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Spaces of Compact Operators 
N. J. Kalton 

1. Introduction 

In this paper we study the structure of the Banach space K(E, F) of 
all compact linear operators between two Banach spaces E and F. We 
study three distinct problems: weak compactness in K(E, F), subspaces 
isomorphic to l~ and complementation of K(E, F) in L(E, F), the space 
of bounded linear operators. 

In § 2 we derive a simple characterization of the weakly compact 
subsets of K(E, F) using a criterion of Grothendieck. This enables us to 
study reflexivity and weak sequential convergence. In § 3 a rather dif- 
ferent problem is investigated from the same angle. Recent results of 
Tong [20] indicate that we should consider when K(E, F) may have a 
subspace isomorphic to l~. Although L(E, F) often has this property 
(e.g. take E = F =/2) it turns out that K(E, F) can only contain a copy 
of l~o if it inherits one from either E* or F. In § 4 these results are applied 
to improve the results obtained by Tong and also to approach the 
problem investigated by Tong and Wilken [21] of whether K(E, F) can 
be non-trivially complemented in L(E,F) (see also Thorp [19] and 
Arterburn and Whitley [2]). 

It should be pointed out that the general trend of this paper is to 
indicate that K(E, F) accurately reflects the structure of E and F, in the 
sense that it has few properties which are not directly inherited from E 
and F. It is also worth stressing that in general the theorems of the 
paper do not depend on the approximation property, which is now 
known to fail in some Banach spaces; the paper is constructed inde- 
pendently of the theory of tensor products. 

These results were presented at the Gregynog Colloquium in May 
1972. 

2. Weak Compactness in K(E, F) 

Let E and F be Banach spaces and let L(E, F) denote the space of 
bounded linear operators between E and F; then K(E,F) is a closed 
subspace of L(E, F). We shall be interested in two main topologies on 
L(E, F). The weak-operator topology w is defined by the linear func- 
tionals T ~  f*(Te) f*  ~ F*, e E E; while the dual weak-operator topology 
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w' is defined by the linear functionals T ~  e** ( T ' f * )  f *  e F*, e** ~ E* * 
We clearly have that w '>  w, and that if E is reflexive w'--w. 

Let U denote the unit ball of E** with the weak*-topology a(E**, E*). 
Let V be the unit ball of F* with the weak*-topology a(F*, F). Then U 
and V are compact Hausdorff spaces. For T e  L(E,F) we define ZT a 
function on U x V by 

)~T(U, V) = u(T* v) . 

Lemma 1. T-~ZT defines a linear isometry of  K(E, F) onto a closed 
linear subspace of  C(U x V). 

Proof. Suppose T ~ K ( E , F )  and u , ~ u  in U and v ~ v  in V. Then as 
T* is compact [I T* v, - T* vl[ ~ 0. Hence 

[XT(U~, V 3 -- ZT(U, V)[ = lug(T* v~) - u( T* v)I 

< lu,(T*v, - T*v)l + I(u, - u) T*vl 

- '~0 ,  

and therefore XrE C(U x V). Clearly IIXTII = I]TII and T-~XT is linear. 

Theorem 1. Let A be a subset of K(E, F); then A is weakly compact 
if and only if A is w'-compact. 

Proof. Suppose A is w'-compact and let x ( A ) = { X r ; T ~ A } .  Then 
x(A) is compact in the topology of pointwise convergence in U x V and 
therefore x(A) is weakly compact in C ( U x  V) (Grothendieck [8]). 
Hence A is weakly compact. The converse is immediate since w' is weaker 
than the weak topology of K(E,F). Theorem t is essentially due to 
Brace and Friend ([5], Theorem 8). 

Corollary 1. I f  E is reflexive, a subset A of K (E, F) is weakly compact 
if and only if it is w-compact. 

Corollary 2. I f  E and F are reflexive, and K(E, F)=  L(E, F) then 
K(E, F) is reflexive. 

Proof. By Corollary 1, we need only show that the unit ball of K(E, F) 
is w-compact. Suppose T~ is a w-Cauchy net with ]] T~t] < 1. For each 
e6E ,  T~e is weakly Cauchy in F and hence as F is reflexive T~e-~Te 
weakly where T6 L(E, F), and t] TH < 1. By assumption T~ K(E, F) and 
hence the unit ball of K(E, F) is w-complete; it follows that K(E, F) is 
reflexive. 

Corollary 2 is known when either E or F has the approximation 
property (of. Holub [10], Jun [11], Ruckle [t8]). 

The conditions of Corollary 2 can be fulfilled, for Pitt [ 15] has shown 
that L(lp, lq) = K(lp, lq) if p > q > 1. In fact if E or F has the approxima- 
tion property the converse of Corollary 2 is true. 
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Corollary 3. Let 7", be a sequence of compact operators such that 
T~-~T in w' where T is compact. Then T~-~T weakly and there is a 
sequence S, of convex combinations of { T~; n = 1, 2 ....  } with tl T -  S,H -~ O. 

This Corollary is immediate as the set {T,, T} is w'-compact, Note 
that in the reflexive case we need only assume that T~ ~ T in the weak- 
operator topology. (See Brace and Friend [5].) 

The next result pursues further the problems raised by Corollary 2. 

Theorem 2. Let E be an inseparable reflexive space; then L(E,E) is 
non-reflexive. 

Proof. If E is inseparable and reflexive, Chadwick [6] (cf. Amir and 
Lindenstrauss [ 1]) has shown that E has a Schauder decomposition, i,e. 

a sequence of non-trivial projections Q, with I = £ Q, in the topology w. 
r t=!  

We have, by an application of the Uniform Boundedness Theorem, 
N 

s u p  
n= 1 

and so, if L(E, E) is reflexive, 

I=~Q~ 
n = |  

in the weak topology of L(E, E). Hence there is a sequence 

i = 1  
with 

I t i -  s . l l  ~ 0 .  
For large enough n 

[lI - s.II < 1 

and hence S, is invertible. However for x~Q,+I(E), S ,x=O, and we 
have a contradiction. 

A Banach space E is called a Grothendieck space if every w*-con- 
vergent sequence in E* converges weakly in E* (cf. Grothendieck [9], 
Theorem 8). 

Theorem 3. The following are equivalent: 
(i) E is a Grothendieck space. 

(ii) For any Banach space F, if T,,~ T in the weak-operator topology w 

on K(E, F), then T~-, T weakly. 

Proof. (ii) =~ (i) Take F = 1R. 
(i)=~ (ii) Suppose T ~  T in w; then for f *  e F*, T* f* -~  T ' f *  

weak* in E*. As E is a Grothendieck space, T* f *  ~ T ' f *  weakly in E* 
and hence T,--, T in w'. By Theorem t, Corollary 3, T ,~  T weakly. 
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3. Subspaces Isomorphic to i~ 

We first collect together some known results which will be used in 
this section. The first result is an easy consequence of the Orlicz-Pettis 
Theorem ([7], p. 318, Pettis [14]). We write 6"= {~,} for the unit vectors 
in l~. 

Proposition 1. Let F be a Banach space and suppose T : I ~ F  is 

weakly compact. Then ~ ~, T6" converges in norm for each ~ = (3,) ~ 1~. 
n = l  

The next result is due to Rosenthal [17]. 

Proposition 2. Let F be a Banach space containing no isomorphic copy 
of l~. Then every bounded linear map T : I~ --. F is weakly compact. 

The other results we require are due to Bessaga and Pelczynski ([3] 

and [4]). We call a series ~ xi weakly unconditionally Cauchy (w.u.c.) if 
i = l  

s n p l 2  x, II < 
JC N ic-J 

where J runs over all finite subsets of the integers N. 

Proposition 3. (i) Let E be a Banach space containing no copy of Co; 
then every w.u.c, series converges. 

(ii) Let E be a Banach space such that E* contains a copy of Co; then 
E* contains a copy of loo and E contains a complemented copy of 11. 

(iii) Let E be a Banach space containing no complemented copy of 11 ; 

then if ~ e* is weak*-unconditionally convergent in E*, then Ee* con- 
i = 1  

verges in norm. 

The next proposition is very closely related to results of Rosenthal 
[ 17], and could be used to prove the results of Rosenthal in the countable 
case. However, it is not clear to the author that it can be derived from 
Rosenthal's results easily, and in any case the proof given here is quite 
simple. We denote the nth coordinate map ~ ,  in loo by ~rc , (~) ,  
and for M a subset of the positive integers N, loo(M) is defined to be 
the set of ~ e loo with ~k = 0 for k ¢ M. 

Proposition 4. Let A : lo~ ~loo be a bounded linear map. Suppose 
A6" = 0 for all n; then there exists an infinite subset M of N such that 
a ( o  = 0 for ~ ~ loo(M). 

Proof (cf. Whitley [21], Lindenstrauss [12]). 
We may choose (see Whitley [21] for a quick proof) an uncountable 

collection (N,; a e ~¢) of infinite subsets of N such that for ~ # fl N,  nNa  
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is finite. Suppose the proposition is false: then for each ce, there exists 
~ e l o o ( N , )  such that I1~11 = l and A~t't4=0. Let d be a finite subset 
of d ;  then ~ ~(') = r/+ 

a~,,¢ 

where lit/It < t and ( 6 lin(6(1),c5 ~2~ . . . . .  ). Hence 

=~jA(~ (~)) < IIAIt 

Hence 
~.Ttm(Z(~¢~l)) _-< IIAIV ~ ¢ c ~ ¢ .  

Therefore the set d , ,  = {~; Tcm(A(~)))4: 0} is countable and u~¢¢~ is also 
countable. If a ¢  u d , ,  then A~ ~ =  0; since d is uncountable we have 
a contradiction. 

We next apply Proposition 4 to obtain the form required for studying 
spaces of bounded linear operators. 

Proposition 5. Let E be a separable Banach space and suppose 
q~ : Io~ --* L(E, 1J  is a bounded linear operator with ~(6") = 0 for all n. Then 
there is an infinite subset M of N such that for ~ e lo~(M), @(¢)=0. 

Proof. Let {e,} be a countable dense subset of the unit ball of E and 

define 0 : L(E, lo~)~ l® , 

z . (  O( T)) = n., (.,)( Te.,(m~) 

where e : N ~ N x N is some bijection. 0 is an isometric embedding and 
so the result follows from Proposition 4. 

We now come to the main theorem of this section. 

Theorem 4. Let E and F be Banach spaces; the followin9 are equivalent: 
(i) K(E, F) contains a copy of Io~. 

(ii) Either F contains a copy of loo or E contains a complemented 

copy of 11. 
Proof. (ii)=~(i) If F contains a copy of l® let S : l~o ~ F  be a linear 

embedding. Then fix e* E E* with Ile*ll = 1 and define • : l~ ~ K ( E ,  F) by 

@(~) e = e*(e) S(¢) e e E .  

Then I[~(~)11 = IIS(¢)11 so that @ is a linear embedding. 
If E contains a complemented copy of ll E* contains a copy of l®. 

Let S:l~o~E* be a linear embedding; fixing f e F  with ]lfl] = 1 we 

define • : I®~K(E,  F) by 

q~(~) e = S(~) (e)f e e E 

and then [Iq~(~)l[ = [[S(~)I[, as before. 
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(i)=*(ii) Suppose (ii) is false and that 4 :  Ioo--,,K(E,F) is a linear 
embedding. Let 4(6")= T~ in K(E,F). For e~E we define Ae:l~--+F 

Ae¢ = q0(¢) e. 

Then A~ is linear and continuous. As F contains no copy of to~, Propo- 

sitions i and 2 together yield that ~ ~nAefi ~ converges for ~ ~ I~. Hence 
n = l  

the series X ~ T~ converges in the strong-operator topology in L(E, F) 
and therefore, afortiori, in the topology w. We define ~ : loo~L(E, F) by 

~(¢)= ~ ~nT~. 
n = l  

It is easy to see that ~ is a bounded linear operator; for example, this 
may be proved by showing ~P continuous for the topologies a(l~, 11) 
and w and then applying the Closed Graph Theorem. 

For f *  ~ F* 
~ ( ~ ) * f * =  ~ ¢~T~*f* 

n = l  

in the weak*-topology on E*, and convergence is unconditional. Now 
we apply Proposition 3 to give that 

~ ( ~ ) * f * =  ~ ~,T~*f* 
n = l  

in the weak topology on E*. 
Choose e, ~ E and f *  ~ F* such that 

If~*(T. e.)l > ½ II %11 

and l[e~II = Ill*I[ = 1. We let G be the closed linear span of {el, e2 . . . . .  } 
and define a map S : F--+ lo~ by 

S f  = { f* ( f ) } .  

We can then construct F: I ,~K(G,  loo) and A:I~o--,L(G, l,) by 

r ( 0  = s¢(¢)  J ,  

A(~) = Se(¢) J 

where J : G-~E is the inclusion map. Then F(fi") = A(6 ~) = ST~J = Q. say. 
Then 

IIQ.II ~ I~.(Q.e.)l 
= If,*(T, e,)l (1) 

> ½ II T, II. 
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Furthermore, for 7 e l* 
A (0" i' = J* q'lO* S* 

(" ) = J *  Z ~.T*S*? 
\ n  = l 

where the series converges weakly in E*. Since J* :E*~G* is con- 
tinuous for the weak topologies 

LI(0*~= ~ ~.J*T.*S*?, 
n = l  

t I = l  

i.e. A(O= ~ ~.Q. (w'). 
r l = l  

weakly 

weakly 

(2) 

We now quote Proposition 5. As G is separable and A (6") = F(6") = Q. 
we may conclude the existence of an infinite subset M of N such that 
A ( 0 = F ( 0  for ~el~(M). Thus for ~El~(M) 

r(0= ~ ~.Q. (w') 

by (2) and the convergence is subseries in (K(G, l~), w'). 
By Corollary 3 to Theorem I 

F ( 0 =  ~ ¢,Q, (weakly) 
n = l  

and by the Orticz-Pettis theorem 

F(O= ~ ~,a ,  
n = l  

Hence 

(norm). 

inf It Q,tl -- 0 
hEM 

and by (l) 
inf ]1T, It = 0 
hEN 

contrary to the assumption that F was an isomorphism. 

Corollary. I f  E contains no complemented copy of 11 and F no copy 
of l®, then every bounded linear operator ~b : I~K(E ,F)  is weakly 
compact. 

Proof. Proposition 2. 
Let us now indicate a result on operator-valued measures, which 

perhaps clarifies some ideas concerning spectral measures for compact 
operators. 
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Theorem 5. Let E be a Banach space containing no complemented copy 
of 11, and let F be any Banach space. Let # be a K(E, F)-valued measure 
defined on a a-algebra 5 a which is a-additive for the weak-operator 

topology. Then # is norm a-additive. Equivalently if ~ 7", is w-subseries 
n = l  

convergent in K(E, F) the E T~ converges in norm. 
Proof. Let A, s 5 e be a sequence of disjoint sets. Then 

~ ( a . )  = 
n = l  

in the weak-operator topology, unconditionally. For f *  ~ F* 

( ~ ( A . ) ) * f *  - -  
n = I  

in the weak*-topology, unconditionally. By Proposition 3, the series 
converges weakly in E*, i.e. 

kt(A.) = # (w'). 
n = l  

By Theorem 1, Corollary 3, and the Orlicz-Pettis Theorem, Z #(A.) con- 

verges in norm to ~ 

4. Unconditional Bases 

Tong [20] and Tong and Wilken [21] have obtained some inter- 
esting results concerning K(E, F) when either E or F has an uncondi- 
tional basis. Theorem 6 below improves and complements their results; 
in [19] it is established that (i), (ii), and (iii) are equivalent provided F 
is a dual space, while in [21] (iv) and (i) are shown equivalent when F 
has an unconditional basis (but not necessarily E). We assume a slightly 
less restrictive assumption that of an unconditional basis of E, namely 
that E has an unconditional finite-dimensional expansion of the identity, 
i.e. a sequence of bounded finite-dimensional operators A, : E ~  E such 
that for x ~ E 

x =  ~, Anx 
n = l  

unconditionally. It is easy to show that for ~ s l~, the series ~ ~nAn 
n = l  

converges in the strong operator topology of L(E, F) and that the 
induced map loo -~ L(E, F) is norm continuous. In fact this assumption is 
not very much more general than that of an unconditional basis, for 
Pelcyzfiski and Wojtaszcyzk [13] show that if E has an unconditional 
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finite-dimensional expansion of the identity then E is isomorphic to a 
complemented subspace of a space with an unconditional finite-dimen- 
sional Schauder decomposition. 

We first prove some preparatory results concerning the complemen- 
tation of K(E, F) in L(E, F). 

Lemma 2. Suppose E is separable and K(E, F) is complemented in 
L(E, F) and • : l~ --* L(E, F) has the following properties 

(i) ~(~") e K(E, F) n = 1, 2 . . . . .  
(ii) {~ (0  e; ~ ~ l~, e ~ E} is separable, 

then for every infinite subset M of N, there exists an infinite subset M o 
of M with 49(~) e K(E, F) for ~ ~ M o. 

Proof. Let F o = l i n { ¢ ( O e ; ~ e l ~ , e e E }  so that Fo is a separable 
subspace of F. Hence there is an isometry J : F o--* I~ and this may be 
extended to a linear operator S:F--,I~ with ilSll N 1. Let F:L(E,F) 

--, K(E, F) be a bounded projection. 
It is clearly sufficient to establish the result when M = N. We define 

maps ~ : l® --* L(E, l~) 

~l : I ~  K(E, l®) 
by 

~(¢) e = S ¢ ( 0  e 

tPl( 0 e = S F [ ~ ( 0 ]  e. 

Then both 7 j and 7s1 are bounded and linear and ~(6n)= qq(6"), 
n = 1, 2 . . . . .  Hence by Proposition 5 there exists an infinite subset M0 of 
m with 7J(~)= 7J1(0, ~ e l®(Mo). In particular ku(0 e K(E, I~), ~ ~ l®(Mo), 
and as S is an isometry on Fo, q)(OeK(E,F), ~elo~(Mo). 

Lemma 3. Suppose E contains a complemented subspace isomorphic 
to 11 and that F is infinite-dimensionaL Then K(E, F) is uncomplemented 
in L(E, F). 

Proof. Suppose F :L(E,F)~K(E,F)  is a bounded projection and 
that H ¢ E is a subspace isomorphic to 11 with a bounded projection 
P : E ~ H .  We define A : L(H, F)~K(H, F) by 

A(T)h=F(TP)h ,  h~H,  

and then A is a bounded projection. Hence it suffices to prove the result 

if E = 1 I. 
Let {f,} be any sequence in F such that tlf.II--< 1 and 

inf It f~ - frail = ~ > 0. 
n # m  

Such a sequence exists since F is infinite-dimensional. We define the map 

by • : lo~ ~ L(ll, F) 

¢(~)x- -  ~ ¢.x . f . ,  x = { x . } e l l .  
n=l 
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By Lemma 2 if K(I1, F) is complemented in L(ll,F), there exists an 
infinite subset M of N with 4~(x)eK(ll,F) where )~i= 1 i~M, Xi= 0 
otherwise. 

For m ~ M q)(g) 6" = fm 

and so the sequence {q~(Z)fro; m ~ M} has no clusterpoint, and we have 
a contradiction. 

Theorem 6. Let E be a Banach space with an unconditional finite- 
dimensional expansion of the identity {A,}. I f  F is any infinite-dimensional 
Banach space the following are equivalent. 

(i) K(E, F) = L(E, F). 
(ii) K(E, F) contains no copy of Co. 

(iii) L(E, F) contains no copy of loo. 
(iv) K(E, F) is complemented in L(E, F). 

o o  

(v) For Te  L(E, F) the series y" TA,  converges in norm. 
n = l  

Proof. We show (i)=~ (iii)=~ (ii)=~ (v)=*- (i) and (i)=~ (iv)=*, (v). 
(i)=~ (iii). Suppose (iii) is false; then by Theorem 4 either (a) E con- 

tains a complemented subspace isomorphic to 11 or (b) F contains a 
subspace isomorphic to lo~. In case (a) there is a surjection of E onto 
any closed separable subspace of F and hence K(E, F)+-L(E, F); in case 
(b) there is an embedding of the separable space E into F and hence 
K(E, F) #- L(E, F). 

(iii)~(ii). First suppose F contains a copy of Co. Then since E is 
separable there is a sequence e* in E* such that Ile*ll = 1 and e*~0 ,  
or(E*, E). Now define a map 

cb : 1® ~ L(E, Co) G L(E, F) , 
by 

q~(~) e = {~.e*(e)} . 

Then • is an embedding of l~ into L(E, F). 
Hence we assume F contains no copy of c o and that ~ : co~K(E, F) 

~t3 

is an embedding. For e e E, the series ~ ~, 7t(6")e converges uncon- 
n = l  

ditionally in F (Proposition 3). We therefore define q~ : I~ --* L(E, F) by 

~(~) = ~ 4, 7t(6 ") (strong operator topology). 
n = l  

It is easy to verify that q~ is indeed a bounded linear map (cf. the same 
construction in Theorem 4). 

Now by Proposition 2 • is weakly compact and by Proposition 1 
we obtain 

tim tt~(~")11 = lim II ~(6")]1 
n - - *  oo n --* c~o 

contrary to the initial assumption that 7 ~ was an embedding. 



Spaces of Compact  Operators 277 

(ii)~(v). Since E A . = I  unconditionally in the strong operator 
topology we have sup ~ A. < oe 

J C N  t ~ J  

where J runs over all finite subsets of N, by the Uniform Boundedness 

Principle. Therefore for T~L(E,F) ~ TA, is w.u.c, in K(E,F). By 
n= 1 

Proposition 3, TA, converges in norm. 
n = l  ~ 

(v) ~ (i). Since T = TA, in the strong-operator topology, we have 
I n = l  m 

that I T -  ~ TA, ~0.  Therefore r is the uniform limit of finite- 
I n = l  

dimensional operators and is compact. 
( i )~ (iv). Trivial. 
(iv) ~ (v). By Lemma 3 we may assume E contains no complemented 

copy of I r Suppose (v) fails; then for some Te L(E, F) there is an E> 0 
and an increasing sequence n k with no = 0 such that if 

nk 

Ck "~- E Ai k = 1, 2,... 
n k - l + t  

then 
tl TC~II > ~ . 

We define 
0 : l~ ~ L(E, F) 

by 

dP(~) e= T (k~= l~k Cke ) 

and it is easy to check that • is bounded and linear. Further {O(~)e, 
~ l~, e ~ E} C T(E) and is therefore separable, and 

O(~k) = TC k 

is finite-dimensional and therefore compact. Hence for some infinite 
subset M of N, O(O~K(E,F) for ~ l®(M). Then ~ 0(6 m) is weak- 

m~M 

operator subseries convergent in K(E, F) for if M1C M, 

y T( c.e t 
\ m ~ M t  / m~M~ 

= ~ ( z )  e 

where Z is the characteristic function of M~ and ~( e l~(M). Hence by 
Theorem 5, ~ O(6 ~) converges in norm and so 

m¢M 

inf I[ O(6m)[[ = inf [t TC,,[[ = 0 
meM m~M 

contrary to assumption. 
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