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Pelczynski’s Property (¥) on C(€2, E) Spaces
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L. Introduction
Let E and F be Banach spaces and suppose T: E—>Fisa bounded linear operator.

T is said to be unconditionally convergmg if whenever Z x, is a weakly

unconditionally Cauchy (w.u.c.) series then 2 Tx, is an uncondltlonally conver-
n=1

gent series. The Banach space E has Pelczynski’s property (V) if every uncondition-
ally converging operator on E is weakly compact. Pelczynski [8] showed that if
is a compact Hausdorff space, then C(Q) the space of continuous scalar-vajued
functions on £, has property (V). He also introduced property (u). A Banach space
E has property (u) if whenever (x,) is a weakly Cauchy sequence there is a w.u.c.

Z u; so that x,— Z u;—0 weakly. Any order-continuous Banach lattice (in
i=1

partlcular, any Banach space with an unconditional basis) has property (u) [ 7, Vol.
II, p. 31]. A Banach space which has property (u) and contains no copy of /, has
property (V). This follows from [ 8, Proposition 2, p. 642] and [ 10, Main Theorem,
P. 2411]. It has been asked (Pelczynski [8, Remark 1, p. 645], see also Diestel and
Uhl [4, p. 183]) whether if Q is a compact Hausdorff space, C(2, E) the space of
continuous E-valued functions on Q has (V) whenever E has (V). Our main result is
that if E has («) and contains no copy of [, then C(, E) has property (V). This
covers and strengthens practically all known cases.

First, let us fix some notations and terminology. Recall that a series Z X,ina
n=1

Banach space E is said to be weakly unconditionally Cauchy (w.u.c.) if for every

o
X*e E*, the series 3> x*(x,) is unconditionally convergent. There are many other
™ - n=1 . . .
Criteria for w.u.c. that are quite useful, for instance, it can be shown (see [3,

Theorem 6, p.44]) that a series Y x, is w.uc. if and only if
n=1

—
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sup sup || X g;x,|l <oo.lf E and F are Banach spaces, L(E, F) will stand for the
nelN a; =11 |li=1
space of bounded linear operators from E to F. Finally, any other notation or

terminology used and not defined can be found in [4] and [7].

IL. Some Preliminaries Lemmas
Lemma 1. Let E be a Banach space containing no isomorphic copy of 1. If E has

property (u), then for each e* € E*, there exists a w.u.c. series Y. u; so that:
i=1

1
@) fugtuptotufslit-, nzl

(®) % e =ler] .

Proof. Let e* € E*. Select any sequence (x,,) in E so that ||x,|| <1 and e*(x,)— | e*|.
Then by Rosenthal’s theorem [10] (x,) has a weakly Cauchy subsequence (e,).
Since E has property (u), we can find a w.u.c. series Y v; so that e,— > v;,—0

i=1 i=1
weakly. Now, by induction we can select an increasing sequence of integers
(Pa:n=0,1,2,...) with py=0and ¢;20 (j=1,2,...) so that

Pn

and

=

!
n

% cj<‘_jzv v,-—ej)

j=pn-1+1

This follows from Mazur’s theorem since 0 must be in the closed convex hull of

{e,,— X v,} for any N.
i=1

n=N
Let Pn j
Sp= 2 gl Xu.
J=pn-1t1 i=1

1
Then ||s, | <1+ - and e*(s,)— |le*|. Let s,=0 and put u,=s,—s,_;, n=12,....

Then if 6,=+1fori=1,2,...,n

Pn

n
> o= 3 t;,
i=1 j=1

o0

where [t]<1, j=1,...,p,. Thus ¥ u;is a w.u.c. series as required.
i=1

Lemma 2. Let E be a separable Banach space containing no isomorphic copy of "1
and with property (u). Then there is a sequence of maps 8,: E*—E so that each 0,1
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universally measurable ( for the weak*-topology on E*) and for each e* € E*

() i f{e*) is a w.u.c. series
i=1
1
(i1) ]|91(e*)+...+0,,(e*)||§1+;, nz1

(i) T Ofe?).e>=le*].

Proof. Let V be the closed unit ball of E*. Then V is a compact metric space in the
weak*-topology. Consider the Polish space EN x V. In EN x V let B be the set of
{(e,), €*} so that

sup sup

n
2 0
neN o;=+1 1

i=

<o,

1
leg+e;+...+e 1+ py nx1,
and
T ete)=le*.

Noting, in particular, that the norm is weak*-Borel on ¥V we see that B is a Borel
subset of EN x ¥ and hence is an analytic set [2, Proposition 8.2.3, p. 262]. Define
p:B->V by p{(e,), e¥} =e*. Then y is surjective by Lemma 1. Now by [2,
Theorem 8.5.3, p. 286] there exists a universally measurable map {: V— B so that
{p(e*)=e*, for e* e V. Now for each n>1 define 0,: E*>E so that if |e*| <1,
{(e*)={(0,(e*)), e*} while if |le*| > 1,

=g, (-5
Bn(e )'—gn(He*“>

IIl. The Main Theorem

Theorem 3. Let E be a Banach space containing no isomorphic copy of 1, and with
property (u). Then if Q is a compact Hausdorff space, C(Q, E).has property (V).

Proof. First note that since sequences of continuous functions in C(£, E) take their
values into a separable subspace of E, it suffices to prove the theorem for a
Separable Banach space E.

Case 1. Assume Q is metrizable and let T: C(Q, E)— X be an unconditionally
Converging operator and let G:Y. —L(E, X**) be its representing measure [4, p.
181-182], where 3 denotes the o-field of Borel subsets of 2. Recall that for each
X* & X*, the measure G,.:Y —E* defined by (x, G.(B)>=<{x* G(B)x) is the
Iepresenting measure of T*x*. Since T is unconditionally converging G takes its
Values in L(E, X) and if (B,) is a decreasing sequence of Borel subsets of Q with
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empty intersection then li’r'n Gl (B,)=0, where |G| (B)=sup{|G.|(B): |x*|<1}
(see [4, p. 182]). Therefore, there is a regular probability measure A on @ such that
lim |G| (B)=0.
A(B)— 0
(This follows for example from [4, 1.2.4 and 1.2.5]).
Let U be the unit ball of C(Q2, E)and let W= T(U)in X. We will show that Wis
weakly compact by invoking a theorem of James [6] (cf. also [9]). We need to show

that each x* e X* attains a maximum on W.
Let x* e X* with ||x*|| <1, then

sup x*(w) = || T*x*| .
weW
Since G,.is A-continuous by [5, Sect. 13, Theorem 5], the measure G, has a weak*
A-derivative h: Q—E* so that for fe C(Q, E)
L TAx*= 5) {f (@), h(w)) dA(w)

and
IT*x*| = ;E h(w)|dA.

The fact that E is separable ensures that 4 is Lusin A-measurable from  to (E*,
weak*), and hence h is weak*-Borel A-measurable [12, Theorem 5, p. 26].
Now, for each we 2, let

D)= 0,(h()

where 0, are the maps obtained in Lemma 2.
Each 8,: Q- E is universally measurable, and we recall that

Za,tp,(w) =Mw)<w, wefl,

sup sup
B ogi=%1

[9i(@) +pale) AP @IS, 0e,

T i) he) =), wee.

Note that w—M(w) is a A-measurable function. Since E is separable, by [12
Theorem 5, p. 26] the functions w,, and M are Lusin A-measurable, Let ¢, >0 be any

decreasing sequence so that Z &, < 0. Choose J,>0 a decreasing sequence S0

that if 1(B) <d, then |G| (B) < 43 For each n> 1 let 2, be a closed subset of £250
that A(22,)=1-4,, each v, is continuous on Q, and
sup M(w)=M,<w©.
we,
Note that we can assume that (,) is an increasing sequence.
By the Borsuk-Dugundji theorem [13] there is an extension operatoé
S,: C(Q,, E)»C(2,E) so that ||S,[[=1 and S,f(w)=f(w) for fe C(Q, E) &P
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wef,. Let g, ,=S,(1:]2,), and let

k
so that mx",k eWw.

Also

=

'Zl ngn,j :<=Mn
j=

forke N and all¢;= + 1. Hence as T is unconditionally converging hm X, i €Xists
forall n=1. Let w,= hm X, Then w,e Wfor allnz1.

For neN and ke]N

k k
'21 gn @)= _Zl Ini1,(©), wef,,
j= i=

while for w¢ Q,

k k 1
2 G f0)— X g,.+1,,-(w)“ §2<1+E>
j=1 j=1
Note that <4.

;j; n, () — Z In+1 ,(w)dl(w)H

lIMk-

j

<| sup
we\Q,

Z Gn, (@) — 21 Gn+1, ,(@”) IGIl (\2,) <e, .

=1
Hence

1% k—Xn+ 1.4l Se, forall kelN.
We conclude then that
[Wo—Wri 1l 26,

and hence (w,,) is a convergent sequence. Let w= hm w,, then w e W. Now for each
nelN

x*(w,) = lim x*(x, 1)

§ G T3

Mg u

{fz {gn, @), H(w)) dA(®) .

.
i
-
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Note that

T Kan @) H@DISM,Jh@)],  wee,
so that by the Dominated convergence theorem of Lebesgue,

)= [ 3 (g f0), h(@)> di(e).
IfweQ, 2j=1

I, Con e h@)= 3 o) b))

=|h(w)] .
Ifw¢Q, and keN

k
£, @ hop| s (14 ) o

Hence
xX*(w,) 2 g [h(@)di(@)— | [Mw)]di(o).

[92Y0 59
Letting n— o0 we get
x*(w)2 5) ()l dA(w)

=[T*x*|

=sup x*(v).
veW

We conclude that W is weakly compact as required.

General Case. Let Q be an arbitrary compact Hausdorff space, and let T: C(£, E)
— X be an unconditionally converging operator, and let {y,},», be a sequence
contained in the unit ball of C(Q, E). Similarly as in [1, Theorem 8] we can
construct a compact metric space € a continuous mapping from Q onto @, an
operator T: C(Q2, E)—X and a sequence {t,},»; in the unit ball of C(&, E) such
that T(y,)= T(y,) for all ne N. Moreover since T is unconditionally converging
it is immediate that T is unconditionally converging too. By Case 1, the operator T
is weakly compact and therefore {Typ,},» ; has a weakly convergent subsequence.
Hence we conclude that C(£2, E) has property (V).

We conclude by applying our result to the case when E is isomorphic to &
closed subspace of an order-continuous Banach lattice [7, Vol. I1, p. 7]. The next
Lemma can be deduced from [14, Theorem 16]. We shall include a proof for the
sake of completeness.

Lemma 5. Let E be a closed subspace of an order-continuous Banach lattice F. If E
has property (V) then E contains no subspace isomorphic to 1.

Proof. Suppose G is a closed subspace of E isomorphic to /,. Since Gis a separable
subspace of F, there is a band F,, with weak order unit in F so that GCFo [ 7, Vol
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11, Proposition 1.a.9]. We show that the adjoint j§ of the inclusion map j,: G- F,
cannot be unconditionally converging. Let y be a strictly positive linear functional
on F,, this of course is guaranteed by [7, Vol. II, Proposition 1.b.15]. If j§ is
unconditionally converging, then j§ [ — v, p] is weakly compact in G*, this follows
from [8, Theorem 1] and the fact that the principal ideal in F¥ generated by pisan
AM-space (see [11, p. 102]). Now if f*e F§ and f* =0, then f* Anyp?f* weak*
and hence if j3 is unconditionally converging j¥( f* A ny) will converge in norm to
jEf*, thus G* =j§(F*) will be weakly compactly generated. As G*~I, this is a
contradiction.

Since F, is complemented in F {7, Vol. I, Proposition l.a.11], the adjoint of
the inclusion map j: G- F, j* fails to be unconditionally converging. However, j*
factors through E*. Hence E* contains a copy of ¢, and thus is not weakly
sequentially complete; this contradicts property (V) (see [8]).

Theorem 6. Let E be a Banach space isomorphic to a closed subspace of an order-
continuous Banach lattice. Then E has property (V) if and only if C(Q,E) has

property (V).

Proof. If E has property (V), then E contains no copy of /; by Lemma 5; E has
property (u) automatically.

Conversely, if C(Q, E) has property (V), then E will have property (V) since it is
trivially complemented in C(Q, E).
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