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1. Introduction

Let K be a compact Hausdorff space and let A be a probability measure on K. We
denote by Ly(K, 1) the space of all Borel functions f:K—IR with the topology of
convergence in measure. Ly(K, 4) is an F-space (complete metric topological vector
space) if, as usual, we identify functions equal almost everywhere.

Spaces of the type L,(K,A) are probably the most studied examples of
non-locally convex topological vector spaces. In spite of their bad reputation there
is some evidence that they are in fact rather well-behaved spaces. Thus for a
general topological vector space X it is often very useful to be able to produce non-
trivial linear operators T:X—L(K, %), in the same way as linear functionals
facilitate the theory of locally convex spaces.

We shall say that a point xeX is pathological it wherever T:X—L(K,4) is a
continuous linear operator then Tx=0. X is pathological if every xeX is
pathological. Note that if X is separable then it suffices in the definition to take
K =(0,1) with Lebesgue measure.

The first example of a pathological F-space was given in 1973 by Christensen
and Herer [3]. A more natural example is the space L,/H, where 0<p<1 (see [1,
57). However the Christensen-Herer example also showed the connection with
pathological submeasures.

We recall that if o/ is an algebra of subsets of some abstract set L then a
submeasure ¢:of -R is a map satisfying ¢(A)<P(AUB)SP(A)+P(B) and
@(@)=0. ¢ is said to be pathological (see [3, 11]) if whenever 1: o/ —R is a (finitely-
additive) measure with 0 SA(A) S ¢(A) (Ae o) then 1=0.

Now if S(«¢) denotes the space of all simple .«/-measurable functions f:L—IR,
then S(s&/) can be topologized by the topology of convergence in ¢-measure
(functions differing only on a set of ¢-measure zero are identified). The completion
of S(«) in this topology may be denoted by A(¢). Then A(¢) is pathological
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whenever ¢ is pathological. In [3] this is essentially established only for countable
algebras o ; however the argument can be modified for general algebras and in
any case we shall give an alternative proof later.

The purpose of this note is first to give a simple geometric criterion for the
pathology of a point in a topological vector space. We then use our results to give
some further information on pathological submeasures. We show, for example,
that if o/ is an algebra and p:.of — Ly(K, 4) is an additive map which is controlled
by a pathological submeasure ¢ :Z =R then p=0. This extends a recent result of
Talagrand [12] who essentially showed the same result for a bounded map
sl - Lo(K, A). We also give a criterion for pathology of a submeasure similar to
the condition for a point in a vector space.

2. A Nikishin-Type Theorem

Let K be a compact Hausdorff space and let 4 be a probability measure on K. We
denote by M*(K) the space of all Borel measurable functions f:K—Ru{co}. We
also define for ¢>0 and a>0
Ve, a)={fe M*(K):A(lf |2 a)<¢}.
If X is a real vector space then a linear map T:X —»M*(K) is prelinear if
T(ax + By} (s)=aTx(s)+ BTy(s) a.e.

whenever | Tx(s)] < oo, | T¥(s)] < co.
The following theorem is similar in spirit to the Nikishin theorems on
factorizing operators into Ly(K, ) [9].

Theorem 2.1. Let X be a topological vector space and let T:X —M*(K) be a prelinear
map. Suppose that for some neighborhood W of 0 in X we have T(W)C V(e, a). Then
there is a Borel subset E of K with ME)=1—¢ so that the map Ty is a continuous
linear operator from X into L(K, 1) where

Tpx(s)=Tx(s) s€E
- =0 S¢E.
(In particular |Tyx(s)| < o0, A—a.e.)
Proof. Let || - || be a continuous F-norm on X so that |{x[| £1 implies xe W, Let I be

the collection of sequences {f,} in M*(K) so that f,= Tx, where Y |x,|| < c0. For
each {f }eI let C=C{f,} be defined by

c:{s: lim f,,(s):()}.

H=> o

Let & be the collection of all such subsets of K. By interlacing sequences it is clear
that if C,, C,€% then C,nC,e¥. Hence if we let E be a Borel subset of maximal
measure so that A(E\C)=0 for Ce¥, then

ME)= inf A(C).
Ce¥
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The map Ty has the property that if Y ||x,|| < oo then T;f,—0 A—a.e. and it easily
follows that T;:X — Ly(K, 2) is continuous. It remains therefore to show that A(E)
= 1—e. For this it suffices to show that if C=C{f,}€% then A(C}=1—e¢.

Let f,=Tx, where Y [Ix,| <. Let {n,:n=1,2,...} be a sequence of inde-
pendent identically distributed random variables on some probability space (£2, P)
each with normal distribution, mean zero and variance one. Let

o(O)=(&(in,)+1) i (161l -
i=1
Then g(6)—0 as §-0.

For we let
¢(w)= i nlw)x;.
Then -
&(10¢,)=e(0), neN,
and

P(]|6¢,] > 1)< 0(6).
Thus for >0,
(Px ) {{w,):|TE () 207"} Se+0(0).

If we fix se K and max |f,(s)]=o0, then the set of {«,,...,a,}€R" so that
1Sk<n
oy f1(8)+ ...+, f,{$)| < oo is a proper linear subspace. Hence
P(TE (s)|=00)=1.

If max |f(s)|<oo, then T¢(s) is normally distributed with mean zero and

ISksn

n n 1/2
variance Y, |f,(s)|*. Hence if h,(s)= ( 3 fk(s)|2> )
k=1 k=1
| P(h(s)lny| Zabd™ ") dAs)S e+ ().
K
Here the integrand is taken to be one if h,(s)=o. Now let n—>a0 and put

B={s:h,(s)—>o0}; then
AB)=e+0(0).

n—o

Letting 8—0, A(B)Se&. In particular A(C)=1-—¢, where C= {s: lim f,,(s):O}.

3. Finitely Additive Measures

In this section let D be a discrete set, and let v be a finitely-additive measure on the
collection 2D of all subsets of D. Suppose also W(D)=1. We let M(D) be the space

of all functions f:D—R, and set ¥(¢,a) CM(D) to be the set of f such thatv(|f| =a)
<e.
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Theorem 3.1. Suppose X is a topological vector space and T:X —M(D} is a linear
map. Suppose Tx, =1, and that W is a neighborhood of zero so that T(W)C V(e, a)
where 0 <e < 1. Then there is a compact Hausdorff space K, a probability measure A
on K and a continuous linear operator S:X—Ly(K,1) so that Sxq=1 and if
e>0SW)C Vel —e) L, a+0)

Proof. We let K =fD, the Stone-Cech compactification of D. For each fe M(D)
there is a unique continuous extension f*:K—-Ru{w} (the one-point com-
pactification of IR). We consider the prelinear map T*:X —»M*(K) defined by T*x
=(Tx)*. Let v* be the regular Borel measure on K induced by v. Then if we W and
>0,

v¥(|T*w|Za+ o) S v(|Tw|=a)
<e.

Thus by Theorem 2.1, there is a Borel subset E of K with v¥(E)<¢ so that the map
x+>(T*x) 14, is continuous.

Define A(B)=v*(K\E)™ 'v*(BN(K\E)) for a Borel set B. Then the map §=T* is
continuous from X into L,(K, 4) and Sx,=1;. If we W, then for ¢>0,

MT*w|Za+0)S(1—-v¥E) ‘e
=gl—g)" L.

We shall also need a finitely-additive version of a lemma of Musial et al. [8].
The proof is virtually identical — the key uses of Fubini’s theorem only need
products with finite probability spaces.

Lemma 3.2. Suppose f,, ..., f,e M(D)and o0, f + ...+, f,€ Vi, a) for every o;= +1.
Then B, f,+ ...+ B,f,€ V(8¢ 8a) for every B; with —1<,<1.

We note in this section a classical criterion of Kelley [7] on the existence of
finitely-additive measures on D.

Proposition 3.3. Let € be a collection of subsets of D. Suppose that whenever
C,...C,e¥

1 n
inf- Y 1. (d)=e.
deD N =1
Then there is a finitely-additive positive measure v on D so that v(D}=1 and W(C)<¢
for every Ce®.

4, Pathological Vector Spaces

Lemma 4.1. Let X be a real vector space and suppose W CX is a subset. Suppose
xo€X and £>0. Then the following conditions are equivalent :

(i) Thereis adiscrete set D and, a finitely additive measure v on D with v(D)=1,
and a linear map T:X —M(D) with Tx, =1, and T(W)CV{(g, 1).

(i) Whenever {w,,...,w,} is a finite sequence in W there is a subset F of
{1,2,...,n} with |[Fizn(1—¢) and x¢co{+w,:ie F}.



Pathological Linear Spaces and Submeasures 129

Proof. (i}=(ii). Suppose {w,,...,w,} is a finite sequence in W. Let 4,={d:|Tw/(d)|
2 1}. Then A(4,)<¢ and so

§ > 1,di<ne.
i=1

Now there is a set B which is an atom in the algebra generated by {4,,...,4,} so
that

Y 1,(d)ne, deB.
i=1

Let F={i:BnA;=0}. Then |F|2n(l—¢) and |Tw{d)|<1 for ieF and deB. If
geco{+ Tw;:ie F} then |g(d)| <1 for de B and hence I ¢co{ + Tw,:ie F}.

(i))=(i). Let D be the subset of X’ (the algebraic dual of X) consisting of all d so
that d(x,)=1. Define T:X —M(D) by Tx(d)=d(x).

For each we W, let A4, ={de D:|d(w)|=1}. For every finite sequence {w,....w,}
in W, we can find FC{1,2,...,n} with |F|Z n(1 —¢) so that x,¢co{ +w,:ie F}. Thus
there exists de D with |d(w;)| <1 for ie F. Hence

Now by Proposition 3.3 there is a finitely-additive measure v on D with W(D)=1
and v(4,) <¢ for every we W. This proves (i).

We can now state our main theorem characterizing pathological points in a
topological vector space. Contrast the conditions below with the standard
conditions below with the standard conditions for the existence of a continuous
linear functional f so that f(x,)=0.

Theorem 4.2. Let X be a topological vector space and suppose x,€X. Then the
Sfollowing conditions are equivalent :

(i) x, is pathological.

(i) For any e, 0<e<1, and any neighborhood W of 0, there is a finite set
{wi,..ow,} in W so that whenever FC{1,2,...,n} with |F|Zn(l—¢) then
xpeco{+w;:ieF}.

(iii) For some fixed ¢, 0 <e<1, and any neighborhood W of O there is a finite
sequence {w,,...,w,} in W so that if FC{l,2,...,n} with |[F|=2n(l—¢) then
xoeco{ tw;:ie F}.

Proof. (i)=(ii). If (ii) fails for some 0 <e<1 and W there is, by Lemma 4 a discrete-
set D with a finitely additive normalized measure v and a linear map T:X —M(D)
so that Tx, =1, and T(W)C V(s, 1). By Theorem 3.1, x, is not pathological.
(ii)=>(iii). Automatic.
(iit)=>(i). If x, is not pathological there exists a linear operator T:X — Ly(K, 4)
with Tx, =1,. Choose W a zero-neighborhood so that T(W)C V(e, 1). The existence
of T implies that (iii) must fail [repeat the proof of Lemma 4.1(i)=>(ii)].
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5. Pathological Submeasures

We now apply our results to the study of pathological submeasures (see [2, 3, 11]).
Before proceeding we shall state two criteria for the pathology of a submeasure.
Let &/ be an algebra of subsets of a set L.

Theorem 5.1.Let ¢: o/ =R be a pathological submeasure.
(i) [2, Theorem 5]. For every >0 there exist A,, ..., A€ so that p(A4,) e and

! Yl z1—e.
Ri=1

(i) [2, Theorem 2]. If ¢:.of -R is a normalized ( finitely-additive) measure and
£>0 then there is a set Ae o/ with ¢p(A)<¢ and g(A)=1—e.

Let X be a metrizable topological vector space, F-normed by x+|/x||. Let
u:/—X be any additive set-function. Then a submeasure ¢:.o/ —X is said to
control p if given >0 there exists 4 >0 so that ¢(4)=<J implies ||u(A4)| Le. Every
additive set function has a control submeasure |u| defined by

llull(4)=sup(|| u(B)|| : BC A, Be o).

u is said to be exhaustive if || i(4,)]| =0 whenever (4,) is a disjoint sequence. If y has
a control measure then u is exhaustive; the converse is the (unsolved) Maharam
problem.

However in the special case X = L(K, A) the converse is known from recent
results [6, 12]. A classical result of Orlicz [10] implies that if u is bounded then u is
exhaustive. The converse is proved for countably additive u in [6, 12]. This also
give the result for exhaustive y, either by a standard extension procedure or by
using the Drewnowski reduction of exhaustive measures to countably additive
measures [4]. Now if u:of —Ly(K, 1) is bounded then as shown in [12] we can
actually find a function fe L (K, A) with f>0 a.e. so that the map A+ f-u(A) is
bounded into L,(K, ). Hence there is a (finitely-additive)} control measure for .

Summarizing we state:

Theorem 5.2. Let p:of/ —Ly(K,A) be an additive set function. The following
conditions are equivalent :
(i) u is exhaustive.
(i) (o) is bounded.
(iii) There is a control measure for .

Lemma 53. Let ¢:of/ >R be a pathological submeasure, and suppose
u:f - Lo(K, 1) is an additive set function. Suppose for some 6>0, >0, and a>0
we have p(A)e V(e, a) whenever P(A)<d. Then for any >0, () V(e,a+ o).

Proof. Let S(#) be the space of simple »/-measurable functions and let | - | » be the
usual sup-norm on S(&f). Let J:S(#/)—Ly(K,A) be the natural integration
operator. Fix any 6>0.

For each Ae .o/ we may determine a Borel set A* in K of minimal A-measure so
that the linear map fr>1g, 4+J(f1,)is continuous on S(=#). A* is unique up to sets of
measure zero and (AUB)* = A*UB*.
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By Theorem 5.1(i) we can find 4,, ..., 4,€ o/ with ¢(A4,)<J so that

12 16
¥, >
nigl A= 16+9
Now
1 & 16
— > .
nl;hf:l&l—@h ae
and hence
1
AL¥)< Tgemgxx(A;*).

Fix i <n. Suppose B, ..., B,,C 4, are disjoint. The Y o1, € V(2¢,2a) wherever o,
=41, Now by the lemma of Musial et al. [8] (compare Lemma 3.2),
Jfe V(16¢,16a) whenever | f|| , <1, supp fCA; We conclude from Theorem 2.1
that A(A¥)<16¢ and hence AL*)<(16+ O)e.

The measure A+ u(A)l, .- is bounded and so has a control measure. By 5.1(ii)
there exists Age/ with ¢(4y)<6 so that whenever BnA,=@ then
H(B)lg, ;€ V(0¢,0a). Thus u(B)e V((16+20),0a). If ACA, then u(A)e V(s a).
Combining for Ae.oZ, u(A)e V((17+20)e, (1+6)a); as >0 is arbitrary we obtain
the lemma.

We shall later have need of a modification of Lemma 5.3.

Lemma 5.4. Let ¢:of >R be a pathological submeasure, and let v be a normalized
finitely-additive measure on a discrete set D. Suppose p:.f —M(D) is an additive set
function and that for some §>0, ¢>0, and a>0, uw(A)e V(c, a) whenever Pp(A)=<J.
Then if >0, W(£)CV(17¢,a+0).

The proof, which we omit, is essentially the same. One takes K =D and A the
natural probability measure on K induced by v. The integration operator J
induces a prelinear map J*:S(&/)—>M*(K); Lemma 3.2 is used in place of the
lemma of Musial et al. to show that J* essentially satisfies the same conditions as
J in the proof of Lemma 5.3.

Theorem 5.5. Let ¢ : .o/ =R be a pathological submeasure and let p: o/ —Ly(K, 1) be
any additive map controlled by ¢. Then pu=0.

Proof. This immediate from Lemma 5.3.

Theorem 5.6. Let t be any vector topology on S(.«/) such that 1, —0(t) whenever
¢(A,)—0. Then (S(f), 1) is pathological. In particular A(@) (see the introduction) is
pathological.

Proof. It suffices to show that 1,(Ae</) is pathological in (S(&f), 7). If
T:S(e#)— Ly(K, A) is continuous then 4+ T(l,) is a finitely additive set function
controlled by ¢. Hence T(1,)=0 for each Ae ..

Remark. Of course the pathology of A(¢) can be proved more easily by the
methods of [3]. However as our example where these methods do not work
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consider the “L,-space” of ¢ i.e. topologize S(=/) by the (pseudo-) quasi-norm

1= Ecb(lflzt)dt.

Theorem 4.2 can be applied to A(¢) to give a criterion for ¢ to be pathological.
However we conclude by obtaining a much better criterion using only characteris-
tic functions.

Theorem 5.7. Let ¢ : o/ >R be a pathological submeasure. Suppose £>0 and if 0<d
< 1/17. Then there exist A, ..., A,€ o with ¢p(4,)< e and so that if FC{1,2,...,n}
with |[F|2(1 —d)n then (1 —¢)l eco{* 1, :ic F}.

Proof. 1If the theorem is false we can by Lemma 4.1 produce a discrete set D, a
normalized finitely-additive measure v on D and linear map T:S(«/)— M(D) with
T1,=(1—¢) '1pand T(1 )e V(5, 1) wherever ¢(4)<e. By Lemma 5.4 T(1,)e V(17,
1+0) for any o>0. Since 176 <1 this is a contradiction.

Remarks. The condition 6 <+ seems artificial but we do not know how to remove
it. It is not difficult to obtain the standard criterion Theorem 5.1(i) from Theorem
5.7, but we do know any direct proof of Theorem 5.7 from Theorem 5.1.
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