am). For
fixedm ∈ N all spaces Ẋα, |α| ≤ m, are intermediate spaces for the interpolation
couple (Ẋm ∩ Ẋ−m, Ẋm + Ẋ−m).

We recall that a sectorial operator A in a Banach space X is said to have
bounded imaginary powers (or BIP for short) if Ait ∈ B(X), t ∈ R, and there
are constants c, γ > 0 such that

‖Ait‖ ≤ ceγ |t |, t ∈ R.

The infimumof all such γ is denotedωBIP (A). IfA has BIP then, by (1),D(Aα) =
D(ARe α) and ‖Aα · ‖ ∼ ‖ARe α · ‖ for all α ∈ C.

The following is obtained by a reproduction of the proof of [54, Thm.1.15.2].

Proposition 2.2. Suppose thatA is a sectorial operator in a Banach spaceX and
that A has BIP. Then we have for the complex interpolation method

[Ẋα, Ẋβ]θ = Ẋ(1−θ)α+θβ

with equivalent norms for all α, β ∈ R and all θ ∈ (0, 1).
Proof. We may assume α �= β and, by Proposition 2.1, even α = 0, β > 0. We
now reproduce the proof of [54, Thm.1.15.2] where we want to draw attention to
the fact that Triebel assumes 0 ∈ ρ(A) which makes (D(Aβ), ‖Aβ · ‖) a Banach
space and leads to Ẋβ = D(Aβ) in our notation. But the proof given there shows
that, for 0 ∈ σ(A), one has to consider (D(Aβ), ‖Aβ · ‖)∼, i.e. our space Ẋβ , in
place of D(Aβ). ��

A converse statement is known to hold in Hilbert space (cf. [5]), but for general
Banach spaces this seems to be open.
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3. Almost R–sectorial operators

In this sectionwe recall somebasic definitions related toR-boundedness and intro-
duce almost R-sectoriality which will be a frequent assumption in some of our
main results. We also note some basic duality and interpolation results connected
with R-boundedness, which will be useful later.

We recall that a family F ⊂ B(X, Y ) is called Rademacher–bounded, or
R–bounded, with R–boundedness constant C if letting (εk)∞k=1 be a sequence of
independent Rademachers on some probability space, then for every n ∈ N and
all choices x1, . . . , xn ∈ X and T1, . . . , Tn ∈ F we have

E

∥

∥

∥

∑

εkTkxk

∥

∥

∥

2

Y
≤ C2

E

∥

∥

∥

∑

εkxk

∥

∥

∥

2

X
.

The smallest C in this inequality we denote by R(F). For the basic properties
of this notion we refer to [12], [30], and [17].

We recall that a sectorial operator A of type ω in a Banach space X is called
R-sectorial of type ω ∈ [0, π) if, for any σ > ω, the set τσ = {λR(λ,A) :
| arg(λ)| ≥ σ } is R-bounded. The infimum over all ω for which A is R-sectorial
of type ω we denote by ωR(A).

In connection with the H∞–calculus, we will find it convenient to consider
also a weaker version of R–sectoriality which was introduced in [31], [32]: A
sectorial operator A of type ω is almost R–sectorial of type ω, if the sets τσ =
{λAR(λ,A)2 : | arg(λ)| ≥ σ }, σ > ω, are R–bounded. ωr(A) is again the infi-
mum over all such ω.

Remark 3.1. EveryR–sectorial operator is almostR–sectorial andωr(A)≤ωR(A)
(since λAR(λ,A)2 = [AR(λ,A)][λR(λ,A)]). But there are examples of almost
R–sectorial operators that are not R–sectorial even onX = Lp, p �= 2 (see [32]).

It is known, that BIP implies R–sectoriality if X is a UMD–space (cf. [13])
and that a bounded H∞–calculus implies R–sectoriality if X has property (�)
(cf. [30]). For general X we have:

Proposition 3.2. Let A be a sectorial operator with BIP and ωBIP (A) < π .
Then A is almost R–sectorial with ωr(A) ≤ ωBIP (A).

Proof. Since
∫ ∞

0 sz−1 s

(1+s)2 ds = πz
sin(πz) for 0 < Re z < 1 we obtain by the

Mellin inversion formula (with 0 < c < 1)

μ

(1 + μ)2
= 1

2πi

∫

Re z=c

πz

sin(πz)
μ−z dz

= 1
2

∫ ∞

−∞

t

sinh(πt)
μit dt,
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first forμ > 0 and then for | argμ| < π by analytic continuation. Chooseω, ν > 0
with ω + ωBIP (A) < ν < π . For λ with | arg λ| < ω and x ∈ D(A) ∩ R(A) we
have

[

λA

(1 + λA)2

]

x =
∫

∂�ν

μ

(1 + μ)2
R(μ, λA)x dμ

= 1
2

∫ ∞

−∞

t

sinh(πt)

(∫

∂�ν

μitR(μ, λA)x dμ

)

dt

= 1
2

∫ ∞

−∞

t

sinh(πt)
λitAitx dt

=
∫ ∞

−∞
hλ(t)N(t)x dt,

where N(t) = e−(ν−ω)|t |Ait has integrable norm on R and

hλ(t) = 1
2

t

sinh(πt)
e(ν−ω)|t |λit

is uniformly bounded in t ∈ R and λ ∈ �ω. It follows that {−λAR(−λ,A)2 :
λ ∈ �ω} is R-bounded and therefore ωr(A) ≤ π − ω. ��

This proposition shows in particular, that almost R-sectoriality is a necessary
condition for the boundedness of the H∞-calculus in any Banach space.

We denote by H∞
0 (�σ ) the space of all bounded analytic functions f on �σ

which, for someC, ε > 0, satisfy an estimate of the form |f (z)| ≤ C

( |z|
1 + |z|2

)ε

with ε > 0.

Lemma 3.3. LetA be an almostR-sectorial operator onX. Ifψ ∈ H∞
0 (�σ )with

σ > ωr(A), then {ψ(tA) : t > 0} is R-bounded.

Proof. (cf. [31, Lem.7.6]) Let �(z) := ∫ z

0
ψ(λ)

λ
dλ, z ∈ �σ . Define ϕ(λ) :=

�(λ)− γ λ
1+λ , where γ = ∫ ∞

0
ψ(t)

t
dt . Then ϕ′(λ) = ψ(λ)

λ
− γ (1 + λ)−2 and one

can show that ϕ ∈ H∞
0 (�σ ). For σ > ν > ωr(A) we have

ϕ(tA) = 1
2πi

∫

∂�ν

ϕ(λ)R(λ, tA) dλ

and therefore

tAϕ′(tA) = 1
2πi

∫

ϕ(λ)[tAR(λ, tA)2] dλ.

Hence the set

{tAϕ′(tA) : t > 0} = {ψ(tA)+ γ tA(1 + tA)−2 : t > 0}
is R-bounded and the assertion follows. ��
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With this lemma the proof for the next result given in [33, Sect. 10] for secto-
riality extends to (almost) R-sectoriality.

Proposition 3.4. IfA is sectorial (R–sectorial, almostR–sectorial) of type ω and
0 < α <

π

ω
, then Aα is sectorial (R–sectorial, almost R–sectorial) of type αω.

Recall that a Banach space is B–convex (see [18]) if it has non–trivial type,
i. e. there is a p > 1 and a C > 0 such that for all n ∈ N and x1, . . . , xn ∈ X

E

∥

∥

∥

∥

∑

k

εkxk

∥

∥

∥

∥

≤ C

(

∑

k

||xk||p
)1/p

. (2)

For example Lp-spaces with 1 < p < ∞ and their closed subspaces and quo-
tient spaces are B–convex. Recall also that, by Kahane’s inequality, we may take
equivalently any norm (E‖∑

εkxk‖q)1/q , 1 ≤ q < ∞, on the left hand side of
(2).

For any Banach space X we define Rad(X) as the closure of {∑k rkxk :
xk ∈ X} in L2([0, 1], X) where (rk) are the Rademacher functions given by
rk(t) = sign sin(2kπt), t ∈ [0, 1], k ∈ N. Then R–boundedness of F ⊂ B(X, Y )

means that there is a constant C > 0 such that, for every sequence Tk ∈ F , the
assignment

∑

k

rkxk �→
∑

k

rkTkxk

defines a bounded operator from Rad(X) to L2([0, 1], Y ) with norm ≤ C.
IfX is B–convex then, by [50] and [18, Ch.13], the subspace Rad(X) is com-

plemented in L2([0, 1], X) and Rad(X) is norming for Rad(X∗), where duality is
given by

〈

∑

j

rj xj ,
∑

k

rkx
∗
k 〉 =

∑

j

〈xj , x∗
j

〉

.

Duality and interpolation results for (almost)R-sectorial operators follow directly
from the next two propositions.

Proposition 3.5. Let F be a R–bounded subset of B(X, Y ). If X is B–convex,
then {T ∗ : T ∈ F} ⊂ B(Y ∗, X∗) is R–bounded.

Proof. We consider a sequence (Tk) in F and the operator

Rad(Y ∗) → Rad(X∗),
∑

k

rky
∗
k �→

∑

k

rkT
∗
k y

∗
k ,
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and use the fact that Rad(X) norms Rad(X∗) by B–convexity of X. Hence

‖∑

k rkT
∗
k y

∗
k‖Rad(X∗) ≤ C sup{|∑k〈xk, T ∗

k y
∗
k 〉| : ‖∑

k rkxk‖Rad(X) ≤ 1}
≤ C ′‖∑

k rky
∗
k‖L2([0,1],Y ∗) sup{‖∑

k rkTkxk‖L2(Y ) : ‖∑

k rkxk‖Rad(X) ≤ 1}
≤ C ′ R(F) ‖∑

k rky
∗
k‖L2([0,1],Y ∗).

��

Remark 3.6. A consequence of 3.5 is that A� is R–sectorial (almost R–sectorial)
in X� if A is R–sectorial (almost R–sectorial) in X and X is B–convex.

Proposition 3.7. Let (X0, X1) and (Y0, Y1) be two interpolation couples and F a
family of operators from (X0, X1) to (Y0, Y1) such that F as a subset ofB(X0, Y0)

and of B(X1, Y1) is R–bounded. Let Xθ and Yθ be interpolation spaces formed
by the real or complex interpolation method.

If X0 and X1 are B–convex, then F is R–bounded as a subset of B(Xθ, Yθ ).

Proof. We clearly have (L2([0, 1], Y0), L2([0, 1], Y1))θ = L2([0, 1], Yθ ). We
consider Rad(Xj ), as complemented subspaces of L2([0, 1], Xj ) and use that
then (Rad(X0),Rad(X1))θ = Rad(Xθ) according to [54, 1.2.4]. The claim fol-
lows by considering sequences (Tk) in F . ��

We note the following version of the Stein interpolation theorem where we
use the notation

�(θ0, θ1) := {λ ∈ C \ {0} : θ0 ≤ arg λ ≤ θ1}

for two angles θ0 < θ1.

Proposition 3.8. Assume that (X0, X1) is an interpolation couple of B-convex
Banach spaces and that θ0 < θ1. Let N(λ), λ ∈ �(θ0, θ1) be a family of lin-
ear maps N(λ) : X0 ∩ X1 → X0 + X1 such that, for all x ∈ X0 ∩ X1, the
function λ �→ N(λ)x ∈ X0 + X1 is continuous and bounded on �(θ0, θ1) and
analytic in the interior of �(θ0, θ1). Assume, for j = 0, 1, that the functions
R+ � s → N(seiθj )x ∈ Xj , x ∈ X0 ∩X1, are continuous and that

{N(teiθj ) : t > 0} is R-bounded in B(Xj). (3)

Then for every α ∈ (0, 1) and θ = (1 − α)θ0 + αθ1 the set

{N(teiθ ) : t > 0} ⊂ B([X0, X1]α)

is R-bounded where [·, ·]α means complex interpolation.
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Proof. Put U = {λ ∈ C : θ0 ≤ Re λ ≤ θ1} and let C be larger than R{N(teiθ0) :
t > 0} in B(X0) and R{N(teiθ1) : t > 0} in B(X1). Fix t1, . . . , tn > 0, λ ∈ U ,
and define

M(λ) : Rad(X0 ∩X1) → Rad(X0 +X1)

∑

k

εkxk �→
n

∑

k=1

εkN(tke
iλ)xk.

By (3) we have that, for j = 0, 1, {M(θj + is) : s > 0} is bounded Rad(Xj ) →
Rad(Xj )with ‖M(θj + is)‖ ≤ C. By the abstract Stein interpolation theorem we
obtain that M(θ) is bounded with ‖M(θ)‖ ≤ C in [Rad(X0),Rad(X1)]α. Since
X0, X1 are B-convex, this space equals Rad[X0, X1]α. Hence we obtain

E

∥

∥

∥

∥

∥

n
∑

k=1

εkN(tke
iθ )xk

∥

∥

∥

∥

∥

[X0,X1]α

≤ CE

∥

∥

∥

∥

∥

∑

k

εkxk

∥

∥

∥

∥

∥

[X0,X1]α

which implies the assertion. ��
This yields the following corollary on (almost) R-sectorial operators in com-

plex interpolation spaces. We assume the following situation, which we shall meet
several times: (X0, X1) is an interpolation couple, the spaces Xθ := [X0, X1]θ ,
θ ∈ (0, 1), are obtained by complex interpolation, and there is a family (Aθ)θ∈[0,1]
of sectorial operators Aθ in Xθ satisfying the consistency condition

R(λ,Aθ)x = R(λ,Aθ̃ )x, x ∈ Xθ ∩Xθ̃, θ, θ̃ ∈ [0, 1].

By a connectedness argument the resolvents of Aθ and Aθ̃ are then consistent on
the largest sector contained in ρ(Aθ) ∩ ρ(Aθ̃ ).
Corollary 3.9. Let, in the situation described above, (X0, X1) be an interpolation
couple of B-convex Banach spaces. For j = 0, 1, let Aj , be R-sectorial (almost
R-sectorial) inXj of type ωj . Then, for θ ∈ (0, 1), the operatorAθ is R-sectorial
(almost R-sectorial) in Xθ of type (1 − θ)ω0 + θω1.

4. Characterizations of the H∞–calculus

In this section we recall the definition of the H∞-calculus and give characteriza-
tions of theH∞-calculus in terms of certain square functions that will be our main
tool in proving perturbation theorems. We also remark on the best angle for the
H∞-calculus (e.g., in terms of almost R-sectoriality) and on interpolation of the
H∞-calculus.

Recall that

H∞
0 (�σ ) := {f ∈ H∞(�σ ) : |f (z)| ≤ c|z|s(1 + |z|)−2s for some c, s > 0 }.
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For f ∈ H∞
0 (�σ ) and a sectorial operator A on X of type ω < σ we define

f (A) = 1
2πi

∫

∂�γ

f (λ)R(λ,A)dλ (4)

where γ ∈ (ω, σ ). The map H∞
0 (�σ ) � f �→ f (A) ∈ B(X) is linear and mul-

tiplicative and f (A) = AR(μ1, A)R(μ2, A) for f (λ) = λ(μ1 − λ)−1(μ− λ)−1

with | argμj | > σ , j = 1, 2. We say that A admits a bounded H∞(�σ )–calcu-
lus, if this map has a continuous extension from H∞(�σ ) to B(X). The infimum
over all σ for which A has an H∞(�σ )–calculus is denoted by ωH(A).

Put ϕn(z) = n

n+ z
− 1

1 + nz
. Then A admits an H∞(�σ )–calculus if and

only if sup
n

‖(ϕn · f )(A)‖B(X) < ∞ for all f ∈ H∞(�σ ) and in this case

f (A)x= lim
n→∞

1
2πi

∫

∂�σ

ϕn(λ)f (λ)R(λ,A)xdλ, for x ∈ X

= lim
n→∞

1
2πi

∫

∂�σ

f (λ)R(λ,A)xndλ, for xn = ϕn(A)x ∈ D(A) ∩ R(A).

For the details of this construction, see [46], [15].
We will need the following characterizations of the H∞–calculus.

Theorem 4.1. Let A be an almost R-sectorial operator in X. For 0 �= ψ ∈
H∞

0 (�ω) with ω > ωr(A) and a > 0 put

‖x‖ψ,A = sup
t>0

sup
N

E

∥

∥

∥

N
∑

k=−N
εkψ(ta

kA)x

∥

∥

∥

X

and

‖x∗‖∗
ψ,A = sup

t>0
sup
N

E

∥

∥

∥

N
∑

k=−N
εkψ(ta

kA)∗x∗
∥

∥

∥

X∗

Then each of the following conditions is equivalent to A having anH∞(�σ )-cal-
culus for each σ > ωr(A).

(i) There is a constant C > 0 such that for all N ∈ N and t ∈ [1, 2]

sup
εk=±1

∥

∥

∥

N
∑

k=−N
εkψ(ta

kA)

∥

∥

∥

B(X)
≤ C.

(ii) There is a constant C such that for all x ∈ X, x∗ ∈ X∗

‖x‖ψ,A ≤ C‖x‖, ‖x∗‖∗
ψ,A ≤ C‖x∗‖.
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(iii) There is a constant C such that for all x ∈ X
C−1‖x‖ψ,A ≤ ‖x‖ ≤ C‖x‖ψ,A.

(iv) There is a constant C such that for all x ∈ X, x∗ ∈ X∗

sup
N∈N

sup
t∈[1,2]

N
∑

k=−N
|〈x∗, ψ(takA)x〉| ≤ C‖x‖ · ‖x∗‖.

Remark 4.2. These conditions are motivated by the square function conditions in
[46] and [15] in Hilbert and Lp–spaces. It is shown in [32] that, for an almost
R-sectorial operator, one obtains a norm equivalent to ‖ · ‖ψ,A if one leaves out
the sup over t > 0 (i.e., one puts t = 1). In [31] and [32] a general method is
presented to generalize such square function estimates to the Banach space case.
Condition (i) is from [30]. Condition (iv) is a discrete version of conditions that
appeared in [15] and [11].

Remark 4.3. Typical functions ψ to which we will apply Theorem 4.1 are, e.g.,
ψνm,s(λ) = λs(eiν − λ)−m where 0 < s < m, m ∈ N, and | arg ν| > ω(A). Then

‖x‖ψ,A = sup
t>0

sup
N

E

∥

∥

∥

N
∑

k=−N
εk(ta

k)m−sAsR(eiνtak, A)mx
∥

∥

∥.

It was shown in [30] that an operator with an H∞–calculus is R–sectorial if
X has property (�), and that in this case, ωR(A) determines the H∞–type (see
[30]). Using the notion of almostR–sectoriality Theorem 4.1 improves this result:

Corollary 4.4. If A has an H∞-calculus in an arbitrary Banach space X then A
is almost R-sectorial with ωr(A) ≤ ωH(A) by Proposition 3.2, and Theorem 4.1
yields ωH(A) = ωr(A) without additional assumptions on the Banach space X.

We remark that the answer to the following question in [15]: “Let A be a sec-
torial operator with an H∞–calculus. Do we always have ωH(A) = ω(A)?” still
seems to be open for Lp-spaces, although there are counterexamples in certain
subspaces of Lp, p �= 2 (see [32]).

The following estimates use a simple randomization technique but they will
be used at various instants, including the proof of Theorem 4.1. We draw attention
to the fact that, by the Khintchine–Kahane inequalities, the L2–norms may be
replaced by L1–norms in a) and b) by the cost of an additional constant on the
right hand side. We shall use this fact without further mentioning.

Lemma 4.5. a) Let ψk, φk,Mk ∈ B(X), k = 1, . . . , N. For xk ∈ X and x∗
k ∈ X∗

we have
N

∑

k=1

|〈ψkMkφkxk, x
∗
k 〉| ≤ 2R(Mk)

(

E

∥

∥

∥

∑

k

εkφkxk

∥

∥

∥

2)1/2(
E

∥

∥

∥

∑

k

εkψ
∗
k x

∗
k

∥

∥

∥

2)1/2
.
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b) For a > 0 and strongly measurable, locally bounded operator valued functions
ψ, φ and M on R+ we have for x ∈ X and x∗ ∈ X∗

lim
R→∞

R
∫

1/R

|〈ψ(t)M(t)φ(t)x, x∗〉|dt
t

≤ 2R{M(·)} sup
t>0

sup
N

(

E

∥

∥

∥

∑

|k|≤N
εkφ(a

kt)x

∥

∥

∥

2)1/2

(

E

∥

∥

∥

∑

|k|≤N
εkψ(a

kt)∗x∗
∥

∥

∥

2)1/2
.

Proof. For the proof of a) we observe
N

∑

k=1

|〈ψkMkφkxk, x
∗
k 〉| ≤ sup

|ak |=1

∣

∣

∣

N
∑

k=1

ak〈Mkφkxk, ψ
∗
k x

∗
k 〉

∣

∣

∣

= sup
|ak |=1

E

∣

∣

∣

N
∑

k=1

ε2
k〈akMkφkxk, ψ

∗
k x

∗
k 〉

∣

∣

∣

= sup
|ak |=1

E

∣

∣

∣〈
∑

k

εkakMkφkxk,
∑

k

εkψ
∗
k x

∗
k 〉

∣

∣

∣

≤ sup
|ak |=1

(

E

∥

∥

∥

∑

k

εkakMkφkxk

∥

∥

∥

2)1/2(
E

∥

∥

∥

∑

k

εkψ
∗
k x

∗
k

∥

∥

∥

2)1/2
.

Now we use the R–boundedness of {akMk}. For the proof of b) observe

aN+1
∫

a−N

|〈ψ(t)M(t)φ(t)x, x∗〉|dt
t

=
N

∑

k=−N

ak+1
∫

ak

| · · · |dt
t

≤ sup
t>0

N
∑

k=−N
|〈ψ(akt)M(akt)φ(akt)x, x∗〉| · log a

and apply part a). ��
In the proof of Theorem 4.1 we shall also use the following proposition which

is inspired by similar results for the classical square functions considered in [46]
and [45].

Proposition 4.6. Let A be an almost R-sectorial operator in a Banach space X.
Let ϕ,ψ ∈ H∞

0 (�σ ) \ {0} for some σ > ωr(A). Then there is a constant C such
that for all f ∈ H∞(�σ ) and all x ∈ X we have

‖f (A)x‖ψ,A ≤ C‖f ‖∞‖x‖ϕ,A.
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In particular, for f (λ) ≡ 1, we obtain

C−1‖x‖ψ,A ≤ ‖x‖ϕ,A ≤ C‖x‖ψ,A.
The proof will be based on the following lemma.

Lemma 4.7. LetM,N : R+ → B(X) be strongly measurable, bounded functions
and h ∈ L1(R+, dtt ). If

M(t) =
∞
∫

0

h(ts)N(s)
ds

s
, t > 0 ,

then for all x ∈ X

sup
t>0

E‖
∑

k∈Z

εkM(2kt)x‖ ≤ C sup
t>0

E‖
∑

k∈Z

εkN(2kt)x‖ ,

where C = 2
∫ ∞

0 |h(s)| ds
s

.

Proof. For every k ∈ Z and t > 0

M(t2k)x =
∑

j∈Z

2
∫

1

h(t2ks2j )N(s2j )x
ds

s
.

Hence

‖
∑

k

εk(·)M(t2k)x‖ ≤
2

∫

1

‖
∑

j

∑

k

εk(·)h(ts2k+j )N(s2j )x‖ds
s

≤
∑

l

2
∫

1

‖
∑

j

εl−j (·)h(ts2l)N(s2j )x‖ds
s
,

and therefore by Kahane’s contraction principle and Fubini

E‖
∑

k

εkM(t2k)x‖

≤ 2
∑

l

∫ 2

1
|h(ts2l)| ds

s

(

sup
s∈[1,2]

E

∥

∥

∥

∑

j

εl−jN(s2j )x
∥

∥

∥

)

≤ 2
∫ ∞

0
|h(ts)| ds

s
sup
s∈[1,2]

E‖
∑

j

εjN(s2j )x‖.

��
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Proof of Proposition 4.6. We study the case f ∈ H∞
0 (�σ ) first. We choose aux-

iliary functions g, h ∈ H∞
0 (�σ ) such that

∞
∫

0

g(t)h(t)ϕ(t)
dt

t
= 1.

By analytic continuation we have for all λ ∈ �σ that
∞
∫

0

g(tλ)h(tλ)ϕ(tλ)
dt

t
= 1,

and obtain by the H∞
0 -calculus of A and some γ ∈ (ωr(A), σ ) with Fubini

f (A) = 1
2πi

∫

∂�γ

⎛

⎝

∞
∫

0

g(tλ)h(tλ)ϕ(tλ)
dt

t

⎞

⎠ f (λ)R(λ,A) dλ

=
∞
∫

0

⎛

⎜

⎝

1
2πi

∫

∂�γ

g(tλ)f (λ)h(tλ)ϕ(tλ)R(λ,A) dλ

⎞

⎟

⎠

dt

t

=
∞
∫

0

g(tA)h(tA)f (A)ϕ(tA)
dt

t
.

By [30, Prop.4.2] we have

ψ(sA)g(tA) = 1
2πi

∫

∂�γ

ψ(sλ)g(tλ)R(λ,A) dλ

= 1
2πi

∫

∂�γ

ψ(sλ)g(tλ)λ1/2A1/2R(λ,A)
dλ

λ
.

Hence for s > 0 we get by Fubini’s theorem

f (A)ψ(sA)x =
∞
∫

0

[ψ(sA)g(tA)]h(tA)f (A)ϕ(tA)x
dt

t

=
∞
∫

0

[ 1
2πi

∫

∂�γ

ψ(sλ)g(tλ)λ1/2A1/2R(λ,A)
dλ

λ

]

h(tA)f (A)ϕ(tA)x
dt

t

= 1
2πi

∫

∂�γ

ψ(sλ)[λ1/2A1/2R(λ,A)]

⎛

⎝

∞
∫

0

g(tλ)f (A)h(tA)ϕ(tA)x
dt

t

⎞

⎠

dλ

λ
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= 1
2πi

∫

∂�γ

ψ(sλ)M(λ)x
dλ

λ

whereM(λ)=λ1/2A1/2R(λ,A)N(λ) andN(λ)x=
∞
∫

0
g(tλ)f (A)h(tA)ϕ(tA)x dt

t
.

Since {λ1/2A1/2R(λ,A) : λ ∈ ∂�γ } is R-bounded by Lemma 3.3, we conclude
with Lemma 4.7 that

‖f (A)x‖ψ,A ≤ C sup
δ=±1

sup
s>0

E‖
∑

j

εjM(e
iδγ s2j )x‖

≤ C ′ sup
δ=±1

sup
s>0

E‖
∑

j

εjN(e
iδγ s2j )x‖.

Now we want to apply Lemma 4.7 to N(λ). To this end we have to show that
{f (A)h(tA) : t > 0} is R-bounded. Using again [30, Prop.4.2] we write

f (A)h(tA) = 1
2πi

∫

∂�γ

f (λ)h(tλ)R(λ,A) dλ

= 1
2πi

∫

∂�γ

f (λ)h(tλ)λ1/2A1/2R(λ,A)
dλ

λ
.

Since {λ1/2A1/2R(λ,A) : λ ∈ ∂�γ } is R-bounded by Lemma 3.3, and
∫

∂�γ

|f (λ)h(tλ)| |dλ
λ

| ≤ ‖f ‖H∞(�γ )

∫

∂�γ

|h(λ)| |dλ
λ

|,

we can apply the convex-hull lemma [12, Lem.3.2] and conclude that, indeed,
{f (A)h(tA) : t > 0} is R-bounded. Hence we obtain by Lemma 4.7 from the
above that

‖f (A)x‖ψ,A ≤ C ′ sup
δ=±1

sup
s>0

E‖
∑

j

εjN(e
iδγ s2j )x‖

≤ C ′′‖f ‖H∞(�γ ) sup
s>0

E‖
∑

j

ϕ(s2jA)x‖

= C ′′‖f ‖H∞(�γ )‖x‖ϕ,A.
Of course, we can take f (λ) ≡ 1 and exchange ϕ and ψ in these arguments to
obtain the equivalence of the square function norms. ��
Proof of Theorem 4.1. First we remark that condition (iv) is just a reformulation
of (i). It was shown in [30, Lem.4.1] that (i) holds if A has an H∞(�ω)-calculus.
The implication (i) �⇒ (ii) is clear.
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(ii) �⇒ (iii): We prove this implication under the additional assumption
∫ ∞

0 ψ2(t) dt
t

= c �= 0. By Proposition 4.6 it is clear that this restriction is not
essential. We have

∫ ∞
0 ψ2(zt) dt

t
= c for any z > 0, hence by analytic continua-

tion also for any z ∈ �ω. The H∞
0 -calculus for A then yields, for any x ∈ X and

any x∗ ∈ X∗,

〈x, x∗〉 =
∫ ∞

0
〈c−1ψ2(tA)x, x∗〉dt

t
.

By Lemma 4.5 (with M(t) = I ) and condition (ii) we thus obtain

|〈x, x∗〉| ≤ 2
|c| · ‖x‖ψ,A‖x∗‖∗

ψ,A ≤ 2C
|c| · ‖x‖ψ,A · ‖x∗‖.

Taking the sup over x∗ ∈ X∗ with ‖x∗‖ ≤ 1 we obtain

‖x‖ ≤ 2C
|c| · ‖x‖ψ,A, x ∈ X,

and (iii) is proved.
Finally, Proposition 4.6 shows that (iii) implies boundedness of theH∞(�σ )-

calculus of A for any σ > ωr(A). ��
Remark 4.8. We remark here that equality ωH(A) = ωr(A) in Theorem 4.1 may
also be shown by an adaption of the arguments that proved [30, Prop.5.1]. Instead
of Proposition 4.6 one would use functions ψ(λ) = ψα(e

iνλ) where ψα(λ) =
λα(1 − λ)−1, α ∈ (0, 1), |ν| > ωr(A). In order to change the angle ν we resort to
the resolvent equation in the form

t1−βAβR(eiνt, A) = t1−βAβR(eiσ t, A)
+[(eiσ − eiν)t1−αAαR(eiνt, A)]t1−γAγR(eiσ t, A).

where α, β ∈ (0, 1) with β > α and γ = β − α. By assumption and Lemma
3.3 the set of operators in [ . . . ], t > 0, is R–bounded. This allows to switch the
angle in estimating square function norms.

We end this section with an interpolation result.Again we assume that (X0, X1)

is an interpolation couple, the spaces Xθ := [X0, X1]θ , θ ∈ (0, 1), are obtained
by complex interpolation, and there is family (Aθ)θ∈[0,1] of sectorial operatorsAθ
in Xθ satisfying the consistency condition

R(λ,Aθ)x = R(λ,Aθ̃ )x, x ∈ Xθ ∩Xθ̃, θ, θ̃ ∈ [0, 1].

Proposition 4.9. Assume in the situation described above that, for j = 0, 1, the
operator Aj has an H∞(�σj )-calculus on Xj . Then, for θ ∈ (0, 1), Aθ has an
H∞(�σθ )-calculus on Xθ where σθ := (1 − θ)σ0 + θσ1.
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Proof. We easily obtain

f (A0)x = f (A1)x for all f ∈ H∞
0 (�max(σ0,σ1)) and all x ∈ X0 ∩X1.

Let σmax := max(σ0, σ1). By assumption we have bounded linear maps

�j : H∞(�σmax) → B(Xj).

satisfying�0(f ) = �1(f ) onX0 ∩X1 for all f ∈ H∞(�σmax). Hence, interpola-
tion gives anH∞(�σmax)-calculus onXθ . Moreover, the assumptions imply that we
have ‖Ait‖0 ≤ K0e

iσ0|t | and ‖Ait‖1 ≤ K1e
iσ1|t |. Hence we get ‖Ait‖θ ≤ Kθe

iσ |t |.
Now an application of [15, Thm.5.4] yields the result.

In case X0 and X1 are B–convex, one can avoid resorting to [15, Thm.5.4]
and use Corollary 3.9 for the angle of almost R-sectoriality in Xθ and Remark
4.4. ��

5. Comparison theorems

In this section we “compare” the fractional domain spaces of two sectorial oper-
ators in order to obtain criteria for the H∞-functional calculus. We also show
that equivalences ‖Aαx‖X ∼ ‖Bαx‖X for two R-sectorial operators on a reflex-
ive Banach space X can be characterized by appropriate estimates ‖Ax‖Ẋβ,A ∼
‖Bx‖Ẋβ,A ifA has a boundedH∞-calculus (see Theorem 5.7 for the precise state-
ment). Note that in this section no “relative smallness” assumptions are involved.
Theorem 5.1. Suppose thatA admits anH∞(�σ )-calculus on a Banach spaceX.
Let B be almost R-sectorial with ωr(B) ≤ σ .

Assume that for two different u1 and u2 with 0 < |uj | < 3/2 we have for
j = 1, 2

D(Auj ) = D(Buj ) and
1
C

‖Auj x‖ ≤ ‖Buj x‖ ≤ C‖Auj x‖ for x ∈ D(Auj ).
Then B admits an H∞(�ν)-calculus for ν > σ .

IfX is a Hilbert space andu1 = 1,u2 = −1, then we obtain [5, Thm.3.1] which
has motivated the theorem above. We give a different proof using the following
lemma which also gives some additional information.
Lemma 5.2. Suppose that A1 and A2 admit an H∞(�σ ) calculus on a Banach
space X. Let B be almost R–sectorial with ωr(B) ≤ σ .

Assume that there are u1, u2, v1, v2 ∈ (0, 3
2 ) such that for some C < ∞

‖Bu1x‖ ≤ C‖Au1
1 x‖ for x ∈ D(Au1

1 ) ⊂ D(Bu1), (5)
‖B−v1x‖ ≤ C‖A−v1

1 x‖ for x ∈ R(Av1
1 ) ⊂ R(Bv1), (6)

‖Au2
2 x‖ ≤ C‖Bu2x‖ for x ∈ D(Bu2) ⊂ D(A

u2
2 ), (7)

‖A−v2
2 x‖ ≤ C‖B−v2x‖ for x ∈ R(Bv2) ⊂ R(A

v2
2 ). (8)

Then B admits an H∞(�ν)–calculus for all ν > σ .
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Proof. PutA = A1, u = u1, v = v1. Denote byM andN the bounded extensions
of BuA−u and B−vAv to X, respectively. We want to apply Theorem 4.1 and
therefore we compare expressions of the form λn−uT uR(λ, T )n for T = A and
T = B. We write

R(λ,B)3 = R(λ,B)3(λ− A)2R(λ,A)2

= [λ2R(λ,B)3]R(λ,A)2 − 2[λR(λ, B)3]AR(λ,A)2 + [R(λ,B)3]A2R(λ,A)2.

For 3
2 > s > u we get

λ3−sBsR(λ, B)3 = [λ3−s+uBs−uR(λ, B)3M]{λ2−uAuR(λ,A)2}
−2 [λ3−sBsR(λ, B)3{λAR(λ,A)2}
+[λ3−s−vBs+vR(λ, B)3N ]{λvA2−vR(λ,A)2}.

By almost R–sectoriality of B, Lemma 3.3, and boundedness of M and N ,
the three sets in [ . . . ] are R–bounded for | arg(λ)| ≥ ν, ν > σ . Observe that,
indeed, all exponents are strictly positive. Hence, for ψs,r(λ) = λs(eiν − λ)−r we
obtain for x ∈ X, t > 0

E

∥

∥

∥

∥

∑

k

εkψs,3(t
−12−kB)x

∥

∥

∥

∥

≤ D
∑

s=u,1,2−v
E

∥

∥

∥

∥

∑

k

εkψs,2(t
−12−kA)x

∥

∥

∥

∥

. (9)

By Theorem 4.1, the right hand side of (9) is ≤ D1‖x‖ since A = A1 has an
H∞(�σ )–calculus.

Taking now u = u2, v = v2 and replacing (A,B) = (A1, B) by (B,A2) the
arguments used so far show that

E

∥

∥

∥

∥

∑

k

εkψs,3(t
−12−kA2)x

∥

∥

∥

∥

≤ D2
∑

s=u,1,2−v
E

∥

∥

∥

∥

∑

k

εkψs,2(t
−12−kB)x

∥

∥

∥

∥

. (10)

By Theorem 4.1, the left hand side of (10) is ≥ D3‖x‖ sinceA2 has anH∞(�σ )–
calculus. By Proposition 4.6 we may reduce the sum on the left hand side to one
of its summands by the cost of a constant.

Now the claim follows from Theorem 4.1. ��

Remark 5.3. a) If 0 ∈ �(B)∩�(A1) then the norm estimate in (5) already follows
from the continuous inclusion D(Au1

1 ) ⊂ D(Bu1), since ‖Au1
1 x‖ is equivalent to

the graph norm ‖x‖Au1
1

. The same remark applies to (7).
b) If B andA have commuting resolvents then (7) and (8) follow from (5) and

(6) with A1 = A2 = A.
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Proof of Theorem 5.1. We use Lemma 5.2 for A1 := A2 := A and study three
cases separately assuming u1 < u2. If u1 < 0 < u2 then assumption (5) holds for
u2 in place of u1, (7) holds for u2, and (6) and (8) hold for v1 = v2 = −u1. The
assertion follows.

If 0 < u1 < u2 then we shift the scale (cf. Proposition 2.1) taking Y :=
Ẋu1,A = Ẋu1,B as a new space. Then we use the previous case for (Y,−u1, u2−u1)

in place of (X, u1, u2). This yields anH∞-calculus for B in Y . But ˜Bu1 : Y → X

is an isomorphism and we obtain an H∞–calculus for B in X.
If u1 < u2 < 0 we apply the previous case to (A−1, B−1) in place of (A,B).

��
Before theH∞-calculus became more widely known, in many papers on differ-

ential operators B (e.g. [52]) it was only shown that B has BIP. Then it was
observed later, that a refinement of the given argument also yields boundedness
of the H∞-functional calculus. This phenomenon is explained by the follow-
ing corollary (where, in the situations mentioned above, A would usually be the
Laplace operator and α = 1).

Corollary 5.4. Let A be a sectorial operator which has an H∞-calculus on a
Banach space X and let B be a sectorial operator which has BIP on X with
ωBIP < π . If D(Aα) = D(Bα) and ‖Aαx‖ ∼ ‖Bαx‖ for some α �= 0, then B
has an H∞-calculus.

Proof. The assumptions imply Ẋα,A = Ẋα,B with equivalent norms. For θ ∈
(0, 1) we then have by complex interpolation

Ẋθα,B = [X, Ẋα,B]θ = [X, Ẋα,A]θ = Ẋθα,A.

HenceD(Bθα) = Ẋθα,B ∩X = Ẋθα,A∩X = D(Aθα) for θ ∈ (0, 1). Since B has
BIP of angle < π , B is almost R-sectorial, and we apply Theorem 5.1. ��

For reflexive Banach spaces, conditions (6) and (8) in Lemma 5.2 on negative
powers may be reformulated as conditions on positive powers of the dual oper-
ators. This will follow from the next proposition, which – for later purposes – is
formulated in greater generality.

Proposition 5.5. LetX, Y be reflexive Banach spaces. LetA be an injective linear
operator inX with dense domain and range, and letB be an injective linear oper-
ator in Y with dense domain and range. Assume that P : X → Y is a bounded
linear operator such that P ∗ : Y ∗ → X∗ is injective. Then the following two
conditions are equivalent:

(i) P(R(A)) ⊂ R(B), ‖B−1Px‖ ≤ C‖A−1x‖ for x ∈ R(A), and the continuous
extension ˜P : Ẋ−1,A → Ẏ−1,B of P is surjective;

(ii) P ∗(D(B∗)) ⊂ D(A∗) and C−1‖B∗y∗‖ ≤ ‖A∗P ∗y∗‖ ≤ ‖B∗y∗‖ for y∗ ∈
D(B∗).
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Proof. (i) ⇒ (ii): Let y∗ = (B∗)−1z∗ ∈ D(B∗) and let x = A−1w ∈ D(A).
Then we have

|〈P ∗y∗, Ax〉| = |〈y∗, Pw〉| = |〈(B∗)−1z∗, Pw〉|
= |〈z∗, B−1Pw〉| ≤ ‖z∗‖‖B−1Pw‖
≤ C‖B∗y∗‖‖A−1w‖ = C‖B∗y∗‖‖x‖.

Hence P ∗(D(B∗)) ⊂ D(A∗) and ‖A∗P ∗y∗‖ ≤ C‖B∗y∗‖ for all y∗ ∈ D(B∗). It
rests to show thatA∗P ∗(B∗)−1 is bounded from below. This will follow from sur-
jectivity of the operatorM := (A∗P ∗(B∗)−1)∗ : X → Y . By (i) the operator ˜P :
Ẋ−1,A → Ẏ−1,B is surjective. Since (˜A−1)−1 : X → Ẋ−1,A and ˜B−1 : Ẏ−1,B → Y

are isomorphisms, the operatorK := ˜B−1
˜P(˜A−1)−1 : X → Y is surjective. Now

clearly K ⊃ B−1PA and M ⊃ B−1PA. Moreover, D(B−1PA) = D(A) by
(i), and we obtain M = K by denseness of D(A) in X. Hence M : X → Y is
surjective, and M∗ ⊃ A∗P ∗(B∗)−1 is from below.
(ii) ⇒ (i): Let x = Aw ∈ R(A). We have to show Px ∈ R(B) = D(B−1)

and shall use B−1 = ((B−1)∗)∗. So let y∗ = B∗z∗ ∈ D((B−1)∗). Then by (ii) we
have

|〈Px, (B−1)∗y∗〉| = |〈x, P ∗z∗〉| = |〈Aw,P ∗z∗〉| = |〈w,A∗P ∗z∗〉|
≤ ‖w‖‖A∗P ∗z∗‖ ≤ C‖A−1x‖‖B∗z∗‖ = ‖A−1x‖‖y∗‖,

which means Px ∈ D(B−1) and ‖B−1Px‖ ≤ C‖A−1x‖. By (ii), the operator
A∗P ∗(B∗)−1 : R(B∗) → X∗ has a (unique) continuous extension to an operator
M : Y ∗ → X∗ which is an isomorphism Y ∗ → M(Y ∗). In particular, M(Y ∗)
is a closed subspace of X∗, and by the closed graph theorem M∗(X) is a closed
subspace of Y . On the other hand,M∗(X) is dense in Y sinceM = (M∗)∗ is injec-
tive. Hence M∗ : X → Y is surjective. But then also K := (˜B−1)−1M∗(˜A−1) :
Ẋ−1,A → Ẏ−1,B is surjective. Now observe that M∗ ⊃ B−1PA which yields
K ⊃ BM∗A−1 ⊃ BB−1PAA−1 = P |R(A). This in turn implies the remaining
assertion in (i) with ˜P = K . ��

Taking X = Y and P = IX we obtain

Corollary 5.6. Let A and B be sectorial operators in a reflexive space X. Then
the following conditions are equivalent:

(i) D(A−1) ⊂ D(B−1) and
∥

∥B−1x
∥

∥ ≤ C
∥

∥A−1x
∥

∥ for x ∈ R(A);
(ii) D(B∗) ⊂ D(A∗) and ‖A∗x∗‖ ≤ C ‖B∗x∗‖ for x∗ ∈ D(B∗).

Conditions (6) and (8) of Lemma 5.2 can be dualized in the same way.
The next theorem was motivated by a Hilbert space result of Yagi [56, Thm.

4.1, Lem. 4.2].
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Theorem 5.7. Let A and B be sectorial operators on a reflexive Banach spaceX
and letA have anH∞–calculus. Fix −1 < δ0 < δ1 < 2 such that 2 > δ1−δ0 > 1.
If 1 ∈ (δ0, δ1), assume in addition that D(A) = D(B) and ‖Ax‖ ∼ ‖Bx‖ for
x ∈ D(A). Then the following conditions are equivalent:

(i) B is almost R–sectorial and for all δ ∈ (δ0, δ1) we have

D(Aδ) = D(Bδ), ‖Aδx‖ ∼ ‖Bδx‖ for x ∈ D(Aδ).
(ii) For all δ0 < σ < δ1 − 1 we have that B(D(BσB)) ⊂ D(Aσ ), D(BσB) ⊂

D(A1+σ ), B(D(BσB)) ∩ D(BσB) is a dense subset of D(Aσ ) ∩ D(A1+σ )
for the norm ‖Aσ · ‖ + ‖A1+σ · ‖, and there is an almost R-sectorial oper-
ator B̃ in Ẋσ,A such that R(λ,B) and R(λ, B̃) are consistent for λ < 0,
D(B̃) = D(Ȧσ ) and

‖B̃x‖Ẋσ,A ∼ ‖Ȧσ x‖Ẋσ,A for x ∈ D(Ȧσ ). (11)

(iii) For all δ0 +1 < σ < δ1 we have thatD(Bσ−1B) ⊂ D(Aσ ),B(D(Bσ−1B) ⊂
D(Aσ−1),D(Bσ−1B)∩B(D(Bσ−1B)) is a dense subset ofD(Aσ )∩D(Aσ−1)

for the norm ‖Aσ · ‖ + ‖Aσ−1 · ‖, and there is an almost R-sectorial oper-
ator B̃ in Ẋσ,A such that R(λ,B) and R(λ, B̃) are consistent for λ < 0,
R(B̃) = R(Ȧσ ) and

‖B̃−1x‖Ẋσ,A ∼ ‖(Ȧσ )−1x‖Ẋσ,A for x ∈ R(Ȧσ ).
Moreover, these conditions imply that also B has an H∞-calculus in X and
ωH(B) = max(ωH (A), ωR(B)).

Proof. We shall prove (i) �⇒ (ii) �⇒ (i). Having done this we shall prove (i)
⇐⇒ (iii).
(i) �⇒ (ii): Assume (i) and let δ0 < σ < δ1 − 1. First we recall D(BσB) =

D(B1+σ ) ∩D(B). Then we observe

B(D(BσB)) ⊂ D(Bσ ) = D(Aσ ) and D(BσB) ⊂ D(B1+σ ) = D(A1+σ ).

Moreover, D(BσB) ∩ B(D(BσB)) is a dense subset of D(A1+σ ) ∩ D(Aσ ) for
the norm ‖A1+σ · ‖ + ‖Aσ · ‖ since, by assumption, this norm is equivalent to the
norm ‖B1+σ · ‖ + ‖Bσ · ‖.

By similarity, the operator Ḃσ is almost R-sectorial in Ẋσ,B . The assumption
implies that Ẋσ,B = Ẋσ,A with equivalent norms. Moreover,

D(Ḃσ ) = (Ẋσ,B)
·
1,B ∩ Ẋσ,B = Ẋ1+σ,B ∩ Ẋσ,B = Ẋ1+σ,A ∩ Ẋσ,A = D(Ȧσ ),

and for x ∈ D(BσB) ∩D(Bσ ) ⊂ D(A1+σ ) ∩D(Aσ ) we have

‖Ḃσ x‖Ẋσ,A ∼ ‖Ḃσ x‖Ẋσ,B = ‖Bσ+1x‖ ∼ ‖Aσ+1x‖
= ‖Ȧσ x‖Ẋσ,A
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Hence we have obtained (ii) with B̃ = Ḃσ .
(ii)�⇒ (i): First we give the proof for β0 := −δ0 > 0, α0 := δ1 and � = −σ .
Assume (ii) and fix 1− α0 < � < β0. First we observe that

D(Ȧ−�) = (Ẋ−�,A)·1,Ȧ� ∩ Ẋ−�,A = Ẋ1−�,A ∩ Ẋ−�,A

= Ẋ1−�,A ∩X ∩ Ẋ−�,A = D(A1−�) ∩ R(A�).

We conclude that D(B̃) = D(A1−�) ∩ R(A�) and that B̃ and B coincide on
D(B) ∩ R(B) which is a core for both operators. Moreover, we have by (11)
that B̃(Ȧ�)−1 extends uniquely to an isomorphism ˜L� ∈ B(Ẋ−�,A). Hence L� :=
˜A−�

˜L�(˜A−�)−1 is an isomorphism inX. Clearly,L� is an extension ofA−�BA�−1,
and we have by assumption

D(A−�BA�−1) = A1−�(D(B)),
R(A−�BA�−1) ⊂ R(A−�) = D(A�).

NowD(B) is dense inD(A1−�) for the graph norm. HenceD(B) is dense in Ẋ1−�
and A1−�(D(B)) is dense in X. This implies that the operator L� is the unique
extension of A−�BA�−1 to an element of B(X). Moreover, L−1

� ∈ B(X) is an
extension of A1−�B−1A�.

We now recall (cf. [15]) that, for φ ∈ H∞
0 (�ω) with ω > ω(B), and y ∈

D(B) ∩ R(B), we have

y = c−1
∫ ∞

0
φ(tB)y

dt

t
, (12)

if c = ∫ ∞
0 φ(t) dt

t
�= 0. In the sequel, we shall only use functionsφ ∈ ⋂

ω∈(0,π) H
∞
0

(�ω) and write φ ∈ H∞
0 for short. In order to exploit (12) we need suitable rep-

resentations of expressions BsR(λ, B)m which we shall use for λ = −t < 0.
Multiplying BsR(λ, B)m from the left and from the right with

IX = λ2R(λ,A)2 − 2λAR(λ,A)2 + A2R(λ,A)2

we obtain

BsR(λ, B)m =
2

∑

j,k=
cjkλ

2−jR(λ,A)2BsR(λ, B)mλ2−kAkR(λ,A)2 (13)

for suitable integers cjk. Using (12) we write, for B�x ∈ D(B)∩R(B) ⊂ R(A�)

and s, m to be specified later,

A−�B�x = c−1
∫ ∞

0
tm−sA−�B�+sR(−t, B)mx dt

t
(14)
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and use (13) for B�+sR(λ, B)m for λ = −t < 0. We shall obtain a representation

tm−sA−�B�+sR(−t, B)mx =
2

∑

j,k=0

cjkϕj (t
−1A)Mjk(t)ψk(t

−1A)x, (15)

where, for j, k = 0, 1, 2, the functions ϕj , ψk are in H∞
0 and the set {Mjk(t) :

t > 0} is R-bounded in B(X). We fix a �̃ ∈ (�, β0). The idea is to have (15) with

Mjk(t) = Sjk
˜A−�̃ tm−sjk B̃sjkR(−t, B̃)m (˜A−�̃)−1 Tjk (16)

and Sjk, Tjk ∈ B(X), sjk ∈ (0, m). Then almost R-sectoriality of B̃ in Ẋ−�,A will
imply that the sets {Mjk(t) : t > 0} ⊂ B(X) are R-bounded.

In the following we examine separately terms A−�AjR(λ,A)2, which appear
on the left, and terms AkR(λ,A)2, which appear on the right of summands in
(13). For j = 0 we have

λ2A−�R(λ,A)2|D(B) = λ2+�−�̃A�̃−�R(λ,A)2A−�̃|D(B)λ�̃−�.
For j = 1 we have

λA−�AR(λ,A)2|D(B) = λ1+�−�̃A1+�̃−�R(λ,A)2A−�̃|D(B)λ�̃−�.
For j = 2 we have

A−�A2R(λ,A)2|D(B) = λ1+�−�̃A1+�̃−�R(λ,A)2A1−�̃B−1A�̃A−�̃Bλ�̃−�−1

= λ1+�−�̃A1+�̃−�R(λ,A)2L−1
�̃
A−�̃Bλ�̃−�−1

For k = 1, 2 we obtain

λ2−kAkR(λ,A)2 = λ−�̃A�̃λ2−k+�̃Ak−�̃R(λ,A)2.

For k = 0 we have

ID(B)R(λ,A)
2 = B−1A�̃L�̃A

1−�̃R(λ,A)2.

This means that we have (16) with Sjk = δj2(L�̃)
−1, Tjk = δk0L�̃ and sjk =

s + � + δj2 − δk0. Thus if we choose s, m such that s + � ∈ (1, 2) and m ≥ 3
then the sets {Mjk(−t) : t > 0} are R-bounded in B(X), and we have (15) with

ϕ0(z) = −z�̃−�(1 + z)−2, ϕ1(z) = ϕ2(z) = zϕ0(z),

ψ0(z) = ψ1(z) = −z1−�̃(1 + z)−2, ψ2(z) = zψ1(z).

Now we apply an x∗ ∈ X∗ to the integral in (14), use the representation of the
integrand above, and obtain by Lemma 4.5 that |〈x∗, A−�B�x〉| can be estimated
from above by

2
2

∑

j,k=0

|cjk|R{Mjk(t) : t < 0} sup
t>0

E

(∥

∥

∥

∥

∑

ν

ενψk(t
−12−νA)x

∥

∥

∥

∥

2)1/2

sup
t>0

E

(∥

∥

∥

∥

∑

ν

ενϕj (t
−12−νA)∗x∗

∥

∥

∥

∥

2)1/2

.
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Since A has an H∞-calculus we can use Theorem 4.1 and conclude that

‖A−�x‖ ≤ C‖B−�x‖ for x ∈ R(B�) ⊂ R(A�), � ∈ (1 − α0, β0). (17)

Together with the assumption this implies, for � ∈ (1 − α0, β0), that

‖A1−�B�−1x‖ = ‖[A1−�B−1A�][A−�B�]x‖ ≤ C ‖L�‖ ‖x‖.
Hence we have shown that, for � ∈ (1 − α0, β0),

‖A1−�x‖ ≤ C‖B1−�x‖ for x ∈ D(B1−�) ⊂ D(A1−�). (18)

We now estimate, for (B∗)1−�x∗ ∈ R(B∗) ∩D(B∗) and x ∈ D(A) ∩ R(A),

〈(B∗)1−�x∗, A�−1x〉 = c−1
∫ ∞

0
tm−s〈(B1−�+sR(−t, B)m)x∗, A�−1x〉 dt

t
.

Again we use (13) and aim at a representation

tm−sB1−�+sR(−t, B)mA�−1x=
2

∑

j,k=0

cjkϕj (t
−1A)Mjk(t)ψk(t

−1A)x, (19)

where ϕj , ψk ∈ H∞
0 and the sets {Mjk(t) : t > 0} ⊂ B(X) are R-bounded. To

this end we choose �̃ ∈ (1−α0, �) and check again for a representation withMjk

as in (16) with Sjk, Tjk ∈ B(X), sjk ∈ (0, m).
We proceed as before. For j = 0, 1 we have

λ2−jAjR(λ,A)2|D(B) = λ2−j−�̃Aj+�̃R(λ,A)2A−�̃|D(B)λ�̃.
For j = 2 we have

A2R(λ,A)2|D(B) = λ1−�̃A1+�̃R(λ,A)2A1−�̃B−1A�̃A−�̃Bλ�̃−1

= λ1−�̃A1+�̃R(λ,A)2(L�̃)−1A−�̃Bλ�̃−1.

For k = 2 we have

A2R(λ,A)2A�−1x = λ�−�̃−1A�̃λ1−�+�̃A1+�−�̃R(λ,A)2x.

For k = 0, 1 we have

λ2−kAkR(λ,A)2A�−1x = λ�−�̃B−1A�̃L�̃λ
2−k−�+�̃Ak+�−�̃R(λ,A)2x.

This leads to (19) for

ϕ0 = −z�̃(1 + z)−2, ϕ1(z) = ϕ2(z) = zϕ0(z)

ψ0(z) = −z�−�̃(1 + z)−2, ψ1(z) = ψ2(z) = zψ0(z),

where Mjk satisfies (16) with

Sjk = δj2(L�̃)
−1, Tjk = (1 − δk2)L�̃,

sjk = 1 − � + s + δj2 − 1 − δk2 = s − � + δj2 − δk2.
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We choose s,m such that s−� ∈ (1, 2) andm ≥ 3, use reflexivity ofX, and thus
have proved that, for � ∈ (1 − α0, β0),

‖B1−�x‖ ≤ C‖A1−�x‖ for x ∈ D(A1−�) ⊂ D(B1−�). (20)

Moreover, this leads to

‖B−�A�x‖ = ‖[B1−�A�−1][A1−�B−1A�]x‖ ≤ C ‖(L�)−1‖‖x‖,
which means that we also have proved that, for � ∈ (1 − α0, β0),

‖B−�x‖ ≤ C‖A−�x‖ for all x ∈ R(A�) ⊂ R(B�). (21)

Now (18), (21), (17) and (20) imply that ‖Bαx‖ ∼ ‖Aαx‖ for 1 − β0 < α < α0
and ‖B−βx‖ ∼ ‖A−βx‖ for 1 − α0 < β < β0. By

BR(λ,B)2 = [B−�A+�][A−�BR(λ, B)2A�][A−�B�].

the operatorB is almostR-sectorial inX and thus has anH∞–calculus by Lemma
5.2. In particular, both operatorsA andB have BIP onX.Thus the remaining cases
0 < α ≤ 1 − β0 and 0 < β ≤ 1 − α0 follow by complex interpolation (cf. Prop-
osition 2.2).

Now we give the proof of (ii) �⇒ (i) for δ0 ≥ 0. So assume that (ii) holds
with δ0 ≥ 0. In this case we have δ1 > 1 and Y := Ẋ1,A = Ẋ1,B with equivalent
norms. Hence we use what we have just proved, replacing the space X by Y , and
taking β0 = −δ′

0 := −(δ0 − 1), α0 = δ′
1 := δ1 − 1. We only have to make sure

that condition (ii) holds for Y and the operators Ȧ1 and Ḃ1 and (δ′
0, δ

′
1) in place

of X, A, B, and (δ0, δ1). So let σ ′ ∈ (δ′
0, δ

′
1 − 1). Then σ ′ < 0, � := −σ ′ > 0,

and 1 − �, 2 − � ∈ (δ0, δ1). We also let σ := 1 + σ ′ = 1 − �. We have

D((Ḃ1)
σ Ḃ1) = D(Ḃ1) = (Ẋ1,B)

·
1,Ḃ1

∩ Ẋ1,B = Ẋ2,B ∩ Ẋ1,B

and

R(Ḃ1) = (Ẋ1,B)
·
−1,Ḃ1

∩ Ẋ1,B = X ∩ Ẋ1,B = D(B).

This yields D(Ḃ1) ∩ R(Ḃ1) = Ẋ2,B ∩ Ẋ1,B ∩X = D(B2). We also have

D((Ȧ1)
1−�) = Ẋ2−�,A ∩ Ẋ1,A, D((Ȧ1)

−�) = Ẋ1−�,A ∩ Ẋ1,A,

and on the natural domain the norm ‖(Ȧ1)
1−� · ‖Ẋ1,A

+‖(Ȧ1)
−� · ‖Ẋ1,A

is the same
as ‖A1+σ · ‖ + ‖Aσ · ‖. By assumption we have

R(Ḃ1) = D(B) ⊂ Ẋ1,B = Ẋ1,A and
R(Ḃ1) = D(B) = D(A) ⊂ D(Aσ ) ⊂ Ẋ1−�,A,
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which yieldsR(Ḃ1) ⊂ D((Ȧ1)
−�).We turn to the inlcusionD(Ḃ1) ⊂ D((Ȧ1)

1−�),
and observe that by assumption

D(Ḃ1) ∩X = D(B2) ⊂ D(B) ⊂ Ẋ1,B = Ẋ1,A and
D(Ḃ1) ∩X = D(B2) ⊂ D(Bσ+1) ⊂ D(Aσ+1) ⊂ Ẋ2−�,A.

To conclude we need a norm estimate. We start from

D(B) = D(A) ⊂ D(Aσ ) ⊂ Ẋ1−�,A,

which implies ‖Aσ ·‖ ≤ C(‖B ·‖+‖·‖) and thus ‖AσB ·‖ ≤ C(‖B2 ·‖+‖B ·‖).
But by assumption we have ‖Aσ+1 · ‖ ∼ ‖AσB · ‖. Hence we conclude that
‖Aσ+1 · ‖ ≤ C ′(‖B2 · ‖ + ‖B · ‖) and

D(Ḃ1) = Ẋ2,B ∩ Ẋ1,B ⊂ Ẋ2−�,A.

Since D(Ḃ1) ⊂ Ẋ1,B = Ẋ1,A, we have proved D(Ḃ1) ⊂ Ẋ2−�,A ∩ Ẋ1,A =
D((Ȧ1)

1−�). The assumptions imply that D(Ḃ1) ∩ R(Ḃ1) = D(B2) is dense in
D(Aσ )∩D(A1+σ ) for the norm ‖Aσ · ‖+‖Aσ+1 · ‖. ThusD(B2) is also dense in

D((Ȧ1)
−�) ∩D((Ȧ1)

1−�) = Ẋ1−�,A ∩ Ẋ2−�,A,

which means that we have checked the first part of (ii) for Y , Ȧ1, Ḃ1, δ′
0, δ′

1 in
place of X, A, B, δ0, δ1.

Now B̃ is by assumption an almost R-sectorial operator in Ẋ1−�,A =
(Ẋ1,A)

·
−�,Ȧ1

, and D(B̃) = D(Ȧ1−�) = Ẋ2−�,A ∩ Ẋ1−�,A = D((Ȧ1)
·
−�). Finally

we obtain (11) by

‖B̃x‖Ẋ1−�,A = ‖B̃x‖Ẋ1−�,B = ‖B2−�x‖ ∼ ‖A2−�x‖ = ‖Ȧ1−�x‖Ẋ1−�,A .

The proof given above thus shows (i) for (δ′
0, δ

′
1), (Ȧ1, Ḃ1) and Y in place of

(δ0, δ1), (A,B) andX, and Ḃ1 has anH∞-calculus in Y . Using again Y = Ẋ1,A =
Ẋ1,B we obtain (i) for (δ0, δ1) in the spaceX. By similarityB is almostR-sectorial
in X and has an H∞-calculus in X.
(i)⇐⇒ (iii): Again we distinguish the cases 0 ∈ (δ0, δ1) and 1 ∈ (δ0, δ1). If

0∈(δ0, δ1) then 1) remains true for (A−1, B−1,−δ1,−δ0) in place of (A,B, δ0, δ1),
and (iii) is just a reformulation of (ii) for that situation. Since equivalence of (i)
and (ii) is already proved, equivalence of (i) and (iii) follows.

If 1 ∈ (δ0, δ1), then we let again Y := Ẋ1,A = Ẋ1,B and take a detour
via condition (ii) and condition (iii) for (Y, Ȧ1, Ḃ1, δ0 − 1, δ1 − 1) in place of
(X,A,B, δ0, δ1). ��
Remark 5.8. a) Another version of Theorem 5.7 is obtained when we replace
“almost R-sectoriality” of B or B̃ in conditions (i), (ii), and (iii) above by
“R-sectoriality” of B and B̃, respectively, thus obtaining conditions (i ′), (ii ′),
and (iii ′). Then (i ′), (ii ′), (iii ′) are equivalent. Moreover, for 0 ∈ (δ0, δ1) and
β0 := −δ0, α0 := δ1, these conditions are also equivalent to the following condi-
tion (iv′).
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(iv′) For all 1 − α0 < � < β0 we have R(B) ⊂ R(A�), D(B) is a dense
subset of D(A1−�) with respect to the graph norm, and the operators

L := A−�BA�−1, N(λ) := A1−�R(λ, B)A�, λ < 0,

extend to bounded operators L̃, Ñ(λ) ∈ B(X) such that the set {Ñ(λ) : λ < 0} is
R–bounded.
The proof can be done (i ′) �⇒ (ii ′) �⇒ (iv′) �⇒ (i ′), the arguments for the
equivalence of (iii ′) being the same as before. The longest part is again the proof
of (iv′) �⇒ (i ′), but one may use simpler representations of expressions such as,
e.g., A�B−�x.

b) Yagi’s original Hilbert space result [56, Thm. 4.1] has −β0 = δ0 < 0 <
δ1 = α0 and states that, in a Hibert space X, condition (iv′) above is equivalent
to

(v) B is sectorial and for all 0 < α < α0 and all 0 < β < β0 we have

D(Aα) = D(Bα), ‖Aαx‖ ∼ ‖Bαx‖ for x ∈ D(Aα)
R(Aβ) = R(Bβ), ‖A−βx‖ ∼ ‖Bβx‖ for x ∈ R(Aβ).

Since X is reflexive, the condition on the ranges in (v) is by Corollary 5.6 equiv-
alent to: For all 0 < β < β0 we have D((A∗)β) = D((B∗)β) and ‖(A∗)βx‖ ∼
‖(B∗)βx‖ for x ∈ D((A∗)β).

c) Notice that, in contrast toYagi’s result, we do not assume that the operators
are boundedly invertible, we also allow for an interval around δ = 1, and that
conditions (ii) and (iii) in Theorem 5.7 are new.

Remark 5.9. a) Let ρ ∈ [0, 1]. Let X1−ρ = X1−ρ,A denote D(A1−ρ) equipped
with the graph norm and X−ρ denote the completion of X with respect to the
norm ‖R(λ,A)ρ · ‖X where λ ∈ ρ(A). IfX is reflexive, thenX−ρ = ((X∗)ρ,A∗)∗.
In any space X we have X1−ρ ↪→ Ẋ1−ρ and Ẋ−ρ ↪→ X−ρ , with equality if
0 ∈ ρ(A).

Assume the situation we are given in (iv′) in the remark above, i.e.,X is reflex-
ive, R(B) ⊂ R(Aρ) and D(B) is a dense subset of D(A1−ρ) with respect to the
graph norm. Then the following conditions are equivalent:

(∗) L := A−ρBAρ−1 has a bounded extension L̃ : X → X.
(∗∗) B has a bounded extension B̃ : Ẋ1−ρ → Ẋ−ρ .

(∗ ∗ ∗) B has a bounded extension ̂B : X1−ρ → X−ρ and there is a constant C
such that

|〈̂Bx, x∗〉| ≤ C‖A1−ρx‖‖(A∗)ρx∗‖, x ∈ D(A1−ρ), x∗ ∈ D((A∗)ρ).

By the denseness assumption onD(B) all extensions of B above are unique. The
relation of L̃ and B̃ is given by B̃ = (˜A−ρ)−1L̃˜A1−ρ .
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b) The condition (∗∗∗) in a) above has the form of the assumption used in [40,
Thm.14]. In this context, we want to remark that a linear operator B in a reflexive
space X satisfying that D(B) is dense in D(A1−ρ) for the graph norm and, for
some C > 0,

|〈Bx, x∗〉| ≤ C‖A1−ρx‖‖(A∗)ρx∗‖, x ∈ D(B), x∗ ∈ D((A∗)ρ),

actually satisfies R(B) ⊂ Ẋ−ρ ∩X = D(A−ρ) = R(Aρ).

6. Perturbation theorems for the H∞-calculus

It is known ([47]) that ‖Bx‖ ≤ C‖Ax‖ for small enough C does not imply that
A + B has an H∞-calculus if A has an H∞-calculus. What kind of conditions
can we add so that the perturbation theorem holds?

First we show that it is enough to add a second relative estimate ‖Aα−1Bx‖ ≤
C‖Aαx‖ for α �= 1. Then we consider perturbation theorems where only such an
estimate with α ∈ (0, 1) and small C is assumed.

Theorem 6.1. LetAbe anR-sectorial operator in a Banach spaceXwithωR(A)<
σ and assume that A has an H∞(�σ )-calculus. Let δ ∈ (0, 1) and suppose that
B is a linear operator in X satisfying D(B) ⊃ D(A), R(B) ⊂ R(Aδ) and

‖Bx‖ ≤ C0‖Ax‖, x ∈ D(A),
‖A−δBx‖ ≤ C1‖A1−δx‖, x ∈ D(A),

where C0, C1 < R−1
0 where R0 := R

({AR(λ,A) : | arg λ| ≥ σ }).
ThenA+B isR–sectorial withωR(A+B) ≤ σ andA+B has anH∞-calculus

with ωH(A+ B) ≤ σ .

Proof. Using the smallness of C0 we obtain by [40, Thm.1] that A+B is R–sec-
torial in X with ωR(A+ B) ≤ σ where

R(λ,A+ B) = R(λ,A)

∞
∑

k=0

(BR(λ,A))k, | arg λ| > σ.

We shall apply Theorem 4.1 and check condition (iv). Observe that A−δBAδ−1

extends to a bounded operator L on X with norm ‖L‖ < R−1
0 . For | arg λ| > σ ,

we now write

R(λ,A)BR(λ,A) = AδR(λ,A)A−δBAδ−1A1−δR(λ,A)
= AδR(λ,A)LA1−δR(λ,A),

and define M(λ) := ∑∞
k=0(LAR(λ,A))

k. The series converges absolutely, and
{M(λ) : | arg λ| > σ } is R-bounded. We obtain

R(λ,A+ B) = R(λ,A)+ AδR(λ,A)M(λ)LA1−δR(λ,A), | arg λ| > σ.

We now use the following lemma forA+B in place of B to finish the proof. ��
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Lemma 6.2. Let A be a linear operator in a Banach space X and assume that
A has an H∞(�σ )-calculus. Suppose that B is another linear operator in X
satisfying, for some � ∈ (0, 1) and some ω > σ , a representation of the form

R(λ,B) = R(λ,A)+ A�R(λ,A)M(λ)LA1−�R(λ,A), | arg λ| ≥ ω, (22)

where the set {M(λ) : | arg λ| ≥ ω} is R-bounded. Then B has an H∞-calculus
in X and ωH(B) ≤ ω.

Proof. For |ν| > ω we defineψν ∈ H∞
0 (�σ ) byψ2

ν (z) := (eiν −z)−1 −2(2eiν −
z)−1 = z(eiν − z)−1(2eiν − z)−1. With ϕ�(z) := z�(eiν − z)−1 we then have by
Lemma 4.5

sup
εk=±1

∑

k

|〈x∗, ψ2
ν (t2

k(B))x〉|

≤ sup
εk=±1

∑

k

|〈ψν(t2kA)∗x∗, ψν(t2kA)x〉|

+ sup
εk=±1

∑

k

|〈ϕδ(t2kA)∗x∗,M(t2k)Lϕ1−δ(t2kA)x〉|

+ sup
εk=±1

∑

k

|〈ϕδ(t2k+1A)∗x∗,M(t2k+1)Lϕ1−δ(t2k+1A)x〉|

≤ C‖x‖ψν,A‖x∗‖∗
ψν,A

+ C‖x‖ϕ1−δ,A‖x∗‖∗
ϕδ,A

.

Now the claim follows from Theorem 4.1 since A has an H∞-calculus. ��
Using interpolation we may weaken the assumption on smallness of the con-

stant C1 in the previous theorem.

Corollary 6.3. Assume that the assumptions of Theorem 6.1 hold where C0 is
sufficiently small and C1 < ∞ is arbitrary. Then A + B has an H∞-calculus
in X.

Proof. The operator A has BIP in X. We use Proposition 2.2. If C0 is sufficiently
small and δ1 is sufficiently close to 0, the norm of B : Ẋ1−δ1 → Ẋ−δ1 (or, equiv-
alently, the norm in B(X) of the bounded extension of A−δ1BAδ1−1) is less than
the constant R−1

0 in Theorem 6.1. Thus we may apply Theorem 6.1 for δ1 in place
of δ. ��

The usual corollary on relative A-small perturbations reads as follows.

Corollary 6.4. Let A be an R-sectorial operator in a Banach space X which has
an H∞-calculus. Let δ ∈ (0, 1) and assume that B is a linear operator in X
satisfying D(B) ⊃ D(A), R(B) ⊂ R(Aδ) and

‖Bx‖ ≤ a‖Ax‖ + b‖x‖, x ∈ D(A),
‖Bx‖X−δ ≤ C1‖x‖X1−δ , x ∈ D(A),
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where a > 0 is sufficiently small and b, C1 > 0 are arbitrary. Then A+B + ν is
R-sectorial and has an H∞-calculus for ν > 0 sufficiently large.

Proof. We have, for R0 as in Theorem 6.1 and any ν > 0,

‖B(ν + A)−1‖ ≤ (a + b/ν)(R0 + 1)‖x‖, x ∈ X.

If a is sufficiently small, then choosing ν > 0 sufficiently large, the first estimate
in Theorem 6.1 holds for B and ν + A in place of A with a constant C0 < R−1

0 ,
i.e. a constant having the required smallness. Since 0 ∈ ρ(ν + A)) we have
Xβ,A = Ẋβ,ν+A for any β ∈ R. This means that the second estimate in Theorem
6.1 holds with a modified constant C̃1. Now we can apply Corollary 6.3 for ν+A
in place of A. ��

As a consequence of Corollary 6.3 we obtain also the perturbation theorem in
[16] which we had obtained independently with our method.

Corollary 6.5. LetA be anR-sectorial operator in a Banach spaceX and assume
that A has an H∞(�σ )-calculus. Let δ ∈ (0, 1) and suppose that B is a linear
operator in X satisfying D(B) ⊃ D(A), B(D(A1+δ)) ⊂ D(Aδ) and

‖Bx‖ ≤ C0‖Ax‖, x ∈ D(A),
‖AδBx‖ ≤ C1‖A1+δx‖, x ∈ D(A1+δ)

where C0, C1 > 0 and C0 is sufficiently small. Then A + B is R–sectorial and
A+ B has an H∞-calculus with ωH(A+ B) ≤ σ .

Proof. By changing δ if necessary (cf. the proof of Corollary 6.3) we may assume
that also C1 is sufficiently small. In the following the spaces with no index are
contructed with respect to the operator A. We apply Theorem 6.1 for Ȧδ and B in
Ẋδ. Then Ȧδ + B is R-sectorial and has an H∞-calculus in Ẋδ. We observe

(Ẋδ)
·
1,Ȧδ+B = (Ẋδ)

·
1,Ȧδ

= Ẋ1+δ

with equivalent norms where we have used Proposition 2.1. By similarity, Ȧδ+B
thus has an H∞-calculus in Ẋ1+δ. By interpolation we obtain an H∞-calculus
for A+ B in Ẋ1. Since we have Ẋ1,A+B = Ẋ1 with equivalent norms, we obtain
again by similarity an H∞-calculus for A+ B in X. ��
We now present a result for perturbations B : Ẋα → Ẋα−1 in the fractional
scale. As explained in [40] (where perturbation theorems for R-sectorial opera-
tors were considered) such perturbation theorems can be considered as abstract
versions of form perturbation theorems in Hilbert space such as the KLMN-The-
orem. As already mentioned in Remark 5.9, if X is reflexive, the boundedness of
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B : Ẋα → Ẋα−1 is equivalent to the boundedness of ̂B := B|D(Aα) : Xα → Xα−1
and the existence of a constant C > 0 such that

|〈̂Bx, x∗〉| ≤ C‖Aαx‖‖(A∗)1−αx∗‖, x ∈ D(Aα), x∗ ∈ D((A∗)1−α).

In the reflexive situation, this type of assumptions has been used in [40]. Observe
that, in contrast to the situation in 5.9 c), B takes its values not in X but in the
larger space Xα−1 which means that the part of B in X may have trivial domain
{0}. A case where this actually happens is the perturbation of boundary conditions
(cf. Section 9).

It is somehow surprising that, in the fractional scale, a single smallness con-
dition is sufficient to obtain the H∞-calculus for the perturbed operator.

Theorem 6.6. Let A be an R-sectorial operator in a Banach space X that has
an H∞-calculus. Assume that 0 < α < 1 and that B : Xα → Xα−1 is a linear
operator satisfying,

‖B‖Ẋα→Ẋα−1 ≤ η

where η < (R0)
−1 and R0 is as in Theorem 6.1. Then there is a unique secto-

rial operator C in X whose resolvents are consistent with those of Ȧα−1 + B

in Ẋα−1. Moreover, the operator C is R-sectorial and has an H∞-calculus with
ωR(C) = ωH(C) ≤ ωH(A) = ωR(A).

Proof. We first derive a representation of the resolvent of the perturbed operator
which is different from the one in the proof of [40, Thm.14].

Let ω > ωR(A) = ωH(A). For λ ∈ �π−ω we let Sλ := (λ+ A)−1 and Tλ :=
(λ+Ȧα−1)

−1.We recall the isometries ˜Aα : Ẋα → X and (˜Aα−1)−1 : X → Ẋα−1.
Using these and R-sectoriality of A we see that the sets {λαTλ : λ ∈ �π−ω},
{λ1−αSλ : λ ∈ �π−ω}, and {Tλ : λ ∈ �π−ω} are R-bounded in B(Ẋα−1, X),
B(X, Ẋα), and B(Ẋα−1, Ẋα), respectively. Moreover, the R-bound of the last set
is ≤ R0.

Now we define, for λ ∈ �π−ω,

Rλ := Sλ − Tλ

∞
∑

k=0

(−BTλ)kBSλ,

and put Vλ := ∑∞
k=0(−BTλ)k. The series is absolutely convergent, since the R-

bound of {BTλ : λ ∈ �π−ω} in B(Ẋα−1) is < 1 by assumption. This also implies
that the set {Vλ : λ ∈ �π−ω} is R-bounded in B(Ẋα−1). Writing, for λ ∈ �π−ω,

λRλ = λSλ − λαTλVλBλ
1−αSλ,

we conclude that {λRλ : λ ∈ �π−ω} is R-bounded in B(X). Clearly, we have
consistency of Rλ ∈ B(X) with ˜Rλ ∈ B(Ẋα−1) given by

˜Rλ = Tλ − TλVλBTλ, λ ∈ �π−ω.
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Now it is not hard to check that we have, for λ ∈ �π−ω,

˜Rλ = (λ+ Ȧα−1 + B)−1.

We conclude that Rλ is a pseudo-resolvent in X. If x ∈ X satisfies Rλx = 0
then Sλx = TλVλBSλx, and V −1

λ x = BSλx, which in turn implies x = 0. Hence
Rλ is the resolvent of a closed linear operator C in X. Observe that we have
λ1−αSλx → 0 (λ → ∞) in Ẋα for any x ∈ X, since λ1−αAα(λ+A)−1x → 0 inX
for x ∈ D(Aα) andD(Aα) is dense inX. We conclude that λRλx → x (λ → ∞)

for any x ∈ X which implies that C is densely defined in X.
Observe now that, as in the usual perturbation situation, we have D(Ȧα−1 +

B) = D(Ȧα−1) = R(A1−α) ∩ D(Aα). Hence the range of (Ȧα−1 + B)˜Rλ
2 is

dense in R(A1−α) ∩D(Aα) for the norm ‖Aα−1 · ‖ + ‖Aα · ‖. We conclude that
the supersetR(CRλ) is dense inX for the original norm. ThusC has dense range.

We have shown that C is a sectorial operator in X. The uniqueness asser-
tion is clear, since Ẋα−1 ∩ X = R(A1−α) is dense in X. Again, we recall the
isometries ˜Aα : Ẋα → X and ˜Aα−1 : Ẋα−1 → X. By assumption the opera-
tor L := ˜Aα−1B(˜Aα)−1 belongs to B(X) and has norm ≤ η. We observe that
Tλ(˜Aα−1)−1 = A1−αSλ and ˜Aα−1BTλ(˜Aα−1)−1 = LASλ and obtain

Rλ = Sλ − A1−αSλ
∞
∑

k=0

(−LASλ)kLAαSλ, λ ∈ �π−ω.

Since {LASλ : λ ∈ �π−ω} isR-bounded withR-bound< 1, we can apply Lemma
6.2 and conclude that C has an H∞-calculus in X. ��

We note that, for any α ≤ 1, the operator A can be extended in a canonical
way to an operator Aα−1 in Xα−1 with domain D(Aα−1) = Xα.

Corollary 6.7. Let A be a sectorial operator in a Banach space X which has an
H∞-calculus. Assume that 0 < α < 1 and that B : Xα → Xα−1 is a linear
operator such that

lim inf
ν→∞ ‖(ν + A−1)

α−1B(ν + A)−α‖B(X)

is sufficiently small. Then the conclusion of Theorem 6.6 holds for ν +A in place
of A and ν sufficiently large.

Remark 6.8. If X is reflexive, the condition on B is satisfied if

|〈Bx, x∗〉| ≤ a(‖Aαx‖ + b‖x‖)(‖(A∗)1−αx∗‖ + b‖x∗‖),
x ∈ D(Aα), x∗ ∈ D((A∗)1−α),

where a > 0 is sufficiently small and b ≥ 0 is arbitrary.
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The following yields in particular the persistence of the H∞-calculus under
perturbations of “lower order” in the fractional scale. The case β = 1 is, of course,
well known (see, e.g., [2]).

Corollary 6.9. Let A be a sectorial operator in a Banach space X which has an
H∞-calculus. Assume that 0 ≤ α < β ≤ 1 and that B : Xα → Xβ−1 is a
bounded linear operator. Then, for α ≤ γ ≤ β, and λ > 0 sufficiently large, the
part of (λ+ A)γ−1 + B in X has an H∞-calculus.

Proof. We consider the norms ‖(1+A)α ·‖ and ‖(1+A−1)
β−1 ·‖ onXα andXβ−1,

respectively. The assumption means thatK := (1+A−1)
β−1B(1+A)−α ∈ B(X).

For ν > 0 and γ ∈ [α, β] we then have

(ν + A−1)
γ−1B(ν + A)−γ = [(1 + A−1)

1−β(ν+A−1)
γ−1]K[(1+A)α(ν+A)−γ ].

Both terms in square brackets are uniformly bounded in B(X) for ν > 0. Since
α < γ or γ < β, one term is square brackets tends to 0 in B(X) as ν → ∞.
Hence we apply Theorem 6.6 for ν+A in place ofA and ν sufficiently large. ��

We close this section with the following proposition onH∞–calculi for trans-
lated operators.

Proposition 6.10. Suppose A is sectorial on X. If A has an H∞(�σ )-calculus
then A+ cI has an H∞(�σ )-calculus for all c > 0. Conversely, if A+ c0I has
anH∞-calculus for some c0 > 0 then A+ cI has anH∞-calculus for all c > 0.

Proof. For f ∈ H∞
0 (�σ ):

∫

�

f (λ)R(λ,A+ c) dλ−
∫

�

f (λ)R(λ,A) dλ

= c

∫

f (λ)R(λ,A)R(λ,A+ c) dλ

= c

∫

f (λ)R(λ,A)R(0, A+ c) dλ

+ c
∫

f (λ)[R(λ,A+ c)− R(0, A+ c)]R(λ,A) dλ

= cR(−c,A)
∫

f (λ)R(λ,A) dλ

+ c
∫

f (λ)λR(λ,A)R(λ,A+ c) dλR(0, A+ c).

Call the last integral I (f ) and note that ‖I (f )‖B(X) ≤ Dc‖f ‖H∞ . Hence
∫

f (λ)R(λ,A+ c) dλ = [I − (−c)R(−c,A)]
∫

f (λ)R(λ,A) dλ+ I (f )

= [−AR(−c,A)]
∫

f (λ)R(λ,A) dλ+ I (f ).
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We obtain ‖f (A+ c)‖ ≤ D‖f (A)‖ + ‖I (f )‖. For the converse we can assume
that A and then L = −AR(−c,A) are invertible so that

‖f (A)‖ ≤ ‖L−1‖(‖f (A+ c)‖ + ‖I (f )‖)

which ends the proof. ��

7. Characterization of the H∞-calculus by interpolation

It is shown in [5] that, in a Hilbert space, a sectorial operator A has a bounded
H∞-calculus if and only if [Ẋα, Ẋβ]θ = Ẋγ with γ = (1 − θ)α+ θβ for α �= β,
θ ∈ (0, 1). On a Banach space X which is not isomorphic to a Hilbert space,
boundedness of the H∞-functional calculus cannot be characterized by the com-
plex or the real interpolation method in such a way. Complex interpolation is
linked to the weaker condition BIP (cf. [54, 1.15.2] and Proposition 2.2 above),
and A has always a boundedH∞-functional calculus on real interpolation spaces
(X,X1)α,q , α ∈ (0, 1) (cf. [19], [20]). Real interpolation spaces, however, do
usually not coincide with the scaleXα; ifX = Lp(R

n) andA = −� then the real
interpolation spaces ofX andD(A) are Besov spaces, not Bessel potential spaces
Hs
p(R

n). Therefore we introduce here the Rademacher interpolation method.
ForBanach spaceswith finite cotype, thismethod is isomorphic to a special case of
the interpolation methods introduced in [32] in connection with Euclidean struc-
tures (see [32] for further details). With this method it will be possible to extend
the above mentioned Hilbert space result and give criteria for the H∞-calculus.

As before let (εk) be a sequence of independent symmetric {−1, 1}–valued
random variables on a probability space. One can take the Rademacher functions
rk(t) = sign sin(2kπt), k ∈ N, on [0, 1].

Definition 7.1. Let (Y0, Y1) be an interpolation couple. For every θ ∈ (0, 1), the
Rademacher interpolation space 〈Y0, Y1〉θ consists of all y ∈ Y0 + Y1 which can
be represented as a sum

y =
∞
∑

k=−∞
yk, yk ∈ Y0 ∩ Y1 (23)

convergent in Y0 + Y1, such that

C0(yk) = sup
N

E

∥

∥

∥

N
∑

k=−N
εk2−kθyk

∥

∥

∥

Y0
< ∞

C1(yk) = sup
N

E

∥

∥

∥

N
∑

k=−N
εk2k(1−θ)yk

∥

∥

∥

Y1
< ∞.



782 N. Kalton et al.

The norm on 〈Y0, Y1〉θ is given by

‖y‖θ = inf{max(C0(yk), C1(yk)) : all representations (23) of y}.
Remark 7.2. Although we shall not use this fact, we note that 〈Lp0, Lp1〉θ = Lp
for 1 ≤ p0 < p1 < ∞ and 1

p
= 1−θ

p0
+ θ

p1
(cf. [32]).

It will be important to us that, for a large class of Banach spaces including uni-
formly convex spaces, the Rademacher method is self dual. The following result
is shown in [32] and will not be proved here:

Proposition 7.3. If X is B–convex then, for an arbitrary interpolation couple
(X, Y ), we have 〈X, Y 〉∗θ = 〈X∗, Y ∗〉θ .

Applying the Rademacher interpolation method to the completions Ẋα of the
fractional domains D(Aα) (see Section 2) we obtain

Theorem 7.4. Let A admit an H∞–calculus. For α, β ∈ R, α < β and γ =
(1 − θ)α+ θβ with θ ∈ (0, 1) we have for the Rademacher interpolation method

Ẋγ = 〈Ẋα, Ẋβ〉θ .
In particular: X =

〈

˜D(A), ˜R(A)
〉

1/2
, where ˜R(A) is the completion of (R(A),

‖A−1x ‖) and ˜D(A) is the completion of (D(A), ‖Ax‖).
Proof. First we show that Ẋγ ⊂ 〈Ẋα, Ẋβ〉θ . To this end put d = β−α, a = 21/d

so that α = γ − θd and β = γ + (1 − θ)d. For some l > 1 + d we define

g0(z) = 2l
π

a
∫

1

(tz)l

1 + (tz)2l
dt

t

and gs(z) = zsg0(z) for −l < s < l. Then for every 0 < σ < π we have
gs ∈ H∞

0 (�σ ) for −l < s < l. We also have for all z ∈ �σ
∑

k∈Z

g0(a
kz) = 2l

π

∞
∫

0

t l

1 + t2l
dt

t
= 1.

Then we can write x =
∑

k∈Z

g0(a
kA)x (unconditionally) for all x ∈ D(Aα) ∩

D(Aβ), and for all σk = ±1 and N ∈ N we have by Theorem 4.1 (i)
∥

∥

∥

∑

|k|≤N
σk2−kθg0(a

kA)x

∥

∥

∥

D(Aα)

=
∥

∥

∥

∑

|k|≤N
σka

−kdθg0(a
kA)A−dθ (Aγ x)

∥

∥

∥

X

=
∥

∥

∥

∑

|k|≤N
σkg−dθ (akA)(Aγ x)

∥

∥

∥ ≤ C‖Aγ x‖,
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and also
∥

∥

∥

∑

|k|≤N
σk2k(1−θ)g0(a

kA)x

∥

∥

∥

D(Aβ)

=
∥

∥

∥

∑

|k|≤N
σkg(1−θ)d(akA)(Aγ x)

∥

∥

∥

X
≤ C‖Aγ x‖

Hence

‖x‖〈Ẋα,Ẋβ 〉θ ≤ C‖x‖Ẋγ for x ∈ D(Aα) ∩D(Aβ).

Now we prove the converse inequality. Since X� norms X, there is a constant
C1 such that for every x ∈ D(Aα) ∩ D(Aβ) there is an x∗ ∈ D((A�)θd) ∩
D((A�)−(1−θ)d) such that ‖Aγ x‖ ≤ C1〈Aγ x, x∗〉 and ‖x∗‖ = 1. By definition of
the interpolation method there is a representation

x =
∑

k∈Z

xk, xk ∈ D(Aα) ∩D(Aβ),

such that for L = ‖x‖〈Ẋα,Ẋβ 〉θ we have

E

∥

∥

∥

∑

k∈Z

εk2−kθAαxk
∥

∥

∥ ≤ 2L (24)

E

∥

∥

∥

∑

k∈Z

εk2k(1−θ)Aβxk
∥

∥

∥ ≤ 2L. (25)

The operatorA� onX� has also anH∞–calculus and sowecan apply thefirst part of
the proof to (X�)α′ , (X�)β ′ withα′ = (θ−1)d, β ′ = θd. Since θα′ +(1−θ)β ′ = 0
there is a decomposition x∗ =

∑

k∈Z

x∗
k , x∗

k ∈ (X�)α′ ∩ (X�)β ′ , such that

E

∥

∥

∥

∑

k∈Z

εk2−k(1−θ)(A�)(θ−1)dx∗
k

∥

∥

∥ ≤ C‖x∗‖ (26)

E

∥

∥

∥

∑

k∈Z

εk2kθ (A�)dθx∗
k

∥

∥

∥ ≤ C‖x∗‖. (27)

Now we have

〈Aγ x, x∗〉 =
∑

j∈Z

∑

k∈Z

〈Aγ xj , x∗
k 〉 =

∑

r∈Z

∑

j∈Z

〈Aγ xj , x∗
j+r〉.
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For a fixed r ≥ 0 we estimate using Lemma 4.5 (for M = I ) and (24), (27):
∑

j∈Z

〈Aγ xj , x∗
j+r〉 = 2−θr ∑

j

〈2−jθAαxj , 2θ(j+r)(A�)θdx∗
j+r〉

≤ C2−θr
E

∥

∥

∥

∑

j

εj2−jθAαxj
∥

∥

∥ · E

∥

∥

∥

∑

j

εj2θj (A�)θdx∗
j

∥

∥

∥

≤ 2−θ |r|2C ′L.

For a fixed r < 0 we use Lemma 4.5 (for M = I ) together with (25) and (26):
∑

j∈Z

〈Aγ xj , x∗
j+r〉 = 2(1−θ)r ∑

j

〈2(1−θ)jAβxj , 2(θ−1)(j+r)(A�)(θ−1)dx∗
j+r〉

≤ C2(1−θ)r
E

∥

∥

∥

∑

j

εj2(1−θ)jAβxj
∥

∥

∥

·E
∥

∥

∥

∑

j

εj2(θ−1)j (A�)(θ−1)dx∗
j

∥

∥

∥ ≤ 2−(1−θ)|r|2C ′L.

Combining these inequalities we get

‖Aγ x‖ ≤ C1〈Aγ x, x∗〉 ≤ 2C ′′
(
∑

r∈Z

2− min{θ,1−θ}|r|
)

L

and the claim follows. ��
If A has an H∞–calculus on X, then A� has an H∞–calculus on X� and the

theorem implies

(X�)·γ = 〈(X�)·α, (X�)·β〉θ .
This leads to the following characterization of the H∞–calculus.

Theorem 7.5. Let A and A� be almost R–sectorial on X and X�, respectively.
Then A has an H∞–calculus if and only if we have continuous embeddings

Ẋγ0 ⊂ 〈Ẋα0, Ẋβ0〉θ0, (X�)·γ1
⊂ 〈(X�)·α1

, (X�)·β1
〉θ1

for some αi < βi, γi = (1 − θi)αi + θiβi with θi ∈ (0, 1) for i = 0, 1.

The main estimate of the proof is contained in the following lemma.

Lemma 7.6. Let A be almost R–sectorial in X. For α < γ < β with γ =
(1 − θ)α + θβ choose l > d := β − α and a = 21/d . For g(z) = zl(1 − z)−2l

and |ω| > ωr(A) there is a constant C such that

sup
N

E‖
∑

|j |≤N
εjg(e

iωtajA)Aγ x‖ ≤ C‖x‖〈Ẋα,Ẋβ 〉θ

for all x ∈ Ẋα ∩ Ẋβ and t > 0.
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Proof. Put Y = 〈Ẋα, Ẋβ〉θ and

g+(z) = zθdg(z), g−(z) = z(θ−1)dg(z).

Since g, g+, g− are in H∞
0 (�σ ) for all 0 < σ < π , the set {g±(sA) : s > 0} is

R–bounded with R–bound M . For every x ∈ D(Aα) ∩ D(Bα) there is a repre-
sentation x =

∑

k∈Z

xk, xk ∈ D(Aα) ∩D(Aβ), such that

sup
N

E

∥

∥

∥

∑

|k|≤N
εk2−kθAαxk

∥

∥

∥ ≤ C‖x‖Y (28)

sup
N

E

∥

∥

∥

∑

|k|≤N
εk2k(1−θ)Aβxk

∥

∥

∥ ≤ C‖x‖Y . (29)

With x satisfying (28) and (29) we have for σj = ±1 and s = eiωt with
|ω| > ωY (A) and t ∈ [1, a],

∑

|j |≤N
σjg(sa

jA)Aγ x =
∑

r∈Z

∑

|j |≤N
σjg(sa

jA)Aγ xj+r .

For a fixed r ≥ 0 we can write
∑

|j |≤N
σjg(sa

jA)Aγ xj+r

= 2−(1−θ)r s(1−θ)d ∑

|j |≤N
σj (sa

jA)−(1−θ)dg(sajA)
[

2(j+r)(1−θ)Aβxr+j
]

and obtain from (29) and the R–boundedness of g−(sA) the estimate

E

∥

∥

∥

∑

|j |≤N
εjg(sa

jA)Aγ x

∥

∥

∥

≤ 2 · 2−(1−θ)|r|
E

∥

∥

∥

∑

|j |≤N
εjg−(sajA)

[

2(j+r)(1−θ)Aβxr+j
]∥

∥

∥

≤ 2 · 2−(1−θ)|r|MC‖x‖Y .
Similarly we argue for a fixed r < 0:

∑

|j |≤N
σjg(sa

jA)Aγ x

= s−θd2θr
∑

j

σj (sa
jA)θdg(sajA)

[

2−θ(j+r)Aαxr+j
]
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and therefore by (28)

E

∥

∥

∥

∑

|j |≤N
εjg(sa

jA)Aγ x

∥

∥

∥

≤ 2−θ |r|
E

∥

∥

∥

∑

|j |≤N
g+(sajA)[2−θ(j+r)Aαxr+j ]

∥

∥

∥

≤ 2−θ |r|MC‖x‖Y .
Combining the last two estimates we get

sup
N

E

∥

∥

∥

∑

|j |≤N
εjg(e

iωtajA)Aγ x

∥

∥

∥ ≤ C1‖x‖Y

which ends the proof. ��
Proof of Theorem 7.5. Clearly, the condition is necessary by the last theorem. We
prove the converse.

By the lemma and Ẋγ0 ⊂ 〈Ẋα0, Ẋβ0〉θ0 we get for all y = Aγ0x ∈ (Aγ0) that

sup
N

E

∥

∥

∥

∑

|j |≤N
εjg(ta

jA)y

∥

∥

∥ ≤ C1‖y‖.

If l was chosen such that l > β1 − α1 we can repeat this argument for A� and
obtain for y� ∈ R((A�)γ1)

E

∥

∥

∥

∑

|j |≤N
εjg(ta

jA�)y�
∥

∥

∥ ≤ C2‖y�‖.

Since R((A�)γ1) is a dense subset of X� the claim follows now from Theorem
4.1. ��
Corollary 7.7. Let A be almost R-sectorial on the B–convex Banach space X. If
Ẋγ = 〈Ẋα, Ẋβ〉θ for some γ = (1 − θ)α + θβ with α < β and θ ∈ (0, 1), then
A has an H∞-calculus.

This extends the characterization of the H∞-calculus given in [5, Thm.4.2]
for Hilbert spaces, since in Hilbert spaces the complex and the Rademacher inter-
polation method coincide. Of course, Corollary 7.7 gives an alternative proof of
Theorem 5.1 but the argument given there is direct and more general.

In the next section we will need

Corollary 7.8. Assume thatA is almostR-sectorial onX and thatX isB–convex
and reflexive. For α < β and θ ∈ (0, 1) we have thatA has anH∞(�σ )-calculus
on 〈Ẋα, Ẋβ〉θ for σ > ωr(A).
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Proof. Applying Lemma 7.6 we obtain for some |ω| > ωr(A)

N(x) := sup
t>0

sup
N

E

∥

∥

∥

∑

|j |≤N
εjg(e

iωtajA)Aγ x

∥

∥

∥ ≤ C‖x‖〈Ẋα,Ẋβ 〉θ

for x ∈ D(Aα) ∩D(Aβ) and t > 0.
Since X is B–convex and reflexive, A∗ is also almost R–sectorial, (Ẋν)∗ =

(X∗)·−ν,A∗ for ν = α, β, γ . Moreover, Y = 〈Ẋα, Ẋβ〉θ has the dual space Y ∗ =
〈(X∗)·−α, (X∗)·−β〉θ . Applying Lemma 7.6 to A∗ gives

N∗(x∗) := sup
t>0

sup
N

E

∥

∥

∥

∑

|j |≤N
εjg(e

iωtajA∗)(A∗)−γ x∗
∥

∥

∥ ≤ C‖x∗‖Y ∗

for all x∗ ∈ D((A∗)−α) ∩ D((B∗)−β) and t > 0. By Theorem 4.1 (ii) A has an
H∞(�σ )–calculus on Y for σ > ωr(A). ��

This should be compared with [19], [20] where it is shown that, for α = 0,
β = 1, any sectorial operator A in an arbitrary Banach space X has an H∞-cal-
culus on the real interpolation spaces (X,X1)θ,q , q ∈ [1,∞] for all σ > ω(A).

Corollary 7.7 leads to the following useful criteria for the H∞-calculus.

Theorem 7.9. Let Y be a complemented subspace of a B–convex Banach space
X. Let A have an H∞-calculus on X and let B be almost R–sectorial on Y .

If P(Ẋβj ,A) = Ẏβj ,B for two different β1, β2 �= 0 then B has an H∞-calculus
on Y .

Here the equality P(Ẋγ,A) = Ẏγ,B is meant in the following sense: the pro-
jection P : X → Y , restricted toX∩ Ẋγ,A = D(Aγ ), has a continuous extension
P̃ : Ẋγ,A → Ẏγ,B which is surjective. This also implies that P is compatible with
the interpolation couples (X, Ẋγ,A) and (Y, Ẏβ,A).

Proof. We use 0 as the third point with P(Ẋ0,A) = Y0,B and let {β1, β2, 0} =:
{α1, α, α2} where α1 < α < α2 and choose θ such that α = (1 − θ)α1 + θα2.
Then we apply Corollary 7.7 to B since we have

〈Ẏα0,B, Ẏα2,B〉 = 〈P(Ẋα0,A), P (Ẋα1,A)〉θ = P(Ẋα,A) = Ẏα,B,

where we used [54, 1.2.4] for the third equality. ��
Corollary 7.10. If, in the last theorem, B has even BIP, then P(Ẋα,A) = Ẏα,B for
one α �= 0 is sufficient for B to have an H∞-calculus in Y .

Proof. Here, we use [54, 1.2.4] for Rademacher interpolation and for complex
interpolation

〈Y, Ẏα,B〉θ = P(〈X, Ẋα,A〉θ ) = P([X, Ẋα,A]θ ) = [Y, Ẏα,B]θ = Ẏθα,B,

and apply Corollary 7.7. ��
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8. H∞-calculus on interpolation scales

In Section 5 we have shown that, if A and B are almost R-sectorial operators on
X which satisfy two domain conditions D(Aαj ) = D(Bαj ) with α1 < 0 < α0,
then B has a bounded H∞-calculus provided A has a bounded H∞-calculus.
Now we will see that, if Aj and Bj are consistent operators on an interpolation
couple (X0, X1) and we can check one of the domain conditions on X0 and X1,
respectively, then we can obtain a bounded H∞-calculus for B on the complex
interpolation spaces Xθ , θ ∈ (0, 1). This is of particular interest if A0 and B0 are
accretive operators on a Hilbert space. In the next section we will apply this result
to differential operators on the Lp-scale or the scale of Helmholtz spaces.

Lemma 8.1. Suppose that X is B–convex and that A has an H∞-calculus on X.
IfB is almostR-sectorial onX andD(Aα) ∼ D(Bα) thenB has anH∞-calculus
on Ẋβ,A for 0 < β < α.

Proof. By Lemma 7.8, B has an H∞-calculus on

〈X, Ẋα,B〉θ = 〈X, Ẋα,A〉θ = Ẋθα,A

for θ ∈ (0, 1), where we used Theorem 7.4 for the last equality. ��
In the following, we assume that (X0, X1) is an interpolation couple, the spaces

Xθ := [X0, X1]θ , θ ∈ (0, 1), are obtained by complex interpolation, and there
is a family (Aθ)θ∈[0,1] of sectorial operators Aθ in Xθ satisfying the consistency
condition

R(λ,Aθ)x = R(λ,Aθ̃ )x, x ∈ Xθ ∩Xθ̃, θ, θ̃ ∈ [0, 1].

Moreover we assume that (Y0, Y1) is another interpolation couple with scale (Yθ )
of complex interpolation spaces and a family (Bθ)θ∈[0,1] of sectorial operators
satisfying a similar consistency condition.

Theorem 8.2. Let, in the situation described above, (X0, X1) be an interpolation
couple of reflexive and B-convex spaces and assume that, for j = 0, 1, Yj is a
complemented subspace ofXj with associated and compatible projectionsP0, P1.
Assume, for j = 0, 1, that Aj has an H∞-calculus on Xj and that Bj is almost
R-sectorial on Yj . Assume moreover that there are α < 0 < β such that

P0((X0)
·
α,A0

) = (Y0)
·
α,B0

, P1((X1)
·
β,A1

) = (Y1)
·
β,B1

. (30)

Then, for θ ∈ (0, 1), the operator Bθ has an H∞-calculus on the complex inter-
polation space Yθ = [Y0, Y1]θ .

Concerning the meaning of (30) see the remark after Theorem 7.9.
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Proof. We first assume Yj = Xj and Pj = I for j = 0, 1. By Lemma 8.1 the
operator B0 has an H∞-calculus on (X0)

·
θα,A0

and B1 has an H∞-calculus on
(X1)

·
θβ,A1

for all θ ∈ (0, 1). We omit subscripts for the operators.
Let α′ ∈ (α, 0) and β ′ ∈ (0, β), and define θ ∈ (0, 1) by (1 − θ)α′ +

θβ ′ = 0. By complex interpolation we obtain an H∞-calculus for B in the space
[(X0)

·
α′, (X1)

·
β ′]θ . We now show that this space equals [X0, X1]θ . For the complex

methodwe refer to [54, 1.9]. Observe first that, for j = 0, 1,Aj has BIP inXj , and
we can choose M,γ ≥ 0 such that ‖Aitj ‖B(Xj ) ≤ Meγ |t | for j = 0, 1 and all t .
Let γ ′ := γ (|α′| + |β ′|). If f ∈ F(X0, X1, 0) with f (θ) = x then g : z �→
A(1−z)α′+zβ ′

f (z) satisfies g(θ) = x as well and belongs to F((X0)
·
α′, (X1)

·
β ′, γ ′)

and the norm of g in this space is ≤ C‖f ‖F(X0,X1,0). If, on the other hand,
g ∈ F((X0)

·
α′, (X1)

·
β ′, 0) with g(θ) = x then f : z �→ A(z−1)α′−zβ ′

g(z) satisfies
f (θ) = x and belongs to F(X0, X1, γ

′) with norm ≤ C‖g‖F((X0)
·
α′ ,(X1)

·
β′ ,0)

.
This proves the claim, and by choosing α′ and β ′ accordingly we can obtain

an H∞-calculus for Bθ in any space Xθ = [X0, X1]θ for any θ ∈ (0, 1).
For the general case we shall use again [54, 1.2.4]. By Corollary 7.8, B has

an H∞-calculus in 〈Y0, (Y0)
·
α,B〉θ and in 〈Y1, (Y1)

·
β,B〉θ for all θ ∈ (0, 1). By [54,

1.2.4] these spaces coincide with

P(〈X0, (X0)
·
α,A〉θ ) = P((X0)

·
θα,A) and P(〈X1, (X1)

·
β,A〉θ ) = P((X1)

·
θβ,A).

Now taking α′, β ′, and θ as before, i.e. satisfying (1 − θ)α′ + θβ ′ = 0 we obtain
an H∞-calculus for B in the space

[P((X0)
·
α′,A), P ((X1)

·
β ′,A)]θ = P([(X0)

·
α′,A, (X1)

·
β ′,A]θ )

= P([X0, X1]θ ) = [Y0, Y1]θ .

Here we have used [54, 1.2.4] in the first and in the last equality. ��
As an application we prove the following for a σ -finite measure space (�,μ).

Corollary 8.3. Let A2, B2 with D(A2) = D(B2) and 0 ∈ ρ(A2) ∩ ρ(B2) be
accretive operators in L2(�). Assume that, for some p0 ∈ (1,∞), there are
operators Ap, Bp in Lp(�) for p between p0 and 2 whose resolvents are consis-
tent with those of A2 and B2, respectively, on a sector −�θ ∪ {0}. Suppose that
D(Ap0) = D(Bp0), Ap0 has an H∞-calculus in Lp0(�) and that Bp0 is almost
R-sectorial in Lp0(�). Then Bp has an H∞-calculus in Lp(�) for all p strictly
between 2 and p0.

Proof. Since A2 and B2 are accretive, they have BIP and we obtain D(As2) =
D(Bs2) for all s ∈ (0, 1). By accretiveness, we also have D(As2) = D((A∗

2)
s) and

D(Bs2) = D((B∗
2 )
s) for all s ∈ (0, 1/2). Hence D((A∗

2)
s) = D((B∗

2 )
s) for all

s ∈ (0, 1/2). By Corollary 5.6 we obtainD(A−s
2 ) = D(B−s

2 ) for all s ∈ (0, 1/2).
We apply Theorem 8.2 with Y0 = X0 = L2(�), Y1 = X1 = Lp0(�) and

Pj = IXj , taking α ∈ (−1/2, 0) and β = 1. Since, in Lp0(�), Ap0 has an
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H∞-calculus and Bp0 is almost R-sectorial, the assumptions of the theorem are
satisfied. ��

Combining Theorem 8.2 with Theorem 5.7 we obtain a result which is of
particular interest when the scale (X0)α,A consists of classical Sobolev spaces.

Corollary 8.4. Let (X0, X1) be an interpolation couple where X0 is a Hilbert
space and X1 is B-convex and reflexive. Let A have a bounded H∞-calculus on
X0 and X1 and assume

(i) B is almost R-sectorial on X1 and for some α �= 0 (e.g., α = 1) we have
‖Aαx‖ ∼ ‖Bαx‖ for x ∈ D(Aα) = D(Bα) in X1,

(ii) there is an interval ∅ �= I ⊂ R+ such that, for any ρ ∈ I , there is a sectorial
operator B̃ consistent with B on X0 satisfying

‖B̃x‖
(X0)

·
−ρ,A

∼ ‖Ȧ−ρ‖(X0)
·
−ρ,A

x ∈ D(Ȧ−ρ).

Then B has a bounded H∞-calculus on Xθ = [X0, X1]θ for 0 < θ < 1.

9. Applications to differential operators

We illustrate our results by applying them to several classes of elliptic differential
operators. In certain cases this leads to new results, in other cases the results are
known, sometimes even stronger results have been proved before. In all applica-
tions listed below our methods provide new proofs.

(a) Elliptic operators in non-divergence form

We start with operators on R

n where we use the usual multiindex notation α =
(α1, . . . , αn) ∈ N

n
0, |α| = α1 + · · · + αn, and write Dα := D

α1
1 · · ·Dαn

n with
Dj := −i ∂

∂xj
. Recall (cf., e.g., [2]) that, for M > 0, ω0 ∈ [0, π), an operator of

the form Au(x) := ∑

|α|≤2m aα(x)D
αu(x) with aα ∈ L∞(Rn,C), |α| ≤ 2m, is

called (M,ω0)–elliptic if
∑

|α|=2m ‖aα‖∞ ≤ M and the principal symbol

Aπ(x, ξ) :=
∑

|α|=2m

aα(x)ξ
α, x, ξ ∈ R

n,

of A satisfies, for all x, ξ ∈ R

n,

Aπ(x, ξ) ⊂ �ω0, |Aπ(x, ξ)| ≥ M−1|ξ |2m.
Here, we confine ourselves to scalar equations but the arguments will also apply
to systems where the coefficients satisfy aα ∈ L∞(Rn,CN×N) for some integer
N > 1. For an (M,ω0)–elliptic operator A of order 2m and p ∈ (1,∞) we
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consider its realization Ap in Lp(Rn) with domain D(Ap) := W 2m
p (Rn). Recall

that the Sobolev space W 2m
p (Rn) equals the Bessel potential space H 2m

p (Rn).
Due to the perturbation result for lower order perturbations we may concen-

trate on operators of the form Au(x) = ∑

|α|=2m aα(x)D
α. For operators of this

form boundedness of H∞-calculi has been established in [2] for Hölder contin-
uous coefficients, in [21] for BUC (bounded uniformly continuous continuous)
coefficients, and in [22] for VMO-coefficients in case m = 1. For UMD state
space, R-sectoriality has been shown in [17] for BUC-coefficients on R

n, and
boundedness of the H∞-calculus has been shown in [16] for Hölder continuous
coefficients and general boundary conditions on the half space and on bounded
domains.

Remark 9.1. Let A be an (M,ω0)–elliptic operator of order 2m with constant
coefficients on R

n. We consider the realization Ap of A in Lp(Rn), 1 < p < ∞,
with domainD(Ap) = H 2m

p (Rn). By [17] or [40] the operator Ap is R–sectorial.
Since (Ap)∗ is an operator of the same form, also (Ap)∗ isR–sectorial inLp′(Rn).
Defining the spaces Ẋα := Ẋα,Ap whereX = Lp(R

n)wefind that Ẋ1 = Ḣ 2m
p (Rn)

and Ẋ−1 = Ḣ−2m
p (Rn) are Riesz potential spaces. These spaces are independent

of the particular coefficients. Hence it suffices to know that (−�)m has an H∞-
calculus in Lp(Rn) and to use Theorem 5.1 to obtain an H∞-calculus for Ap.
Note that the coefficents of A may be complex.

For later use we note that by Mihlin’s theorem we obtain, for X = Lp(R
n)

and all β ∈ R, that Ẋβ,A = Ḣ
2mβ
p with equivalent norms. Indeed, the symbols

ξ → (|ξ |±2mAπ(ξ)
∓1)β areC∞ on R

n \{0} and homogeneous of degree 0. Hence
they induce Lp–bounded operators.

We turn to operators with variable coefficients. If the coefficients are suffi-
ciently regular we may use comparison as in the case of constant coefficients.

Proposition 9.2. Let p ∈ (1,∞), and assume that Au := ∑

|α|=2m aαD
α is an

(M,ω0)–elliptic operator. Suppose that aα ∈ BUC2m(Rn) for |α| = 2m, i.e. all
partial derivatives of order ≤ 2m of the coefficients aα are bounded and uniformly
continuous on R

n. Then, for ν > 0 sufficiently large, the operator ν +Ap has an
H∞(�θ)–calculus for each θ > ω0.

Proof. Let X := Lp(R
n). For some ν > 0, the operator ν + Ap is R–sectorial

with ωR(ν + Ap) ≤ ω0 by, e.g., [40]. The dual operator (Ap)∗ of Ap is given in
Lp′(Rn) by (Ap)∗v = ∑

|α|=2m ∂
α(aαv) =: A∗v. By aα ∈ BUC2m the highest

order coefficients of A∗ are in BUC(Rn). By [40] again, the operator (Ap)∗ has
domainW 2m

p′ (Rn) = H 2m
p′ (Rn) and (ν+Ap)∗ is R–sectorial in Lp′(Rn). Now we

apply Theorem 5.1 again and compare ν + Ap with ν + (−�)m. This yields an
H∞(�θ)–calculus for ν + Ap and every θ > ω0. ��

If the coefficients are merely bounded and uniformly continuous we obtain
the following result:
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Proposition 9.3. Let p ∈ (1,∞), and assume that Au := ∑

|α|=2m aαD
α is an

(M,ω0)–elliptic operator such that aα ∈ BUC(Rn) for |α| = 2m, i.e., all coeffi-
cients aα are bounded and uniformly continuous on R

n. Then, for ν > 0 sufficiently
large, the operator ν +Ap has an H∞(�θ)–calculus in Hβ

p (R
n) for θ > ω0 and

β ∈ (0, 2m).
Proof. Since by, e.g., [40] the operator ν+A isR-sectorial inLp(Rn) andD(A) =
H 2m
p (Rn) the assertion follows from Corollary 7.8 and the following lemma. ��

Lemma 9.4. Let p ∈ (1,∞) and α, β ∈ R such that α �= β. For any θ ∈ (0, 1)
we have

〈Ḣ α
p (R

n), Ḣ β
p (R

n)〉θ = Ḣ (1−θ)α+θβ
p (Rn) and

〈Hα
p (R

n),Hβ
p (R

n)〉θ = H(1−θ)α+θβ
p (Rn).

Proof. The operator A = −� has an H∞-calculus in X = Lp(Rn) and Ẋγ/2 =
Ḣ
γ
p (R

n) for all γ ∈ R. Hence, Rademacher interpolation and complex interpola-
tion coincide, and this yields the first assertion. The second assertion is proved by
the same arguments applied to the operator A = 1 −� observing that this time
Ẋγ/2 = H

γ
p (R

n), γ ∈ R. ��
For the case of Hölder continuous coefficients we propose the following

proof (which is quite different from known ones): Use the same approach as
above but in X = H

−β
p (Rn) for small β > 0 instead of X = Lp(Rn). If the

domainX1 of the operatorA, considered as an operator inX = H
−β
p (Rn), equals

H
2m−β
p (Rn) and ν + A is R-sectorial in X, then Lemma 9.4 and Corollary 7.8

yield an H∞-calculus for ν + A in Lp(Rn) = 〈X,X1〉β/(2m). Precisely, we have

Proposition 9.5. Let p ∈ (1,∞), and assume that Au := ∑

|α|=2m aαD
α is an

(M,ω0)–elliptic operator such that aα ∈ Cγ (Rn) for some γ > 0 and all |α| =
2m. Then, for ν > 0 sufficiently large, the operator ν+Ap has anH∞(�σ )–cal-
culus in Hβ

p (R
n) for σ > ω0 and β ∈ [0, 2m].

For the proof we need R-sectoriality of ν + A in H−β
p (Rn) for some small

β > 0. This could be done directly by repeating the proof for Lp-spaces in nega-
tive Sobolev spaces, i.e., by localization and small perturbations. But it can also be
achieved by Sneiberg’s Lemma from interpolation theory (cf. [8, Lem. 23, p. 53],
or [29, Thm.2.7] for a more general context).

Lemma 9.6 (Sneiberg’s Lemma). Let (Xθ ) and (Yθ ) be complex interpolation
scales of Banach spaces where θ ∈ (0, 1). If S is a linear operator which is
bounded Xθ → Yθ for each θ ∈ (0, 1), then the following subsets of (0, 1) are
open:

{θ : ∃η > 0 : ‖Sx‖Yθ ≥ η‖x‖Xθ
}, {θ : S : Xθ → Yθ is an isomorphism}.
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Proof of Proposition 9.5. The use of Lemma 9.6 is similar to the way it has been
used in [39]. For convenience we change the range of θ . The scales (Xθ ) and (Yθ )
will consist of Rad-like spaces. We choose ν ≥ 0 such that ν + A is R-sectorial
in Lp(Rn) and a dense sequence (λj ) in ν + �σ and let Xθ denote the space of
all sequences (uj ) of distributions on R

n such that
2m
∑

k=0

E‖
∑

j

rjλ
1−k/(2m)
j ∇kuj‖Hθ

p
< ∞,

where ∇k denotes the vector of all partial derivatives of order k and (rj ) is the
Rademacher sequence on [0, 1]. We also let Yθ := Rad(Hθ

p ),i.e. the space of all
sequences (uj ) such that E‖∑

j rjuj‖Hθ
p
< ∞. Then (Xθ ) and (Yθ ) are complex

interpolation scales. We consider the operator S : (uj ) �→ ((λj + A)uj ) where
A is as in the assumption. Since the coefficients of A are in Cγ , we obtain that
S : Xθ → Yθ is bounded for |θ | < γ . By choice of ν and definition the operator
S is an isomorphism for θ = 0. An application of Lemma 9.6 yields that S is an
isomorphism for |θ | < γ0 for some γ0 ∈ (0, γ ). In particular we have

2m
∑

k=0

E‖
∑

j

rjλ
1−k/(2m)
j ∇kuj‖H−β

p
≤ CβE‖

∑

j

rj (λj + A)uj‖H−β
p

for β ∈ (0, γ0). Applying this to (uj ) = ((λj + A)−1fj ) we see that, for β ∈
(0, γ0), the operator ν + A with domain D(A) = H

2m−β
p is R-sectorial in H−β

p

(recall that the sequence (λj ) is dense in ν + �σ ). As announced, we obtain
by Lemma 9.4 and Corollary 7.8 an H∞-calculus for A in any space Hσ

p (R
n),

σ ∈ (−β, 2m− β), hence in particular in Lp(Rn) = H 0
p(R

n). ��
The same method of proof may be used for elliptic boundary value problems

on domains � ⊂ R

n. First we present a substitute for Lemma 9.4.

Lemma 9.7. Let p ∈ (1,∞), m ∈ N, and � ⊂ R

n be a bounded domain with
∂� ∈ Cm. For θ ∈ (0, 1) and α, β ∈ (−1 + 1/p,m) we have

〈Hα
p,0(�),H

β

p,0(�)〉θ = H
(1−θ)α+θβ
p,0 (�)

〈Hα
p (�),H

β
p (�)〉θ = H(1−θ)α+θβ

p (�).

Proof. We first assume ∂� ∈ C2m and consider the operators Aj := (−�)m,
j = 0, 1, in Lp(�) with domains D(A0) = H 2m

p (�) ∩ Hm
p,0(�) and D(A1) :=

{u ∈ H 2m : (∂/∂ν)ku|∂� = 0, k = m, . . . , 2m− 1}. Both operators are induced
by quadratic forms in L2(�) with form domainHm

2,0(�) for A0 and form domain
Hm

2 (�) forA1. Moreover, we have anH∞-calculus forAj , j = 0, 1, in allLp(�),
p ∈ (1,∞). Moreover, the operators are self-dual. Hence Rademacher and com-
plex interpolation coincide and the assertion follows from Seeley’s result ([53])
if we recall that H−β

p (�) = (H
β

p′,0(�))
′ = (H

β

p′(�))′ for β ∈ (0, 1 − 1/p).
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For the general case ∂� ∈ Cm we forget about the operators and observe
that the asserted equalities are preserved under localization and a Cm-change of
coordinates. ��

We now prepare the setting for our result on boundary value problems: Let
p ∈ (1,∞), m ∈ N, and let � ⊂ R

n be a bounded domain with ∂� ∈ C2m.
Let Au := ∑

|α|=2m aαD
α be an (M,ω0)-elliptic operator with complex-valued

coefficients aα ∈ C(�), |α| = 2m. Let Bj := ∑

|β|≤mj bjβD
β , j = 1, . . . , m, be

differential operators on the boundary of ordersmj ≤ 2m−1 andwith coefficients
bjβ ∈ C2m−mj (�) (the continuation of the coefficients from ∂� into� is possible
without loss of generality). We assume that (A,B) satisfies the Lopatinskij-Shap-
iro conditions (see, e.g., [17]) at every boundary point x ∈ ∂�. In Lp(�) we then
consider the operator AB given by

ABu = Au for
u ∈ D(AB) := {v ∈ H 2m

p (�) : Bjv = 0 on ∂� for all j = 1, . . . , m }.

Our result on boundary value problems then reads:

Proposition 9.8. The operatorAB has anH∞-calculus inHβ
p (�) forβ∈(0, 1/p).

If, for some γ ∈ (0, 1), the coefficients aα of A satisfy aα ∈ Cγ (�), |α| = 2m,
and the coefficients bjβ of Bj satisfy bjβ ∈ C2m−mj+γ (�), j = 1, . . . , m, then
ν + AB has an H∞-calculus in Lp(�) for ν > 0 sufficiently large.

Proof. By [17] the operator ν +AB is R-sectorial in Lp(�) for a suitable ν > 0.
By H 2m

p,0(�) ⊂ D(AB) ⊂ H 2m(�) we clearly have, for θ ∈ (0, 1),

〈Lp(�),H 2m
p,0(�)〉θ ⊂ 〈Lp(�),D(AB)〉θ ⊂ 〈Lp(�),H 2m

p (�)〉θ . (31)

We use Lemma 9.7 and obtain that all spaces in (31) equal H 2mθ
p (�) for 2mθ <

1/p. As before, Corollary 7.8 proves the first assertion.
For the proof of the second assertion we may use the same arguments as

soon as we have proven that ν + AB is R-sectorial in H−β
p (�) for some small

β ∈ (0, 1 − 1/p) (of course, the domain of AB in this space is {u ∈ H 2m−β
p (�) :

Bju = 0 on ∂� for j = 1, . . . , m }). Again, we shall use Sneiberg’s Lemma, but
now we apply it to estimates for the full inhomogeneous boundary value problem

(λ+ A)u = f in �
Bju = gj on ∂� for j = 1, . . . , m,

where f ∈ Hθ
p(�) and gj ∈ Hθ+mj (�) for j = 1, . . . , m (cf. the setting in

[17]). For notational reasons we give details only for the case m = 1, m1 = 1,
B1 = B = ∑

|β|≤1 bβD
β . Then the assumption reads bβ ∈ C1+γ (�), |β| ≤ 1.
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Similar to the case of the whole space R

n we choose a dense sequence (λj ) in
ν +�σ and let Xθ denote the space of all sequences (uj ) such that

2
∑

k=0

E‖
∑

j

rjλ
1−k/2
j ∇kuj‖Hθ

p (�)
< ∞,

where θ ∈ Ip := (−1 + 1/p, 1/p). For Yθ we take all sequences ((fj , gj )) of
pairs such that

E‖
∑

j

rjfj‖Hθ
p (�)

+ E‖
∑

j

rj∇gj‖Hθ
p (�)

+ E‖
∑

j

rjλ
1/2
j gj‖Hθ

p (�)
< ∞.

The operator S is now given by S((uj )j ) := (((λj + A)uj , Buj )j ). It is straight
forward to check that S is bounded Xθ → Yθ for θ ∈ Ip satisfying |θ | < γ . But for
θ = 0 the operator S is an isomorphism (cf. [17, Thms.6.10, 7.3, 8.2]). Lemma 9.6
yields that S is an isomorphism X−β → Y−β for some small β > 0, in particular,
there is a constant C > 0 such that (taking gj = 0 and uj = (λj + AB)

−1fj )

E‖
∑

j

rjλj (λj + AB)
−1fj‖H−β

p
≤ CE‖

∑

j

rjfj‖H−β
p

for all choices fj ∈ H−β
p (�). We conclude that ν+AB isR-sectorial inH−β

p (�),
and the proof is finished. ��
Remark 9.9. The first assertion in Proposition 9.8 on the H∞-calculus of AB in
H

−β
p (�) for β ∈ (0, 1/p) under the sole assumption aα ∈ C(�) is new. The

second assertion is slightly weaker than the main result of [16] for the case of
scalar equations. By a totally different proof it is shown there that the assumption
bjβ ∈ C2m−mj (�) is sufficient. If we consider, e.g., for the case m = 1 the Neu-
mann type condition (∂/∂ν)u = 0 on ∂� where ν : ∂� → R

n denotes the outer
normal unit vector, then we have B1u(x) = ν(x) · ∇u(x), x ∈ ∂�, which means
that we need ν ∈ C1+γ (∂�), i.e., ∂� ∈ C2+γ , for our result. For an application
of [16] it would be sufficient to have ∂� ∈ C2.

(b) Elliptic operators in divergence form

We consider operators A on R

n given by forms

a(u, v) =
∫

∇vta∇u dx = 〈Au, v〉,

where a ∈ L∞(Rn,Cn×n) satisfies

Re

⎛

⎝

n
∑

jk=1

ajk(x)ξj ξk

⎞

⎠ ≥ δ|ξ |2, x ∈ R

n, ξ ∈ C

n
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for some δ > 0. Then the adjoint operator A∗ is given by the form

a∗(u, v) =
∫

∇vta∗∇u dx = 〈A∗u, v〉.

The following relates the H∞-calculus to boundedness of Riesz transforms. For
more details and results on Riesz transforms ∇A−1/2, ∇(A∗)−1/2 we refer to [8],
[10] and [3].

Proposition 9.10. Let A be R-sectorial in Lp where p ∈ (1,∞). If ‖∇u‖p ∼
‖A1/2u‖p and ‖∇v‖p′ ∼ ‖(A∗)1/2v‖p′ then A has an H∞-calculus in Lp.

Proof. We have X = Lp and the assumptions lead to Ẋ1/2 = Ḣ 1
p and Ẋ−1/2 =

((X∗)·1/2,A∗)∗ = (Ḣ 1
p′)∗ = Ḣ−1

p . Since −� has an H∞-calculus on X we obtain
by Corollary 7.7 that A has an H∞-calculus. ��

We now consider these operators in Bessel potential spaces. In [48], secto-
riality of these operators has been proved in H−1

p (Rn) under the assumption that
the matrix a is bounded and uniformly continuous. Our methods enable us to
prove the following to our knowledge new result on the H∞-calculus.

Proposition 9.11. Suppose that a is bounded uniformly continuous and satisfies
the assumptions above. Then the operator 1+A has anH∞-calculus inH−β

p (Rn)

for any β ∈ (−1, 1).

Proof. We first study the case that A with coefficients ajk ∈ L∞ is a small per-
turbation of an operator A0 with constant coefficients a0

jk that satisfies the same
assumptions. Here smallness means that

max
jk

sup
x∈Rn

|ajk(x)− a0
jk|

is sufficiently small. Observe that Ẋα,A0 = Ḣ 2α
p (R

n) for any α ∈ R. We let
B = A − A0. Then B has small norm Ẋ1/2,A0 → Ẋ−1/2,A0 . Hence we may
apply Theorem 6.6 in any space Ḣ 2β

p = Ẋβ,A0 for β ∈ (−1/2, 1/2) to obtain an
H∞-calculus for A in this space.

For the general case of BUC-coefficients we may localize the operator in
a way similar to what is usually done for operators in non-divergence form in
Lp(R

n) (cf. [2] and also [48]). ��

Remark 9.12. If the matrix a is assumed to be Hölder continuous then we can
show (via Corollary 6.3) that A has an H∞-calculus in H−1

p (Rn). We also refer
to [8], [7], and [6] for related results.
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(c) Schrödinger type operators

The following is an application of Corollary 6.7 to operators −�+V with poten-
tialsV from the Kato class. For β = 0 the assertion may be shown by other means,
but this is not clear for β �= 0.

Proposition 9.13. Let V : R

n → C belong to the Kato class. Then, for 1 < p <

∞, the Schrödinger type operator −�+ V + ν has an H∞-calculus in Hβ
p (R

n)

for all β ∈ (−2/(p′), 2/p) and ν sufficiently large.

Proof. By definition of the Kato class we have ‖ |V |(λ − �)−1‖L1→L1 → 0 as
λ → ∞. By duality and interpolation we obtain

‖(λ−�)−1/(p′)V (λ−�)−1/p‖Lp→Lp → 0 (λ → ∞),

which menas that, for X = Lp(R
n) and A = −�, V acts boundedly X1/p →

X−1/(p′). Then we apply Corollary 6.7 in any space Xα, α ∈ (−1/(p′), 1/p) and
recall Xα = H 2α

p (R
n). ��

(d) Stokes operators

Let � be a bounded domain in R

n and ∂� ∈ C1,1. We let p ∈ (1,∞) and write
ILp := ILp(�) := Lp(�)

n and IP p for the Helmholtz projection in ILp. We
denote IHk

p := Hk
p(�)

n, and IHk
p,0 is the closure in IHk

p of the C∞-functions with
compact support in �.

We letA denote the negative Dirichlet Laplacian on�,A = −�D, considered
as an operator in IL2 = L2(�)

n, and we letB := IPA denote the Stokes operator in
IL2,σ . Moreover, for 1 < p < ∞, Ap denotes the negative Dirichlet Laplacian in
ILp andBp denotes the Stokes operator in ILp,σ . Observe that 0 ∈ ρ(Ap)∩ρ(Bp)
for 1 < p < ∞. The proof of the following proposition employs essentially
the arguments used in the proof of [26, Lem.6] and Proposition 5.5 to verify the
assumptions of Theorem 8.2.

Proposition 9.14. Let 1 < p < ∞, X := ILp and Y := ILp,σ . Then the Helm-
holtz projection IP p : X → Y has a continuous and surjective extension ˜IP p :
X−1,Ap → Y−1,Bp .

Proof. We first observe that (Ap)∗ = Ap′ , (Bp)∗ = Bp′ , and (IP p)∗ : ILp′,σ →
ILp′, g �→ g. Hence D((Bp)∗) = IH 1

p′,0 ∩ IH 2
p′ ∩ ILp′,σ ⊂ IH 1

p′,0 ∩ IH 2
p′ =

D((Ap)
∗). By continuity of IP p′ we have for g ∈ D((Bp)∗)

‖(Bp)∗g‖p′ = ‖Bp′g‖p′ = ‖IP p′Ap′g‖p′ ≤ C‖Ap′g‖p′ = ‖(Ap)∗g‖p′ .

By 0 ∈ ρ(Ap′) ∩ ρ(Bp′) we also have

‖(Ap)∗g‖p′ = ‖Ap′g‖p′ ≤ C ′‖g‖IH 2
p′ ≤ C ′′‖Bp′g‖p′ = C ′′‖(Bp)∗g‖p′ .

The assertion follows from (ii) ⇒ (i) of the Proposition 5.5. ��
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The previous proposition verifies part of the hypothesis of Theorem 8.2 (for
the operators A−1 and B−1). We now look at the situation in IL2.

Proposition 9.15. For all s ∈ (0, 1/4) we have that IP mapsD(As) ontoD(Bs).

Proof. By [14, Rem.1.10] we have IP (IH 1
2,0) ⊂ IH 1

2. Since IP IL2 ⊂ IL2 we obtain
by complex interpolation IP ([IL2, IH

1
2,0]θ ) ⊂ [IL2, IH

1
2]θ for all θ ∈ (0, 1). It is

well known that [IL2, IH
1
2,0]θ = [IL2, IH

1
2]θ = IHθ

2 for θ ∈ (0, 1/2). Hence
IP (IHθ

2) ⊂ IHθ
2 for θ ∈ (0, 1/2) which immediately implies IP (IHθ

2) ⊂ IHθ
2 ∩

IL2,σ for θ ∈ (0, 1/2). On the other hand IHθ
2∩IL2,σ = IP (IHθ

2∩IL2,σ ) ⊂ IP (IHθ
2)

for all θ . Thus we have shown IP (IHθ
2) = IHθ

2 ∩ IL2,σ for θ ∈ (0, 1/2).
Next we recall D(A1/2) = IH 1

2,0 and observe that, for θ ∈ (0, 1/2), IHθ
2 =

[IL2, IH
1
2,0]θ = [IL2,D(A

1/2)]θ = D(Aθ/2) since the self-adjoint operator A has
BIP in IL2.

Finally we use the arguments (in the proof of) [26, Lem.6]: since B is self-
adjoint in IL2,σ it has BIP and this leads to D(Bs) = D(As) ∩ IL2,σ for all
s ∈ (0, 1). We conclude that, for all s ∈ (0, 1/4),

D(Bs) = D(As) ∩ IL2,σ = IH 2s
2 ∩ IL2,σ = IP (IH 2s

2 ) = IP (D(As))

as asserted. ��
In order to apply Theorem 8.2 we cite the following result due to Andreas

Fröhlich ([25]).

Proposition 9.16. Let � ⊂ R

n be bounded with ∂� ∈ C1,1. Then, for 1 < p <

∞, the operator Bp is R-sectorial in ILp,σ and ωR(Bp) = 0.

Combining these results we can prove

Theorem 9.17. Let � ⊂ R

n be bounded with ∂� ∈ C1,1. Then, for 1 < p < ∞,
the operator Bp has an H∞(�ν)-calculus for all ν > 0.

Proof. We apply Theorem 8.2 withX0 = IL2, Y0 = IL2,σ ,X1 = ILp, Y1 = ILp,σ ,
P = IP p for the operators A−1

p and B−1
p where α ∈ (−1/4, 0) and β = 1. ��

Remark 9.18. It seems that Theorem 9.17 can also be obtained by the methods in
[1]. However, the methods introduced there are totally different. They rely on a
parameter-dependent version of Boutet de Monvel’s pseudo-differential calculus
for operator-valued symbols with low regularity.

For bounded domains � with ∂� ∈ C3, boundedness of the H∞-calculus for
the Stokes operator in ILp,σ (�) was shown in [49, Thm.16]. There the proof is
done via localization by using the perturbation result for the H∞-calculus from
[16] (cf. Corollary 6.5 above).
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(e) Perturbation of boundary conditions

We take up [40, 5.3] and letp ∈ (1,∞),X = Lp(−1, 1).Assume δ ∈ (1−1/p, 1)
and φδ := (1−x2)−δ. We want to show that a suitable translate of −�with bound-
ary conditions u(±1) = ∫ 1

−1 φδu dx has an H∞-calculus in X.
To this end we let A = −� in X with Dirichlet boundary conditions, i.e.,

with D(A) = {u ∈ H 2
p(−1, 1) : u(±1) = 0}. The A has an H∞-calculus, and

Ẋα = Xα = H 2α
p (−1, 1) for 2α < 1/p. For β, s satisfying 1/p > 2β > s >

1/p + δ − 1 we obtain that the operator

B : u �→ Bu := −〈φδ, u〉Aβ−11

is bounded Hs
p(−1, 1) → Xβ−1, i.e. Xα → Xβ−1 if we let α := s/2. By Corol-

lary 6.9 we obtain an H∞-calculus for a suitable translate of the operator AB :=
(Aβ−1 + B)|X. We refer to [40, 5.3] where it is shown that ABu = −�u with
domain D(AB) = {u ∈ H 2

p(−1, 1) : u(±1) = ∫ 1
−1 ϕδu dx}.

References

1. Abels, H.: Stokes equations in asymptotically flat domains and the motion of a free surface.
Berichte aus der Mathematik, Aachen, Shaker 2003.

2. Amann, H., Hieber, M., Simonett, G.: Bounded H∞-calculus for elliptic operators. Differ-
ential and Integral Equations 7, 613–653 (1994)

3. Auscher P: On necessary and sufficient conditions for Lp-estimates of Riesz transforms
associated to elliptic operators on R

n and related estimates. preprint 2004.
4. Auscher, P., Hofmann, S., Lacey, M., Lewis, J., McIntosh, A., Tchamitchian, Ph.: The solu-

tion of Kato’s conjectures, C. R. Acad. Sci. Paris Sér. I Math. 332 no. 7, 601–606 (2001)
5. Auscher, P., McIntosh, A., Nahmod, A.: Holomorphic Functional Calculi of Operators,

Quadratic Estimates and Interpolation. Indiana Univ. Math. J. 16 no. 2, 375–403 (1997)
6. Auscher, P., McIntosh,A., Tchamitchian, Ph.: Heat kernels of second order complex elliptic

operators and applications. J. Funct. Anal. 152, no. 1, 22–73 (1998)
7. Auscher, P. Qafsaoui, M.: Equivalence between regularity theorems and heat kernel esti-

mates for higher-order elliptic operators and systems under divergence form, J. Funct.Anal.
177, no. 2, 310–364 (2000)

8. Auscher, P., Tchamitchian, Ph.: Square root problem for divergence operators and related
topics. Astérisque 249, Paris, Société Mathématique de France, 1998

9. Bergh, J., Löfström, J.: Interpolation spaces. An introduction. Grundlehren der mathemat-
ischen Wissenschaften 223, Berlin-Heidelberg-New York, Springer-Verlag 1976

10. Blunck, S., Kunstmann, P. C.: Weak type (p,p) estimates for Riesz transforms, Math. Z.
247, no. 1, 137–148 (2004)

11. Boyadzhiev, C., deLaubenfels, R.: Semigroups and resolvents of bounded variation imag-
inary powers and H∞ functional calculus. Semigroup Forum 45, 372–384 (1992)

12. Clément, Ph., de Pagter, B., Sukochev, F.A., Witvliet H.: Schauder decompositions and
multiplier theorems, Stud. Math. 138, no. 2, 135–163 (2000)

13. Clément, Ph., Prüss, J.: An operator-valued transference principle and maximal regularity
on vector-valued Lp-spaces, in G. Lumer and L. Weis (eds.), Evolution equations and their
applications in physical and life sciences, Proceeding of the Bad Herrenalb (Karlsruhe)
conference, Germany, 1999, (New York, Marcel Dekker. Lect. Notes Pure Appl. Math.
215, 2001) 67–87



800 N. Kalton et al.
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