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Abstract. A multilinear version of the Boyd interpolation theorem is proved in the context of
quasi-normed rearrangement-invariant spaces. A multilinear Marcinkiewicz interpolation theorem
is obtained as a corollary. Several applications are given, including estimates for bilinear fractional
integrals.
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1. Introduction

In this article we give a version of the Boyd interpolation theorem for multilinear
operators. We will be working with rearrangementinvariant quasi-Banach spaces,
which include all the well-known examples such as Orlicz spaces and Lorentz
spaces.

We will consider the following situation. Consid&,. = (0, co) with Le-
besgue measure (which can of course be replaced by any infinite nonatomic
measure space). We |&4(0, o) be the space of all real-valued measurable
functions equipped with the topology of local convergence in measuref Let
be the space of all measurable functions which are bounded and supported on
sets of finite measure. Now I@t : £" — Lq(0, co) be a multilinear map (our
results also apply to sublinear maps). We supposeTthatlocally continuous
i.e. continuous when restricted [q;_; Lo, (Ey) for every choice of set#) of
finite measure. We also suppose tifabbeys a finite collection of weak type
inequalities

1T (s - XED N Lpeo < CT T IERI*
k=1
for everyn-tuple of measurable set®1, ..., E,). HereL, - is the usual weak
L, space and; > O for everyk. We then seek to characterize + 1)-tuples
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of rearrangement-invariant spaces, ..., X,,, Y) for which T extends to a
boundedn-linear map fromX; x --- x X, into Y. In general one needs two
distinct hypotheses. The first consists of an assumption on the Boyd indices of the
spacesy, ..., X,, Y,asinthe original Boyd interpolation theorem. The second
hypothesis is that a certainlinear test map associated withis continuous.

Our main result (Theorem 4.1) gives a hecessary (and often sufficient) condi-
tionon(Xy, ..., X,, Y) inthe case when one has-1 such conditions which are
sufficiently independent. Note that the original theorem of Boyd [2] corresponds
to the case when = 1 and there are two conditions of the type:

IT(xe)llz, . < CIEIM?.

We deduce Theorem 4.1 from a simitasmogeneouBoyd-type theorem (The-
orem 3.7) which is applicable for examplentdinear forms. As a corollary we
obtain a multilinear version of the Marcinkiewicz interpolation theorem (Theo-
rem 4.6).

Our work is related to work of Strichartz [17], Janson [5], and Christ [3].
Note that as in [5] and [17] (and in contrast to [3]) our multilinear assumptions
consist only of a finite number of estimates. Our results also develop and extend
earlier work of Sharpley (see [15], [16], and [1]).

In Sect. 5 we give examples of multilinear interpolation. As one of our ap-
plications, we characterize the indicéls/'p,1/9,1/r), 0 < p,q,r < oo, for
which the bilinear fractional integral operator

L(f,9)(x) = | fx+ngk—nt|*"dt.
R)l
mapsL,(R") x L,(R") — L,(R"). This characterization was also indepen-
dently obtained by C. Kenig and E. M. Stein [10].

2. Preliminaries

In this section we set up the background required to state the multilinear Boyd
interpolation theorem.

Let Lo(0, co) be the space of all complex-valued measurable functions on
(0, o0), with the topology of local convergence in measure. We define a quasi-
Banach function spac& on (0, co) to be a subspace df, equipped with a
quasi-norm| ||x such that:

e | fllx =0ifandonlyif f =0 a.e.
o |lafllx = la|ll fllx, wheneverf € X anda € C.
e There exists a constantso that iff, g € X then| f +¢gllx < C(Ifllx +

lgllx)- -
e X is complete (i.e. a quasi-Banach space)|ftk.
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The injectionX — Lg is continuous.

If E is a set of finite measure then € X.

If f e Xandg e Lowith |g] <|f|a.e.therg € X and|igllx < |l fllx.
IfO < f, 1 fae.andf € X then| f,llx 1 I flx.

By assumptiorX must contain the spacgof all bounded measurable func-
tions supported on sets of finite measure. We sayXhatminimalif £ is dense
in X. We say thaX is maximalif it has the property that if & f, 1 f a.e. with
supll fullx < oo, thenf € X.

A quasi-Banach function space @ oo) which is either maximal or minimal
(cf. [12]) is said to be aearrangement-invariant function spacer.i. spaceif
lf*Nlx = Il fllxforall f € X,wheref* is the decreasing rearrangement ff,
ie. f*@) =inf{x : [{|f] > x}| <t}.

We say thatX is r-convex if there is a constagt so thatif f1, ..., f, € X
then
n 1/r n 1/r
(Z]m) sc<iﬂﬁm)
i=1 X i=1

For a discussion of-convexity in the context of Banach lattices we refer to [12];
we refer to [7] for quasi-Banach lattices. Every Banach r.i. space is of course
1-convex, but there are examples of quasi-Banach r.i. spaces which faitto be
convex for any- > 0, see [6]. However it is very natural to assurmeonvexity
since all “practical spaces” areconvex for some > 0.

Once anr.i. spack is defined on(0, co) it may be transferred to amy-finite
measure spacg?2, u) by defining X (£2, 1) to be the space of all measurable
f 82 — Csuchthal| fllx) = Il f*llx0.0) < 00. In general ifs2 is a Polish
space ang is an infinite nonatomic Borel measure there is a measure-preserving
bijection of 2 onto (0, co). Thus there is no loss of generality in treating only
the case of2 = (0, c0).

If X is an r.i. space then the dilation operat®s: X — X given by

(Da f)(x) = f(x/a)
are well-defined and bounded. We define the Boyd indices by

: loga
px = lim ——
a—oc [0g [ Dy |
and
. loga
gx = lim ———.
a0 log || Dq|

Then 0 < py < gx < oo. We refer to [12] or [1] for relevant discussion. If
¢ > 0then there is a consta@t= C(¢, X) so that for allf € X we have

1

1
(1) nmﬂusme@aﬂﬂa%y
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Itis sometimes useful to have the notion afarier spacefor an r.i. space.
Let X be a maximal quasi-Banach function space(@roo) with the property
that the dilation operator®, are bounded oX and|D,| 3z < Ca* for some
x > 0 and alle > 1. Then we can define an r.i. spakeby requiringf € X if
and only if f* € X and by settind| fllx = II.f*ll%. It is then easy to show that
X is a maximal r.i. space and tha; < «. We will in this case refer tX as a
carrier space foX. Notice, of course, thaX is a carrier space for itself.

Examples of r.i. spaces are provided by the usual Lorentz sgacesvith
(quasi)-norm

o0 dl 1/q
(/ [f*(t)tl/p]q7> when 0< ¢ < oo,
0

supf*()et/'? wheng = oo
t>0

(2) Iflle,, =

for0 < p, g < o0. These spaces are 1-convex (i.e. normable) whenpl< oo

and 1< g <ocorif p =g = 1.IngeneralL, , is g-convex ifg < p and
s-convex for any < p if ¢ > p. The Boyd indices oL, , both coincide with

p. Note that all these spaces have natural carrier spaces which are weighted
L,—spaces.

The significance of the Boyd indices lies in the fact that they can be used
to characterize all rearrangement-invariant Banach sp&ces which certain
known operators are bounded. For instance the Hardy-Littlewood maximal op-
erator is bounded oX (r.i. overR") if and only if gx < oo, see [13], [18]. The
Hilbert transformis bounded axi (r.i. overR) ifand only if 1 < py < gx < oo,
see [2].

Let us now recall the Boyd interpolation theorem {0y co) (see [2] or [12],
p.145):

Theorem 2.1. Supposd < p < g <ocandthatl : L, 1+ L, 1 — Lo(0, 0o)
is a linear map of weak typd®, p) and(q, ¢). SUPPOSEX is an r.i. space with
p < px < gx < q.ThenT is a bounded map fror¥ into itself.

This result was extended to the case® < g < oo in [8] (Theorem 1.3)
with the additional assumption thatis r-convex for some > 0.

The main purpose of this article is to obtain a multilinear version of Theorem
2.1. This is achieved in the next two sections. We first obtain a homogeneous
multilinear version of Theorem 2.1 (Theorem 3.7), and from this we deduce an
inhomogeneous version, Theorem 4.1.

3. The homogeneous multilinear Boyd theorem

Let £ be the space of all measurable functions(Brnoo) which are bounded
and have support of finite measure. We shall say that a map (usukfigar)
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T : £" — Y inanytopological vector space is locally continuous if its restriction
to [ ;1 Lo (Ex) is continuous for every choice of sefg of finite measure.

Now suppos@ is afinite subsetafR_)" = [0, co)” andY is a quasi-Banach
space. We say that anlinear mapT : £" — Y is ® —admissible ifT is locally

continuous and there is a constaitso that for every = (61, ...,6;) € ® we
have
(3) 1T Geys - xe)ly < M T1EN™,
k=1
wheneverE, ..., E, have finite measure. The least such constéimg denoted

by [IT|le. In most of the work that follows, it will be convenient to takecC R’}
i.e. to requirgd, > O forall 9, k.

Let us recall that a quasi-Banach spé&kg|| - ||) is calleds-normed if there
is a constan€ such that for allyy, ..., y, € Y we have

[y 4+ vl < CAyall® + -+ llymll®)-

Now letX = (X3, ..., X,) be ann-tuple of r.i. spaces. We say thdthas the
interpolation condition(®, s), where O< s < 1, if for everys-normed quasi-
Banach spac& and every®-admissibleT : £" — Y there is a continuous
extensiorl’ : X; x --- x X, — Y with norm a constant multiple dffT || . Note
here that in the case= 1 it is sufficient to taker’ to be the scalar fiel® or C
and hence we only considetlinear forms.

We will need to establish some examplegbfadmissible multilinear maps.
We begin with a lemma.

Lemma 3.1. Suppos® < u < co and0 < s < r < oo. Then for any measur-
able setE c (0, o) we have

1/s 1/r
(su/ x”’_ldx) < (ru/ x”‘_ldx) .
E E

In particular if su < 1then

1/s
(su/x“’_ldx> < |E|".
E

Proof. First note that for > 1, we have(r** — 1)¥/* < (+"* — 1)1/" and also that
(" — D)Ys (¢ — 1)~ is increasing. This last fact follows from the observation
thatr — % log(#" — 1) — % log(#* — 1) is monotone decreasing and converges to
zero atinfinity. This implies that i is an interval we have the desired inequality.
We now proceed to prove the result #m@ disjoint union oz intervals using
induction. Assume the required inequality is true for all unions of less than
disjoint intervals. Now ifE is a finite union ofm disjoint intervals{v;, w;) for
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1< j<mwherev; < wy < - - < v, < Wy, We defineh > w,,_1 by the
condition that

WY —wyly = (W =0, + (Wyly = vl

If we had
4) R —w, "y < (wy,' — v + (w1 — v,0 ),
then the inductive hypothesis applied to the- 1 intervals[vy, w1), ..., [V._2,

wn_2),andv,,_1, k) together with (4) would quickly give the desired conclusion.
It suffices therefore to prove (4). This will follow from the fact thatif 8, v,
andé are positive numbers satisfying+ y = g+ 8 andg < y < 4, then
a'ls /s < pr/s 48"/ whenr > s. Indeed, the assumptions above imply that
B < o < § and clearly

O[r/s + yr/s < max (ar/s + (,8 48 _a)r/s) < ’Br/s +8r/s'

ae(p,d)
0

Let (-, -} denote the usual inner product &4 and|| || the usual Euclidean

norm. For eacty € R" let 6, denote ittt coordinate. Suppose is a finite
subset of R ;)" = [0, c0)". Define a sublinear map associated vétias follows

(5) a(§) = ap(§) = maxs. 6).
SC)
LetX = (Xq,..., X,) be amu-tuple of r.i. spaces. We have the following theo-

rem. See also Sharpley [15] for a somewhat similar result.

Theorem 3.2. LetO < s < 1. Consider the statements:
(i) X satisfies the interpolation conditidi®, s).

(ii) There exists a constar so thatiff1, ..., f, € &,
n 1/s n
6) ( /R ey eXp(—sa(—S))d§> < C[Iflx-
k=1 k=1
(iii) There exists a constatt so thatiffi, ..., f, € &,
n 1/s n
(7) ( f ey exp(—sa(—s»ds> < C[ I flx.
k=1 k=1
where

1 X l/S
Fr(x) = (—/ (fk*(t))sdt) )
X Jo



Some remarks on multilinear maps and interpolation 157

(iv) There exists a constadt so thatiff1, ..., f, € £, then

0o N 1/s n
(8  max ( /O [BEAGDS exp(—sm(—s»dr) < [T
k=1

=1
&1 P

Then (ii) implies (i). Furthermore, i® C R’ ands is small enough so that
sOr < 1forevery(fy,...6;) € ® and everyl < k < n, then (i), (ii), (i), and
(iv) are all equivalent.

Proof. First assume (ii) and that : £&" — Y is ®—admissible whereg’ is
s-normed. Without loss of generality we assujifg|o < 1. We first note that if
fr are supported i€, and|| fi |l ... < 1 then we have an estimate:

. ek
() IIT(fl,-..,fn)IlySCQ;I(QIHIEH :

where C depends only on andn. To see this it suffices to get an estimate
for positive functionsf, and then extend to signed and complex functions by
additivity. But if f; is positive we can write

00
fk - ZzinA_jk
=1

whereA;; C Ei. Expanding out we easily get estimate (9).
Now supposefi, ..., f, € £. We can write eaclf; in the form

fe= Z JieX A

m=—0o0

where|Ay, | = 2" and|| fixa,, lL., < f*(2"). Now by (9) we have

im0 f_1Okm * (Om
IT(frXasny> - FaXaw,)lly < Cmin2eists kﬂfk @").

Now since|| ||y is ans—norm after summing and making an obvious integral
estimate we obtain

IT(f1s - flly <
c/o /O () o () g;iggx,iek_ldxl...dxn.
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The right-hand side is now estimated ©y [;_, |l fxllx, using (6). We can now
extend the definition af (f1, ..., fi) to X1 x - - - x X,, by noting that forf; € X,
the sum

D T(fiXargs -+ FoXium)

ma,...,mpy

converges irt. It is easy to check that this extenfisunambiguously and con-
tinuously toX; x --- x X,. Thus (i) holds.

Now assume ()@ c R", ands6, < 1foralld € ® and 1< k < n. For
eachd € ® Lemma 3.1 gives that if, = xg € &, then

00 1/s
( / X fixe)’ dx) < (s6) T E*™,
0

where as usuallg, denotes th&t coordinate ob. It follows that if we define
" _1
To(fr, .oy f)xn, .o X)) = Hxlfk * fr(x),
k=1

thenTy : € — L,((0, 00)") is {6}-admissible and Ty [l < s~/* [T'_, 6, "
If we defineT by

n

T(fr, s )1, 00, x0) = l_[ (g}ei(gx,fk%) Jie(xx)

k=1

thenT is ®—admissible. It follows that we can find so that (6) is valid and
thus (i) holds.
We now show that (ii) implies (iii). Observe that

&k
(Fr (%)) =/ M (fE(E™)) dy.

Hence N
/ ) li[(meék)f exp(—sa(—§))d§
k=1
(10 = f . [T € expltn — & 1) - sa—) dnde,
=6 k=1
wheren < £ means), < & forl < k < nandldenotesthevectdd,1,...,1).

For fixedn pick & € ® so thata(—n) = (6, —n). Then

~

fs exp(— (£, 1) — sa(—&))dE < f exp(—(£. 1 — s7))dé
>n

&>n
< Cexp(—(n,1) —sa(—n))
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since for someS > 0 we have 1- 56, > § > Oforall € ® and allk.
Substituting back into (10) gives the required estimate.

Next we show (iii) implies (iv). To do this it suffices to note that the map
& — Y ;_,log Fy(e*) is Lipschitz with a constant depending only e@andn
unless somgj, is zero. This means that it | = 1 we have an estimate:

fo [ J(Fe(e®)) exp(—sta(—£)dt < C f [ [(Fi(e®))* exp(—sa(—&))ds.
k=1 K

k=1

whereK is a cylinder of radius one with ax{g¢ : ¢+ > 0}. We can then deduce
(8) from (7) sincef,* < F.
Finally (iv) implies (iii) (which implies (ii)) by just using polar coordinates.
]

We can extend this result somewhat to certain multilinear analogues of max-
imal operators. Denote iy (0, o) the set of all nonnegative measurable func-
tions on(0, co). Let us say that a positively homogeneous (of degree 1) map
T : & — L (0, 0o) isn-quasi-sublineawith constanc if for any k we have

(11) T(f1, s fiets (fi + £Os frits ooy fo)
=< C(T(fls ceey fk—l? fkv fk+1’ ey fn) + T(fl’ ceey fk—l’ fk,’ fk-l—la RN fn))a

forall f;, f/. Suppos& isn-quasi-sublinear. Thenifwe choossothat 2/"~* =

C we can use the proof of the Aoki-Rolewicz theorem ([9],[14]) to deduce the
existence of a constaat’ so that for any 1< k < n and allm positive integers
we have

m
T fl?"'7fkflvzgjafk+lv"'vfn

j=1
1/r

<C ZT(fla---’fkfla gi» frrts s ) )
j=1
for all f; andg;. Based on this it is easy to show the following, by exactly the
same argument as in Theorem 3.2:

Corollary 3.3. Supposé : £" — L,(0, co) isn-quasi-sublinear with constant
C = 2"~ where0 < s < r, and thatT is locally continuous. Le® be a finite
subset oR’, and assume that there is a consta#itso that

n
T < M inf E,|%
1T (xeys s xED L, < 06@}[[1| el%,



160 L. Grafakos, N. Kalton

for all E, of finite measure. IK is ann-tuple of r.i. spaces satisfying (6), then
there is a constant so that forfy, ..., f, € £ we have

1T (o )l < CM [ Tl fellx,-

k=1

We now consider versions of the Boyd interpolation theorem in this setting.

Consider the convex hull c®; We define the open convex hull£® to be
the setofall)_,_, @6 where O< oy < Land) ,_, @y = 1. Thenc@ O is the
interior of co® relative to the affine hyperplane it generates. We also define the
Boyd cubeBx of X to be the sef],_,[1/gx,, 1/px,]1, wherepy,, gx, are the
Boyd indices ofX,.

Itwill be convenient to introduce the following sublinear functional associated
with Byx

(12) b(§) = bx(§) = 21%3(((5, ¢).

S

Let us first note a simple consequence of Theorem 3.2.

Corollary 3.4. Suppose thaP is a finite subset ofR, )" and thatX satisfies
the (®, s)-interpolation condition. The®yx N co ® is nonempty.

Proof. SupposeBy, co ® do not intersect. Then we can finde R” so that

max(n, 6) < min(n, ).

Thusa(n) = —b(—n) — 26 where§ > 0. Now we refer to (1) to obtain for
feé,

[T1Dem f2lx, < Cexpes + tb(—=n) [ T 1 £ l1x,

k=1 k=1
for ¢ > 0. It follows from (6) that

n 1/s n
( /R [ sty eXp(—sa(—S))d§> < Cexp(ts + th(—=m) [ [ I fillx

n
k=1 k=1

= Cexp(—ta(m) — &) [ | Il fillx,.

k=1

Now a(—£) + ta(n) > a(—& + tn). Thus we can reorganize to obtain

n 1/s n
( / [ Jorzey exp(—sa<—s>>ds> < Cexp(—18) [ [ Il fellx,.
" k=1 k=1

for everyt > 0 which is absurd. ]
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Theorem 3.5. Suppose is a finite subset ofR.)". SupposeX is ann-tuple
of r.i. spaces such thayx N co ® is a nonempty subset of £6. ThenX satis-
fies the(®, s) interpolation condition provided there is a constantso that if

fl,...,f,,Eg,

n 1/s n
(13) ( /H [T @y eXp(—sa(—S))d§> < c[Tifilx.

k=1 k=1

whereH is the subspace &" of all £ such that(&, 0) is constant foralb € ©.
If ® C R} ands6, < 1foreveryd € ® andl < k < n, then inequality (13)
is also necessary foX to satisfy thg @, s)-interpolation condition.

Proof. Let B, = {£ : d(&, Bx) < €}. Our assumption o®yx and a compactness
argument give the existence of> 0 so thatB,. N P C co®, whereP is the
affine plane generated l&y. We note that:

(14) max (n, ¢) =§igga($)+b(n—§)+26||n—fll-

$eBoNP

To see this observe that the right hand side obviously dominates the left-hand
side and is a sublinear functional. It is easy to check that,i) is dominated
by the right-hand side then we hayez B, N P.

We will also need (1) which implies that iy, . .., f, € £, then

[T1Den fillx, < Cexpb) + ellnih [Tl fillx,

k=1 k=1

for some constarnt.

Now suppose) € H*. Then for afixedz € H and f4, ..., f, € £ we have
n 1/s
( / [ JCfe @) exp(—sa(—¢ — n))ds)
1

n 1/s
- ( [T @) exp—sa(—& — ¢) — sa(—n))d5>

Hy_q

n 1/s
< exp(—a(—n) +a(?)) ( H(fk*(es”""”k))s exp(—sa(—s))dé;)

Hy_q

< exp(—a(=n) +a@) [ [ 1D-n-a fillx,

k=1

< Cexp(—a(—m) +a@) +b(—n — ) +eln+ D [ [ I fellx.

k=1
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At this point we use (14) and the fact thed. N P C co ® to show that
inf (a(§) +b(=11 = &) +€lln+£1l) < a=m) =€l

Thus we conclude that

n 1/s n
( /H [ [ty exp(—sa(—s—n»ds) < Cexp(—elln) [ T Il fillx,

k=1 k=1

Raise to thetl power and integrate overe H- to obtain (6). HencX satisfies
the (©, s)-interpolation condition.
The last statement follows from (8). O

We now specialize to the case wheris a relatively large subset 0R . )". Let
us define the dimension @&#, denoted din®, to be the dimension of the affine
plane passing through all the pointsén We say that is affinely independent

if the conditions

Z)\.QQIO and Z)\(;:O

fe® 6e®
imply 24 = 0, VO € ®. Obviously if © is affinely independent we hay®| =
1+dimo.

Theorem 3.6. Suppose din® = n (e.g. if® is an affinely independent subset of
(Ry)"and|®| = n+1.) Suppos& is anrn-tuple of r.i. spaces such th&kNco ®
isa nonempty subset of£®. ThenX satisfies th€®, s) interpolation condition.

Proof. In this case Theorem 3.5 applies with= {0}. O
A more important case is the following:

Theorem 3.7. Suppose thatdi® = n — 1 and that® spanR".Let0 <s < 1
and suppose th&f is ann-tuple of r.i. spaces such th&x N co ® is a nonempty
subset of cg®. Pick a uniques = (o%);_, SO that(c,0) = 1forall 6 € ©.
Consider the following statements:

(i) X satisfies th&®, s) interpolation condition.

(ii) There is a constan€ such thatiffy, ..., f, € £ we have

00 n /s n
(15) ( / x”]‘[(fk*(x”k))fdx) < cTTifilx.
0 k=1 k=1

Then (ii) implies (i). Moreover, i C R’ ands6, < 1for everyd € ® and
1 < k < n, then (i) and (ii) are equivalent.
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Furthermore if© c R”, and ifs(3_;_, 6x) < 1for everyd € ©, (i) and (ii)
are also equivalent to:
(iii) There is a constanC so thatiff1, ..., f, € &,

1/s

(16) /0 AT 1RGP | < [T Ifillx,-

0 #0 0 #0

RemarksThe existence of follows from the fact that the plane generated by
©® does not contain the origin. Note that the indiéder which o, = 0 become
redundantin the sense that that (15) can be rewritten as

1/s

/O PTG eydx | < [T el

ok #0 oy #0

Before we prove Theorem 3.7, let us illustrate the hypothesis on the Boyd
indices, by considering the special but rather typical case whef the
intersection of a cubg[;_, [ax, B¢l with the plane}_;_, 6, = r~1. In this case
o, = r for all k. It may then be easily seen that the hypotheses on the Boyd
indices are satisfied if we have both

"1 1 "1
(17) —<-=<)>) —
= e T o PX
and
1 1
(18) o < — < — < B
qX; Px;
for all 1 < k < n. However if for somd we have
1 1
19 o + — > -
(19) = e

then the lower bound condition on;ll in (18) can be removed. Similarly if
1 1
(20) B+y — <=

then the upper bound condition q»r;]l can be removed.

Proof. The fact that (ii) implies (i) is an application of Theorem 3.5. Indeed, in
this caseH is one-dimensional, salf = {ro };cr. Then equation (13) becomes

+oo N 1/s n
( f ]_[(fk*(e"’k))“e“”dt> < c[Tuslx
- k=1

X k=1
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which reduces to (15) by substituting= ¢’. The converse statement follows
from Theorem 3.5.

We now prove that (i) implies (iii) under the extra hypothesis ', _, 6;) < 1
for everyd € ©. Defineamafy : £" — L;((0, c0) x (0, 1)) by setting

T(fr, o S0 =x T G T AG.

ox#0 0;=0

We will show thatT is ® —admissible.
SupposdE;) are sets of finite measure. LEt= {x : x% € E, Yo, # 0}
and letG = [0, 1] N N, —oEx. Then we have

T(XElv sy XEn)(x’ )’) = xl_l/SXF(x)XG(y)

and therefore

1/s
1T (XEys - xE)] = (/ x“dx) |G|,
F

Now supposé® € ©. Letr = (3
3.1

w2000t Clearlys < r. We have by Lemma

1/s 1/r
(/ xs_ldx) < pl/rg=Ls (/ x’_ldx)
F F

Ok
< rl/rs—l/s 1_[ </ xak—ldx)
F

jel

< rsTH T T lowl = Exl™.
keJ

On the other hand sind€| < 1and)_, o6k <577,
GIM < TT 1E™.
o #0

ThusT is ®—admissible and hencE extends to a boundedlinear form on
X1 x -+ x X,. Letting fi = x(0,1) if ox = 0 and restricting gives (16).
Now it is clear that (iii) implies (ii) and so the proof is complete. O

Corollary 3.8. Suppose under the hypotheses of Theorem 3.7 we also have that
for some fixed

k=1 r
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for everyd € ®. ThenX has the(®, s) interpolation condition if

00 n 1/s n
(21) ( / X“/"ll_[(fk*(x))“'dx> < C[1slx
0 k=1 k=1

In particular if » = s thenX has the(®, s) interpolation condition if and
Oﬂly ifX,---X, C Ly whereX;---X, = {fi... fus fr € Xi}.

Proof. In this caser, = r for all k and (21) is a obtained by a simple change of
variables from (15). O

Finally let us note an unusual case which can arise:

Theorem 3.9. Suppose® C R, dm® = n — 1 and ® does not spafirR”.
Suppos« is ann-tuple of r.i. spaces such th&x N co ® is a nonempty subset
of cy ®. Leto = (oy);_, be chosen so thgt, 8) = Ofor all & € ®. Assume
s > Ois such thatg, < 1for everyd € ® andl < k < n. Then the following
are equivalent:

() X satisfies th€®, s) interpolation condition.

(ii) There is a constan€ so that forfi, ..., f, € £ we have

00 n 1/s n
(22) (f xt H(fk*(xok))sdx> <C l_[ Il ficll x -
0 k=1 k=1

We omit the proof which is similar to the that of Theorem 3.7.

4. The inhomogeneous multilinear Boyd theorem and applications

Suppose thap is a finite subset ofR.)"” and that9 — r, is a map from®
to R,. We denotepy = (0, r9) and® = {¢y : 0 € ©®)}. Clearly® c R"*L.
Now consider the case when we are given a fiaf” — Lo(0, oo), which we
assume to be locally continuous. We will say tiiadatisfies a weak-typ@, ry)

estimate if there exist® > 0 so that ifEq, ..., E, are sets of finite measure
then
(23) T (XEss - XE Lo < M ] TIER*

k=1

We now give a version of the Boyd interpolation theorem for this setting
which follows almost immediately from Theorem 3.5. For simplicity we shall
only treat the most important case.
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Theorem 4.1. Suppos® is asubset ofR )" with |@| = n+1and dim® = n.
Suppose for each we haved < ry < co. Leto € R" be the unique solution of
the equation
(0,0) = i +1
g

wherer is independent of. Let X be ann-tuple of r.i. spaces and suppogeds
a maximal r.i. space which isconvex for some > 0. Suppose the Boyd cube
Bx x [1/qy, 1/ py] intersects cab in a non-empty subset of ¢&.

Then in order that every locally continuouslinear T : £" — L(0, 00),
which satisfies the weak type r,) estimate (23) fof € ©, extendsto abounded
n-linear map? : [[;_, Xx — Y (with norm a multiple o), it is sufficient that

there is a constant so thatiffi, ..., f, € £ then
(24) " [T Araly < [ Al
k=1 k=1

If in addition we have
1 n
O0<—< 0
o - kX—J:. k

for everyd € ©, then (24) is also necessary and is equivalent to the condition

that there exists a constagtso that forfi, ..., f, € £ we have
(25) ™ T ™Iy < € TT Hfillx,.
ok #0 ok #0

RemarkThe same conclusions can be obtaing®if > n + 1 provided there is
a solution of the equatiofw, 8) =r,* + 7.

Proof. We first choose > 0 small enough so that is s-convex,s < ry for all
0 € ©, andr +% > 0. Next defineX,, ; to be the space of aff € Ly(0, co) so
that fg € L,(0, oo) for all g € Y with the quasi-norm

I fllx,0 = sup [Ifgllz,-

lglly=1

SinceY is both maximal and-convex we obtain thag < Y if and only if
supfll fdlz, : I flx,,. < 1}is finite and furthermore there is a constéhso

that| flly < sup{ll fdiz, : I fllx,.. < 1}. (If Y is s-convex with constant one

thenC = 1, this is easily seen by_noting th&t is a Banach r.i. space and
X, .1 is simply the Kothe dual space; in general we can always renciorhave
s-convexity constant one.) It easy to calculate the Boyd indice®,qf ; these

are given by
1 1 1 1 1 1

, .
pXrH»l s qY an+l N pY
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We refer to [12] for similar calculations for dual spaces.
Now if T satisfies the weak-typ@®, ry) estimate (23) for everg € ©, then
we consider the map’ : £t — L, (0, oo) defined by

T/(f:l.’ ERR fn+l) = T(flv LR fn)fn—i—l-

If E1,..., E,y1 are sets of finite measure then
1/s
||T/(XE1s e XE,1+1)||LS =< (f |T(XE19 ey XE,I)lsdx)
Eny1

ro—s

n
1/s —
< M%) P a7 [T IE™
k=1

for everyd € ©. Thus if we lety, = (0, % — %) and¥ = {y, : 6 € O} then
T'is (¥, s)-admissible. Itis clear from our discussionXf, ; that we only need
to show thatl” extends to a boundedlinear map onX; x - - - x X, 1.

We now use Theorem 3.7. We first argue tliats linearly independent in
R"*!. Indeed from the definition of this is equivalent to the linear independence
ofthe pointg6, 7+ %) which follows from the affine independence®fWe will
showthatth€n+1)-tuple(Xy, ..., X,+1) hasthgy, s)-interpolation condition.
We note that our hypotheses on the Boyd indiceXand Y imply that the
hypotheses on the Boyd indices for Theorem 3.6 hold. Defjine oy (7 + ;1)—1

fork <nando, , = (r + 1)~ Then
(o Y= +H e+ +@+HTE-DH =1

Now if f1,..., fur1 € £, we have

00 n+1 1/s
( / xf—ll_[|fk*<x“k’)|fdx) -
0 k=1
o n 1/s
(‘L’ i %)l/s (/(; xsr|fn*+1(x)|x 1_[ |fk*(x0k)|sdx) )
k=1

Now it is clear that if we assume (24) then we obtain (15) in Theorem 3.7 and
S0(X4, ..., X,y1) satisfies the interpolation conditig®, s).
For the second part we construct the nffap&” — Lo((0, o0) x (0, 1)) by

T(frr.o f0 ) =x" ] G [T £

o #0 0;=0
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Letug = (ZW&O 6) "1 so thatry < uy. Then by arguments similar to those for
Theorem 3.7 we have that#fy, . .., E, are measurable sets of finite measure,

n

—1/rp 1 .

0T (XEye - xE) L, <7 g™ [ TIEI™.
k=1

Our hypotheses then guarantee thanapsX; x --- x X, into Y i.e. we have
(25) and hence also (24). O

Let us isolate a simple special case:

Corollary 4.2. Suppose that in the preceding theorem we have
. 1
>o=
k=1 "6
for everyd € ®. Then (25) is equivalent to the inclusiah - - - X,, C Y, where

X, --- X, isthe set of all productg; ... f, with f; € X;.

Proof. We need only to observe that in this cage= 1 for everyk andr = 0.
]

We next point out that under certain hypotheses, we can replace (24) with an
alternative criterion:

Corollary 4.3. Suppose thatin Theorem 4Yljs a carrier space fotr” with the
property that||D,|ly < Coa” forall 0 < a < 1wherep > 0 and thatY is

s-convex for some > 0. Then the sufficent condition (24) can be replaced by:
(26) I [T el < [ fellx,
k=1 k=1

for f1,..., fu €é€.

Proof. We note that in the proof of Theorem 24 we can takemall enough
SoY is s-convex. SUpposéi, ..., f, € €. Leto(x) = x" []i_; ff(x%). By
assumptionglly < C [T;—; Il fllx,- Now letyr be defined by

00 dy 1/s
w<x)=(/ go(y)f;) .

By thes-convexity of Y we obtain that

1/s

1
IlelysM( /0 am—lda) Il
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so that we have an estimate

lviy < Cillelly.

Howeveryr is decreasing and sp/|ly < Cill¢lly. Now if f,.1 € € we have

that
n+1

00 1/s
( /0 <f:+1<x)>f<p<x>fdx> <ca[]Ifdx
k=1

and the proof is completed in the same way. O

At this point we note that we can use Corollary 3.3 to extend this result to
n-quasi-sublinear maps.

Corollary 4.4. Assume thai,, ..., X,, Y satisfy (24). Suppos& : £&" —
Lo(0, 00) is n-quasi-sublinear, locally continuous, and satisfies the weak-type
(8, rp)-inequality (23) for every € ®. Then we have the estimate

1T (fro s f)lly < CM T fillx

k=1
fOI’fl,...,fn ef.

We omit the details of the proof. The key point to note is that we should choose
s in the argument for Theorem 4.1 above sufficiently small so that2> C
where is the constant in (11).

It is also worth noting that we can give a similar result to Theorem 4.1 in the
case wher® fails to be affinely independent. This case is somewhat degenerate.
For example in the case= 1 it applies to linear operators which satisfy weak

type estimatesp, g1) and(p, g2) whereg; # g».

Theorem 4.5. Suppose is an affinely dependent subset(Bf, )" with |©| =
n + 1. Suppose for eacdhwe haved < r, < oo and that the se® = {(9, r;l) :
6 e ®} is linearly independent iR"**. Choosesr € R” so that(c, ) = 1 for
all & € ©. Let X be ann-tuple of r.i. spaces and suppogeis a maximal r.i.
space. Let = minyco 1y and suppos® < s < lissuchthat < 1ifr =1
ands < r otherwise. Suppose also the Boyd cugex [1/qy, 1/ py] intersects
co @ in a non-empty subset of £&.

Then, in order that every locally continuoudinear T : £" — L(0, 00),
which satisfies the weak type r,) estimate (23) fof € ©, extendsto abounded
n-linear map? : [];_, Xx — Y (with norm a multiple of//), it is sufficient that
there exists a constat so that

00 n 1/s n
(27) ( / x”]_[(fk*(x”k))‘dx> <[]l
0 k=1 k=1

for f1,..., fn € &.
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RemarkThe existence and uniquenessadb a consequence of our hypotheses,
since® generates a plane of dimensior 1 which cannot be a linear subspace.

Proof. Our hypotheses are such that the spagcg is s-normable. In this case
the convex se® generates a plane containing the line in the direction parallel
to the basis vectat, ;.

We first prove the result when = L, ., for somer. By the above remark we
haver > r.Let X,11 = Ly o Wherey + 1 = 2. Letyy = (0,7 — =) € R**!
and¥ = {yy : & € ®}. Now it is clear that (27) implies that the + 1)-
tuple (X4, ..., X,y1) satisfies the conditions of Theorem 3.7 for the s)-
interpolation condition. We apply this to the mdp : £"*! — L, ., where

T (f1, ..., furr) =T(f1, ..., fu) fasr1. A routine calculation gives

n

1T KEys - -+ X e < CMIEM Y0 [TIE™.
k=1

Hence we have the estimate

ITCf1s s ) favtllie < CMI fasallL, o l—[ Il fiell .-

k=1

This implies the estimate

T (e )l < CM] I fillx,

k=1

by simply consideringf, .1 = xg for E a set of finite measure. We have now
proved our claim.

Next we consider the general case. By our assumption8 are may find
t < py < qy < usothatboth(Xq,...,X,, L; ) and(Xq, ..., X, Li.o)
satisfy the interior condition on the Boyd indices. HefftmapsXi x - -- x X,
boundedly intd., », N L, ~ With norm a multiple of\/. But it is easy to calculate
from the Boyd indices that; .o N L, C Y. O

The theorems below extend the classical Marcinkiewicz interpolation theo-
rem to the multilinear setting.

Theorem 4.6. Let0 < pjy <ocoforl < j <n+1landl <k <n, and also
let0 < pj <ooforl < j <n+ 1. Suppose that a locally continuoudinear
mapT : &" — Lo satisfies

T s - s XED Ly o < MIELYPE By M0



Some remarks on multilinear maps and interpolation 171

for all setsE; of finite measure and all < j < n 4 1. Assume that the system
below

/puu Yp2 ... 1/pi, 1\ [o1 1/p1
/par  Y/p22 ... 1/pa 1] | o2 1/p2
1/pan 1/pw2 ... 1/pwm 1 oy, 1/p,
1/pw+v1 Y/ Pz -+ 1/ ppron 1) \—7 1/pusa
has auniquesolution (oy, ..., 0,, —7) € R"*! with not all o; = 0. Suppose

that(1/q1, ..., 1/q,, 1/q) lies in the open convex hull of the poirtls/ pj1, . . .,
1/pjn, 1/p;) iN R and let0 < #, ¢ < oo satisfy

1 1
(28) Yo ===
1<k<n I t
0 #0
ThenT extends to a boundedlinear mapT : [[;_; Ly, — L, withnorma
multiple of M.

RemarkWe remark that the existence of the unique solution in the linear system
of Theorem 4.6 is equivalent to the condition thatthel pointsd; = (1/pjr)i_,

are affinely independent iR". We also note that as in Corollary 4.4 the result
above is valid fomr-quasi-sublinear maps.

Proof. We clearly only need to consider the case of equality in (28). It is clear
that the Boyd index assumption of Theorem 4.1 is satisfied. Clearly we have

. O 1
— =T+ —.
1 9k q

Henceiff1, ..., f, € £ we have
n n
xl/ate 1_[ fk*(xﬁk) — l_[xﬁk/l]kfk*(xak)'
k=1 k=1

Let F(x) = x* ]_[Uk#o ff(x). Then

00 d 1/t 00 d 1/5
(fo (xl/qF<x>>‘7x) sCl_[(/o (x”k/qkfk*<x“k))’k7x> -

0 #0

Now if o # 0

) ) N Idx 1/ -1
(/O (xR f (Xak))kT) = okl fllz -
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Thus we have an estimate

. de\ V1
(/o (xl/qF(X))t7> =C 1_[ 1 el g

ox#0

In view of Corollary 4.3 this completes the proof. O

There is a version of the above result for the degenerate case corresponding
to Theorem 4.5:

Theorem4.7.Let0 < pjy <ooforl < j <n4landl <k < n, and let
0 < p; <ooforl < j <n+ 1. Suppose thatalocally continuoudinear map
T : &" — L satisfies

IT(XErs -+ XEDL, 0 = M|EL|YP1 . |E,|Y P

for all subsetsE), of finite measure and all < j < n+ 1. Assume that the+ 1
points®;, = (1/pjr);_, are affinely dependent iR", but the points6;, 1/p;)
are linearly independent ilR"*1. Suppose thatl/q, ..., 1/q,, 1/q) lies in
the open convex hull of the point§/p;1, ..., 1/pjn, 1/p;) in R Letr =
mMini<j<,41 pj and0 < 7, t < oo satisfy

1]>1 if r=1,
|1 = 2 if r#1,
o, #£0

where{oy};_, are the unigue solutions of the system

n
Y21, 1s<js<n+l
k=1 Pik

ThenT extends to a boundedlinear mapT : [],_; Ly,.., = L4 With norm a
multiple of M.

Proof. This is deduced from Theorem 4.5. It is clear our hypotheses guarantee
the appropriate conditions on the Boyd indices. Pick aryO< 1 sothak < r
if » # 1 ands < 1 otherwise with

1 1

s 20 tk
It then suffices to verify (27) in Theorem 4.5. To do this we can clearly suppose
that
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Supposefy, ..., f, € € and set
F)=x [ frGa™).

(71(7&0
Then
Fxy =TT x% fr ™)
0, #0

and so "

o0 dx\""* B

( / F(x)‘?7> < T lowl™ ey, -

0 ox#0

This establishes (27) and completes the proof. O

5. Examples and applications

In this section we discuss some examples of multilinear interpolation. For sim-
plicity we restrict ourselves to bilinear and trilinear examples.

Example 5.1.(Young's inequality and O’Neil’'s inequality) On a locally compact
abelian group consider the bilinear operdtfirg) — f*g, wherex denotes con-
volution. LetH denote the closed triangle R with vertices(1, 0, 0), (0, 1, 0),
and(l1,1,1). The well known Young's inequality says that

(30) If=gle, =Clfllc,lglz,

holds if the point(1/p,1/q,1/r) lies in the closure of the triangld .
The three trivial estimates

If*gle, = Wflallglieys
If *gllee < NI fNzsllgle., and
If*glie = NSl liglle,
give (30) on the interior ofd. The estimates on the sides follow from bilinear
complex interpolation.
Applying Theorem 4.6 in the situation above we obtain O’ Neil's inequality. If

the point(1/p,1/q,1/r)liesinthe interior of the triangl& and O< s4, 5o < 00
and 1/s= 1/s; + 1/sy, then

(31) 1f % glz,, < Clflz,, lgl,.,-

The special case = p, s = s, = oo is of particular interest. Observe that if
(1/p,1/q,1/r)liesinthe interior ofd,then1/p+1/q = 1/r+ 1, from which
it follows that p < r, which in turn implies that

If*glle, < CIf*gle,, = CIflle,181L, -
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The inequality above provides a sharpening of Young'’s inequality since the space
L, is replaced by.¢-*°.
More generally we can use Theorem 4.1 to obtain the following result:

Theorem 5.2. SupposeX, Y, Z are r.i. spaces whose Boyd indices satisfy the
conditions
1< px, pv, pz.9x,qy,qz < 00,

1 1 1
Px Py qz

and

1 1 1

—+—=<1+—.

q9x gy Pz
Assume thaZ is maximal and—convex for some > 0. Then(f, g) — fx g
mapsX x Y to Z provided the maf f, g) — xf(x)g(x) mapsX (0, co) x

Y (0, 00) to Z (0, 00).

Remark.Of course we can state this theorem with less stringent requirements
on the Boyd indices, namely that the Boyd cube intersécia a subset of its
relative interior. As in the discussion in the remarks after Theorem 3.7 this can be
illustrated. We can allow for exampjey < 1 providedgy < pz, andgy = oo

is permissible provideg;* < 1+ ¢,*. Similarly p, < 1 is permissible if

Pyt + pyt < 2 andg; = oo is permissible itg;t + ¢, > 1.

Example 5.3.Fixthree numbers & «, 8, y < nsuchthatt+p > n,8+y > n
andy + « > n. Consider now the trilinear fractional integral form

lopy(f 8 h) :f / FX)eOMh@)|x =y ™y —z|P|lz—x|Vdxdydz.
n n Rn
We claim that the following inequality is valid

apy (f, & W = CllfliL, gl IRl
if and only if

1 1 1 + B8+
(32) ;+_+_+w:

q r n

3,

1< p,q,r <oo, and l—i—é—i—} > 1.
p q r
Note that (32) requires + 8 + y < 2n.
Examples can be given to prove the necessity of the conditions on the indices
above. Let us prove here the sufficiency. The assumptiang > n, 8+y > n,
andy +« > nimply @ + 8 + ¥ > 3n/2 and hence it follows from (32) that
1/p+1/9+1/r < 3/2. Therefore the plane given by the first equation in (32)
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cuts the unit cubg0, 1]° at the six pointsd; = (1, 2n —a — 8 — y)/n, 0),

Az = (@n—a—p—y)/n 1,0, A3 =011 —a—B—y)/n) As =

O0,2n —a—B—y)/nl)As = (2n —a — B —y)/n,0,1), andAs =

(1,0, (2n — a — B — y)/n). These six points form the vertices of a hexagon.

It suffices to prove Lorentz space estimates at these vertices for characteristic
functions. For instance at the vertex the estimate we need to establish is

(33) / / lx — y|7y — 2| Plz — x| Vdxdydz < C|E1||Eo|* "
E,1JE; JE3

+ﬂ+V

First integrate ir;. We have
(34)
y =zl Plz=x7dz < | |y —zlPlz—x|7dz = Clx — y" P77,
E3 R

for all x # y sinceg + y > n. The last equality above can be easily shown by
a translation, a dilation, and a rotation. Using (34) we obtain

/ / Ix — y|™|y — z|P|z — x| Vdxdydz
Ey JE> JE3
=< C/ / |_x — yl"_“—ﬂ—ydydx

Ei1JE>

<c / / BT dydx
E1 J|y|<c|Ez|Y/n

< ClEy|| Eo| == P00,
which proves the required estimate (33). This example can be found in [3] when
n=1anda = =y.
Inthis example we have atrilinear form and itis appropriate to apply Corollary
3.8. Again simplifying our conditions on the Boyd indices gives:
Theorem 5.4. SupposeX, X», X3 are r.i. spaces omiR”. Suppose the Boyd in-
dices satisfy the conditioris< px, < gx, < ocofori =1,2,3and
3 3

i-1 9% i=1 Py,
Thenl, g, is bounded 01Xy x X, x X3 provided the trilinear forn(f, g, h) —
2= £ (x)g(x)h(x) is bounded oK1 (0, 00) x X»(0, 00) x X3(0, 00).

Remark.Here as in the preceding example we can relax the conditions on the
Boyd indices with the right extra hypotheses. For examplexf < 1 itis
necessary that

1 1
- + _ > 2 — w.
dx,  qXx; n
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1

A
(0,0.1) 4

As

A3

A6

A2

(0,1,0)

1/p
Fig. 1.The setof al(1/p,1/q,1/r) suchthatly g, (f. 8. W < Cll fliL,IglL, IAllL, -

Example 5.5.Consider the operator

I(f,9)x) = fx+t)gx —1)de.

[t1=1

We will show! mapsL,(R") x L,(R") into L,(R") when(1/p,1/q,1/r)lies
in the closed convex hull of the point4, 0, 0), (0, 1,0), (1,0,1), (0,1, 1),
(1,1,1),and(1,1,1/2).

By interpolation it suffices to establish boundedness estimates at these six
points. Five of these estimates are trivial. We only prove fhatipsL; x L, —
L1/2.

Suppose that we have established the estimate

(35) (S @)Ly, = Cllfllyllgli,

for all f andg supported in two cubes of sidelength one. Then we prove (35)
(with a larger constant) for alf andg integrable.

For eachk € Z", let Q, be the cube of sidelength one whose sides are
parallel to the axes and whose lower left cornet is Z". let f, = fxo, and
gm = 8Xo,- Thenforeaclt € Z" there exist at most finitely mamy € Z" such
that! (fi, g») isnonzero. This is because the intersection of the{setgs| < 1}
and(Qx — O.) has to be nonempty.
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Now write
ICF2) =" > I(fi:&n)
keZ" meZ"
as a sum of a finite number of terms of the form

D 1 (fi &ta)

kezZn

whered € Z" lies in a ball of radius at most a dimensional constant. Now

2
I @)Ly = (Z/R |I(fkvgk+d)|1/2dx>
kezn VR

2
1/2 1/2
<C (Z A ||gk+d||/1> < ClIf a8y

keZn

by Cauchy-Schwarz, where the penultimate inequality above follows from the
asumption that (35) holds for the functiofisandg,,. Summing ovet we obtain
the required estimate: Li x L1 — L1, with a larger constant.

We now prove (35) forf andg supported in cubes of sidelength one. (Think
of f = fr andg = gi1q.) Now observe thal (f, g) is supported in a cube of
sidelength two. Holder’s inequality gives

VI CF©)llan < CIT( ) l1s
< c/ / F(x +DllgCx — Dl didx < ClLf Il lgllLs.
nJt<1

Example 5.6.We now consider the bilinear fractional integral

La(f. )(x) = /Rn fx+1)glx —n)t|*"dte,

where O< o < n. Homogeneity considerations imply thigtcan magp. ,(R") x
L,(R") — L.(R") only when
1 1 1 «

P q r n

We will now show thatl, mapsL, x L, — L, when the pointl/p,1/q,1/r)
lies in the open convex hull of the pentagon with vertices0, 0), (1,0, 1— %),
(1,1,2=9),(0,1,1 — %), and (0, ¢, 0). More precisely we will show that a
weak-type estimate holds at each vertex of the pentagon below.

We first consider the verte¥’, 0, 0). Take f = x4 andg = x3, WhereA

and B are measurable sets of finite measure. We have

1 e (Xas XB)ILs < SUP t|*"dt < / |t]*"dt = C|A|*/".
—x+A |t]<c|A|

xeR
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1r

/N
(1,1, (2n-e)/)
//\ (0.1,1)
(0,1, (n-*)/ v)
(1,0,1)
(1,0, (n-)/v)
{ /0 > 1
(+/+00) O 0 010
(1,0,0) (1,1,0)

1/p
Fig. 2.The setofal(1/p,1/q,1/r)suchthatly : L, x Ly — Ly.

Likewise we obtain the required estimate at the ve(®x, 0).

The estimates at the verticek, 0, 1 — ) and(0, 1,1 — #) follow from the
estimates at the verticeg, 0, 0) and(0, =0 respectively via duality. Alterna-
tively, just observe thak, (x4, xz) < J.(x4), WhereJ, is the usual fractional
integral

(Ju ) x) = . fx=yy*dy,
and thus the estimatfl, (x4, x8)llL,/u_o. < C|A] directly follows from the
corresponding estimate for the linear operator.

Finally we are left with the estimate at the ver{@x1, Z”T‘“). For j e Zwe
introduce operators

bhow= [ pu+ gt —od
[t]<2/
and we note that fof, ¢ > 0 we have
L(f.g) <CY 2 ™MI(f.g).

jeZ
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Next we observe that by a easy dilation argumiembapsL, x L1 — L/, with
norm bounded by a constant time ZThis fact together with the observation

1/2
f (L (f, ) (x)Y2dx < ( f Li(f, g)(x)dx) |E|Y?
E

1/2 1/2
< ClFI 218l 2 EM2,

implies that for any measurable getwith finite measure we have
(36) / (L (f, )2 dx < 11 £11 gl mine™, |EY2.

Now pickE = E; = {x : |I,(f, g)(x)| > A}. Then Chebychev’s inequality and

(36) give
WA < [ 32 g0
£ jez

<y e / 11;(f, &) () [Y%dx

jez
< Y 2@y f R g 2 min2i", | E Y2
jez
1/2 1/2
= CIfIL2Ng 2 e/,

1/2
dx

This implies that

MEN ™ < CIf N, lgly

which is the required weak type estimate at the vefieg, 2”"‘“). This example

was studied in [4] when > 1 and should be contrasted with the main result in
[11]. The same result was independently obtained in [10]. To use the full strength
of our results we apply Theorem 4.2 and the succeeding remark to obtain the
following generalization for r.i. spaces.

Theorem 5.7. SupposeX, Y, Z are r.i. spaces orR” with Z maximal ands-
convex for some > 0. Suppose the Boyd indicesXfY, Z satisfy the condition
that the Boyd cube intersects the pentagon generate(:%bg), 0,(1,0,1—
%), (1,1, 2”7*"‘), 0,1,1— %) and (0, %, 0) in a nonempty subset of the interior.
Then in order thaf, mapsX x Y to Z itis sufficientthal f, g) — x* f(x)g(x)
mapsX (0, co) x Y (0, co) to Z(0, c0).
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