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1. Introduction

In [3] (see also [4]) Roberts constructed a compact convex subset of L, (0<p<1)
with no extreme points, resolving a long-standing open problem. An essential
ingredient of the construction is the notion of needlepoint. Recently the first
author has given an example of a quasi-Banach space with trivial dual which has
no needlepoints. In this space, the Krein-Milman Theorem holds [2]. The precise
classification of those F-spaces in which the Krein-Milman Theorem fails, or of
those which contain compact convex sets with no extreme points, seems still some
way off. The aim of this paper is to provide some further information on this
problem by a detailed examination of the argument employed by Roberts in {3].

A further aim is to perform the Roberts construction relative to a given convex
set. Thus we show that the unit ball of L, contains a convex set without extreme
points which is compact in the topology of L, for 0= p <1, this answers a question
put to the authors by H. P. Rosenthal. (Later Bourgain and Rosenthal [1] were
able to construct a subspace of L, failing the Radon-Nikodym property in which
the unit ball is compact in the L ,-topology for 0=p<1)

Our notation is fairly standard. All vector spaces will be real. A quasi-norm on
a vector space X is a map x— | x| such that

x>0, x=0, (1.0.1)
lex =lef Ix] teR, xeX, (1.0.2)
x+yl Sk(ixi+1yl) x yeX, . (1.0.3)

where k is independent of x and y. The quasi-norm is p-subadditative if
Ix+ylP=Ix1P+ylF  x yeX. (1.0.4)

A quasi-norm induces on X a metrizable vector topology; if this topology is
complete then X is a quasi-Banach space. X is p-convex (0<p=1) if it can be
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equivalently re-quasi-normed so that (1.0.4) holds; every quasi-Banach space is
p-convex for some p>0 ([5]). Throughout this paper we shall deal only with quasi-
Banach spaces.

We shall also denote by 2 the Borel sets of [0, 1) and let A be Lebesgue measure
on #. An Orlicz function is a non-decreasing function ¢ : [0, 0)—[0, o0) with
#(0)=0 and ¢ not identically zero. Suppose, in addition for some 0 <a, 8,7 < oo

adp(x) S d(2x) S Bp(x)  x=y. (1.0.5)

Then the Orlicz space L, of all real Borel functions f on [0, 1) (modulo functions
almost everywhere zero) satisfying

g (Bt < 0 (1.0.6)

is a quasi-Banach space if we define the unit ball to be those f satisfying

(5) PfONde<1. (1.0.7)

If X is a quasi-Banach space with a continuous quasi-norm, then by LX)
(0 <p<oo) we denote the space of Borel maps f:[0,1)-X satisfying

LA ={fif@lrde} "7 < 0.

After factoring out functions equal to zero almost everywhere, LX) is a quasi-
Banach space and if X is r-convex then L (X) is min(p, r)-convex.

2. Needlepoints

From now on we fix X to be a quasi-Banach space. We suppose X is r-convex
(0<r£1) and that the quasi-norm on X is r-subadditive. We shall denote by B the
closed unit ball of X.

Definition 2.1 Let K be a closed convex subset of X. Then K is small if
Co(KneB)=K for every ¢>0 and strictly small if co(KneB)=K.
The next result is due to Roberts [3].

Proposition 2.2. Let K be a strictly small compact convex set and suppose K + {0}.
Then C=co(Ku(—K)) is a compact convex set without any extreme points.

We now give a modification of a definition due to Roberts, by defining the
notion of a needlepoint relative to a given convex set. For this and the succeeding
definitions of pinpoints and approachable points, in the special case K =X we shall
omit reference to the underlying convex set.

Definition 2.3. Let K be a closed convex subset of X, which contains 0. Then a
point ucK is a needlepoint of K if given £>0 there exist x,,...,x,e K with the
properties:

Ixll<e, i=12..n (2.3.1)

u—%(x,-l- .. +x)| <e. (232)
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Wherever yeco{x,,...,x,} thereexistsa, O0=Za=l (2.3.3)
with

Iy—ouf =e.

The following Lemma is immediate.

Lemma 2.4. The set of needlepoints of K is closed.

We shall say that K is a needleset if every point of K is a needlepoint of K.
Suppose ¢ :[0,1)—X is a simple Borel function. Then we define a finite rank
operator S, : L, —»X by

S/ = [ S04t

in the obvious way.

Lemma 2.5. Suppose K is a needleset and that {A,, ..., A,} is a partitioning of [0,1)
into disjoint sets of positive A-measure. Let o/ be the algebra generated by
{A,, ..., A}

Suppose 6>0 and ¢ :[0,1)—>K is of-measurable. Then there is a simple
B-measurable function y :[0,1)~K and a (non-linear) map R:L,— L,() so that

I1Ssf =S, fISSlfll feL(s), (2.5.1)
lp@lsé 0=t<l, (2.5.2)
[RfIZE(fI|)  feL,, (2.5.3)

ISRf =S, fI<olfll  feL,. (2.5.4)

Proof. Suppose
¢= Z 1, Mis
ji=1
where u;e K. Let 0=minA(4) and choose ¢>0 so that

e<n!™105.

For each u; choose x, ...,xJ,;e K with

1 . .
——(x1+ ... +xp))| e

m(j)

uj—

Ixilge k=1,2...n()
and if yeco(x{:1 £k <m(j)) then for some o, 0SS 1,
ly—au;l Ze.

Partition each 4;into disjoint Borel sets Al (1 £i£m(j)) of measure m(j) (4 i)
and let
n m(j)

v=3 2 lAgx{-

j=1i=1
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Then
1S, Ly~ <e.
If feL (), say
f= .;1 ﬁlej:-
then
IS, f—S,fll e(Z|BN"
éﬁnllr_lzlﬂﬂ
<en'r=1071 |
SOlfI .

Since (2.5.2) is immediate, it remains only to establish (2.5.3) and (2.5.4).
For feL,

n m(j)

S,f=7Y% Z(_ff(t)dt)x{.

j=t i=t\aJ

For each jgn there exists a; with

m
laj]§

} 5 |f()de

and

m(j)

DY (j' f(t)dt)x’

i=1

<e 5 If(e)ldt.

Let
Rf= Y al .
i=1

Then (2.5.3) follows and

1/r

IS,RF— 5,1 ge( 5 ( j_lf(r)dt}')

j=1l4
Sen'" T f|

=olfll-

Theorem 2.6. Let K be a needieset and suppose K # {0}. Then K contains a strictly
small compact convex set C# {0}. Thus co(Ku(~— K)) contains a compact convex set
with no extreme points.

Proof . Pick ue K with u=+0. Choose J,>0 so that Z 0y <|luf". We define =/, to be

the trivial subalgebra of #and let ¢pp(t)=u (05t < 1) Now by induction we choose
an increasing sequence {s#,} of finite subalgebras of £ and a sequence {¢,} of
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maps from [0,1) to K so that for each n we have
¢, is o,-measurable n=0,

I, 0l <6, nzl,

“S¢,,“f_s¢,lf” SO,/ feLy(s,), nz20.

There exists a (non-linear) map
R, :Li—~L(s,)
with

n=0

IR, f1=&(/] |=9¢,.)}
184,R, . f =84, SN Z0,s 1Sl

The existence of such sequences is clear from the preceding lemma.

Ifm>n

m i/r
1,/ ~ Sy Ros Ryss o RSl < ( ) a;.) T

and hence

m ifr
84,1 = (Hull'+ _Zl 5;) <2Mul.
i=

93

.6.1)
(2.62)
2.63)

(2.6.4)

(2.6.5)

(2.6.6)

If o/ is the smallest o-algebra containing | | o/, then we may use (2.6.3) and

nz0

(2.6.6) to show that if fe L (%)
Sf=lim S, f

exists and ||S[| <21 ul.
Also

(S1—uf"< ( Y 5;)
Jj=1
so that S1+0 and S=+0.

Let W be the closed unit ball of L (&), and let P={feW:f=0}. Then

S(P)CK, and S(P)+ {0}. We show S(P) is compact and strictly small.

If xe S, (W) then by 2.6.5 if m>n
d(x, Sy, (W)= nf |x~5,,fI

(5

nt+1

and so if xe S(W)

@ 1r
M%Wé@@.

n+1

Hence S is a compact operator and C=S(P) is compact; clearly OcC.
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Suppose xe C and ¢>0. Choose f,,€ P with sf,,~x and n so that ) §<¢". We
let {4,, ..., 4,} be the atoms of «,, and suppose by selecting a subsequence that
lim | f(ndt=c; exists i=1,2,...,k,

m—wo 4,

lim 5(f,1,)=y, exists i=12,.. k.

Then if IZn

5] 1/r
1S, (la) =Sy Ros 1Ry g o Rilful )l < ( 5 a;) Ll

n+1

and

Ryt Rtz - Rl N = G fm(t)dt) Ly,

Hence

53 1/r
1S, (ul )l < (5;+ ) 5;-) 1odal.

Thus
1S(fm )l Sl ful 4,1
and
lyill =ec; -
Now if ¢,>0, ¢, 'y,C and
x= L ale '+ (1= X e)O,

>0 >0

so that xeco(CreB). Thus C is strictly small.

3. Approachable Points and Pinpoints

We have seen in Sect. 2 that a key step in producing pathological compact convex
sets is to find a needlepoint or a needleset. We now introduce a weaker condition
which is necessary for the existence of non-locally convex compact sets (see [2]).

Definition 3.1. Suppose K is a closed convex subset of X, containing 0. Then ue K is
an approachable point of K if there is a constant M such that for every £>0 there
exist x,, ..., x,e K with

u—%(x1+ x| Se, (3.1.1)

Ixli<e i=1,2,..,n, (3.1.2)

i a:xsi =M Z lad, (3.1.3)

i=1
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whenever

ag,...,aq,eR.

It is shown in [2] that if X contains no non-zero approachable points (of X)
then every compact convex subset of X is locally convex. An example in [2] shows
that X may have trivial dual but no non-zero approachable points.

Every needlepoint is approachable ; the argument is elementary. The converse
is open at present. It may be related to the following easy result.

Proposition 3.2. The approachable points of K form a convex set. If K=X they
form a linear subspace.

Remark. Contrast with Lemma 2.4. We do not know if the approachable points of
X need be closed or the needlepoints be a linear subspace.

Note in Definition 3.1, that if K is bounded then (3.1.3) is superfluous and then
the approachable points of K are closed. An easy example to illustrate the notion
is to take u=11in L, (O<p<1) and K =P, the positive part of the unit ball of L,.

We now introduce yet another notion to bridge the gap between approachable
points and needlepoints.

Definition 3.3. Suppose K is a closed convex subset of X. Then ue K is a pinpoint of
K if there is a constant M, so that for every £>0, there exist p=p(e)>1,
0<R(g)< oo and sequence {x,} in K with

[x,]<e neN, (3.3.1)
Y ax,| =M Y al, (3.3.2)
n=1 n=1

for every finitely non-zero sequence {a,} in R,

© [ 1/p ©
Y afu—x,) §R(a)( y [anl") +e Y |a, (3.3.3)
n=1 n=1 n=1
for every finitely non-zero sequence {a,} in R.

Again (3.3.2) is superfluous if K is bounded. The following properties of
pinpoints are straightforward.

Proposition 3.4. The sets of pinpoints of K form a convex subset; if K=X they
Jorm a linear subspace.

Our main result of this section is a simple reworking of an argument of Roberts
[31
Theorem 3.5. Suppose either (a) X is r-convex for some r>% or (b) K is bounded.
Then every pinpoint of K is a needlepoint of K.

Proof. [We shall suppose the quasi-norm of X is r-subadditive where in case (a)
1 <r<1.]In either case fix 0<d <1 and choose {¢, :k=1,2 ...} to be positive and
such that

™Ms

g <o, (3.5.1)

k=1
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Then we choose by induction sequences {x*:n=1,2...} and a decreasing
sequence {q,} with 0<g, <1so thatif ¢,20and Zc, <1 with {c,} finitely non-zero,

Y x| Ze, (3.52)
y c"(x:—u)l <é. (35.3)

Indeed we take a;,=1/2 to start the induction. Now suppose a, has been

chosen. Then choose (x*:nelN) to satisfy Definition 3.3 with ¢=a;"¢,, and let

R=R(¢) and p=p(e). If c,20 and Z¢,<1 then

L ox

CnZdi

1 1/r
< (~) max || xk|
a

k

=g

Now choose a,, ; <4, so that
1 1
Ra; (P <(1—-a,")e,.

Then
z cn(x: - u)

nS i+t

gR( ¥ Ic,,ll’)l”’—i—a,ﬁ"ek

cnSak+1

SREa e )P+ a))e,
SRai;lr+alle,
£
Thus (3.5.3) is fulfilled.
Now suppose Ne N is chosen in case (a) so that

NUrMrE Y 6 (3.5.4)
k=1

or in case (b) so that
N~'sup x| ¥ ¢ (3.55)
xeK k=1

and let

1
n— N .
Choose m so that m>ag!,, and consider {v,,...,v,}eK. If ¢,20 and } ¢,s1,
then n=1

ol z o)

1 cpnSak+1

x*  neN.

2 n
1

M™M=

-

r
< h
= Co¥n
N k 1 c,.Zak

+”ﬁ Y Y (exw

k=1 cnSax+1

+lwl’,
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where

1 N
W= YooY exk

k=1 ar+1<cn<ax
Now in case (a)

r

N
Iwi"sN~" )

k=1

X X

8p+1<cp<ax
N

SN DT e

k=1\ax+1<cn<ag

)
§N1—2er§ Z 8;.
k=1

In case (b)
[wl <N~ 'sup x| Y &.
xeK k=1

In either case

él Culn— jl\}( i > cn>u

k=1 ecnSap+1

r

<3 ) <6,
K=

In particular since m~*<ay, |,

<o

1
u— —m—(v1+ e +0,)

and so u is a needlepoint of K.

Remark. If K is compact it has no non-zero pinpoints (although it may have
needlepoints). To see this suppose ueK is a pinpoint of K and suppose {x,}
satisfies (3.3.1}3.3.3). Let v be a cluster point of {x,}. In fact we may suppose

%, — ol £27"e.

Then
1
E(x1+...+x,,)-—v e n=1,2,..

and

1 r
;(x1+...+x,,)—u SREemIPHP L p=1,2....

Hence
lu—v| £2'%.

However |v] <& and so |ju|| £3!"¢. Since ¢ is arbitrary, u=0.
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4. Main Results

Now we fix p, 1 £p< o and define K*CL,(X) to be the set of feL,(X) such that
S(HeK almost everywhere.

Theorem 4.1. Suppose fe K* is simple and f(t) is approachable in K for almost every
t,0<t<1. Then f is a pinpoint of K*.
Proof. Suppose

f= Z uly,,
i=1

where {4,,...,A4,} are disjoint Borel sets of positive measure which partition
[0,1), and suppose u; are approachable in K.
There is an M < co (independent of i=1,2...m) so that for fixed ¢>0 we may
find Ne N and (x;;:1=iEm, 1<j<N) so that
”xij“<('%)”r8 1Zism, 15j=EN,

N

2. A
j=1

lu—v1=@)'e  1=i<m,

N
<M Y| 1<ism,
j=1

where
1 N
u= 5 ‘; ;-
For each nlet (B,;:1<j< N) be a Borel partitioning of [0, 1) each of measure

1 . .
N so that the finite algebras 4, generated by (B, ;) are mutually independent and

also independent of (4, ..., 4,).
Let

N
Gni™ Z Xiils,,-
j=1
Then if X, is the linear span of {x;;: 1 <j<N} we have g,,—v,e L (X,). Now X,

is finite-dimensional and g,;,— v; are independent, identically distributed with mean
zero and uniformly bounded. Hence for some C;< oo,

© 1/2
” Zan(gm‘_ui)“ é Cl( Z Ianlz)
n=1
for every finitely non-zero {a,}. If C= nax C,, then
@© 1/2
H Za,.(gni—u,ongzI/'c( 5 Ia,,lz) +e Y lal.
n=1 n=1
Now let

h,= 'Zx Guila,-
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Then
I, < max [k, O) e

and h e K*. If te A, Y a,h,(t) belongs to (3 |a,|)V; where V; is the absolutely convex
hull of {x;;:1<j< N}. Hence

i ah,| <M ,.il la,|.
Also
Eotns[ ={| Bosnio-so
-3 ia,,(g,,,.(t)—u,-) "u
=i iZa(gn.(t) w)| di
é(i%‘i )) QU C(Xla ) +eY lal.
Hence

Z ay(h, f)“ <29 e a2 +eYla,).

n=1

and so f is a pinpoint of K*.

Theorem 4.2. Suppose K is a bounded small set. Then K* is a needleset..

Proof. Each xeK is approachable. Hence each simple fe K* is a pinpoint of K*
and hence also a needlepoint (since K* is bounded in L ,(X)). As the needlepoints of
K* are closed in K* we conclude by a simple approximation argument that K*isa
needleset.

Example 4.3. Suppose ¢ is an Orlicz function satisfying (1.0.5), and such that

h,m inf = ¢( =0, 4.3.1)
lim sup 915-2 <0o0. 4.3.2)
=

Then the unit ball of L, contains a compact convex set with no extreme points.
First we observe from (1.0.5) that for some p< oo we have

Ps) S AP+ Dp()+B  0=s,t<o

for some constants 4 and B. Hence the map defined initially for simple functions
by

Tf(s,0)=1(s)1)
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is a continuous linear operator of L,(L,)into L[0,1) x[0,1)). Indeed if fe L(L,)
is simple then, with

fE&)=116)lg(s),
1
JplglsNehde <l 0<s<l.

Hence
11 1
g £¢(|Tf(s, t))dids < g Al f(9)|*+ 1)+ Bds.

In particular if

g If&)lFds=1

| §6(Tf(s, 0deds <24+ B.
00

Now if K is the unit ball of L,, then K C L, is small and bounded and so K* is a
needleset of L,(L,). Hence T(K*) is a needleset of L,([0,1) x[0,1)) and T(K*) is
contained in the unit ball of L,([0, 1) x [0, 1)).

Clearly this implies that K C L, contains a needleset and the result is proved.

More generally Theorem 4.2 implies:

Theorem 4.3. Suppose X is a quasi-Banach space containing a non-trivial bounded
small set. Then for any p, 1 <p< o0, L (X) contains a needleset and hence a compact
convex set without extreme points.

We also have

Theorem 4.4. Suppose X is an r-convex quasi-Banach space where 1<r=1, and that
1€p<o.

(@) If X contains a non-zero approachable point then LX) contains a non-zero
needlepoint.

(b) If the set of approachable points in X is dense then every f eL,X)isa
needlepoint.

(c) Every feL(X)is aneedlepoint if and only if every fe LX) is approachable.

Proof. (a) This follows from 3.5 and 4.1.

(b) This again follows from 3.5 and 4.1 and the fact that the needlepoints of
LX) form a closed set.

(c) Observe that L (X)= L,(L,X)) and apply (b).

5. Concluding Remarks

(1) The fact (Example 4.3) that in L, (0<p<1) the unit ball of L, contains a
compact convex set without extreme points may be contrasted with a result of the
second author that every compact convex set in the positive cone of L,(0<p<1)
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has an extreme point (although it may be strictly small and have only one extreme
point.

Even more striking is the fact that every L -closed subset of the unit ball of L,
is dentable (this may be proved by establishing a Martingale convergence
theorem). Results of Roberts show that L, does contain non-dentable compact
convex sets.

2) Except for the partial results of Theorem 4.4 we do not know whether every
approachable point of a quasi-Banach space need be a needlepoint. This problem
is related to the question of whether of the needlepoints of a given space form a
linear subspace.

3) The condition $<r<1 in Theorem 3.5 and 4.4 seems superfluous, but we
have not been able to eliminate it.
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