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On Absolute Bases
N. J. Kalton

1. Introduction

The theory of bases in general locally convex spaces has proved par-
ticularly rich when applied to nuclear spaces. Many interesting and deep
results relating the structure of bases and the nuclearity of the space
are known. These results show up a strong connexion between absolute
bases and nuclear spaces; we have the following theorems if E is a
Fréchet space with a basis.

Theorem A (Dynin-Mitiagin [4], Mitiagin [15]). If E is nuclear, every
basis of E is absolute.

Theorem B (Pietsch [21], see also Bennett-Cooper [1]). If both E
and its strong dual possess absolute bases, then E is nuclear.

Theorem C (Wojtynski [26]). If every basis of E is abéolute, then E
is nuclear.

In this paper we shall attempt a unified theory of absolute bases in
locally convex spaces. The main result of §2 is to extend the Linden-
strauss-Petczynski theorem, that every unconditional basis of I' is
absolute, to show that if a barrelled space possesses an absolute basis,
then every unconditional basis is absolute. In § 3 we introduce a dual
notion, co-absolute bases, and obtain a similar result for spaces with
oo-absolute bases. Then in § 4, we study spaces in which there exist both
absolute and co-absolute bases. In §5, we study p-absolute bases, a
generalization of absolute bases, due to Schock. The main result is that
a F-space with a p-absolute basis and a (different) g-absolute basis with
p+q is nuclear; this extends a result of Schock who establishes this
result for spaces with a single basis which is simultaneously p-absolute
and g-absolute.

2. Absolute Bases

When working in locally convex spaces which are not necessarily
either complete or barrelled it is convenient to distinguish between
several types of bases, which are usually lumped together in the litera-
ture as “absolute”. Suppose (,) is a Schauder basis of the locally convex
space (E, 1); we shall make the following definitions.
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Definition (1). (x,) is semi-absolute if whenever Za,y, converges then
Xa,y, converges absolutely.

Definition (2). (x,) is pre-absolute if whenever Za,y, is Cauchy then
Zla,lv(y,) < o for every continuous semi-norm v.

Definition (3). (x,) is absolute if Xa,y, converges if and only if for
every continuous semi-norm v, X |a,| v(x,) < 0.

Definition (4). (y, is pre-Kéthe if it is pre-absolute and for every con-
tinuous semi-norm v, the semi-norm v, is continuous where

vy (E aan) = 2 Ianl V(Xn) -

Definition (5). (x,) is Kéthe if it is pre-K &the and absolute.

The terminology of (4) and (5) is dictated by the fact that a locally
convex space E with a K&the basis is isomorphic to a Kéthe (perfect)
sequence space in its normal topology (see [12] and [13] § 30).

We shall denote by 1, the topology induced by the semi-norms {v,}
(see (4)); thus (y,) is a pre-K6the basis if and only if T=1, (for clearly
T <1;). The following result is a restatement of a result familiar from the
theory of Kothe sequence spaces.

Propesition 1. If (E, 1) is a locally convex space with a pre-K 6the basis,
then:

(i) (E, 1) is complete if and only if the basis is a Kithe basis.

(ii) © and the weak topology define the same convergent and Cauchy
Sequences.

Proof. See Kothe [13], p. 413 and p. 416.

In this section we shall study the possible types of unconditional
bases in spaces with absolute bases.

Let (x,) be a basis of a locally convex space, and let (6,) be a sequence
such that S\:ple,,l =<1 and 6, =0 eventually. We define the maps

Po( Z aiXi) = Z Ga,x;.
i=1 i=1

We shall say that (y,) is u-Schauder if the maps {P,} are equicontinuous.

Proposition 2. Suppose E is barrelled and (x,) is a Schauder basis of E;
(i) If (x,) is semi-absolute, then (y,) is pre-Kithe.
(1) If (x,) is unconditional, then (y,) is u-Schauder.

Proof. (i) Let v be a continuous semi-norm on E; then the set
{x;vi(x) <1} is a barrel, and so v, is continuous on E.
(i) See [9]; the proof is similar to (i).
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Theorem 1. Let E be a locally convex space with a Kothe basis; then
any u-Schauder basis of E is a Kothe basis.

Proof. Let (y,) be a Kothe basis of E, with dual sequence (¢,); suppose
(n,) is a u-Schauder basis of E with dual sequence (p,). Let v be a con-
tinuous semi-norm on E; then v, is also continuous where

v(x)= ilmx)l .y

The Hausdorff quotient of the semi-normed space {E, v,) is isomorphic
either to a dense subspace of I, or is finite-dimensional. Suppose X x, is
unconditionally convergent in E; then X X, is unconditionally con-
vergent in (E, v;). Hence by Orlicz’s Theorem [16] (see also [14], p. 295)

® 1 n
[ Z ) <V sup sup v 3 ks
k=1 n |0]s1 k=1
Hence, as (n,) is unconditional, if

0 +
() = ( S a2 [m(m)JZ)
then =1

x5 )/3sup sup i [ 3 6wt
n |6ls1 k=1
As (n,) is u-Schauder # is continuous; hence the semi-norm 7, is con-
tinuous where o
()= 3 @) 7(xs) -
n=1

Then the injection J : (E, n;)~(E, n) is continuous. The Hausdorff quo-
tient of (E, m,) is, as before, a dense subspace of I, or finite-dimensional.
The quotient of (E, n) is an inner-product space, and therefore we may
use Theorem 4.1 of [14] to deduce that J is absolutely summing. Hence

S 19,09l 2l SK sup sup 7, ( T O, m)-
ozt k=1

n=1 "

As (n,) is u-Schauder, the semi-norm

™s

[y () vime

1

[w () =(no

1

X—
k

[pak:]

=
k

is continuous on E, ie. (n,) is pre-Kaothe. It follows from Proposition 1
that (n,) is K&the.
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Clearly the proof yields the following Corollaries.
Corollary 1. If E possesses a pre-Kithe basis, then any u-Schauder
basis of E is pre-Kithe.

Corollary 2. If E possesses a pre-Kéthe basis and X x, converges
unconditionally in E, then, for any continuous semi-norm v

kf [ (T2 < oo

Theorem 2. Let E be a barrelled space with a (semi-) absolute Schauder
basis; then any unconditional Schauder basis of E is (semi-) absolute.

Proof. This follows from Theorem 1 and Proposition 2.

We now give an example of a locally convex space with a K&the basis
and an unconditional Schauder basis which is not absolute. Consider
the sequence space [, with the normal or Kéthe topology |o] (/,, 1,) given
by the semi-norms

Vs (x)= kg:l [fixid

where f =(f}) € ,. The usual basis e™ of I, isa K6the basis of (1, |0](l,,1,)).

We construct a further unconditional Schauder basis by finding an
orthonormal basis for the norm topology. For n = 1, let E* be the space
spanned by the vectors {eZ"*1, .. ¢?"""} In each E" we construct the
so-called Haar system (see [18], p. 7) thus:

1 =z

Z et

i=1

(n,1) _ .
yri= 72

k 1 2 n4g
W= —— Y Bik,s) et (where 1529,
S
where
Bk, s)=12s—2)2" %1+ 1gi<(2s—1) 2" *!

Bik,s)=—1(Q2s—1) 2" *F 1 1<igs- 2"k
=0 elsewhere.

Then (y**™;m=1,2,...,2% is an orthonormal basis of E”; the col-
lection (y*™;1<m<2" 1< n) is, together with ¥ and @, an ortho-
normal basis of /,. It follows that, in any order, the set {y™™} U {eV), ¢}
is an unconditional Schauder basis of (1, |a| (I,, 1,)).

Now if
Y1l <0

m,n
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we have that Y a,,»™™ converges. If ™™ is an absolute basis of
(s lo1 (15, 1)) then for any fel,
Z V"™ <0
';" v, ("™ < 0

Therefore

for any fel,. However, we set f; = f,=0 and

1
fom P 1Sk
Then .
Zlf,,|2=2n—<oo, andso fel,.

We also have

1
(n, 10 _
Vf(y ) n
1
v )= —
and for
FKem< 2t 1<kgn-1
1 1
(n,m) __ . 2n—k N
vf(y ) k) n: 2n/2
2 2
—— 1 =
=
Therefore
2n ) 2 n—1 1
T D=t L T
m=1 k=1
_n+ 1
= -
n
Hence

Y v (™))* =00

and {y™™u{eV}u{e?} is not an absolute basis of {l,lo] (L, 1)}

We give one further result in this section related to Corollary 2 of
Theorem 1. A series T x, is subseries convergent if for every subseries
X, 2 X, CONVEIges.

Proposition 3. Let E be a locally convex space with a semi-absolute
Schauder basis. If  x, is subseries convergent, then for each continuous

semi-norm v
Tv(x)]P<o.
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Proof. We first observe that 7, is an (E, E'>-polar topology (since
each v, is lower-semi-continuous). Secondly (E, 7,) is separable and the
given basis is a pre-Kthe basis of (E, 7,); hence by Theorem 8 of [11]
X x, is 7,-subseries convergent. By Corollary 2 to Theorem 1, for con-

tinuous v % [v(xo1? < Z [ (x)]?
< 0.

3. Dual Absolute Bases

Definition (6). A Schauder basis (x,) of a locally convex space is
oo-absolute if whenever (a,y,) is bounded and ¢,—0 then Zc,a,y,
converges.

It is clear that an co-absolute basis is weakly unconditional, for if
X a,yx, converges then (a,y,) is bounded and hence for fe E' and ¢,—0
Z c,a, f(x,) converges. Therefore X |a,| | f{x,)] < o0, and the convergence
of Z a,y, is weakly unconditional. If E is also sequentially complete, it
follows that Z a,x, is subseries convergent weakly and therefore in the
original topology (and, in particular, (y,) is unconditional).

In this section we shall show that oo-absolute bases are “dual” to
absolute bases and obtain some results similar to Theorems 1 and 2.

Proposition 4. Let E be a sequentially complete locally convex space
with a Schauder basis (x,); let (p,) be the dual sequence to (y,). The following
are equivalent : i

) () is co-absolute,
(ii) (@,) is a semi-absolute basis of (E, B(E, E)),

(iii) (@,) is a pre-Kéthe basis of (E', B(E', E)).

Proof. (i)=(iii): Let B be a bounded subset of E, and let v; be the
associated S(F’, E)-continuous semi-norm on E', i.e.

vs(f)= igglf -
Let
veglo)=v, n=12...

Then (x,) is a simple basis of E (see [8], p. 379) and so the set
{ Y o) x; xeB,n=1,2, } is bounded in E. It follows that the set
k=1

{Vvoxm;n=12,...} is also bounded and for ¢,—0, Zc,v,x, converges.
Hence for fe E

O

2 vl Ol <o,

and so n=1

0

f=7Y f(x) ¢, absolutelyin B(E,E).

n=1
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Now let .
c= {3, cmtuics0ked s il
n=1

o

fIE L valS ()

n=1

so that C is bounded. Furthermore

ve(f)= ilelglf ()|

for fe E

0

= 2 vl Sl

n=1

=vz.(f) (see Definition 4)

so that (¢,) is indeed pre-Kothe.
(iii) = (ii): Immediate.
(ii)=(i): Suppose (a,y,) is a bounded subset of E; and let

v(f) = sup [an f ()l -

For feE v
f=Y f(x) @, absolutelyin B(EE)
and so =t .
% 1/ g <o
ie.

3 la <o

Hence the set
B= {Z Oraxes 1041, n=1,2...}
k=1

is bounded and, if ¢,—0

n+p

cha,‘x,‘e( sup Ickl)B.

a+1 n+1SkSn+p
As E is sequentially complete X ¢, a, x, converges.

Proposition 5. If E is a barrelled space with a semi-absolute Schauder
basis (x,), then () is an co-absolute basis of (E', o(E', E)) and an co-absolute
basic sequence in (E', B(E', E)).

Proof. The assertion concerning (E', o(E, E)) follows automatically
from Proposition 4.

Since (y,) is simple, it follows (see [8], Theorem 2.6) that (¢,) is a
B(E, E)-basic sequence. Suppose now that (a,¢,) is bounded in
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(E', B(E', E)); then (a,¢,) is equicontinuous, and as (y,) is a pre-Kothe
basis of E (Proposition 2)

Vi) =Z |a,| @, (x)|
is a continuous semi-norm on E. Letting U = {x; v,(x) < 1} we see that
X c,a,¢, converges uniformly on U and therefore strongly.

Proposition 6. Let E be a sequentially complete locally convex space
with an co-absolute Schauder basis (y,); the following are equivalent :
() If (a,x,) is bounded then X a,y, converges.
(i) E is semi-reflexive.
(i) E is a semi-Montel space (i.e. every bounded subset of E is relatively
compact).
Proof. (i) = (iti): We use Theorem 5.6 of [10]; suppose

Nn= z A Xk
m,-1+1
is a bounded block basic sequence; then the set {a,x,;k=1,2...} is
bounded (using the fact that (x,) is simple). Therefore X g, 3, converges
and .
imn=0.
(iit)=> (i) Immediate.
(i)=>(1) By the result of Cook [2], (x,) is boundedly-complete.

If (a; x) is bounded, and ¢, —0, then X ¢,a,y, converges; therefore
for fe E, X ¢ a; f(x,) converges and so

Zla 1f (ol < 0.
Hence X g, y, converges.

Theorem 3. Let E be a sequentially complete locally convex space with
an oo-absolute Schauder basis; then any unconditional Schauder basis of E
is co-absolute.

Proof. By Proposition 4, (E', B(E', E)) possesses a pre-Kothe basis.
Suppose X f, converges unconditionally in (E', ¢(E', E)); then the set

C= {i kak; ngl§13 n=132-~-}
k=1

is ¢(E', E) bounded and therefore §(E', E)-bounded. If ye E” = (E,, B(E, E))’

then
supfy(f)l< oo,
feC

ie.

3 bl <w.
k=1
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By Proposition 1 (ii) X, is B(E’, E)-Cauchy. In particular any uncon-
ditional Schauder basis (y,) of E is shrinking; we must show that (¢,) is
u-Schauder in (E’, B(E', E)).
Let ©
Pyf = Z 0, f(x) o; where [6]=1,
i=1

and 6, =0 eventually. Each P, is o(E’, E)-continuous and for xe E

PSS 3 17l )

so that the maps P, are weakly (and therefore strongly) pointwise
bounded. By Lemma 2.5 of [8], they form an equicontinuous collection
on (E', B(E, E)), and (¢,) is u-Schauder.

Hence we may apply Theorem 2, Corollary 1, to deduce that (¢, is
pre-Kothe, and Proposition 4 to deduce that (x,) is co-absolute.

4. Absolute and co-absolute Bases in Nuclear Spaces

Definition (7). An co-absolute Schauder basis (x,) is co-Kothe if the
topology on E may be given by the semi-norms v,, where

Vo 8,%,) = supla,| v(x,)
for each continuous semi-norm v.

Proposition 7. If (E, 7) is a Fréchet space then an co-absolute Schauder
basis is co-Kothe.

Proof. Let (vV,v®, ...) be a fundamental sequence of semi-norms on
E; then {v,v®), .} defines a topology t* on E. For any n,v{ is con-
tinuous on (E, 1), using the fact that (E, 1) is barrelled; therefore * <.
We now show that (E, t*) is complete; let x, be a 7*-Cauchy sequence.
Then for each m

li_.rg On(x)=a, exists

and
|l v () = lim (x| v (x.) each k

uniformly in m. Now
im ¢,,(x,) v (n) =0 each n
so that we deduce
'zi_r,rt}ola,,,l v (=0, k=12,...

Therefore
5im a2 =0 ().

16 Math. Ann. 200
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Asis metrizable there is a sequence ¢,— 0 such that {c; 'a,y,} is bounded;
hence Xa,y, converges in (E,7) to x, say. It follows quickly that
x,—x (E,7*) and so (E,t*) is complete. Hence by the Closed Graph
Theorem 7 =1*

We now give a criterion for a locally convex space with a basis to be
nuclear. This result is essentially known, being contained in results of
Dynin and Mitiagin [4], Grothendieck [5] (Chapitre 2, p. 59), and
Pietsch [20] (p. 88) or [19].

Theorem 4. Let E be a locally convex space with a Schauder basis G
and further suppose that the maps x— @,(x) y, are equicontinuous. Then
the following statements are equivalent :

() E is nuclear.
(ii) (x,) is Kothe and co-Kothe.
(iii) For any continuous semi-norm v there exists a continuous semi-

norm w with ). 2w < o0 {where 0/0=0).
=1 o
Proof. (i)==(ii): This is contained in Theorems 8 and 9 (pp. 89-91)
of [15].
(i)=(iii): Let v be a continuous semi-norm; then as (y,) is both
Kéthe and co-Kothe there is a continuous semi-norm ¢ with v,(x)
S w,(x) for all xe E. Thus

5 102091 v(1) < 5uple, ) ()

and it follows that
o V(X
n=1 w(Xn)

(iii)=> (i): Given v, we determine  such that

o V(X
=1 o)
As the maps x— ¢,(x) x, are equicontinuous the semi-norm w,, is also
continuous. Consider the identity map I: (E, w,)— (E, v); then

Ix=3 @) x,
n=1

1
where ||@,ll(q,,)=——— and I Xall sy = v(xx) sO that

o(xy)
Z @l lHtall < 00,

i.e. I is nuclear. Thus E is nuclear.
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We remark that by Theorem 1 it is enough to assume in (i) that E
possesses a Kothe basis and a (different) 00-Kothe basis. We now con-
sider the weaker assumption that E possesses both an absolute basis
and an oo-absolute basis.

Theorem 5. Let E be sequentially complete and possess both an absolute
Schauder basis and a (different) co-absolute Schauder basis. Suppose X x,
converges unconditionally in E; then

i v(x) < oo
k=1

for a continuous semi-norm v on E.

Proof. By Theorem 3 E possesses a Schauder basis (x,) which is both
absolute and co-absolute. Let 7, be, as usual, the topology given by the
semi-norms

)= 3 10,691

for continuous v.

As (E, 1,) is separable and 7, is an {E, E">-polar topology we deduce,
using Theorem 8 of [11], that if X x, is unconditionally convergent in E,
then ¥ x, converges unconditionally in 7,. Then for any continuous
semi-norm v

sup sup v, ( Y kak) <o,
k=

PRNAES] 1
ie. o i n
sup sup Y, | 2. 6opy(x) v(x) <
no o=l oy (k=1
and in particular
sup sup sup| Y, O, ¢;(x)| v(y) <0,
n |61 J (k=1

ie.
S‘}p z lo;(xl vy < oo .
k=1

Thus the set {( Y l(pj(xk)l) xji=12 } is bounded in (E,7) and for
k=1

¢;—0 we have that )’ ¢ ( Y I(pj(xk)l) x; converges in (E, 7). As the con-
=t k=t

vergence is absolute we obtain

8

J

le] 3 lo,e)l vg) < 0
1 k=1

l6*
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whenever ¢;— 0. Therefore

Z Z l@;(x0)] v(x) < 0
or k=1 j=1
i Vi) <co.
Hence k:
Y vixp<oo.
k=1

Theorem 6. Let E be a sequentially complete locally convex space such
that both E and (E', B(E', E)) possess semi-absolute Schauder bases; then,
if E is (a) semi-reflexive or (b) barrelled, an unconditionally convergent
series in E is absolutely convergent.

Proof. We first reduce case (b) to case (a). In case (b), E is complete
(see [7]) and furthermore possesses a boundedly-complete basis. We may
then use results of [9] (Theorems 2.2 and 2.3) or [25] to show that if E
is not reflexive it contains a complemented subspace isomorphic to I ;
but this implies that (E', f(E’, E)) is inseparable and could not have a
basis. Hence E is reflexive and (b) reduces to (a).

Suppose that (¢,) is a semi-absolute Schauder basis of (E,, B(E,, E));
then (y,), the dual sequence of (¢,) is an unconditional Schauder basis
of (E, B(E,E)Y =E in the weak topology o(E, E"). By a theorem of
Dubinsky and Retherford [3], (x,) is a Schauder basis of E; then by
Proposition 4 (x,) is co-absolute. The result then follows by Theorem 5.

Corollary (Pietsch [4]). If E is an F-space then the hypotheses of
Theorem 5 imply that E is nuclear.

Proof. We use a result of Grothendieck [5] (Chapitre II, Théoreme 8,
Corollaire 1), that an F-space in which every unconditionally convergent
series converges absolutely is nuclear.

5. p-absolute Bases

Schock [24] introduces a useful generalization of absolute bases.

Definition (8). A Schauder basis (y,) is p—abSolute 1<p<w if Za,y,
converges if and only if for every continuous semi-norm v,

Z |a,|P [v(x)]P < 0.
Definition (9). (x,) is p-Kothe if it is p-absolute and the semi-norms

Vo a, ) = (Z la,l” [v(x,)]17)'?
are a fundamental collection for the topology on E.
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This is not the definition given by Schock, who calls p-Kothe
“p-absolute”. We remark that Rosenberger and Schock [23] have defined
p-Kothe bases for 0<p <1, and have shown that any F-space with a
p-K6the basis, p < 1, is nuclear. It may be verified without difficulty that
a p-absolute basis is unconditional, and a p-K&the basis is u-Schauder.

Proposition 8. A p-absolute basis of an F-space is p-Kothe.
Proof. The proof is similar to Proposition 7.

It is easy to show that a basis which is K6the and co-Ké&the is auto-
matically p-Ké6the for 1 < p < oo, so that Theorem 4 implies that “most”
bases of nuclear spaces are p-Ké&the for any p. There is a converse to this
statement, due to Schock [24] for F-spaces (see also Gubitz [6], p. 81,
where it is extended to LF-spaces).

Theorem 7. Let E be a locally convex space with a Schauder basis (x,)
which is both p-Kothe and q-Kéthe with 1 £p <q < oo; then E is nuclear.

Proof. We assume g < co; the case g=oo is similar. Given a con-
tinuous semi-norm v, then v, is also continuous and so there exists
a continuous semi-norm @ with

] v(x)Sw,x) xekE,
ie.

© 0 pla
5. 001 Dl = 3 0 Fol?)

Thus for any sequence a, 20, a,=0 eventually,

0

hod - pla
mew#;wwwﬂ.

a=1

Let s be such that

_1_ + P =1
S q
then we may deduce
qu]”
p> <0,
: [aKxJ
ie.
z [—‘m—} <o
1 (x5

where — = — — —.
r p

)
Let m be an integer such that mr; starting with v=v" we may
determine continuous semi-norms v, ..., v such that

O T
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and a repeated application of Holder’s inequality

V(2w
v (1)

so that, by Theorem 4, E is nuclear.

< 0

Proposition 9. A sequentially complete locally convex space with a
p-absolute Schauder basis, where 1 < p < o0, is semi-reflexive.

Proof. Let t be the original topology on E, and let , be the topology
of the semi-norms v, where

X 1/p
vﬁh(;mmmmmﬁ.

Clearly each v, is lower-semi-continuous in 7, and therefore as 7 is
sequentially complete a t-bounded subset of E is 7,-bounded.

We show that the p-absolute basis (y,) is boundedly-complete; for if

(Z a; xi) is a bounded sequence in 7, then for each t-continuous semi-
i=1
norm v, n
sup vl,(z aix,.> <0,
" i=1
o lail” [v(x)]? < o0
and ) a;y; converges. 7!
i=1
We next show that (y,) is shrinking; for, if not, there is a bounded
block basic sequence (1) (see [10], Theorem 5.4) and f e E’ with f(n,) =1
for all n. Suppose X [a,}{? < oo but X g, does not converge. For any semi-

norm v we have

13

supv,(1,) < ©
and therefore
T la, P vE(1,) < oo .

It follows that ¥ a,#, converges and therefore X a, f(1,) converges,
ie. X a, converges contrary to assumption. Hence (y,) is boundedly-
complete and shrinking, and by Cook’s theorem ([2]) E is semi-reflexive.

One would like to obtain a duality theorem for p-absolute or p-K5the
bases; however this only seems possible for Fréchet spaces. The following
result is due to Schock [24], in view of Proposition 9.

Theorem 8. Let E be a Fréchet space with a p-absolute basis (x,) for
1 1
1 <p< 0. Then (¢,) is q-Kéthe basis of (E', B(E, E)) where > + 7 =1.
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We now turn to unconditional convergence in spaces with p-Kdthe
bases. Theorem 1, Corollary 2 has an obvious extension.

Proposition 10. Let E be a locally convex space with a p-Kothe basis;
suppose X x;, converges unconditionally in E. Then, for every continuous
iy S
semi-norm, if p=2 % ()] < o0

orifps2
T v(x)]? <o
Proof. The proof is the same as that of Theorem 1, Corollary 2; we
use Orlicz’s Theorem [16] on the space [, and the fact that E has a basic

collection of semi-norms v such that the Hausdorff quotient of (E, v) is
isomorphic to a dense subspace of [, or a finite-dimensional space.

Theorem 9. Let E be a barrelled space with a p-Koéthe basis and a
(different) q-Kothe basis where co 2p>4q and p>?2. Then E is nuclear.

Proof. Let r = max(g, 2); then if (x,) is the p-Kothe basis of E, we
have, by Proposition 10, that for x e E

Y 0,00 DT < 0

for continuous semi-norm v. If we define

@ 1[r
0,0 = ( 3. 0,91 [v(x,.)J')

then v, is lower-semi-continuous, and therefore continuous on E, as E
is barrelled. Furthermore
v(x)Sv,(x) x€ E

so that the semi-norms v, determine the topology on E. Hence () 18
r-Kothe with r < p. By Theorem 7, E is nuclear.

Theorem 10. Let E be a Fréchet space with a p-absolute basis and a
(different) g-absolute basis with 1 Sq<p< oo. Then E is nuclear.

Proof. By Theorem 9, we may restrict attention to the case 1 Sg<p<2.
If g =1, then Theorem 1 and Theorem 7 together show that E is nuclear.
Hence we may suppose 1 <g<p=2.

Then Theorem 8 shows that (E,, B(E, E)) has an r-Kothe basis and
an s-Kothe basis where

1 1

_+_=1,

r p

1 1

_+_=1
sothat o >s>r=2. s q
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Furthermore (E', B(E', E)) is barrelled (Proposition 9) and so by
Theorem 9 is nuclear. It follows that E is also nuclear (see Pietsch [20],
p. 70).

Pietsch [22] Satz 8, shows that there is a non-nuclear Fréchet space E
with a fundamental sequence of semi-norms (v,, v, ...) and a fundamental
sequence (wy, @,, ...) such that (E, v,) is isomorphic to a subspace of I,
each n and (E, w,) is isomorphic to a subspace of I,, each n, where p#+4q.
Theorem 10 shows that this cannot occur if the (v,) and (,) are deter-
mined respectively by a p-absolute and a g-absolute basis.

Finally let us point out two results due to Wojtyfiski [26].

Theorem 11. Let E be a Fréchet space with a p-absolute basis
(1 = p < 00) in which every basis is unconditional; then E is nuclear.

Theorem 12. Let E be a Fréchet space with 2-absolute basis (or more
generally a projective limit of Hilbert spaces). Then every unconditional
basis of E is 2-absolute.

We remark that we have seen that Theorem 12 remains true with
2 replaced by 1 or oo (Theorems 1 and 3). However, Petczynski [17] has
shown that for p+1,2, oo, the spaces I possess unconditional bases
which are not p-absolute.
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