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Abstract. We answer a question of Peller by showing that for any c > 1
there exists a power-bounded operator T on a Hilbert space with the property
that any operator S similar to T satisfies sup

n
‖Sn‖ > c.
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1. INTRODUCTION

In this note we answer a question due to Peller ([13]) which has also recently been
raised by Pisier ([14], p. 114). Peller’s question is whether, for any ε > 0, every
power-bounded operator T is similar to an operator S with sup

n
‖Sn‖ < 1 + ε.

It was shown by Foguel ([6]) in 1964 that there is a power-bounded operator
T on a Hilbert space H which is not similar to a contraction. It was later shown by
Lebow that this example is not polynomially bounded ([12]); for other examples
see [2] and [14], Chapter 2. Recently, Pisier ([14]) answered a problem raised
by Halmos by constructing an operator which is polynomially bounded and not
similar to a contraction.

We shall construct a family of counter-examples to Peller’s question. These
counter-examples have a rather simple structure. Let w be an A2-weight on the
circle T and let H2(w) be the closed linear span of {einθ : n > 0} in L2(w). We
consider an operator

T

( ∞∑
n=0

aneinθ

)
=

∞∑
n=0

λnaneinθ

where (λn)∞n=0 is a monotone increasing sequence of positive reals with λn ↑ 1 and
λn < 1 with

lim
n→∞

1− λn+1

1− λn
= 0.
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For such operators we can prove a rather precise result (Theorem 3.4):

(1.1) inf{sup
n
‖(A−1TA)n‖ : A invertible} = sec

(
π

2p

)
where p = sup{a : wa ∈ A2}. By taking simple choices of A2-weights where p <∞
we can create a family of counter-examples.

The proof of Theorem 3.4 depends heavily on estimates for the norm of
the Riesz projection in Section 2 particularly Theorem 2.6. These results can be
obtained by a careful reading of the classical work of Helson and Szegö ([9]) on
A2-weights (cf. [7]). However, we present a self-contained argument, in which the
reader will recognize many similarities with the Helson-Szegö theory.

We also show that our examples can only be polynomially bounded in the
trivial situation when w is equivalent to the constant function and then T is
similar to contraction. We also note that the case p = ∞ in (1.1) (when Peller’s
conjecture holds for T ) corresponds to the case when logw is in the closure of
L∞(T) in BMO(T).

2. THE NORM OF THE RIESZ PROJECTION ON WEIGHTED L2-SPACES

We start by recalling an easy lemma concerning projections on a Hilbert space.

Lemma 2.1. Let E and F be closed subspaces of a Hilbert space H so that
E + F is dense in H. Suppose 0 6 ϕ < π/2. In order that there is a projection P
of H onto E with F = kerP with ‖P‖ 6 secϕ it is necessary and sufficient that

|(e, f)| 6 sinϕ‖e‖ ‖f‖, e ∈ E, f ∈ F.

Remark 2.2. Note that a consequence of Lemma 2.1 is that if P is any
non-trivial projection on a Hilbert space then ‖P‖ = ‖I − P‖.

Now let T be the unit circle (which we identify with (−π, π] in the usual way)
equipped with the standard Haar measure dθ/2π. Let µ be any finite positive Borel
measure on T. We denote by L2(µ) = L2(T;µ) the corresponding weighted L2-
space; if µ is absolutely continuous with respect to Haar measure so that dµ =
(2π)−1w(θ)dθ then we write L2(w). We refer to any nonnegative w ∈ L1(T) so
that w > 0 on a set of positive measure as a weight.

Suppose w is a weight. We recall that H2(w) is the closed subspace of L2(w)
generated by the functions {einθ : n > 0}. We recall that w is an A2-weight if
there is a bounded projection R of L2(w) onto H2(w) with R(einθ) = 0 if n < 0.
In this case we always have that w > 0 a.e., w−1 is an A2-weight and L2(w) ⊂ L1;
the operator R must coincide with the Riesz projection Rf ∼

∑
n>0

f̂(n)einθ. Let

us denote by ‖R‖w the norm of the Riesz projection on L2(w). Note that for an
A2-weight H2(w) = H1 ∩ L2(w). In particular we can define f(z) =

∑
n>0

f̂(n)zn

for |z| < 1.
The following proposition can be derived from the classical work of Helson-

Szegö [9] or [7]. However, we give a self-contained direct proof. We note that it is
also close to some work of Cotlar-Sadosky, see e.g. [5].
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Proposition 2.3. Let w be a weight function on T. Assume 0 6 ϕ < π
2 .

The following conditions are equivalent:
(i) w is an A2-weight and ‖R‖w 6 secϕ;
(ii) there exists h ∈ H1 so that |w − h| 6 w sinϕ a.e.

Proof. First note that by Lemma 2.1, (i) is equivalent to

(2.1)
∣∣∣∣

π∫
−π

f(θ)g(θ)w(θ)
dθ
2π

∣∣∣∣6sinϕ
( π∫
−π

|f(θ)|2w(θ)
dθ
2π

)1/2( π∫
−π

|g(θ)|2w(θ)
dθ
2π

)1/2

,

whenever f, g ∈ H2(w) with g(0) = 0.
To prove (i) implies (ii) we note that if w is an A2-weight so that logw ∈ L1

we can find an outer function F ∈ H2 so that w = |F |2 a.e.. Then (2.1) gives∣∣∣∣
π∫

−π

fgwF−2 dθ
2π

∣∣∣∣ 6 sinϕ
( π∫
−π

|f |2 dθ
2π

)1/2( π∫
−π

|g|2 dθ
2π

)1/2

,

for f, g ∈ H2 with g(0) = 0. This in turn implies that∣∣∣∣
π∫

−π

fwF−2 dθ
2π

∣∣∣∣ 6 sinϕ‖f‖1

for all f ∈ H1, with f(0) = 0. By the Hahn-Banach Theorem this implies there
exists G ∈ H∞ so that ‖wF−2 − G‖∞ 6 sinϕ or |w − h| 6 w sinϕ where h =
F 2G ∈ H1.

For the reverse direction just note that if f, g ∈ H2(w) with g(0) = 0 then
π∫

−π

fgw
dθ
2π

=

π∫
−π

fg(w − h)
dθ
2π

so that (2.1) follows from the Cauchy-Schwarz inequality.

Let us isolate a simple special case of the above proposition.

Proposition 2.4. Let 0 6= f ∈ H1 be such that ‖ arg f(θ)‖ 6 ϕ < π/2
almost everywhere. If f is not identically zero then w = Re f is an A2-weight for
which ‖R‖w 6 secϕ.

Proof. In this case w = Re f > 0 a.e. and |Im f | 6 w tanϕ a.e. Furthermore:

|w − cos2 ϕf |2 6 (sin4 ϕ+ cos4 ϕ tan2 ϕ)w2 6 w2 sin2 ϕ

a.e., so that we obain the result from Proposition 2.3.

Remark 2.5. Suppose 0 < α < 1 and f ∈ H1 is given by

f(z) =
(
z − 1
z + 1

)α

(taking the usual branch of ζ 7→ ζα). Then

w = Re f = cos
απ

2

∣∣∣tan
θ

2

∣∣∣α.
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It follows that

(2.2) ‖R‖| tan(θ/2)|α 6 sec
απ

2
.

In fact (2.2) is well-known (see [11], for example). We are grateful to Igor Verbitsky
for bringing this reference to our attention.

We will say that two weights v, w are equivalent (v ∼ w) if v/w,w/v ∈ L∞.

Theorem 2.6. Suppose w is an A2-weight on T. Then

inf{‖R‖v : v ∼ w} = sec
(
π

2p

)
where

p = sup{a > 0 : wa ∈ A2}.

Proof. First suppose v ∼ w and ‖R‖v = secψ where 0 6 ψ < π/2. Then
there exists h ∈ H1 with |v − h| 6 v sinψ a.e. In particular, | arg h| 6 ψ a.e.
and so h maps D into the same sector. It follows that we can define hr ∈ H1/r

for all r > 0. Choose r so that rψ < π/2, and let g = hr. Then Re g > 0 and
|Im g| 6 tan(rψ)Re g so that g ∈ H1. Now by Proposition 2.4 we have that Re g
is an A2-weight. However Re g ∼ |h|r ∼ wr so that r 6 p. We deduce that
ψ > π/(2p).

For the converse direction assume that wr is an A2-weight. Then there exists
h ∈ H1 so that |wr − h| 6 wr sinψ where 0 6 ψ < π/2. Arguing as above we
have g = h1/r ∈ H1 and Re g is an A2-weight with ‖R‖Re g 6 sec(ψ/r). Note that
Re g ∼ w, and this establishes the other direction.

Remark 2.7. If we now let w(θ) = | tan θ/2|α where 0 < α < 1 then we can
apply (2.2) to deduce that, for this particular weight the infimum is attained, i.e.

(2.3) inf{‖R‖v : v ∼ w} = ‖R‖| tan(θ/2)|α = sec
(απ

2

)
.

3. MULTIPLIERS

Suppose (en)∞n=0 be any Schauder basis of a Hilbert space H; note that we do not
assume (en) to be orthonormal or even unconditional. Let (Pn) be the associated

partial sum operators Pn

( ∞∑
k=0

akek

)
=

n∑
k=0

akek. Let Qn = I − Pn and note that

‖Qn‖ = ‖Pn‖ for all n > 0. Since (en) is a basis we have that sup
n
‖Pn‖ = b < ∞

where b is the basis constant. We call an operator T : H → H a monotone mul-
tiplier (with respect to the given basis) if there is an increasing sequence (λk)∞k=0

in R so that 0 6 λk 6 1 so that

T

( ∞∑
k=0

akek

)
=

∞∑
k=0

λkakek.
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Lemma 3.1. If T is defined as above then T is (well-defined and) bounded
and sup

n
‖Tn‖ 6 b.

Proof. It is enough to show T is bounded and ‖T‖ 6 b since Tn is also
a monotone multiplier. To see this note that if (ak)∞k=0 is finitely nonzero and

x =
∞∑

k=0

akek, then

Tx = λ0x+
∞∑

k=1

(λk − λk−1)Qk−1x

so that ‖Tx‖ 6 sup
n
‖Qn‖ = b.

We shall say that T is a fast monotone multiplier if in addition, λk < 1 for
all k and

(3.1) lim
k→∞

1− λk

1− λk−1
= 0.

Lemma 3.2. Suppose T is a fast monotone multiplier. Then there is an
increasing sequence of integers (Nn)∞n=0 so that lim

n→∞
‖TNn −Qn‖ = 0.

Proof. Note that if x =
∞∑

k=0

akek then

TNnx−Qnx =
n∑

k=0

λNn

k akek − (1− λNn
n+1)Qnx+

∞∑
k=n+1

(λNn

k − λNn
n+1)akek

whence a calculation as in Lemma 3.1 gives

‖TNnx−Qnx‖ 6 bλNn
n ‖Pnx‖+ (b+ 1)(1− λNn

n+1)‖Qnx‖.

It follows that

‖TNn −Qn‖ 6 b
(
bλNn

n + (b+ 1)(1− λNn
n+1)

)
.

It remains therefore only to select Nn so that lim
n→∞

λNn
n = 0 and lim

n→∞
λNn

n+1 = 1.

For convenience we write λn = e−νn where νn/νn+1 = κ2
n and κn →∞. For

any n > 0, pick Nn to be the greatest integer so that Nnν
1/2
n ν

1/2
n+1 6 1. Then

Nnν
1/2
n+1ν

1/2
n >

Nn

Nn + 1

and limNn = ∞.
Now

Nnνn >
Nnκn

Nn + 1
and Nnνn+1 6 κ−1

n .

This yields the desired result.

We now turn to the case when H = H2(w) where w is an A2-weight and
ek(θ) = eikθ for k > 0.
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Lemma 3.3. The basis constant of (ek)∞k=0 in H2(w) is given by b = ‖R‖w.

Proof. In fact Qn−1f = enR(e−nf) so it is clear that ‖Qn−1‖ 6 ‖R‖w. For
the other direction suppose f is a trigonometric polynomial in L2(w). Then for
large enough n we have enf ∈ H2(w) and then Rf = e−nQn−1(enf). This quickly
yields ‖R‖w 6 b.

Theorem 3.4. Let w be an A2-weight on T and let T : H2(w) → H2(w) be
a fast monotone multiplier corresponding to the sequence (λn). Then

(3.2) inf{sup
n
‖(A−1TA)n‖ : A invertible} = sec

( π

2p

)
where

p = sup{a > 0 : wa ∈ A2}.

Proof. We shall prove that if σ > 1 then the existence of an invertible A so
that sup

n
‖(A−1TA)n‖ 6 σ is equivalent to the existence of a weight v equivalent

to w so that ‖R‖v 6 σ. Once this is done, the result follows from Theorem 2.6.
In one direction this is easy. Assume v equivalent to w and ‖R‖v 6 σ.

This means that there is an equivalent inner-product norm on H2(w) in which
the basis constant of (ek)∞k=0 is bounded by σ. It follows from Lemma 3.1 that in
this equivalent norm we have sup

n
‖Tn‖v 6 σ. Hence T is similar to an operator

A−1TA such that sup
n
‖(A−1TA)n‖ 6 σ.

We now consider the converse. Let S : H2(w) → H2(w) be the operator
Sf = e1f . Suppose A is an invertible operator such that ‖(A−1TA)n‖ 6 σ. We
will define a new inner-product on H2(w) by

〈f, g〉 = LIM(A−1Snf,A−1Sng)

where LIM denotes any Banach limit (see e.g. [4], p. 85). Since S is an isometry
on H2(w) and A is invertible this defines an equivalent inner-product | · | norm on
H2(w). Now for any f ∈ H2(w) and fixed m ∈ N we have

lim
n→∞

‖A−1Qm+nS
nf −A−1TNm+nSnf‖ = 0

where (Nn) is given in Lemma 3.2. Hence

lim sup
n→∞

(‖A−1Qm+nS
nf‖2 − σ2‖A−1Snf‖2) 6 0.

Now

|Qmf |2 = LIM‖A−1SnQmf‖2 = LIM‖A−1Qm+nS
nf‖2 6 σ2|f |2.

Thus with respect to the new norm | · | the basis constant is at most σ.
Now let ck = 〈e0, ek〉 for k > 0 and let ck = c−k when k < 0. Then it follows

easily that 〈ek, el〉 = cl−k for all k, l and that for all finitely nonzero sequences
(ak) of complex numbers we have that∑

k,l

akalck−l > 0.
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This implies (see [10], p. 38) that there is a finite positive measure µ on T so that∫
e−ikθ dµ(θ) = ck.

Thus
〈f, g〉 =

∫
fg dµ.

However this norm is equivalent to the original norm so that µ is absolutely con-
tinuous with respect to Lebesgue measure and of the form (2π)−1v(θ)dθ where
v ∼ w.

It follows that in H2(v) the basis constant of the exponential basis is at most
σ and so by Lemma 3.3 we have ‖R‖v 6 σ and the proof is complete.

We can now give explicit examples by taking the weights w(θ) = |θ|α where
0 < α < 1. It is clear that in Theorem 3.4 we have p = α−1 and so for any fast
monotone multiplier we have

inf{sup
n
‖(A−1TA)n‖ : A invertible} = sec

(πα
2

)
> 1.

Note that we are essentially using here the original example of a conditional basis
for Hilbert space due to Babenko ([1]). We can also utilize (2.3) to show that for
this example the infimum in (3.2) is actually attained. In general the infimum in
(3.2) need not be attained; this it will be seen easily from Theorem 3.6 below.

Theorem 3.5. Let w be an A2-weight and suppose T : H2(w) → H2(w) is a
fast monotone multiplier, corresponding to the sequence (λn). Then the following
are equivalent:

(i) T is similar to a contraction;
(ii) T is polynomially bounded;
(iii) w ∼ 1.

Proof. That (i) implies (ii) is a consequence of von Neumann’s inequality
(see [14]). Similarly, (iii) implies (i) is trivial. It therefore remains to prove that
(ii) implies (iii). We shall treat the case when the λk are distinct; small mod-
ifications are necessary in the other cases. We shall also suppose the measure
dµ = (2π)−1w(θ)dθ is a probability measure so that ‖ek‖ = 1 for all k.

First note that if f ∈ H∞(D) then for any r < 1, then fr(T ) is well-defined
where fr(z) = f(rz) and if T is polynomially bounded we have an estimate

‖fr(T )‖ 6 C‖f‖H∞(D),

or equivalently ∥∥∥∥ ∞∑
k=0

f(rλk)akek

∥∥∥∥ 6 C‖f‖H∞(D)

∥∥∥∥ ∞∑
k=0

akek

∥∥∥∥
whenever (ak) is finitely non-zero. Letting r → 1 we obtain∥∥∥∥ ∞∑

k=0

f(λk)akek

∥∥∥∥ 6 C‖f‖H∞(D)

∥∥∥∥ ∞∑
k=0

akek

∥∥∥∥.
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Recall that by Carleson’s theorem ([3]) the sequence (λn) is interpolating (cf.
[7], p. 287–288) so that there is a constant B such that for any sequence εk = ±1
there exists f ∈ H∞(D) with ‖f‖H∞(D) 6 B and f(λk) = εk for all k > 0. Hence∥∥∥∥ ∞∑

k=0

εkakek

∥∥∥∥ 6 BC

∥∥∥∥ ∞∑
k=0

akek

∥∥∥∥
for all finitely non-zero sequences (ak). Hence by the parallelogram law we have

(BC)−1

( ∞∑
k=0

|ak|2
)1/2

6

∥∥∥∥ ∞∑
k=0

akek

∥∥∥∥ 6 BC

( ∞∑
k=0

|ak|2
)1/2

from which it follows that w ∼ 1.

We conclude by considering the cases when

inf{sup
n
‖(A−1TA)n‖ : A invertible} = 1.

Theorem 3.6. Let w be an A2-weight and suppose T : H2(w) → H2(w) is a
fast monotone multiplier, corresponding to the sequence (λn). Then the following
are equivalent:

(i) for any ε > 0, T is similar to an operator S with sup
n
‖Sn‖ < 1 + ε;

(ii) logw is in the closure of L∞ in BMO;
(iii) wa ∈ A2 for every a > 0.

Proof. The equivalence of (i) and (iii) is proved in Theorem 3.4. The equiv-
alence of (ii) and (iii) is due to Garnett and Jones ([8]); see also [7], Corollary 6.6
and its proof (p. 258–9).

The first author was supported by NSF grant DMS-9870027.
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