SOLUTION OF A PROBLEM OF PELLER CONCERNING SIMILARITY

N.J. KALTON and C. LE MERDY

Communicated by Nikolai K. Nikolski

ABSTRACT. We answer a question of Peller by showing that for any c > 1 there exists a power-bounded operator T on a Hilbert space with the property that any operator S similar to T satisfies $\sup ||S^n|| > c$.

KEYWORDS: Power bounded operators, similarities, multipliers, weights. MSC (2000): 47A65, 42A50.

1. INTRODUCTION

In this note we answer a question due to Peller ([13]) which has also recently been raised by Pisier ([14], p. 114). Peller's question is whether, for any $\varepsilon > 0$, every power-bounded operator T is similar to an operator S with $\sup ||S^n|| < 1 + \varepsilon$.

It was shown by Foguel ([6]) in 1964 that there is a power-bounded operator T on a Hilbert space \mathcal{H} which is not similar to a contraction. It was later shown by Lebow that this example is not polynomially bounded ([12]); for other examples see [2] and [14], Chapter 2. Recently, Pisier ([14]) answered a problem raised by Halmos by constructing an operator which is polynomially bounded and not similar to a contraction.

We shall construct a family of counter-examples to Peller's question. These counter-examples have a rather simple structure. Let w be an A_2 -weight on the circle \mathbb{T} and let $H^2(w)$ be the closed linear span of $\{e^{in\theta} : n \ge 0\}$ in $L^2(w)$. We consider an operator

$$T\left(\sum_{n=0}^{\infty} a_n e^{in\theta}\right) = \sum_{n=0}^{\infty} \lambda_n a_n e^{in\theta}$$

where $(\lambda_n)_{n=0}^{\infty}$ is a monotone increasing sequence of positive reals with $\lambda_n \uparrow 1$ and $\lambda_n < 1$ with

$$\lim_{n \to \infty} \frac{1 - \lambda_{n+1}}{1 - \lambda_n} = 0.$$

For such operators we can prove a rather precise result (Theorem 3.4):

(1.1)
$$\inf\{\sup_{n} \| (A^{-1}TA)^{n} \| : A \text{ invertible}\} = \sec\left(\frac{\pi}{2p}\right)$$

where $p = \sup\{a : w^a \in A_2\}$. By taking simple choices of A_2 -weights where $p < \infty$ we can create a family of counter-examples.

The proof of Theorem 3.4 depends heavily on estimates for the norm of the Riesz projection in Section 2 particularly Theorem 2.6. These results can be obtained by a careful reading of the classical work of Helson and Szegö ([9]) on A_2 -weights (cf. [7]). However, we present a self-contained argument, in which the reader will recognize many similarities with the Helson-Szegö theory.

We also show that our examples can only be polynomially bounded in the trivial situation when w is equivalent to the constant function and then T is similar to contraction. We also note that the case $p = \infty$ in (1.1) (when Peller's conjecture holds for T) corresponds to the case when $\log w$ is in the closure of $L^{\infty}(\mathbb{T})$ in BMO(\mathbb{T}).

2. THE NORM OF THE RIESZ PROJECTION ON WEIGHTED L^2 -SPACES

We start by recalling an easy lemma concerning projections on a Hilbert space.

LEMMA 2.1. Let E and F be closed subspaces of a Hilbert space \mathcal{H} so that E + F is dense in \mathcal{H} . Suppose $0 \leq \varphi < \pi/2$. In order that there is a projection P of \mathcal{H} onto E with $F = \ker P$ with $||P|| \leq \sec \varphi$ it is necessary and sufficient that

$$|(e, f)| \leq \sin \varphi ||e|| ||f||, \quad e \in E, f \in F.$$

REMARK 2.2. Note that a consequence of Lemma 2.1 is that if P is any non-trivial projection on a Hilbert space then ||P|| = ||I - P||.

Now let \mathbb{T} be the unit circle (which we identify with $(-\pi, \pi]$ in the usual way) equipped with the standard Haar measure $d\theta/2\pi$. Let μ be any finite positive Borel measure on \mathbb{T} . We denote by $L^2(\mu) = L^2(\mathbb{T}; \mu)$ the corresponding weighted L^2 -space; if μ is absolutely continuous with respect to Haar measure so that $d\mu = (2\pi)^{-1}w(\theta)d\theta$ then we write $L^2(w)$. We refer to any nonnegative $w \in L^1(\mathbb{T})$ so that w > 0 on a set of positive measure as a weight.

Suppose w is a weight. We recall that $H^2(w)$ is the closed subspace of $L^2(w)$ generated by the functions $\{e^{in\theta} : n \ge 0\}$. We recall that w is an A_2 -weight if there is a bounded projection R of $L^2(w)$ onto $H^2(w)$ with $R(e^{in\theta}) = 0$ if n < 0. In this case we always have that w > 0 a.e., w^{-1} is an A_2 -weight and $L^2(w) \subset L^1$; the operator R must coincide with the Riesz projection $Rf \sim \sum_{n\ge 0} \widehat{f}(n)e^{in\theta}$. Let

us denote by $||R||_w$ the norm of the Riesz projection on $L^2(w)$. Note that for an A_2 -weight $H^2(w) = H^1 \cap L^2(w)$. In particular we can define $f(z) = \sum_{n \ge 0} \widehat{f}(n) z^n$ for |z| < 1.

The following proposition can be derived from the classical work of Helson-Szegö [9] or [7]. However, we give a self-contained direct proof. We note that it is also close to some work of Cotlar-Sadosky, see e.g. [5].

PROPOSITION 2.3. Let w be a weight function on \mathbb{T} . Assume $0 \leq \varphi < \frac{\pi}{2}$. The following conditions are equivalent:

(i) w is an A_2 -weight and $||R||_w \leq \sec \varphi$;

(ii) there exists $h \in H^1$ so that $|w - h| \leq w \sin \varphi$ a.e.

Proof. First note that by Lemma 2.1, (i) is equivalent to

(2.1)
$$\left|\int_{-\pi}^{\pi} f(\theta)g(\theta)w(\theta)\frac{\mathrm{d}\theta}{2\pi}\right| \leq \sin\varphi \left(\int_{-\pi}^{\pi} |f(\theta)|^2 w(\theta)\frac{\mathrm{d}\theta}{2\pi}\right)^{1/2} \left(\int_{-\pi}^{\pi} |g(\theta)|^2 w(\theta)\frac{\mathrm{d}\theta}{2\pi}\right)^{1/2},$$

whenever $f, g \in H^2(w)$ with g(0) = 0.

To prove (i) implies (ii) we note that if w is an A_2 -weight so that $\log w \in L^1$ we can find an outer function $F \in H^2$ so that $w = |F|^2$ a.e.. Then (2.1) gives

$$\left|\int_{-\pi}^{\pi} fgwF^{-2} \frac{\mathrm{d}\theta}{2\pi}\right| \leqslant \sin\varphi \left(\int_{-\pi}^{\pi} |f|^2 \frac{\mathrm{d}\theta}{2\pi}\right)^{1/2} \left(\int_{-\pi}^{\pi} |g|^2 \frac{\mathrm{d}\theta}{2\pi}\right)^{1/2},$$

for $f, g \in H^2$ with g(0) = 0. This in turn implies that

$$\left|\int_{-\pi}^{\pi} fw F^{-2} \frac{\mathrm{d}\theta}{2\pi}\right| \leq \sin \varphi \|f\|_{1}$$

for all $f \in H^1$, with f(0) = 0. By the Hahn-Banach Theorem this implies there exists $G \in H^\infty$ so that $||wF^{-2} - G||_\infty \leq \sin \varphi$ or $|w - h| \leq w \sin \varphi$ where $h = F^2 G \in H^1$.

For the reverse direction just note that if $f, g \in H^2(w)$ with g(0) = 0 then

$$\int_{-\pi}^{\pi} fgw \frac{\mathrm{d}\theta}{2\pi} = \int_{-\pi}^{\pi} fg(w-h) \frac{\mathrm{d}\theta}{2\pi}$$

so that (2.1) follows from the Cauchy-Schwarz inequality.

Let us isolate a simple special case of the above proposition.

PROPOSITION 2.4. Let $0 \neq f \in H^1$ be such that $\|\arg f(\theta)\| \leq \varphi < \pi/2$ almost everywhere. If f is not identically zero then $w = \operatorname{Re} f$ is an A_2 -weight for which $\|R\|_w \leq \sec \varphi$.

Proof. In this case $w = \operatorname{Re} f \ge 0$ a.e. and $|\operatorname{Im} f| \le w \tan \varphi$ a.e. Furthermore:

$$|w - \cos^2 \varphi f|^2 \leq (\sin^4 \varphi + \cos^4 \varphi \tan^2 \varphi) w^2 \leq w^2 \sin^2 \varphi$$

a.e., so that we obtin the result from Proposition 2.3.

REMARK 2.5. Suppose $0 < \alpha < 1$ and $f \in H^1$ is given by

$$f(z) = \left(\frac{z-1}{z+1}\right)^{c}$$

(taking the usual branch of $\zeta \mapsto \zeta^{\alpha}$). Then

$$w = \operatorname{Re} f = \cos \frac{\alpha \pi}{2} \left| \tan \frac{\theta}{2} \right|^{\alpha}.$$

N.J. KALTON AND C. LE MERDY

It follows that

(2.2)
$$||R||_{|\tan(\theta/2)|^{\alpha}} \leqslant \sec \frac{\alpha \pi}{2}$$

In fact (2.2) is well-known (see [11], for example). We are grateful to Igor Verbitsky for bringing this reference to our attention.

We will say that two weights v, w are equivalent $(v \sim w)$ if $v/w, w/v \in L^{\infty}$.

THEOREM 2.6. Suppose w is an A_2 -weight on \mathbb{T} . Then

$$\inf\{\|R\|_v: v \sim w\} = \sec\left(\frac{\pi}{2p}\right)$$

where

$$p = \sup\{a > 0 : w^a \in A_2\}.$$

Proof. First suppose $v \sim w$ and $||R||_v = \sec \psi$ where $0 \leq \psi < \pi/2$. Then there exists $h \in H^1$ with $|v - h| \leq v \sin \psi$ a.e. In particular, $|\arg h| \leq \psi$ a.e. and so h maps \mathbb{D} into the same sector. It follows that we can define $h^r \in H^{1/r}$ for all r > 0. Choose r so that $r\psi < \pi/2$, and let $g = h^r$. Then $\operatorname{Re} g \geq 0$ and $|\operatorname{Im} g| \leq \tan(r\psi)\operatorname{Re} g$ so that $g \in H^1$. Now by Proposition 2.4 we have that $\operatorname{Re} g$ is an A_2 -weight. However $\operatorname{Re} g \sim |h|^r \sim w^r$ so that $r \leq p$. We deduce that $\psi \geq \pi/(2p)$.

For the converse direction assume that w^r is an A_2 -weight. Then there exists $h \in H^1$ so that $|w^r - h| \leq w^r \sin \psi$ where $0 \leq \psi < \pi/2$. Arguing as above we have $g = h^{1/r} \in H^1$ and $\operatorname{Re} g$ is an A_2 -weight with $||R||_{\operatorname{Re} g} \leq \operatorname{sec}(\psi/r)$. Note that $\operatorname{Re} g \sim w$, and this establishes the other direction.

REMARK 2.7. If we now let $w(\theta) = |\tan \theta/2|^{\alpha}$ where $0 < \alpha < 1$ then we can apply (2.2) to deduce that, for this particular weight the infimum is attained, i.e.

(2.3)
$$\inf\{\|R\|_v : v \sim w\} = \|R\|_{|\tan(\theta/2)|^{\alpha}} = \sec\left(\frac{\alpha\pi}{2}\right).$$

3. MULTIPLIERS

Suppose $(e_n)_{n=0}^{\infty}$ be any Schauder basis of a Hilbert space \mathcal{H} ; note that we do not assume (e_n) to be orthonormal or even unconditional. Let (P_n) be the associated partial sum operators $P_n\left(\sum_{k=0}^{\infty} a_k e_k\right) = \sum_{k=0}^n a_k e_k$. Let $Q_n = I - P_n$ and note that $\|Q_n\| = \|P_n\|$ for all $n \ge 0$. Since (e_n) is a basis we have that $\sup \|P_n\| = b < \infty$ where b is the basis constant. We call an operator $T: \mathcal{H} \to \mathcal{H}$ a monotone multiplier (with respect to the given basis) if there is an increasing sequence $(\lambda_k)_{k=0}^{\infty}$ in \mathbb{R} so that $0 \le \lambda_k \le 1$ so that

$$T\left(\sum_{k=0}^{\infty} a_k e_k\right) = \sum_{k=0}^{\infty} \lambda_k a_k e_k.$$

382

LEMMA 3.1. If T is defined as above then T is (well-defined and) bounded and $\sup ||T^n|| \leq b$.

Proof. It is enough to show T is bounded and $||T|| \leq b$ since T^n is also a monotone multiplier. To see this note that if $(a_k)_{k=0}^{\infty}$ is finitely nonzero and $x = \sum_{k=0}^{\infty} a_k e_k$, then

$$Tx = \lambda_0 x + \sum_{k=1}^{\infty} (\lambda_k - \lambda_{k-1})Q_{k-1}x$$

so that $||Tx|| \leq \sup_{n} ||Q_n|| = b.$

We shall say that T is a *fast monotone multiplier* if in addition, $\lambda_k < 1$ for all k and

(3.1)
$$\lim_{k \to \infty} \frac{1 - \lambda_k}{1 - \lambda_{k-1}} = 0.$$

LEMMA 3.2. Suppose T is a fast monotone multiplier. Then there is an increasing sequence of integers $(N_n)_{n=0}^{\infty}$ so that $\lim_{n\to\infty} ||T^{N_n} - Q_n|| = 0$.

Proof. Note that if
$$x = \sum_{k=0}^{\infty} a_k e_k$$
 then

$$T^{N_n}x - Q_nx = \sum_{k=0}^n \lambda_k^{N_n} a_k e_k - (1 - \lambda_{n+1}^{N_n})Q_nx + \sum_{k=n+1}^\infty (\lambda_k^{N_n} - \lambda_{n+1}^{N_n})a_k e_k$$

whence a calculation as in Lemma 3.1 gives

$$||T^{N_n}x - Q_nx|| \le b\lambda_n^{N_n} ||P_nx|| + (b+1)(1-\lambda_{n+1}^{N_n})||Q_nx||.$$

It follows that

$$||T^{N_n} - Q_n|| \leq b \left(b \lambda_n^{N_n} + (b+1)(1 - \lambda_{n+1}^{N_n}) \right).$$

It remains therefore only to select N_n so that $\lim_{n\to\infty} \lambda_n^{N_n} = 0$ and $\lim_{n\to\infty} \lambda_{n+1}^{N_n} = 1$. For convenience we write $\lambda_n = e^{-\nu_n}$ where $\nu_n/\nu_{n+1} = \kappa_n^2$ and $\kappa_n \to \infty$. For any $n \ge 0$, pick N_n to be the greatest integer so that $N_n \nu_n^{1/2} \nu_{n+1}^{1/2} \le 1$. Then

$$N_n \nu_{n+1}^{1/2} \nu_n^{1/2} \ge \frac{N_n}{N_n + 1}$$

and $\lim N_n = \infty$.

Now

$$N_n \nu_n \geqslant \frac{N_n \kappa_n}{N_n + 1}$$
 and $N_n \nu_{n+1} \leqslant \kappa_n^{-1}$.

This yields the desired result.

We now turn to the case when $\mathcal{H} = H^2(w)$ where w is an A_2 -weight and $e_k(\theta) = e^{ik\theta}$ for $k \ge 0$.

LEMMA 3.3. The basis constant of $(e_k)_{k=0}^{\infty}$ in $H^2(w)$ is given by $b = ||R||_w$.

Proof. In fact $Q_{n-1}f = e_n R(e_{-n}f)$ so it is clear that $||Q_{n-1}|| \leq ||R||_w$. For the other direction suppose f is a trigonometric polynomial in $L^2(w)$. Then for large enough n we have $e_n f \in H^2(w)$ and then $Rf = e_{-n}Q_{n-1}(e_n f)$. This quickly yields $||R||_w \leq b$.

THEOREM 3.4. Let w be an A_2 -weight on \mathbb{T} and let $T: H^2(w) \to H^2(w)$ be a fast monotone multiplier corresponding to the sequence (λ_n) . Then

(3.2)
$$\inf\{\sup_{n} \| (A^{-1}TA)^n \| : A \text{ invertible}\} = \sec\left(\frac{\pi}{2p}\right)$$

where

$$p = \sup\{a > 0 : w^a \in A_2\}.$$

Proof. We shall prove that if $\sigma \ge 1$ then the existence of an invertible A so that $\sup_{n \to \infty} ||(A^{-1}TA)^n|| \le \sigma$ is equivalent to the existence of a weight v equivalent

to w so that $||R||_v \leq \sigma$. Once this is done, the result follows from Theorem 2.6.

In one direction this is easy. Assume v equivalent to w and $||R||_v \leq \sigma$. This means that there is an equivalent inner-product norm on $H^2(w)$ in which the basis constant of $(e_k)_{k=0}^{\infty}$ is bounded by σ . It follows from Lemma 3.1 that in this equivalent norm we have $\sup ||T^n||_v \leq \sigma$. Hence T is similar to an operator $A^{-1}TA$ such that $\sup ||(A^{-1}TA)^n|| \leq \sigma$.

We now consider the converse. Let $S : H^2(w) \to H^2(w)$ be the operator $Sf = e_1 f$. Suppose A is an invertible operator such that $||(A^{-1}TA)^n|| \leq \sigma$. We will define a new inner-product on $H^2(w)$ by

$$\langle f, g \rangle = \operatorname{LIM}(A^{-1}S^n f, A^{-1}S^n g)$$

where LIM denotes any Banach limit (see e.g. [4], p. 85). Since S is an isometry on $H^2(w)$ and A is invertible this defines an equivalent inner-product $|\cdot|$ norm on $H^2(w)$. Now for any $f \in H^2(w)$ and fixed $m \in \mathbb{N}$ we have

$$\lim_{n \to \infty} \|A^{-1}Q_{m+n}S^n f - A^{-1}T^{N_{m+n}}S^n f\| = 0$$

where (N_n) is given in Lemma 3.2. Hence

$$\limsup_{n \to \infty} (\|A^{-1}Q_{m+n}S^n f\|^2 - \sigma^2 \|A^{-1}S^n f\|^2) \le 0.$$

Now

$$|Q_m f|^2 = \text{LIM} ||A^{-1}S^n Q_m f||^2 = \text{LIM} ||A^{-1}Q_{m+n}S^n f||^2 \le \sigma^2 |f|^2.$$

Thus with respect to the new norm $|\cdot|$ the basis constant is at most σ .

Now let $c_k = \langle e_0, e_k \rangle$ for $k \ge 0$ and let $c_k = \overline{c}_{-k}$ when k < 0. Then it follows easily that $\langle e_k, e_l \rangle = c_{l-k}$ for all k, l and that for all finitely nonzero sequences (a_k) of complex numbers we have that

$$\sum_{k,l} a_k \overline{a}_l c_{k-l} \ge 0.$$

This implies (see [10], p. 38) that there is a finite positive measure μ on \mathbb{T} so that

$$\int e^{-ik\theta} d\mu(\theta) = c_k.$$

Thus

$$\langle f,g\rangle = \int f\overline{g}\,\mathrm{d}\mu.$$

However this norm is equivalent to the original norm so that μ is absolutely continuous with respect to Lebesgue measure and of the form $(2\pi)^{-1}v(\theta)d\theta$ where $v \sim w$.

It follows that in $H^2(v)$ the basis constant of the exponential basis is at most σ and so by Lemma 3.3 we have $||R||_v \leq \sigma$ and the proof is complete.

We can now give explicit examples by taking the weights $w(\theta) = |\theta|^{\alpha}$ where $0 < \alpha < 1$. It is clear that in Theorem 3.4 we have $p = \alpha^{-1}$ and so for any fast monotone multiplier we have

$$\inf\{\sup_{n} \| (A^{-1}TA)^n \| : A \text{ invertible}\} = \sec\left(\frac{\pi\alpha}{2}\right) > 1$$

Note that we are essentially using here the original example of a conditional basis for Hilbert space due to Babenko ([1]). We can also utilize (2.3) to show that for this example the infimum in (3.2) is actually attained. In general the infimum in (3.2) need not be attained; this it will be seen easily from Theorem 3.6 below.

THEOREM 3.5. Let w be an A_2 -weight and suppose $T : H^2(w) \to H^2(w)$ is a fast monotone multiplier, corresponding to the sequence (λ_n) . Then the following are equivalent:

- (i) T is similar to a contraction;
- (ii) T is polynomially bounded;
- (iii) $w \sim 1$.

Proof. That (i) implies (ii) is a consequence of von Neumann's inequality (see [14]). Similarly, (iii) implies (i) is trivial. It therefore remains to prove that (ii) implies (iii). We shall treat the case when the λ_k are distinct; small modifications are necessary in the other cases. We shall also suppose the measure $d\mu = (2\pi)^{-1} w(\theta) d\theta$ is a probability measure so that $||e_k|| = 1$ for all k.

First note that if $f \in H^{\infty}(\mathbb{D})$ then for any r < 1, then $f_r(T)$ is well-defined where $f_r(z) = f(rz)$ and if T is polynomially bounded we have an estimate

$$||f_r(T)|| \leq C ||f||_{H^{\infty}(\mathbb{D})},$$

or equivalently

$$\bigg|\sum_{k=0}^{\infty} f(r\lambda_k) a_k e_k \bigg\| \leqslant C \|f\|_{H^{\infty}(\mathbb{D})} \bigg\| \sum_{k=0}^{\infty} a_k e_k \bigg\|$$

whenever (a_k) is finitely non-zero. Letting $r \to 1$ we obtain

$$\left\|\sum_{k=0}^{\infty} f(\lambda_k) a_k e_k\right\| \leqslant C \|f\|_{H^{\infty}(\mathbb{D})} \left\|\sum_{k=0}^{\infty} a_k e_k\right\|.$$

Recall that by Carleson's theorem ([3]) the sequence (λ_n) is *interpolating* (cf. [7], p. 287–288) so that there is a constant B such that for any sequence $\varepsilon_k = \pm 1$ there exists $f \in H^{\infty}(\mathbb{D})$ with $||f||_{H^{\infty}(\mathbb{D})} \leq B$ and $f(\lambda_k) = \varepsilon_k$ for all $k \geq 0$. Hence

$$\left\|\sum_{k=0}^{\infty}\varepsilon_k a_k e_k\right\| \leqslant BC \left\|\sum_{k=0}^{\infty}a_k e_k\right\|$$

for all finitely non-zero sequences (a_k) . Hence by the parallelogram law we have

$$(BC)^{-1} \left(\sum_{k=0}^{\infty} |a_k|^2\right)^{1/2} \le \left\|\sum_{k=0}^{\infty} a_k e_k\right\| \le BC \left(\sum_{k=0}^{\infty} |a_k|^2\right)^{1/2}$$

from which it follows that $w \sim 1$.

We conclude by considering the cases when

$$\inf\{\sup \| (A^{-1}TA)^n\| : A \text{ invertible}\} = 1.$$

THEOREM 3.6. Let w be an A_2 -weight and suppose $T : H^2(w) \to H^2(w)$ is a fast monotone multiplier, corresponding to the sequence (λ_n) . Then the following are equivalent:

(i) for any $\varepsilon > 0$, T is similar to an operator S with $\sup \|S^n\| < 1 + \varepsilon$;

- (ii) $\log w$ is in the closure of L^{∞} in BMO;
- (iii) $w^{a} \in A_{2}$ for every a > 0.

Proof. The equivalence of (i) and (iii) is proved in Theorem 3.4. The equivalence of (ii) and (iii) is due to Garnett and Jones ([8]); see also [7], Corollary 6.6 and its proof (p. 258-9).

The first author was supported by NSF grant DMS-9870027.

REFERENCES

- K.I. BABENKO, On conjugate functions, [Russian], Dokl. Akad. Nauk. SSSR 62(1948), 157–160.
- 2. M. BOZEJKO, Littlewood functions, Hankel multipliers and power-bounded operators on a Hilbert space, *Colloq. Math.* **51**(1987), 35–42.
- 3. L. CARLESON, An interpolation problem for bounded analytic functions, *Amer. J. Math.* **80**(1958), 921–930.
- J.B. CONWAY, A Course in Functional Analysis, Springer Verlag, Berlin–Heidelberg– New York, 1985.
- M. COTLAR, C. SADOSKY, On the Helson-Szegö theorem and a related class of Toeplitz kernels, in *Harmonic Analysis in Euclidean Spaces*, Proc. Sympos. Pure Math. vol. 35, Amer. Math. Soc., Providence, RI 1979, pp. 383–407.
- S. FOGUEL, A counter-example to a problem of Sz.-Nagy, Proc. Amer. Math. Soc. 15(1964), 788–790.
- 7. J. GARNETT, Bounded Analytic Functions, Academic Press, Orlando 1981.
- 8. J. GARNETT, P.W. JONES, The distance in BMO to L^{∞} , Ann. of Math. 108(1978), 373–393.
- H. HELSON, G. SZEGÖ, A problem in prediction theory, Ann. Mat. Pura. Appl. 51(1960), 107–138.

Solution of a problem of Peller concerning similarity

- 10. Y. KATZNELSON, An Introduction to Harmonic Analysis, Dover, New York 1976.
- N. KRUPNIK, I. VERBITSKY, The norm of the Riesz projection, in *Linear and Complex Analysis Problem Book*, editors V.P. Havin, S.V. Hruscev and N.K. Nikolskii, Lecture Notes in Math., vol. 1043, Springer Verlag, Berlin–Heidelberg–New York, 1984, pp. 325–327.
- A. LEBOW, A power-bounded operator which is not polynomially bounded, *Michigan Math. J.* 15(1968), 397–399.
- V. PELLER, Estimates of functions of power-bounded operators on Hilbert spaces, J. Operator Theory 7(1982), 341–372.
- 14. G. PISIER, Similarity Problems and Completely Bounded Maps, Lecture Notes in Math., vol. 1618, Springer Verlag, Berlin-Heidelberg-New York, 1996.
- 15. G. PISIER, A polynomially bounded operator on Hilbert space which is not similar to a contraction, J. Amer. Math. Soc. **10**(1997), 351–369.

N.J. KALTON Department of Mathematics University of Missouri-Columbia Columbia, MO 65211 USA

E-mail: nigel@math.missouri.edu

C. Le MERDY Equipe de Mathématiques – UMR 6623 Université de Franche-Comté F-25030 Besançon cedex FRANCE

 $E\text{-}mail: \ lemerdy @math.univ-fcomte.fr$

 $Current \ address$

CMA Australian national University Canberra ACT 0200 AUSTRALIA

Received September 13, 1999.