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1. Introduction 

Let K be a compact Hausdorff space and let )~ be a probability measure on K. We 
denote by Lo(K,2) the space of all Borel functions f:K--*N with the topology of 
convergence in measure. Lo(K, 2) is an F-space (complete metric topological vector 
space) if, as usual, we identify functions equal almost everywhere. 

Spaces of the type Lo(K,2 ) are probably the most studied examples of 
non-locally convex topological vector spaces. In spite of their bad reputation there 
is some evidence that they are in fact rather well-behaved spaces. Thus for a 
general topological vector space X it is often very useful to be able to produce non- 
trivial linear operators T:X--*Lo(K,2 ), in the same way as linear functionals 
facilitate the theory of locally convex spaces. 

We shall say that a point xeX is pathological it wherever T:X-*Lo(K, 2) is a 
continuous linear operator then Tx=O. X is pathological if every xsX  is 
pathological. Note that if X is separable then it suffices in the definition to take 
K =(0, 1) with Lebesgue measure. 

The first example of a pathological F-space was given in 1973 by Christensen 
and Herer [3]. A more natural example is the space Lp/Hp where 0 < p < 1 (see [1, 
5]). However the Christensen-Herer example also showed the connection with 
pathological submeasures. 

We recall that if d is an algebra of subsets of some abstract set L then a 
submeasure 4~:d--,lR is a map satisfying ~b(A)<_~b(AwB)<d~(A)+O(B) and 
th(O) = 0. 4~ is said to be pathological (see [3, 11]) if whenever 2 : d  ~ N  is a (finitely- 
additive) measure with 0 <)~(A) < th(A) (At  d )  then )~- 0. 

Now if S(~)  denotes the space of all simple d-measurable  functions f:L~IR, 
then S(~)  can be topologized by the topology of convergence in @measure 
(functions differing only on a set of @measure zero are identified). The completion 
of S(~)  in this topology may be denoted by A(~b). Then A(q~) is pathological 
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whenever tp is pathological. In [3] this is essentially established only for countable 
algebras ~r however the argument can be modified for general algebras and in 
any case we shall give an alternative proof later. 

The purpose of this note is first to give a simple geometric criterion for the 
pathology of a point in a topological vector space. We then use our results to give 
some further information on pathological submeasures. We show, for example, 
that if d is an algebra and/2 :~-~Lo(K,  2) is an additive map which is controlled 
by a pathological submeasure 4~ : d ~ l R  then #=0 .  This extends a recent result of 
Talagrand [12] who essentially showed the same result for a bounded map 
# : d - , L o ( K ,  2). We also give a criterion for pathology of a submeasure similar to 
the condition for a point in a vector space. 

2. A Nikishin-Type Theorem 

Let K be a compact Hausdorff space and let 2 be a probability measure on K. We 
denote by M*(K) the space of all Boret measurable functions f :K ~ lR~{ o o } .  We 
also define for e > 0 and a > 0 

V(~, a) = { f ~ M*( K) :2(If] > a) _-< e}. 

I fX  is a real vector space then a linear map T : X ~ M * ( K )  is prelinear if 

T(ex + By)(s)=eTx(s)+ ~Ty(s) a.e. 

whenever I Tx(s)l < oe, I Ty(s)l < oe. 
The following theorem is similar in spirit to the Nikishin theorems on 

factorizing operators into Lo(K, 2) [9]. 

Theorem 2.1. Let X be a topological vector space and let T : X - ,  M*(K) be a prelinear 
map. Suppose that for some neighborhood W of 0 in X we have T(W)C V(e, a). Then 
there is a Borel subset E of K with 2(E)__> 1 -  e so that the map T E is a continuous 
linear operator from X into Lo(K, 2) where 

TEx(s ) = Tx(s) s 6 E 

=0 seE.  

(In particular ITEx(s)[ < oo, 2-- a.e.) 

Proof Let ]1-tl be a continuous F-norm o n X  so that [tx[t < 1 implies x e  W. Let F be 
the collection of sequences {f.} in M*(K) so that f , =  Tx, where Y~llx.II < o0. For  
each { f .}eF  let C=C{ f . }  be defined by 

C :  {s: Jim f,(s)=O}. 

Let cr be the collection of all such subsets of K. By interlacing sequences it is clear 
that if Cl, C 2 e ~  then ClcaC2eCr Hence if we let E be a Borel subset of maximal 
measure so that 2(E\C)=0 for eeoC, then 

2(E)= inf 2(C). 
CE~ 
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The map T E has the property that if Y~l[x.II < oo then TEf,--+O 2-- a.e. and it easily 
follows that T~ :X-+Lo(K, 2) is continuous. It remains therefore to show that 2(E) 
> 1 - e .  For  this it suffices to show that if C=C{f,}ccg then 2(C)> 1 - e .  

Let f ,=Tx,  where ~llx.ll<oo. Let { t / . : n= l ,2  . . . .  } be a sequence of inde- 
pendent identically distributed random variables on some probability space (t2, P) 
each with normal distribution, mean zero and variance one. Let 

Then Q(0)--+0 as 0-+0. 
For  ~o~f2 let 

Then 

Thus for 0 > 0, 

and 

~)(0)=(~*'~(j/'~l[)-{ - 1) ~ { tOxi{  j . 
i=1 

i=1 

~(110~.11)~ Q(0), n~N, 

P(I103, II > 1) < Q(0). 

(P x 2) {(~o, s) :1Tr > 0-1 } < e + Q(0). 

If we fix scK and max Ifk(s)l=oo, then the set of {~1 . . . .  ,~.}~IR" so that 
l<=k<=n 

lalfl(s) + . . .  + ~,f,(s)l < ao is a proper linear subspace. Hence 

P(IT~,(s)I = oo)= 1. 

If max IL(s)l< oo, then Tr is normally distributed with mean zero and 
l<_k<_n 

/ . \1/2 
variance k=l ~ Ifk(S)12" Hence if h.(s)= ~k=ls lfk(S)12) " 

P(h,(s)lnll >= aO- ~)d,Z(s) <= e + e(O). 
K 

Here the integrand is taken to be one if h,(s)=ao. Now let n-+az and put 
B= {s:h,(s)--+oo} ; then 

2(B) < ~ + ~(0). 

Letting 0~0 ,  ;t(B)<e. In particular 2(C)> 1 -  e, where C = {s: lim,_~oo f,(s)=0/.J 

3. Finitely Additive Measures  

In this section let D be a discrete set, and let v be a finitely-additive measure on the 
collection ~ D  of all subsets of D. Suppose also v(D) = 1. We let M(D) be the space 
of all functions f :O--*N, and set V(e, a)(M(D) to be the set of f such that v(Ifl > a) 
<e. 
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Theorem 3.1. Suppose X is a topological vector space and T : X ~ M ( D )  is a linear 
map. Suppose Txo = 10 and that W is a neighborhood of  zero so that T(W)C V(e,a) 
where 0 < e < 1. Then there is a compact Hausdorf f  space K,  a probability measure 2 
on K and a continuous linear operator S : X - ~ L o ( K ,  2 ) so that S x o = l  and if 
a > 0  S(gOc V(~(1 -~)-  1, a+a). 

Proof. We let K = f l D ,  the Stone-Cech compactification of D. For  each f ~ M ( D )  
there is a unique continuous extension f * : K ~ I R u { o e }  (the one-point com- 
pactification of IR). We consider the prelinear map T* : X - * M * ( K )  defined by T*x  
= (Tx)*. Let v* be the regular Borel measure on K induced by v. Then if we W and 
0">0~ 

v*(I T*wl > a + a) < v(I Twl > a) 

Thus by Theorem 2.1, there is a Borel subset E of K with v*(E)<= E so that the map 
x ~-+(T*x).lr\ E is continuous. 

Define 2(B) = v*(K\E) -  lv*(Bc~(K\E)) for a Borel set B. Then the map S = T* is 
continuous from X into Lo(K, 2) and Sx  o =1 r. If we W, then for a > 0 ,  

2(1T*wl >= a + a) < (1 - v*(E))- le 

= e ( 1 - e )  -1 

We shall also need a finitely-additive version of a lemma of Musial et al. I-8]. 
The proof is virtually identical - the key uses of Fubini's theorem only need 
products with f ini te  probability spaces. 

Lemma 3.2. Suppose f l . . . . .  f , e  M(D) and ~ 1 f  i + . . .  + c~,f, ~ V(e, a) for  every a i = + 1. 
Then f l l f l  + . . .  + flnf, E V(8e, 8a) for  every fli with - 1 < fli < 1. 

We note in this section a classical criterion of Kelley [7] on the existence of 
finitely-additive measures on D. 

Proposition 3.3. Let  cg be a collection of  subsets of  D. Suppose that whenever 
C~ . . . . .  C.~Cg 

inf -1 ~ lc~(d)<e. 
deD n k= l 

Then there is a finitely-additive positive measure v on D so that v(D) = 1 and v(C) < 
for  every C~Cg. 

4. Pathological Vector Spaces 

Lemma 4.1. Let  X be a real vector space and suppose W CX is a subset. Suppose 
x o e X  and e > O. Then the following conditions are equivalent: 

(i) There is a discrete set D and, a f ini te ly  additive measure v on D with v(D) = 1, 
and a linear map T : X - * M ( D )  with Tx o = l o and T (W)C F(e, 1). 

(ii) Whenever {w 1 . . . .  ,wn} is a f ini te  sequence in W there is a subset F of  
{1,2 . . . . .  n} with [Fl>=n(1-e) and xq~co{ +_wi:i~F}. 
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Proof (i)~(ii). Suppose {w x . . . .  ,w,} is a finite sequence in W. Let Ai= {d:lTw,(d)l 
> 1}. Then 2(Ai)<e and so 

S ~ 1A,d2 <= he. 
i = 1  

N o w  there is a set B which is an a t o m  in the a lgebra  generated by {A 1 . . . . .  A.} so 
that  

• 1A,(d)<n~, deB.  
i = 1  

Let F = { i : B n A i = O  }. Then IFl>n(1-e) and ITwi(d)l<l for i eF and deB. If 
ge  co{ ___ Twi:is F} then Ig(d)l < 1 for de  B and hence lrq~co{ _+ Twi:ie F}. 

(ii)~(i). Let D be the subset of  X '  (the algebraic dual of  X) consisting of all d so 
that  d(xo)= 1. Define T : X ~ M ( D ) b y  Tx(d)=d(x). 

For  each we W, let A w = {de D:ld(w)l > 1 }. F o r  every finite sequence {w 1 . . . . .  w,} 
in W, we can find F C { 1, 2 . . . . .  n} with IFI > n(1 - e) so that  x o r + w i :ie F}. Thus  
there exists deD with Id(wi) I < 1 for ieF. Hence 

~ l a w  ,(d)__< ne. 
i = 1  

N o w  by Propos i t ion  3.3 there is a finitely-additive measure  v on D with v(D)= 1 
and v(Aw)<e for every we W. This proves (i). 

We can now state our  main  theorem character izing pathological  points  in a 
topological  vector  space. Cont ras t  the condit ions below with the s tandard  
condi t ions below with the s tandard  condi t ions for the existence of  a cont inuous  
linear functional f so that  f(Xo)~0. 

Theorem 4.2. Let X be a topological vector space and suppose xoeX. Then the 
following conditions are equivalent: 

(i) x o is pathological. 
(ii) For any e, 0 < e < 1, and any neighborhood I4" of O, there is a finite set 

{w 1 . . . .  ,w.} in W so that whenever F C { 1 , 2  . . . . .  n} with [F inn ( i - e )  then 
XoeCO{ +_wi :ie F}. 

(iii) For some fixed e, 0 < e < 1, and any neighborhood W of 0 there is a finite 
sequence {w 1 ..... w.} in W so that if F C { 1 , 2  . . . . .  n} with IFl>n(1-e) then 
XoeCO{ +wi:ieF}.  

Proof (i)=~(ii). I f  (ii) fails for some 0 < e < 1 and  W there is, by L e m m a  4 a d iscre te  
set D with a finitely additive normal ized  measure  v and  a linear m a p  T:X~M(D)  
so that  Txo=l o and T(W)C V(e, 1). By T h e o r e m  3.1, x 0 is not  pathological .  

(ii)=~(iii). Automatic .  
(iii)=~(i). I f  x 0 is not  pathological  there exists a linear opera to r  T:X--*Lo(K, 2) 

with Tx o =1K. Choose  W a ze ro-ne ighborhood  so that  T(W)(  V(e, 1). The  existence 
of T implies that  (iii) must  fail [ repeat  the p roo f  of  L e m m a  4.1(i)=~(ii)]. 
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5. Pathological Submeasures 

We now apply our results to the study of pathological submeasures (see [2, 3, 11]). 
Before proceeding we shall state two criteria for the pathology of a submeasure. 
Let d be an algebra of subsets of a set L. 

Theorem 5. l .Let  ~ : d ~ l R  be a pathological submeasure. 
(i) [2, Theorem 5]. For every e > 0 there exist A 1 .. . . .  A,  E d so that c~( Ai) < e and 

1 ~ 1A >__1--~. 
n /= l  

(ii) [2, Theorem 2]. I f  O : d ~ I P ,  is a normalized (finitely-additive) measure and 
~>0 then there is a set A e d  with c~(A)<~ and e(A)>-_l-e. 

Let X be a metrizable topological vector space, F-normed by x~-*[Ix[I. Let 
# : d ~ X  be any additive set-function. Then a submeasure c,b:d-*X is said to 
control # if given e > 0 there exists 6 > 0 so that $(A)< 5 implies ll#(A)[I < e. Every 
additive set function has a control submeasure [l#]q defined by 

II # II (A) = sup(ll #(B)II :B C A, B e d ) .  

# is said to be exhaustive if ll#(A,)N ~ 0  whenever (A,) is a disjoint sequence. I f#  has 
a control measure then ~t is exhaustive; the converse is the (unsolved) Maharam 
problem. 

However in the special case X = Lo(K, 2) the converse is known from recent 
results [6, 12]. A classical result of Orlicz [10] implies that if # is bounded then V is 
exhaustive. The converse is proved for countably additive # in [6, 12]. This also 
give the result for exhaustive #, either by a standard extension procedure or by 
using the Drewnowski reduction of exhaustive measures to countably additive 
measures [4]. Now if # : d ~ L o ( K , 2  ) is bounded then as shown in [12] we can 
actually find a function f r  ) with f > 0  a.e. so that the map A ~ f . # ( A )  is 
bounded into L2(K, 2). Hence there is a (finitely-additive) control measure for #. 

Summarizing we state: 

Theorem 5.2. Let # : d ~ L o ( K , 2  ) be an additive set function. The following 
conditions are equivalent: 

(i) # is exhaustive. 
(ii) # ( d )  is bounded. 

(iii) There is a control measure/or #. 

Lemma 5.3. Let dp :d~ IR  be a pathological submeasure, and suppose 
#:d- -*Lo(K,2  ) is an additive set function. Suppose for some 6>0,  e>0,  and a > 0  
we have #(A)~ V(e,a) whenever qb(A)<6. Then for any a > 0 ,  # ( d ) c  V(e,a+tT). 

Proof Let S (d )  be the space of simple d-measurable  functions and let I1" II ~ be the 
usual sup-norm on S(d) .  Let J:S(d)-~Lo(K,)O be the natural integration 
operator. Fix any 0>0.  

For  each A e d we may determine a Borel set A* in K of minimal ).-measure so 
that the linear map f ~ l r \ a . J ( f l a )  is continuous on S(d). A* is unique up to sets of 
measure zero and (AuB)* =A*uB* .  
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By Theorem 5.1(i) we can find A 1 .. . . .  A .es r  with (a(Ai)<6 so that 

16 
_1 1a'i> 1 6 + 0  
n i = l  

Now 

and hence 

1 " 16 
ni_~l lAr~ 1--6~IL, a.e. 

2(L*) < 16+ 0 max2(A*). 
IO i 

Fix i=< n. Suppose B 1 ..... B,, C A i are disjoint. The ~eilB,e V(2e, 2a) wherever cq 
= +1. Now by the lemma of Musial et al. [8] (compare Lemma 3.2), 
JfsV(16e, 16a) whenever I l f l l~<l ,  supp fcAi .  We conclude from Theorem 2.! 
that 2(A*)_-< 16e and hence 2(L*)_-_ (16 + 0)e. 

The measure A ~#(A)IK\c, is bounded and so has a control measure. By 5.1(ii) 
there exists A oesr  with ~b(Ao)<6 so that whenever Bc~A o=0 then 
#(B)IK\L,6 V(Oe, Oa). Thus #(B)~ V((16+20)e, Oa). If A CA o then #(A)e V(e,a). 
Combining for Aesr  #(A)s V((17+20)e, (1 + 0)a); as 0 > 0  is arbitrary we obtain 
the lemma. 

We shall later have need of a modification of Lemma 5.3. 

Lemma 5.4. Let ~) : d ~ I R  be a pathological submeasure, and let v be a normalized 
finitely-additive measure on a discrete set D. Suppose # :d--*M(D) is an additive set 
function and that for some 6>0,  e>0,  and a > 0 ,  #(A)e V(e,a) whenever alp(A)<=& 
Then if a > 0 ,  #(d)CV(17e,  a+a). 

The proof, which we omit, is essentially the same. One takes K = flD and 2 the 
natural probability measure on K induced by v. The integration operator J 
induces a prelinear map J * : S ( d ) ~ M * ( K ) ;  Lemma 3.2 is used in place of the 
lemma of Musial et al. to show that J* essentially satisfies the same conditions as 
J in the proof of Lemma 5.3. 

Theorem 5.5. Let 4) : d  ~IR be a pathological submeasure and let # : d ~ L o ( K ,  2) be 
any additive map controlled by c~. Then #=0 .  

Proof. This immediate from Lemma 5.3. 

Theorem 5.6. Let z be any vector topology on S ( d )  such that 1A --*0(Z ) whenever 
c~(A,)~O. Then (S(d), z) is pathological. In particular A(c~) (see the introduction) is 
pathological. 

Proof. It suffices to show that 1A(Ae~) is pathological in (S(d),z). If 
T:S(~) -*Lo(K,2  ) is continuous then A ~  T(1A) is a finitely additive set function 
controlled by ~b. Hence T(1A)=0 for each A e ~ .  

Remark. Of course the pathology of A(~b) can be proved more easily by the 
methods of [3]. However as our example where these methods do not work 
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consider the "Ll-space" of 4~ i.e. topologize S(~r by the (pseudo-) quasi-norm 

Ilfll = ~ 4~(Ifl > t)dt. 
o 

Theorem 4.2 can be applied to A(q~) to give a criterion for ~b to be pathological. 
However we conclude by obtaining a much better criterion using only characteris- 
tic functions. 

Theorem 5.7. Let ~b : d ~ F,. be a pathological submeasure. Suppose ~ > 0 and if 0 < 6 
< 1/17. Then there exist A1 . . . . .  A n e d  with q~(Ai)< e and so that if FC {1, 2, ..., n} 
with IFI > (1 - 6)n then (1 - e)ILE CO { +_ 1,4, :i6 F}. 

Proof. If the theorem is false we can by Lemma 4.1 produce a discrete set D, a 
normalized finitely-additive measure v on D and linear map T:S(d) - - ,M(D)  with 
T1L = (1 - e)- 1 lo and T(la)E V(6, 1) wherever q~(A) < e. By Lemma 5.4 T(1L)~ V(173, 
1 + a )  for any a > 0 .  Since 176< 1 this is a contradiction. 

Remarks. The condition 6 < ~7 seems artificial but we do not know how to remove 
it. It is not difficult to obtain the standard criterion Theorem 5.1(i) from Theorem 
5.7, but we do know any direct proof of Theorem 5.7 from Theorem 5.1. 
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