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Abstract. A multilinear version of the Boyd interpolation theorem is proved in the context of
quasi-normed rearrangement-invariant spaces.AmultilinearMarcinkiewicz interpolation theorem
is obtained as a corollary. Several applications are given, including estimates for bilinear fractional
integrals.

Mathematics Subject Classification (1991):46B70, 46E30, 42B99

1. Introduction

In this article we give a version of the Boyd interpolation theorem for multilinear
operators.Wewill beworkingwith rearrangement invariantquasi-Banachspaces,
which include all the well-known examples such as Orlicz spaces and Lorentz
spaces.

We will consider the following situation. ConsiderR+ = (0,∞) with Le-
besgue measure (which can of course be replaced by any infinite nonatomic
measure space). We letL0(0,∞) be the space of all real-valued measurable
functions equipped with the topology of local convergence in measure. LetE
be the space of all measurable functions which are bounded and supported on
sets of finite measure. Now letT : En → L0(0,∞) be a multilinear map (our
results also apply to sublinear maps). We suppose thatT is locally continuous
i.e. continuous when restricted to

∏n
k=1L∞(Ek) for every choice of setsEk of

finite measure. We also suppose thatT obeys a finite collection of weak type
inequalities

‖T (χE1, . . . , χEn)‖Lp,∞ ≤ C
n∏
k=1

|Ek|θk

for everyn-tuple of measurable sets(E1, . . . , En). HereLp,∞ is the usual weak
Lp space andθk > 0 for everyk.We then seek to characterize(n + 1)-tuples
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of rearrangement-invariant spaces(X1, . . . , Xn, Y ) for which T extends to a
boundedn-linear map fromX1 × · · · × Xn into Y. In general one needs two
distinct hypotheses.The first consists of an assumption on theBoyd indices of the
spacesX1, . . . , Xn, Y , as in the original Boyd interpolation theorem. The second
hypothesis is that a certainn-linear test map associated withT is continuous.

Our main result (Theorem 4.1) gives a necessary (and often sufficient) condi-
tion on(X1, . . . , Xn, Y ) in the casewhen one hasn+1 such conditionswhich are
sufficiently independent. Note that the original theorem of Boyd [2] corresponds
to the case whenn = 1 and there are two conditions of the type:

‖T (χE)‖Lp,∞ ≤ C|E|1/p.
We deduce Theorem 4.1 from a similarhomogeneousBoyd-type theorem (The-
orem 3.7) which is applicable for example ton-linear forms. As a corollary we
obtain a multilinear version of the Marcinkiewicz interpolation theorem (Theo-
rem 4.6).

Our work is related to work of Strichartz [17], Janson [5], and Christ [3].
Note that as in [5] and [17] (and in contrast to [3]) our multilinear assumptions
consist only of a finite number of estimates. Our results also develop and extend
earlier work of Sharpley (see [15], [16], and [1]).

In Sect. 5 we give examples of multilinear interpolation. As one of our ap-
plications, we characterize the indices(1/p,1/q,1/r), 0 < p, q, r ≤ ∞, for
which the bilinear fractional integral operator

Iα(f, g)(x) =
∫
Rn
f (x + t)g(x − t)|t |α−n dt.

mapsLp(Rn) × Lq(Rn) → Lr(Rn). This characterization was also indepen-
dently obtained by C. Kenig and E. M. Stein [10].

2. Preliminaries

In this section we set up the background required to state the multilinear Boyd
interpolation theorem.

Let L0(0,∞) be the space of all complex-valued measurable functions on
(0,∞), with the topology of local convergence in measure. We define a quasi-
Banach function spaceX on (0,∞) to be a subspace ofL0 equipped with a
quasi-norm‖ ‖X such that:

• ‖f ‖X = 0 if and only iff = 0 a.e.
• ‖αf ‖X = |α|‖f ‖X, wheneverf ∈ X andα ∈ C.
• There exists a constantC so that iff, g ∈ X then‖f + g‖X ≤ C(‖f ‖X +
‖g‖X).

• X is complete (i.e. a quasi-Banach space) for‖ ‖X.
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• The injectionX→ L0 is continuous.
• If E is a set of finite measure thenχE ∈ X.
• If f ∈ X andg ∈ L0 with |g| ≤ |f | a.e. theng ∈ X and‖g‖X ≤ ‖f ‖X.
• If 0 ≤ fn ↑ f a.e. andf ∈ X then‖fn‖X ↑ ‖f ‖X.
By assumptionX must contain the spaceE of all bounded measurable func-

tions supported on sets of finite measure. We say thatX isminimal if E is dense
inX. We say thatX ismaximalif it has the property that if 0≤ fn ↑ f a.e. with
sup‖fn‖X <∞, thenf ∈ X.

Aquasi-Banach function space on(0,∞)which is eithermaximal orminimal
(cf. [12]) is said to be arearrangement-invariant function spaceor r.i. spaceif
‖f ∗‖X = ‖f ‖X for all f ∈ X, wheref ∗ is the decreasing rearrangement of|f |,
i.e.f ∗(t) = inf {x : |{|f | > x}| ≤ t}.

We say thatX is r-convex if there is a constantC so that iff1, . . . , fn ∈ X
then ∥∥∥∥∥∥

(
n∑
i=1

|fi |r
)1/r

∥∥∥∥∥∥
X

≤ C
(

n∑
i=1

‖fi‖rX
)1/r

.

For a discussion ofr-convexity in the context of Banach lattices we refer to [12];
we refer to [7] for quasi-Banach lattices. Every Banach r.i. space is of course
1-convex, but there are examples of quasi-Banach r.i. spaces which fail to ber-
convex for anyr > 0, see [6]. However it is very natural to assumer-convexity
since all “practical spaces” arer-convex for somer > 0.

Once an r.i. spaceX is defined on(0,∞) it may be transferred to anyσ -finite
measure space(Ω,µ) by definingX(Ω,µ) to be the space of all measurable
f : Ω → C such that‖f ‖X(Ω) = ‖f ∗‖X(0,∞) <∞. In general ifΩ is a Polish
space andµ is an infinite nonatomic Borelmeasure there is ameasure-preserving
bijection ofΩ onto (0,∞). Thus there is no loss of generality in treating only
the case ofΩ = (0,∞).

If X is an r.i. space then the dilation operatorsDa : X→ X given by

(Daf )(x) = f (x/a)
are well-defined and bounded. We define the Boyd indices by

pX = lim
a→∞

loga

log‖Da‖
and

qX = lim
a→0

loga

log‖Da‖ .
Then 0< pX ≤ qX ≤ ∞. We refer to [12] or [1] for relevant discussion. If
ε > 0 then there is a constantC = C(ε,X) so that for allf ∈ X we have

‖Daf ‖X ≤ Cmax
(
a

1
pX

+ε
, a

1
qX

−ε)
.(1)
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It is sometimes useful to have the notion of acarrier spacefor an r.i. spaceX.
Let X̃ be a maximal quasi-Banach function space on(0,∞) with the property
that the dilation operatorsDa are bounded oñX and‖Da‖X̃ ≤ Caκ for some
κ > 0 and alla ≥ 1. Then we can define an r.i. spaceX by requiringf ∈ X if
and only iff ∗ ∈ X̃ and by setting‖f ‖X = ‖f ∗‖X̃. It is then easy to show that
X is a maximal r.i. space and thatαX ≤ κ.We will in this case refer tõX as a
carrier space forX. Notice, of course, thatX is a carrier space for itself.

Examples of r.i. spaces are provided by the usual Lorentz spacesLp,q with
(quasi)-norm

‖f ‖Lp,q =


(∫ ∞

0
[f ∗(t)t1/p]q dt

t

)1/q

when 0< q <∞,
sup
t>0
f ∗(t)t1/p whenq = ∞

(2)

for 0< p, q ≤ ∞. These spaces are 1-convex (i.e. normable) when 1< p <∞
and 1≤ q ≤ ∞ or if p = q = 1. In generalLp,q is q-convex ifq ≤ p and
s-convex for anys < p if q > p. The Boyd indices ofLp,q both coincide with
p. Note that all these spaces have natural carrier spaces which are weighted
Lp−spaces.

The significance of the Boyd indices lies in the fact that they can be used
to characterize all rearrangement-invariant Banach spacesX on which certain
known operators are bounded. For instance the Hardy-Littlewood maximal op-
erator is bounded onX (r.i. overRn) if and only if qX <∞, see [13], [18]. The
Hilbert transform is bounded onX (r.i. overR) if and only if 1< pX ≤ qX <∞,
see [2].

Let us now recall the Boyd interpolation theorem for(0,∞) (see [2] or [12],
p.145):

Theorem 2.1. Suppose1≤ p < q <∞ and thatT : Lp,1+Lq,1 → L0(0,∞)
is a linear map of weak types(p, p) and(q, q). SupposeX is an r.i. space with
p < pX ≤ qX < q. ThenT is a bounded map fromX into itself.

This result was extended to the case 0< p < q < ∞ in [8] (Theorem 1.3)
with the additional assumption thatX is r-convex for somer > 0.

Themain purpose of this article is to obtain a multilinear version of Theorem
2.1. This is achieved in the next two sections. We first obtain a homogeneous
multilinear version of Theorem 2.1 (Theorem 3.7), and from this we deduce an
inhomogeneous version, Theorem 4.1.

3. The homogeneous multilinear Boyd theorem

Let E be the space of all measurable functions on(0,∞) which are bounded
and have support of finite measure. We shall say that a map (usuallyn-linear)



Some remarks on multilinear maps and interpolation 155

T : En → Y in any topological vector space is locally continuous if its restriction
to
∏n
k=1L∞(Ek) is continuous for every choice of setsEk of finite measure.

NowsupposeΘ is a finite subset of(R+)n = [0,∞)n andY is a quasi-Banach
space.We say that ann-linear mapT : En → Y isΘ−admissible ifT is locally
continuous and there is a constantM so that for everyθ = (θ1, . . . , θk) ∈ Θ we
have

‖T (χE1, . . . , χEn)‖Y ≤ M
n∏
k=1

|Ek|θk ,(3)

wheneverE1, . . . , En have finite measure. The least such constantM is denoted
by ‖T ‖Θ. In most of the work that follows, it will be convenient to takeΘ ⊂ Rn+
i.e. to requireθk > 0 for all θ, k.

Let us recall that a quasi-Banach space(Y, ‖ · ‖) is calleds-normed if there
is a constantC such that for ally1, . . . , ym ∈ Y we have

‖y1 + · · · + ym‖s ≤ C(‖y1‖s + · · · + ‖ym‖s).
Now letX = (X1, . . . , Xn) be ann-tuple of r.i. spaces. We say thatX has the
interpolation condition(Θ, s), where 0< s ≤ 1, if for everys-normed quasi-
Banach spaceY and everyΘ-admissibleT : En → Y there is a continuous
extensionT : X1×· · ·×Xn → Y with norm a constant multiple of‖T ‖Θ . Note
here that in the cases = 1 it is sufficient to takeY to be the scalar fieldR orC
and hence we only considern-linear forms.

We will need to establish some examples ofΘ-admissible multilinear maps.
We begin with a lemma.

Lemma 3.1. Suppose0 < u <∞ and0 < s < r <∞. Then for any measur-
able setE ⊂ (0,∞) we have(

su

∫
E

xsu−1dx
)1/s

≤
(
ru

∫
E

xru−1dx
)1/r

.

In particular if su < 1 then(
su

∫
E

xsu−1dx
)1/s

≤ |E|u.

Proof. First note that fort > 1,we have(t su−1)1/s ≤ (t ru−1)1/r and also that
(t su−1)1/s(t ru−1)−1/r is increasing. This last fact follows from the observation
thatt → 1

r
log(tr − 1)− 1

s
log(ts − 1) is monotone decreasing and converges to

zero at infinity. This implies that ifE is an interval we have the desired inequality.
We now proceed to prove the result forE a disjoint union ofm intervals using

induction. Assume the required inequality is true for all unions of less thanm

disjoint intervals. Now ifE is a finite union ofm disjoint intervals[vj , wj ) for
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1 ≤ j ≤ m wherev1 < w1 < · · · < vm < wm, we defineh > wm−1 by the
condition that

hsu − wsum−1 = (wsum − vsum )+ (wsum−1 − vsum−1).
If we had

hru − wrum−1 ≤ (wrum − vrum )+ (wrum−1 − vrum−1),(4)

then the inductive hypothesis applied to them−1 intervals[v1, w1), . . . , [vm−2,
wm−2), and[vm−1, h) togetherwith (4)wouldquicklygive thedesiredconclusion.
It suffices therefore to prove (4). This will follow from the fact that ifα, β, γ ,
andδ are positive numbers satisfyingα + γ = β + δ andβ < γ < δ, then
αr/s + γ r/s ≤ βr/s + δr/s whenr > s. Indeed, the assumptions above imply that
β < α < δ and clearly

αr/s + γ r/s ≤ max
α∈(β,δ)

(
αr/s + (β + δ − α)r/s) ≤ βr/s + δr/s .

��
Let 〈·, ·〉 denote the usual inner product onRn and‖ ‖ the usual Euclidean

norm. For eachθ ∈ Rn let θk denote itskth coordinate. SupposeΘ is a finite
subset of(R+)n = [0,∞)n. Define a sublinearmap associated withΘ as follows

a(ξ) = aΘ(ξ) = max
θ∈Θ 〈ξ, θ〉.(5)

LetX = (X1, . . . , Xn) be ann-tuple of r.i. spaces. We have the following theo-
rem. See also Sharpley [15] for a somewhat similar result.

Theorem 3.2. Let0< s ≤ 1. Consider the statements:
(i) X satisfies the interpolation condition(Θ, s).
(ii) There exists a constantC so that iff1, . . . , fn ∈ E,(∫

Rn

n∏
k=1
(f ∗
k (e

ξk ))s exp(−sa(−ξ))dξ
)1/s

≤ C
n∏
k=1

‖fk‖Xk .(6)

(iii) There exists a constantC so that iff1, . . . , fn ∈ E,(∫
Rn

n∏
k=1
(Fk(e

ξk ))s exp(−sa(−ξ))dξ
)1/s

≤ C
n∏
k=1

‖fk‖Xk ,(7)

where

Fk(x) =
(
1

x

∫ x

0
(f ∗
k (t))

sdt

)1/s

.
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(iv) There exists a constantC so that iff1, . . . , fn ∈ E, then

max‖ξ‖=1

(∫ ∞

0

n∏
k=1
(f ∗
k (e

tξk ))s exp(−sta(−ξ))dt
)1/s

≤ C
n∏
k=1

‖fk‖Xk .(8)

Then (ii) implies (i). Furthermore, ifΘ ⊂ Rn+ and s is small enough so that
sθk < 1 for every(θ1, . . . θk) ∈ Θ and every1 ≤ k ≤ n, then (i), (ii), (iii), and
(iv) are all equivalent.

Proof. First assume (ii) and thatT : En → Y is Θ−admissible whereY is
s-normed.Without loss of generality we assume‖T ‖Θ ≤ 1.We first note that if
fk are supported inEk and‖fk‖L∞ ≤ 1 then we have an estimate:

‖T (f1, . . . , fn)‖Y ≤ Cmin
θ∈Θ

n∏
k=1

|Ek|θk ,(9)

whereC depends only ons andn. To see this it suffices to get an estimate
for positive functionsfk and then extend to signed and complex functions by
additivity. But if fk is positive we can write

fk =
∞∑
j=1

2−jχAjk

whereAjk ⊂ Ek. Expanding out we easily get estimate (9).
Now supposef1, . . . , fn ∈ E .We can write eachfk in the form

fk =
∞∑

m=−∞
fkχAkm

where|Akm| = 2m and‖fkχAkm‖L∞ ≤ f ∗(2m). Now by (9) we have

‖T (f1χA1m1 , . . . , fnχAnmn )‖Y ≤ Cmin
θ∈Θ 2

∑n
k=1 θkmk

n∏
k=1
f ∗
k (2

mk).

Now since‖ ‖Y is ans−norm after summing and making an obvious integral
estimate we obtain

‖T (f1, . . . , fn)‖sY ≤

C

∫ ∞

0
· · ·
∫ ∞

0
(f ∗

1 (x1))
s . . . (f ∗

n (xn))
s min
θ∈Θ

n∏
k=1
x
sθk−1
k dx1 . . . dxn.
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The right-hand side is now estimated byC
∏n
k=1 ‖fk‖Xk using (6). We can now

extend the definition ofT (f1, . . . , fk) toX1×· · ·×Xn by noting that forfk ∈ Xk
the sum ∑

m1,...,mn

T (f1χA1m1 , . . . , fnχAnmn )

converges inY . It is easy to check that this extendsT unambiguously and con-
tinuously toX1 × · · · ×Xn. Thus (i) holds.

Now assume (i),Θ ⊂ Rn+, andsθk < 1 for all θ ∈ Θ and 1≤ k ≤ n. For
eachθ ∈ Θ Lemma 3.1 gives that iffk = χE ∈ E, then(∫ ∞

0
xsθk−1fk(x)s dx

)1/s

≤ (sθk)−1/s|E|θk ,

where as usuallyθk denotes thekth coordinate ofθ . It follows that if we define

Tθ(f1, . . . , fn)(x1, . . . , xn) =
n∏
k=1
x
θk− 1

s

k fk(xk),

thenTθ : En → Ls((0,∞)n) is {θ}-admissible and‖Tθ‖{θ} ≤ s−n/s∏n
k=1 θ

−1/s
k .

If we defineT by

T (f1, . . . , fn)(x1, . . . , xn) =
n∏
k=1

(
min
θ∈Θ x

θk− 1
s

k

)
fk(xk)

thenT is Θ−admissible. It follows that we can findC so that (6) is valid and
thus (ii) holds.

We now show that (ii) implies (iii). Observe that

(Fk(e
ξk ))s =

∫ ξk

−∞
eηk−ξk (f ∗

k (e
ηk ))sdηk.

Hence ∫
Rn

n∏
k=1
(Fk(e

ξk ))s exp(−sa(−ξ))dξ

=
∫
Rn

∫
η≤ξ

n∏
k=1
(f ∗
k (e

ηk ))s exp(〈η − ξ, 1〉 − sa(−ξ)) dη dξ,(10)

whereη ≤ ξ meansηk ≤ ξk for 1≤ k ≤ n and1denotes the vector(1,1, . . . ,1).
For fixedη pick θ̃ ∈ Θ so thata(−η) = 〈θ̃ ,−η〉. Then∫

ξ≥η
exp(−〈ξ, 1〉 − sa(−ξ))dξ ≤

∫
ξ≥η

exp(−〈ξ, 1− sθ̃〉)dξ
≤ C exp(−〈η, 1〉 − sa(−η))
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since for someδ > 0 we have 1− sθk > δ > 0 for all θ ∈ Θ and all k.
Substituting back into (10) gives the required estimate.

Next we show (iii) implies (iv). To do this it suffices to note that the map
ξ → ∑n

k=1 logFk(e
ξk ) is Lipschitz with a constant depending only ons andn

unless somefk is zero. This means that if‖ξ‖ = 1 we have an estimate:∫ ∞

0

n∏
k=1
(Fk(e

tξk ))s exp(−sta(−ξ))dt ≤ C
∫
K

n∏
k=1
(Fk(e

ξk ))s exp(−sa(−ξ))dξ.

whereK is a cylinder of radius one with axis{tξ : t ≥ 0}.We can then deduce
(8) from (7) sincef ∗

k ≤ Fk.
Finally (iv) implies (iii) (which implies (ii)) by just using polar coordinates.

��
We can extend this result somewhat to certain multilinear analogues of max-

imal operators. Denote byL+
0 (0,∞) the set of all nonnegative measurable func-

tions on(0,∞). Let us say that a positively homogeneous (of degree 1) map
T : E+n → L+

0 (0,∞) is n-quasi-sublinearwith constantC if for any k we have

T (f1, . . . , fk−1, (fk + f ′
k), fk+1, . . . , fn)(11)

≤ C(T (f1, . . . , fk−1, fk, fk+1, . . . , fn) + T (f1, . . . , fk−1, f ′
k, fk+1, . . . , fn)),

for allfj , f ′
j . SupposeT isn-quasi-sublinear.Then ifwechooser so that2

1/r−1 =
C we can use the proof of the Aoki-Rolewicz theorem ([9],[14]) to deduce the
existence of a constantC ′ so that for any 1≤ k ≤ n and allm positive integers
we have

T

f1, . . . , fk−1, m∑
j=1
gj , fk+1, . . . , fn


≤ C ′

 m∑
j=1
T (f1, . . . , fk−1, gj , fk+1, . . . , fn)r

1/r

,

for all fj andgj . Based on this it is easy to show the following, by exactly the
same argument as in Theorem 3.2:

Corollary 3.3. SupposeT : En → Ls(0,∞) isn-quasi-sublinear with constant
C = 21/r−1 where0< s ≤ r, and thatT is locally continuous. LetΘ be a finite
subset ofRn+ and assume that there is a constantM so that

‖T (χE1, . . . , χEn)‖Ls ≤ M inf
θ∈Θ

n∏
k=1

|Ek|θk ,
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for all Ek of finite measure. IfX is ann-tuple of r.i. spaces satisfying (6), then
there is a constantC so that forf1, . . . , fn ∈ E we have

‖T (f1, . . . , fn)‖Ls ≤ CM
n∏
k=1

‖fk‖Xk .

We now consider versions of the Boyd interpolation theorem in this setting.
Consider the convex hull coΘ;We define the open convex hull co0Θ to be

the set of all
∑
θ∈Θ αθθ where 0< αθ < 1 and

∑
θ∈Θ αθ = 1.Then co0Θ is the

interior of coΘ relative to the affine hyperplane it generates. We also define the
Boyd cubeBX of X to be the set

∏n
k=1[1/qXk , 1/pXk ], wherepXk , qXk are the

Boyd indices ofXk.
Itwill beconvenient to introduce the followingsublinear functional associated

with BX

b(ξ) = bX(ξ) = max
φ∈BX

〈ξ, φ〉.(12)

Let us first note a simple consequence of Theorem 3.2.

Corollary 3.4. Suppose thatΘ is a finite subset of(R+)n and thatX satisfies
the(Θ, s)-interpolation condition. ThenBX ∩ coΘ is nonempty.

Proof. SupposeBX, coΘ do not intersect. Then we can findη ∈ Rn so that

max
θ∈Θ 〈η, θ〉 < min

φ∈BX
〈η, φ〉.

Thusa(η) = −b(−η) − 2δ whereδ > 0. Now we refer to (1) to obtain for
f ∈ E,

n∏
k=1

‖De−tηk f ∗
k ‖Xk ≤ C exp(tδ + tb(−η))

n∏
k=1

‖f ∗
k ‖Xk

for t ≥ 0. It follows from (6) that(∫
Rn

n∏
k=1
(f ∗
k (e

ξk+tηk ))s exp(−sa(−ξ))dξ
)1/s

≤ C exp(tδ + tb(−η))
n∏
k=1

‖fk‖Xk

= C exp(−ta(η)− tδ)
n∏
k=1

‖fk‖Xk .

Now a(−ξ)+ ta(η) ≥ a(−ξ + tη). Thus we can reorganize to obtain(∫
Rn

n∏
k=1
(f ∗
k (e

ξk ))s exp(−sa(−ξ))dξ
)1/s

≤ C exp(−tδ)
n∏
k=1

‖fk‖Xk ,

for everyt ≥ 0 which is absurd. ��
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Theorem 3.5. SupposeΘ is a finite subset of(R+)n. SupposeX is ann-tuple
of r.i. spaces such thatBX ∩ coΘ is a nonempty subset of co0Θ. ThenX satis-
fies the(Θ, s) interpolation condition provided there is a constantC so that if
f1, . . . , fn ∈ E,(∫

H

n∏
k=1
(f ∗
k (e

ξk ))s exp(−sa(−ξ))dξ
)1/s

≤ C
n∏
k=1

‖fk‖Xk ,(13)

whereH is the subspace ofRn of all ξ such that〈ξ, θ〉 is constant for allθ ∈ Θ.
If Θ ⊂ Rn+ andsθk < 1 for everyθ ∈ Θ and1≤ k ≤ n, then inequality (13)

is also necessary forX to satisfy the(Θ, s)-interpolation condition.

Proof. LetBε = {ξ : d(ξ, BX) ≤ ε}.Our assumption onBX and a compactness
argument give the existence ofε > 0 so thatB2ε ∩ P ⊂ coΘ, whereP is the
affine plane generated byΘ.We note that:

max
φ∈B2ε∩P

〈η, φ〉 = inf
ξ∈H a(ξ)+ b(η − ξ)+ 2ε‖η − ξ‖.(14)

To see this observe that the right hand side obviously dominates the left-hand
side and is a sublinear functional. It is easy to check that if〈η, φ〉 is dominated
by the right-hand side then we haveφ ∈ B2ε ∩ P.

We will also need (1) which implies that iff1, . . . , fn ∈ E, then
n∏
k=1

‖Deηk fk‖Xk ≤ C exp(b(η)+ ε‖η‖)
n∏
k=1

‖fk‖Xk

for some constantC.
Now supposeη ∈ H⊥. Then for a fixedζ ∈ H andf1, . . . , fn ∈ E we have(∫

H

n∏
k=1
(f ∗
k (e

ξk+ηk ))s exp(−sa(−ξ − η))dξ
)1/s

=
(∫

H

n∏
k=1
(f ∗
k (e

ξk+ηk+ζk ))s exp(−sa(−ξ − ζ )− sa(−η))dξ
)1/s

≤ exp(−a(−η)+ a(ζ ))
(∫

H

n∏
k=1
(f ∗
k (e

ξk+ηk+ζk ))s exp(−sa(−ξ))dξ
)1/s

≤ exp(−a(−η)+ a(ζ ))
n∏
k=1

‖De−ηk−ζk fk‖Xk

≤ C exp(−a(−η)+ a(ζ )+ b(−η − ζ )+ ε‖η + ζ‖)
n∏
k=1

‖fk‖Xk .
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At this point we use (14) and the fact thatB2ε ∩ P ⊂ coΘ to show that

inf
ζ∈H

(
a(ζ )+ b(−η − ζ )+ ε‖η + ζ‖) ≤ a(−η)− ε‖η‖.

Thus we conclude that(∫
H

n∏
k=1
(f ∗
k (e

ξk+ηk ))s exp(−sa(−ξ − η))dξ
)1/s

≤ C exp(−ε‖η‖)
n∏
k=1

‖fk‖Xk .

Raise to thesth power and integrate overη ∈ H⊥ to obtain (6). HenceX satisfies
the(Θ, s)-interpolation condition.

The last statement follows from (8). ��
Wenowspecialize to the casewhenΘ is a relatively large subset of(R+)n.Let

us define the dimension ofΘ, denoted dimΘ, to be the dimension of the affine
plane passing through all the points inΘ.We say thatΘ is affinely independent
if the conditions ∑

θ∈Θ
λθθ = 0 and

∑
θ∈Θ
λθ = 0

imply λθ = 0, ∀ θ ∈ Θ. Obviously ifΘ is affinely independent we have|Θ| =
1+ dimΘ.

Theorem 3.6. Suppose dimΘ = n (e.g. ifΘ is an affinely independent subset of
(R+)n and|Θ| = n+1.)SupposeX is ann-tupleof r.i. spacessuch thatBX∩coΘ
is a nonempty subset of co0Θ.ThenX satisfies the(Θ, s) interpolation condition.

Proof. In this case Theorem 3.5 applies withH = {0}. ��
A more important case is the following:

Theorem 3.7. Suppose that dimΘ = n−1and thatΘ spansRn. Let0< s ≤ 1
and suppose thatX is ann-tuple of r.i. spaces such thatBX ∩coΘ is a nonempty
subset of co0Θ. Pick a uniqueσ = (σk)

n
k=1 so that〈σ, θ〉 = 1 for all θ ∈ Θ.

Consider the following statements:
(i) X satisfies the(Θ, s) interpolation condition.
(ii) There is a constantC such that iff1, . . . , fn ∈ E we have(∫ ∞

0
xs−1

n∏
k=1
(f ∗
k (x

σk ))sdx

)1/s

≤ C
n∏
k=1

‖fk‖Xk .(15)

Then (ii) implies (i). Moreover, ifΘ ⊂ Rn+ and sθk < 1 for everyθ ∈ Θ and
1≤ k ≤ n, then (i) and (ii) are equivalent.
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Furthermore ifΘ ⊂ Rn+ and if s(
∑n
k=1 θk) ≤ 1 for everyθ ∈ Θ, (i) and (ii)

are also equivalent to:
(iii) There is a constantC so that iff1, . . . , fn ∈ E,∫ ∞

0
xs−1

∏
σk  =0

|fk(xσk )|sdx
1/s

≤ C
∏
σk  =0

‖fk‖Xk .(16)

Remarks.The existence ofσ follows from the fact that the plane generated by
Θ does not contain the origin. Note that the indicesk for whichσk = 0 become
redundantin the sense that that (15) can be rewritten as∫ ∞

0
xs−1

∏
σk  =0

(f ∗
k (x

σk ))sdx

1/s

≤ C
∏
σk  =0

‖fk‖Xk .

Before we prove Theorem 3.7, let us illustrate the hypothesis on the Boyd
indices, by considering the special but rather typical case when coΘ is the
intersection of a cube

∏n
k=1[αk, βk] with the plane

∑n
k=1 θk = r−1. In this case

σk = r for all k. It may then be easily seen that the hypotheses on the Boyd
indices are satisfied if we have both

n∑
k=1

1

qXk
≤ 1

r
≤

n∑
k=1

1

pXk
(17)

and

αk <
1

qXk
≤ 1

pXk
< βk(18)

for all 1≤ k ≤ n. However if for somel we have
αl +

∑
k  =l

1

qXk
>

1

r
(19)

then the lower bound condition onq−1Xl in (18) can be removed. Similarly if

βl +
∑
k  =l

1

pXk
<

1

r
(20)

then the upper bound condition onp−1
Xl

can be removed.

Proof. The fact that (ii) implies (i) is an application of Theorem 3.5. Indeed, in
this caseH is one-dimensional, sayH = {tσ }t∈R. Then equation (13) becomes(∫ +∞

−∞

n∏
k=1
(f ∗
k (e

tσk ))se−stdt

)1/s

≤ C
n∏
k=1

‖fk‖Xk
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which reduces to (15) by substitutingx = et . The converse statement follows
from Theorem 3.5.

We now prove that (i) implies (iii) under the extra hypothesiss(
∑n
k=1 θk) ≤ 1

for everyθ ∈ Θ. Define a mapT : En → Ls((0,∞)× (0, 1)) by setting

T (f1, . . . , fn)(x, y) = x1−1/s
∏
σk  =0

fk(x
σk )

∏
σl=0

fl(y).

We will show thatT isΘ−admissible.
Suppose(Ek) are sets of finite measure. LetF = {x : xσk ∈ E, ∀ σk  = 0}

and letG = [0, 1] ∩ ∩σk=0Ek. Then we have
T (χE1, . . . , χEn)(x, y) = x1−1/sχF (x)χG(y)

and therefore

‖T (χE1, . . . , χEn)‖ =
(∫

F

xs−1dx
)1/s

|G|1/s.

Now supposeθ ∈ Θ. Let r = (∑σk  =0 θk)
−1. Clearlys ≤ r.We have by Lemma

3.1 (∫
F

xs−1dx
)1/s

≤ r1/rs−1/s
(∫

F

xr−1dx
)1/r

≤ r1/rs−1/s
∏
j∈J

(∫
F

xσk−1dx
)θk

≤ r1/rs−1/s
∏
k∈J

|σk|−θk |Ek|θk .

On the other hand since|G| ≤ 1 and
∑
σk  =0 θk ≤ s−1,

|G|1/s ≤
∏
σk  =0

|Ek|θk .

ThusT is Θ−admissible and henceT extends to a boundedn-linear form on
X1 × · · · ×Xn. Lettingfk = χ[0,1] if σk = 0 and restricting gives (16).

Now it is clear that (iii) implies (ii) and so the proof is complete. ��
Corollary 3.8. Suppose under the hypotheses of Theorem 3.7 we also have that
for some fixedr

n∑
k=1
θk = 1

r
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for everyθ ∈ Θ. ThenX has the(Θ, s) interpolation condition if(∫ ∞

0
xs/r−1

n∏
k=1
(f ∗
k (x))

sdx

)1/s

≤ C
n∏
k=1

‖fk‖Xk .(21)

In particular if r = s thenX has the(Θ, s) interpolation condition if and
only ifX1 · · ·Xn ⊂ Ls whereX1 · · ·Xn = {f1 . . . fn; fk ∈ Xk}.
Proof. In this caseσk = r for all k and (21) is a obtained by a simple change of
variables from (15). ��

Finally let us note an unusual case which can arise:

Theorem 3.9. SupposeΘ ⊂ Rn+, dimΘ = n − 1 andΘ does not spanRn.
SupposeX is ann-tuple of r.i. spaces such thatBX ∩ coΘ is a nonempty subset
of co0Θ. Let σ = (σk)nk=1 be chosen so that〈σ, θ〉 = 0 for all θ ∈ Θ. Assume
s > 0 is such thatsθk < 1 for everyθ ∈ Θ and1 ≤ k ≤ n. Then the following
are equivalent:
(i) X satisfies the(Θ, s) interpolation condition.
(ii) There is a constantC so that forf1, . . . , fn ∈ E we have(∫ ∞

0
x−1

n∏
k=1
(f ∗
k (x

σk ))sdx

)1/s

≤ C
n∏
k=1

‖fk‖Xk .(22)

We omit the proof which is similar to the that of Theorem 3.7.

4. The inhomogeneous multilinear Boyd theorem and applications

Suppose thatΘ is a finite subset of(R+)n and thatθ → rθ is a map fromΘ
to R+. We denoteφθ = (θ, rθ ) andΦ = {φθ : θ ∈ Θ}. ClearlyΦ ⊂ Rn+1.
Now consider the case when we are given a mapT : En → L0(0,∞), which we
assume to be locally continuous.We will say thatT satisfies a weak-type(θ, rθ )
estimate if there existsM > 0 so that ifE1, . . . , En are sets of finite measure
then

‖T (χE1, . . . , χEn)‖Lr,∞ ≤ M
n∏
k=1

|Ek|θk .(23)

We now give a version of the Boyd interpolation theorem for this setting
which follows almost immediately from Theorem 3.5. For simplicity we shall
only treat the most important case.
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Theorem 4.1. SupposeΘ is a subset of(R+)n with |Θ| = n+1and dimΘ = n.
Suppose for eachθ we have0< rθ ≤ ∞. Letσ ∈ Rn be the unique solution of
the equation

〈σ, θ〉 = 1

rθ
+ τ

whereτ is independent ofθ. LetX be ann-tuple of r.i. spaces and supposeY is
a maximal r.i. space which iss-convex for somes > 0. Suppose the Boyd cube
BX × [1/qY , 1/pY ] intersects coΦ in a non-empty subset of co0Φ.

Then in order that every locally continuousn-linear T : En → L0(0,∞),
whichsatisfies theweak type(θ, rθ )estimate (23) forθ ∈ Θ, extends toabounded
n-linear mapT :∏n

k=1Xk → Y (with norm a multiple ofM), it is sufficient that
there is a constantC so that iff1, . . . , fn ∈ E then

‖xτ
n∏
k=1
f ∗
k (x

σk )‖Y ≤ C
n∏
k=1

‖fk‖Xk .(24)

If in addition we have

0<
1

rθ
≤

n∑
k=1
θk

for everyθ ∈ Θ, then (24) is also necessary and is equivalent to the condition
that there exists a constantC so that forf1, . . . , fn ∈ E we have

‖xτ
∏
σk  =0

fk(x
σk )‖Y ≤ C

∏
σk  =0

‖fk‖Xk .(25)

Remark.The same conclusions can be obtained if|Θ| > n+ 1 provided there is
a solution of the equation〈σ, θ〉 = r−1θ + τ.
Proof. We first chooses > 0 small enough so thatY is s-convex,s < rθ for all
θ ∈ Θ, andτ + 1

s
> 0. Next defineXn+1 to be the space of allf ∈ L0(0,∞) so

thatfg ∈ Ls(0,∞) for all g ∈ Y with the quasi-norm

‖f ‖Xn+1 = sup
‖g‖Y≤1

‖fg‖Ls .

SinceY is both maximal ands-convex we obtain thatg ∈ Y if and only if
sup{‖fg‖Ls : ‖f ‖Xn+1 ≤ 1} is finite and furthermore there is a constantC so
that‖f ‖Y ≤ sup{‖fg‖Ls : ‖f ‖Xn+1 ≤ 1}. (If Y is s-convex with constant one
thenC = 1; this is easily seen by noting thatY s is a Banach r.i. space and
Xsn+1 is simply the Köthe dual space; in general we can always renormY to have
s-convexity constant one.) It easy to calculate the Boyd indices ofXn+1; these
are given by

1

pXn+1
= 1

s
− 1

qY
,

1

qXn+1
= 1

s
− 1

pY
.
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We refer to [12] for similar calculations for dual spaces.
Now if T satisfies the weak-type(θ, rθ ) estimate (23) for everyθ ∈ Θ, then

we consider the mapT ′ : En+1 → Ls(0,∞) defined by

T ′(f1, . . . , fn+1) = T (f1, . . . , fn)fn+1.

If E1, . . . , En+1 are sets of finite measure then

‖T ′(χE1, . . . , χEn+1)‖Ls ≤
(∫

En+1
|T (χE1, . . . , χEn)|sdx

)1/s

≤ M( rθ
rθ−s

)1/s|En+1|1/s−1/rθ n∏
k=1

|Ek|θk

for everyθ ∈ Θ. Thus if we letψθ = (θ, 1s − 1
rθ
) andΨ = {ψθ : θ ∈ Θ} then

T ′ is (Ψ, s)-admissible. It is clear from our discussion ofXn+1 that we only need
to show thatT ′ extends to a boundedn-linear map onX1 × · · · ×Xn+1.

We now use Theorem 3.7. We first argue thatΨ is linearly independent in
Rn+1. Indeed from the definition ofτ this is equivalent to the linear independence
of the points(θ, τ+ 1

s
)which follows from the affine independence ofΘ.Wewill

show that the(n+1)-tuple(X1, . . . , Xn+1)has the(Ψ, s)-interpolation condition.
We note that our hypotheses on the Boyd indices ofX andY imply that the
hypotheses on the Boyd indices for Theorem 3.6 hold. Defineσ ′

k = σk(τ + 1
s
)−1

for k ≤ n andσ ′
n+1 = (τ + 1

s
)−1. Then

〈σ ′, ψθ 〉 = (τ + 1
s
)−1(τ + 1

rθ
)+ (τ + 1

s
)−1(1

s
− 1

rθ
) = 1.

Now if f1, . . . , fn+1 ∈ En+1, we have(∫ ∞

0
xs−1

n+1∏
k=1

|f ∗
k (x

σ ′k )|sdx
)1/s

=

(
τ + 1

s

)1/s (∫ ∞

0
xsτ |f ∗

n+1(x)|s
n∏
k=1

|f ∗
k (x

σk )|sdx
)1/s

.

Now it is clear that if we assume (24) then we obtain (15) in Theorem 3.7 and
so(X1, . . . , Xn+1) satisfies the interpolation condition(Θ, s).

For the second part we construct the mapT : En → L0((0,∞)× (0, 1)) by

T (f1, . . . , fn)(x, y) = xτ
∏
σk  =0

fk(x
σk )

∏
σj=0

fj (y).
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Let uθ = (∑σk  =0 θk)
−1 so thatrθ ≤ uθ . Then by arguments similar to those for

Theorem 3.7 we have that ifE1, . . . , En are measurable sets of finite measure,

‖T (χE1, . . . , χEn)‖Lrθ ≤ r−1/rθθ u
1/uθ
θ

n∏
k=1

|Ek|θk .

Our hypotheses then guarantee thatT mapsX1 × · · · × Xn into Y i.e. we have
(25) and hence also (24). ��

Let us isolate a simple special case:

Corollary 4.2. Suppose that in the preceding theorem we have

n∑
k=1
θk = 1

rθ

for everyθ ∈ Θ. Then (25) is equivalent to the inclusionX1 · · ·Xn ⊂ Y, where
X1 · · ·Xn is the set of all productsf1 . . . fn with fk ∈ Xk.
Proof. We need only to observe that in this caseσk = 1 for everyk andτ = 0.

��
We next point out that under certain hypotheses, we can replace (24) with an

alternative criterion:

Corollary 4.3. Suppose that in Theorem 4.1,Ỹ is a carrier space forY with the
property that‖Da‖Ỹ ≤ C0a

ρ for all 0 < a < 1 whereρ > 0 and thatỸ is
s-convex for somes > 0. Then the sufficent condition (24) can be replaced by:

‖xτ
n∏
k=1
f ∗
k (x

σk )‖Ỹ ≤ C
n∏
k=1

‖fk‖Xk ,(26)

for f1, . . . , fn ∈ E .
Proof. We note that in the proof of Theorem 24 we can takes small enough
so Ỹ is s-convex. Supposef1, . . . , fn ∈ E . Let ϕ(x) = xτ

∏n
k=1 f

∗
k (x

σk ). By
assumption‖ϕ‖Ỹ ≤ C∏n

k=1 ‖fk‖Xk . Now letψ be defined by

ψ(x) =
(∫ ∞

x

ϕ(y)s
dy

y

)1/s

.

By thes-convexity ofỸ we obtain that

‖ψ‖Ỹ ≤ M
(∫ 1

0
asρ−1da

)1/s

‖φ‖Ỹ
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so that we have an estimate

‖ψ‖Ỹ ≤ C1‖ϕ‖Ỹ .
Howeverψ is decreasing and so‖ψ‖Y ≤ C1‖ϕ‖Ỹ . Now if fn+1 ∈ E we have
that (∫ ∞

0
(f ∗
n+1(x))

sϕ(x)sdx

)1/s

≤ CC1

n+1∏
k=1

‖fk‖Xk
and the proof is completed in the same way. ��

At this point we note that we can use Corollary 3.3 to extend this result to
n-quasi-sublinear maps.

Corollary 4.4. Assume thatX1, . . . , Xn, Y satisfy (24). SupposeT : En →
L0(0,∞) is n-quasi-sublinear, locally continuous, and satisfies the weak-type
(θ, rθ )-inequality (23) for everyθ ∈ Θ. Then we have the estimate

‖T (f1, . . . , fn)‖Y ≤ CM
n∏
k=1

‖fk‖Xk

for f1, . . . , fn ∈ E .
Weomit the details of the proof. The key point to note is thatwe should choose

s in the argument for Theorem 4.1 above sufficiently small so that 21/s−1 ≥ C
where is the constant in (11).

It is also worth noting that we can give a similar result to Theorem 4.1 in the
case whenΘ fails to be affinely independent. This case is somewhat degenerate.
For example in the casen = 1 it applies to linear operators which satisfy weak
type estimates(p, q1) and(p, q2) whereq1  = q2.
Theorem 4.5. SupposeΘ is an affinely dependent subset of(R+)n with |Θ| =
n+ 1.Suppose for eachθ we have0< rθ ≤ ∞ and that the setΦ = {(θ, r−1θ ) :
θ ∈ Θ} is linearly independent inRn+1. Chooseσ ∈ Rn so that〈σ, θ〉 = 1 for
all θ ∈ Θ. Let X be ann-tuple of r.i. spaces and supposeY is a maximal r.i.
space. Letr = minθ∈Θ rθ and suppose0 < s ≤ 1 is such thats < 1 if r = 1
ands ≤ r otherwise. Suppose also the Boyd cubeBX × [1/qY , 1/pY ] intersects
coΦ in a non-empty subset of co0Φ.

Then, in order that every locally continuousn-linear T : En → L0(0,∞),
whichsatisfies theweak type(θ, rθ )estimate (23) forθ ∈ Θ, extends toabounded
n-linear mapT :∏n

k=1Xk → Y (with norm a multiple ofM), it is sufficient that
there exists a constantC so that(∫ ∞

0
xs−1

n∏
k=1
(f ∗
k (x

σk ))sdx

)1/s

≤ C
n∏
k=1

‖fk‖Xk ,(27)

for f1, . . . , fn ∈ E .
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Remark.The existence and uniqueness ofσ is a consequence of our hypotheses,
sinceΘ generates a plane of dimensionn−1 which cannot be a linear subspace.

Proof. Our hypotheses are such that the spaceLr,∞ is s-normable. In this case
the convex setΦ generates a plane containing the line in the direction parallel
to the basis vectoren+1.

We first prove the result whenY = Lt,∞ for somet. By the above remark we
havet > r. LetXn+1 = Lu,∞ where1

t
+ 1

u
= 1

r
. Let ψθ = (θ, 1r − 1

rθ
) ∈ Rn+1

andΨ = {ψθ : θ ∈ Θ}. Now it is clear that (27) implies that the(n + 1)-
tuple (X1, . . . , Xn+1) satisfies the conditions of Theorem 3.7 for the(Ψ, s)-
interpolation condition. We apply this to the mapT ′ : En+1 → Lr,∞ where
T ′(f1, . . . , fn+1) = T (f1, . . . , fn)fn+1.A routine calculation gives

‖T ′(χE1, . . . , χEn+1)‖Lr,∞ ≤ CM|E|1/r−1/rθ
n∏
k=1

|Ek|θk .

Hence we have the estimate

‖T (f1, . . . , fn)fn+1‖Lr,∞ ≤ CM‖fn+1‖Lu,∞
n∏
k=1

‖fk‖Xk .

This implies the estimate

‖T (f1, . . . , fn)‖Lt,∞ ≤ CM
n∏
k=1

‖fk‖Xk

by simply consideringfn+1 = χE for E a set of finite measure. We have now
proved our claim.

Next we consider the general case. By our assumptions onΦ we may find
t < pY ≤ qY < u so that both(X1, . . . , Xn, Lt,∞) and(X1, . . . , Xn, Lu,∞)
satisfy the interior condition on the Boyd indices. HenceT mapsX1× · · · ×Xn
boundedly intoLt,∞∩Lu,∞ with norm amultiple ofM. But it is easy to calculate
from the Boyd indices thatLt,∞ ∩ Lu,∞ ⊂ Y. ��

The theorems below extend the classical Marcinkiewicz interpolation theo-
rem to the multilinear setting.

Theorem 4.6. Let0 < pjk ≤ ∞ for 1 ≤ j ≤ n + 1 and1 ≤ k ≤ n, and also
let 0 < pj ≤ ∞ for 1 ≤ j ≤ n+ 1. Suppose that a locally continuousn-linear
mapT : En → L0 satisfies

‖T (χE1, . . . , χEn)‖Lpj ,∞ ≤ M|E1|1/pj1 . . . |En|1/pjn
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for all setsEj of finite measure and all1 ≤ j ≤ n+ 1. Assume that the system
below 

1/p11 1/p12 . . . 1/p1n 1
1/p21 1/p22 . . . 1/p2n 1
...

...
...

...
...

1/pn1 1/pn2 . . . 1/pnn 1
1/p(n+1)1 1/p(n+1)2 . . . 1/p(n+1)n 1




σ1
σ2
...

σn
−τ

 =


1/p1
1/p2
...

1/pn
1/pn+1

 ,

has auniquesolution(σ1, . . . , σn,−τ) ∈ Rn+1 with not all σj = 0. Suppose
that(1/q1, . . . ,1/qn, 1/q) lies in the open convex hull of the points(1/pj1, . . . ,
1/pjn, 1/pj ) in Rn+1 and let0< tk, t ≤ ∞ satisfy∑

1≤k≤n
σk  =0

1

tk
≥ 1

t
.(28)

ThenT extends to a boundedn-linear mapT :∏n
k=1Lqk,tk → Lq,t with norm a

multiple ofM.

Remark.We remark that the existence of the unique solution in the linear system
ofTheorem4.6 is equivalent to the condition that then+1pointsθj = (1/pjk)nk=1
are affinely independent inRn. We also note that as in Corollary 4.4 the result
above is valid forn-quasi-sublinear maps.

Proof. We clearly only need to consider the case of equality in (28). It is clear
that the Boyd index assumption of Theorem 4.1 is satisfied. Clearly we have

n∑
k=1

σk

qk
= τ + 1

q
.

Hence iff1, . . . , fn ∈ E we have

x1/q+τ
n∏
k=1
f ∗
k (x

σk ) =
n∏
k=1
xσk/qkf ∗

k (x
σk ).

Let F(x) = xτ ∏σk  =0 f
∗
k (x

σk ). Then(∫ ∞

0
(x1/qF (x))t

dx

x

)1/t

≤ C
∏
σk  =0

(∫ ∞

0
(xσk/qkf ∗

k (x
σk ))tk

dx

x

)1/tk

.

Now if σk  = 0(∫ ∞

0
(xσk/qkf ∗

k (x
σk ))tk

dx

x

)1/tk

= |σk|−1‖f ‖Lqk,tk .
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Thus we have an estimate(∫ ∞

0
(x1/qF (x))t

dx

x

)1/t

≤ C
∏
σk  =0

‖fk‖Lqk,tk .

In view of Corollary 4.3 this completes the proof. ��
There is a version of the above result for the degenerate case corresponding

to Theorem 4.5:

Theorem 4.7. Let 0 < pjk ≤ ∞ for 1 ≤ j ≤ n + 1 and1 ≤ k ≤ n, and let
0< pj ≤ ∞ for 1≤ j ≤ n+1.Suppose that a locally continuousn-linear map
T : En → L0 satisfies

‖T (χE1, . . . , χEn)‖Lpj ,∞ ≤ M|E1|1/pj1 . . . |En|1/pjn

for all subsetsEk of finite measure and all1≤ j ≤ n+1. Assume that then+1
pointsθj = (1/pjk)nk=1 are affinely dependent inRn, but the points(θj , 1/pj )
are linearly independent inRn+1. Suppose that(1/q1, . . . ,1/qn, 1/q) lies in
the open convex hull of the points(1/pj1, . . . ,1/pjn, 1/pj ) in Rn+1. Let r =
min1≤j≤n+1pj and0< tk, t ≤ ∞ satisfy

∑
1≤k≤n
σk  =0

1

tk

{
> 1 if r = 1,

≥ 1
r

if r  = 1,
(29)

where{σk}nk=1 are the unique solutions of the system
n∑
k=1

σk

pjk
= 1, 1≤ j ≤ n+ 1.

ThenT extends to a boundedn-linear mapT :∏n
k=1Lqn,tn → Lq,t with norm a

multiple ofM.

Proof. This is deduced from Theorem 4.5. It is clear our hypotheses guarantee
the appropriate conditions on the Boyd indices. Pick any 0< s ≤ 1 so thats ≤ r
if r  = 1 ands < 1 otherwise with

1

s
≥
∑
σk  =0

1

t k
.

It then suffices to verify (27) in Theorem 4.5. To do this we can clearly suppose
that

1

s
=
∑
σk  =0

1

t k
.
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Supposef1, . . . , fn ∈ E and set

F(x) = x
∏
σk  =0

f ∗
k (x

σk ).

Then
F(x) =

∏
σk  =0

xσk/qkf ∗
k (x

σk )

and so (∫ ∞

0
F(x)s

dx

x

)1/s

≤
∏
σk  =0

|σk|−1‖fk‖Lqk,tk .

This establishes (27) and completes the proof. ��

5. Examples and applications

In this section we discuss some examples of multilinear interpolation. For sim-
plicity we restrict ourselves to bilinear and trilinear examples.

Example 5.1.(Young’s inequality andO’Neil’s inequality)Ona locally compact
abeliangroupconsider thebilinear operator(f, g)→ f ∗g, where∗denotes con-
volution. LetH denote the closed triangle inR3 with vertices(1,0, 0), (0, 1,0),
and(1,1,1). The well knownYoung’s inequality says that

‖f ∗ g‖Lr ≤ C‖f ‖Lp‖g‖Lq(30)

holds if the point(1/p,1/q,1/r) lies in the closure of the triangleH .
The three trivial estimates

‖f ∗ g‖L1 ≤ ‖f ‖L1‖g‖L1,
‖f ∗ g‖L∞ ≤ ‖f ‖L1‖g‖L∞, and
‖f ∗ g‖L∞ ≤ ‖f ‖L∞‖g‖L1

give (30) on the interior ofH . The estimates on the sides follow from bilinear
complex interpolation.

ApplyingTheorem4.6 in the situation aboveweobtainO’Neil’s inequality. If
the point(1/p,1/q,1/r) lies in the interior of the triangleH and0< s1, s2 ≤ ∞
and 1/s= 1/s1 + 1/s2, then

‖f ∗ g‖Lr,s ≤ C‖f ‖Lp,s1‖g‖Lq,s2 .(31)

The special cases1 = p, s = s2 = ∞ is of particular interest. Observe that if
(1/p,1/q,1/r) lies in the interior ofH , then 1/p+1/q = 1/r+1, from which
it follows thatp < r, which in turn implies that

‖f ∗ g‖Lr ≤ C‖f ∗ g‖Lr,p ≤ C‖f ‖Lp‖g‖Lq,∞ .
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The inequality above provides a sharpening ofYoung’s inequality since the space
Lq is replaced byLq,∞.

More generally we can use Theorem 4.1 to obtain the following result:

Theorem 5.2. SupposeX, Y,Z are r.i. spaces whose Boyd indices satisfy the
conditions

1< pX, pY , pZ, qX, qY , qZ <∞,
1

pX
+ 1

pY
≥ 1+ 1

qZ
,

and
1

qX
+ 1

qY
≤ 1+ 1

pZ
.

Assume thatZ is maximal ands−convex for somes > 0. Then(f, g)→ f ∗ g
mapsX × Y to Z provided the map(f, g) → xf (x)g(x) mapsX(0,∞) ×
Y (0,∞) toZ(0,∞).
Remark.Of course we can state this theorem with less stringent requirements
on the Boyd indices, namely that the Boyd cube intersectsH in a subset of its
relative interior.As in the discussion in the remarks after Theorem 3.7 this can be
illustrated. We can allow for examplepX ≤ 1 providedqY < pZ, andqX = ∞
is permissible providedp−1

Y < 1 + q−1Z . Similarly pZ ≤ 1 is permissible if
p−1
X + p−1

Y < 2 andqZ = ∞ is permissible ifq−1X + q−1Y > 1.

Example 5.3.Fix threenumbers0< α, β, γ < n such thatα+β > n,β+γ > n
andγ + α > n. Consider now the trilinear fractional integral form

Iα,β,γ (f, g, h) =
∫
Rn

∫
Rn

∫
Rn
f (x)g(y)h(z)|x−y|−α|y−z|−β |z−x|−γ dxdydz.

We claim that the following inequality is valid

|Iα,β,γ (f, g, h)| ≤ C‖f ‖Lp‖g‖Lq‖h‖Lr
if and only if

1

p
+ 1

q
+ 1

r
+ α + β + γ

n
= 3,(32)

1< p, q, r <∞, and
1

p
+ 1

q
+ 1

r
> 1.

Note that (32) requiresα + β + γ < 2n.
Examples can be given to prove the necessity of the conditions on the indices

above. Let us prove here the sufficiency. The assumptionsα+β > n,β+γ > n,
andγ + α > n imply α + β + γ > 3n/2 and hence it follows from (32) that
1/p+ 1/q+ 1/r < 3/2. Therefore the plane given by the first equation in (32)
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cuts the unit cube[0, 1]3 at the six pointsA1 = (1, (2n − α − β − γ )/n, 0),
A2 = ((2n − α − β − γ )/n, 1,0), A3 = (0, 1, (2n − α − β − γ )/n) A4 =
(0, (2n − α − β − γ )/n, 1) A5 = ((2n − α − β − γ )/n, 0, 1), andA6 =
(1,0, (2n − α − β − γ )/n). These six points form the vertices of a hexagon.
It suffices to prove Lorentz space estimates at these vertices for characteristic
functions. For instance at the vertexA1 the estimate we need to establish is∫

E1

∫
E2

∫
E3

|x − y|−α|y − z|−β |z− x|−γ dxdydz ≤ C|E1||E2|2− α+β+γ
n .(33)

First integrate inz. We have

∫
E3

|y − z|−β |z− x|−γ dz ≤
∫
Rn

|y − z|−β |z− x|−γ dz = C|x − y|n−β−γ ,
(34)

for all x  = y sinceβ + γ > n. The last equality above can be easily shown by
a translation, a dilation, and a rotation. Using (34) we obtain∫

E1

∫
E2

∫
E3

|x − y|−α|y − z|−β |z− x|−γ dxdydz

≤ C
∫
E1

∫
E2

|x − y|n−α−β−γ dydx

≤ C
∫
E1

∫
|y|≤c|E2|1/n

|y|n−α−β−γ dydx
≤ C|E1||E2|(2n−α−β−γ )/n,

which proves the required estimate (33). This example can be found in [3] when
n = 1 andα = β = γ .

In thisexamplewehavea trilinear formand it is appropriate toapplyCorollary
3.8. Again simplifying our conditions on the Boyd indices gives:

Theorem 5.4. SupposeX1, X2, X3 are r.i. spaces onRn. Suppose the Boyd in-
dices satisfy the conditions1< pXi ≤ qXi <∞ for i = 1,2, 3 and

3∑
i=1

1

qXi
≤ 3− α + β + γ

n
≤

3∑
i=1

1

pXi
.

ThenIα,β,γ is bounded onX1×X2×X3 provided the trilinear form(f, g, h)→
x2−

α+β+γ
n f (x)g(x)h(x) is bounded onX1(0,∞)×X2(0,∞)×X3(0,∞).

Remark.Here as in the preceding example we can relax the conditions on the
Boyd indices with the right extra hypotheses. For example ifpX1 ≤ 1 it is
necessary that

1

qX2

+ 1

qX3

> 2− α + β + γ
n

.
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Fig. 1.The set of all(1/p,1/q,1/r) such that|Iα,β,γ (f, g, h)| ≤ C‖f ‖Lp‖g‖Lq ‖h‖Lr .

Example 5.5.Consider the operator

I (f, g)(x) =
∫
|t |≤1

f (x + t)g(x − t) dt.

We will showI mapsLp(Rn)×Lq(Rn) intoLr(Rn) when(1/p,1/q,1/r) lies
in the closed convex hull of the points(1,0, 0), (0, 1,0), (1,0, 1), (0, 1,1),
(1,1,1), and(1,1,1/2).

By interpolation it suffices to establish boundedness estimates at these six
points. Five of these estimates are trivial.We only prove thatI mapsL1×L1 →
L1/2.

Suppose that we have established the estimate

‖I (f, g)‖L1/2 ≤ C‖f ‖L1‖g‖L1(35)

for all f andg supported in two cubes of sidelength one. Then we prove (35)
(with a larger constant) for allf andg integrable.

For eachk ∈ Zn, let Qk be the cube of sidelength one whose sides are
parallel to the axes and whose lower left corner isk ∈ Zn. let fk = f χQk and
gm = gχQm . Then for eachk ∈ Zn there exist at most finitely manym ∈ Zn such
thatI (fk, gm) is nonzero. This is because the intersection of the sets{t : |t | ≤ 1}
and1

2(Qk −Qm) has to be nonempty.
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Now write
I (f, g) =

∑
k∈Zn

∑
m∈Zn

I (fk, gm)

as a sum of a finite number of terms of the form∑
k∈Zn

I (fk, gk+d)

whered ∈ Zn lies in a ball of radius at most a dimensional constant. Now

‖I (f, g)‖L1/2 ≤
(∑
k∈Zn

∫
Rn

|I (fk, gk+d)|1/2dx
)2

≤ C
(∑
k∈Zn

‖fk‖1/2L1 ‖gk+d‖1/2L1
)2

≤ C‖f ‖L1‖g‖L1,

by Cauchy-Schwarz, where the penultimate inequality above follows from the
asumption that (35) holds for the functionsfk andgm. Summing overd weobtain
the required estimateI : L1 × L1 → L1/2 with a larger constant.

We now prove (35) forf andg supported in cubes of sidelength one. (Think
of f = fk andg = gk+d .) Now observe thatI (f, g) is supported in a cube of
sidelength two. Hölder’s inequality gives

‖I (f, g)‖L1/2 ≤ C‖I (f, g)‖L1
≤ C

∫
Rn

∫
|t |≤1

|f (x + t)||g(x − t)| dtdx ≤ C‖f ‖L1‖g‖L1.

Example 5.6.We now consider the bilinear fractional integral

Iα(f, g)(x) =
∫
Rn
f (x + t)g(x − t)|t |α−ndt,

where 0< α < n. Homogeneity considerations imply thatIα canmapLp(Rn)×
Lq(Rn)→ Lr(Rn) only when

1

p
+ 1

q
= 1

r
+ α
n
.

We will now show thatIα mapsLp ×Lq → Lr when the point(1/p,1/q,1/r)
lies in the open convex hull of the pentagon with vertices(α

n
, 0, 0), (1,0, 1− α

n
),

(1,1, 2n−α
n
), (0, 1,1 − α

n
), and (0, α

n
, 0). More precisely we will show that a

weak-type estimate holds at each vertex of the pentagon below.
We first consider the vertex(α

n
, 0, 0). Takef = χA andg = χB , whereA

andB are measurable sets of finite measure. We have

‖Iα(χA, χB)‖L∞ ≤ sup
x∈R

∫
−x+A

|t |α−ndt ≤
∫
|t |≤c|A|

|t |α−ndt = C|A|α/n.
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Fig. 2.The set of all(1/p,1/q,1/r) such thatIα : Lp × Lq → Lr .

Likewise we obtain the required estimate at the vertex(0, α
n
, 0).

The estimates at the vertices(1,0, 1− α
n
) and(0, 1,1− α

n
) follow from the

estimates at the vertices(α
n
, 0, 0) and(0, α

n
, 0) respectively via duality. Alterna-

tively, just observe thatIα(χA, χB) ≤ Jα(χA), whereJα is the usual fractional
integral

(Jαf )(x) =
∫
Rn
f (x − y)|y|α−ndy,

and thus the estimate‖Iα(χA, χB)‖Ln/(n−α),∞ ≤ C|A| directly follows from the
corresponding estimate for the linear operator.

Finally we are left with the estimate at the vertex(1,1, 2n−α
n
). For j ∈ Z we

introduce operators

Ij (f, g)(x) =
∫
|t |≤2j

f (x + t)g(x − t)dt

and we note that forf, g ≥ 0 we have

Iα(f, g) ≤ C
∑
j∈Z

2j (α−n)Ij (f, g).



Some remarks on multilinear maps and interpolation 179

Next we observe that by a easy dilation argumentIj mapsL1×L1 → L1/2 with
norm bounded by a constant times 2jn. This fact together with the observation

∫
E

(Ij (f, g)(x))
1/2dx ≤

(∫
E

Ij (f, g)(x) dx

)1/2

|E|1/2

≤ C‖f ‖1/2L1 ‖g‖1/2L1 |E|1/2,

implies that for any measurable setE with finite measure we have∫
E

(Ij (f, g)(x))
1/2dx ≤ ‖f ‖1/2L1 ‖g‖1/2L1 min(2jn, |E|)1/2.(36)

Now pickE = Eλ = {x : |Iα(f, g)(x)| > λ}. Then Chebychev’s inequality and
(36) give

λ1/2|Eλ|1/2 ≤
∫
Eλ

∣∣∣∣∑
j∈Z

2j (α−n)Ij (f, g)(x)
∣∣∣∣1/2dx

≤
∑
j∈Z

2j (α−n)/2
∫
Eλ

|Ij (f, g)(x)|1/2dx

≤
∑
j∈Z

2j (α−n)/2‖f ‖1/2L1 ‖g‖1/2L1 min(2jn, |Eλ|)1/2

= C‖f ‖1/2L1 ‖g‖1/2L1 |Eλ|(α−n)/2n.

This implies that

λ|Eλ| 2n−αn ≤ C‖f ‖L1‖g‖L1
which is the required weak type estimate at the vertex(1,1, 2n−α

n
). This example

was studied in [4] whenr ≥ 1 and should be contrasted with the main result in
[11]. The same result was independently obtained in [10]. To use the full strength
of our results we apply Theorem 4.2 and the succeeding remark to obtain the
following generalization for r.i. spaces.

Theorem 5.7. SupposeX, Y,Z are r.i. spaces onRn with Z maximal ands-
convex for somes > 0.Suppose the Boyd indices ofX, Y,Z satisfy the condition
that the Boyd cube intersects the pentagon generated by(α

n
, 0, 0), (1,0, 1 −

α
n
), (1,1, 2n−α

n
), (0, 1,1− α

n
) and(0, α

n
, 0) in a nonempty subset of the interior.

Then in order thatIα mapsX×Y toZ it is sufficient that(f, g)→ xαf (x)g(x)

mapsX(0,∞)× Y (0,∞) toZ(0,∞).
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