

Available online at www.sciencedirect.com

J. Math. Anal. Appl. 294 (2004) 373-386

Journal of MATHEMATICAL ANALYSIS AND APPLICATIONS

www.elsevier.com/locate/jmaa

R-bounded approximating sequences and applications to semigroups ☆

M. Hoffmann,¹ N. Kalton,^{*} and T. Kucherenko

Department of Mathematics, University of Missouri-Columbia, Columbia, MO 65211, USA

Received 15 December 2002 Available online 24 April 2004

Submitted by R. Triggiani

Abstract

It is shown that on certain Banach spaces, including C[0, 1] and $L_1[0, 1]$, there is no strongly continuous semigroup $(T_t)_{0 < t < 1}$ consisting of weakly compact operators such that $(T_t)_{0 < t < 1}$ is an R-bounded family. More general results concerning approximating sequences are included and some variants of R-boundedness are also discussed. © 2004 Elsevier Inc. All rights reserved.

Keywords: Strongly continuous semigroups; R-boundedness; Approximation property

1. Introduction

Recent work on semigroup theory [13,24] has highlighted the importance of the concept of R-boundedness. Let us recall the definition of R-bounded families of operators (cf. [2, 7,9]).

Definition 1.1. A family \mathcal{T} of operators in $\mathcal{L}(X, Y)$ is called *R*-bounded with R-boundedness constant C > 0 if letting $(\epsilon_k)_{k=1}^{\infty}$ be a sequence of independent Rademachers on some probability space then for every $x_1, \ldots, x_n \in X$ and $T_1, \ldots, T_n \in \mathcal{T}$ we have

 $^{^{\,\}pm}$ The authors acknowledge support from NSF grant DMS-9870027.

^{*} Corresponding author.

E-mail addresses: hoffmann@math.sc.edu (M. Hoffmann), nigel@math.missouri.edu (N. Kalton), tamara@math.missouri.edu (T. Kucherenko).

¹ Current address: Department of Mathematics, University of South Carolina, Columbia, SC 29208, USA.

⁰⁰²²⁻²⁴⁷X/\$ - see front matter © 2004 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2003.10.048

$$\left(\mathbb{E}\left\|\sum_{k=1}^{n}\epsilon_{k}T_{k}x_{k}\right\|^{2}\right)^{1/2} \leqslant C\left(\mathbb{E}\left\|\sum_{k=1}^{n}\epsilon_{k}x_{k}\right\|^{2}\right)^{1/2}.$$
(1.1)

By the Kahane–Khintchine inequality we can replace 2 above by any other exponent $1 \le p < \infty$ to obtain an equivalent definition. We will also need the following definition introduced in [13].

Definition 1.2. A family \mathcal{T} of operators in $\mathcal{L}(X, Y)$ is called *WR-bounded* with WR-boundedness constant C > 0 if for every $x_1, \ldots, x_n \in X$, $y_1^*, \ldots, y_n^* \in Y^*$ and $T_1, \ldots, T_n \in \mathcal{T}$ we have

$$\sum_{k=1}^{n} |\langle T_k x_k, y_k^* \rangle| \leq C \left(\mathbb{E} \left\| \sum_{k=1}^{n} \epsilon_k x_k \right\|^2 \right)^{1/2} \left(\mathbb{E} \left\| \sum_{k=1}^{n} \epsilon_k y_k^* \right\|^2 \right)^{1/2}.$$

$$(1.2)$$

It is clear by the Cauchy–Schwarz inequality that R-boundedness implies WR-boundedness. The converse is not true in general, but it holds for spaces with non-trivial type [13, 20].

In [13] it was shown that no reasonable differential operator on L_1 can have an H^{∞} calculus. In this note we consider the related question whether a differential-type operator on L_1 can generate an R-bounded semigroup. Note that if A is an R-sectorial operator (cf. [13]) with R-sectoriality angle less than $\pi/2$ then the semigroup $(e^{-tA})_{0 \le t \le 1}$ is necessarily R-bounded. In general, one expects a semigroup generated by a differential operator on a bounded domain to consist of weakly compact operators. We are thus led to consider the question whether one can have a strongly continuous semigroup $(T_t)_{0 \le t \le 1}$ on L_1 such that each T_t is weakly compact (or equivalently compact, since L_1 has the Dunford–Pettis property) and such that the family $(T_t)_{0 < t < 1}$ is R-bounded. In fact this leads to considering versions of the approximation property; the only property of the semigroup needed is commutativity. We consider the general question whether on a given separable Banach space one can find an R-bounded sequence $(T_n)_{n \in \mathbb{N}}$ of commuting weakly compact operators such that $\lim_{n\to\infty} T_n x = x$ for all $x \in X$. Our main results show that for the spaces $L_1[0, 1], C(K)$ (except c_0) and the disk algebra $A(\mathbb{D})$ this is impossible. These results may be regarded as extensions of classical results that the spaces $L_1, C(K)$ do not have unconditional bases [15].

In the case of L_1 we are led to consider a natural weakening of R-boundedness, where we use the definition (1.1) but only for single vectors.

Definition 1.3. A family \mathcal{T} of operators in $\mathcal{L}(X, Y)$ is called *semi-R-bounded* if there is a constant C > 0 such that for every $x \in X$, $a_1, \ldots, a_n \in \mathbb{C}$ and $T_1, \ldots, T_n \in \mathcal{T}$ we have

$$\left(\mathbb{E}\left\|\sum_{k=1}^{n}\epsilon_{k}a_{k}T_{k}x\right\|^{2}\right)^{1/2} \leqslant C\left(\sum_{k=1}^{n}|a_{k}|^{2}\right)^{1/2}\|x\|.$$
(1.3)

We note that semi-R-boundedness is equivalent to R-boundedness for operators on L_1 . In Theorem 2.2 we actually characterize all spaces where semi-R-boundedness is equivalent to R-boundedness as spaces which are either Hilbert spaces or GT-spaces of cotype 2 in the terminology of Pisier [19].

374

2. R-boundedness and WR-boundedness

In this section, we make some remarks about R-boundedness and related notions. Note that in a space of type 2, any uniformly bounded collection $\mathcal{T} \subset L(X, X)$ is semi-R-bounded. The converse is also true:

Proposition 2.1. A Banach space X has type 2 if and only if uniform boundedness is equivalent to semi-R-boundedness.

Proof. Suppose that every uniformly bounded family of operators is already semi-Rbounded. Pick any $x \in X$ and $x^* \in X^*$ such that $||x|| = ||x^*|| = 1$ and $x^*(x) = 1$. Notice that the family $\mathcal{T} = \{x^* \otimes u: ||u|| = 1\}$ is uniformly bounded with constant one and hence semi-R-bounded by assumption. Let *C* be the semi-R-boundedness constant of \mathcal{T} . Select any $x_1, \ldots, x_n \in X$ and write $x_k = ||x_k||u_k$, where $||u_k|| = 1$. Then $\{x^* \otimes u_k: k = 1, \ldots, n\} \subset \mathcal{T}$ and

$$\begin{aligned} \left(\mathbb{E} \left\| \sum_{k=1}^{n} \epsilon_k x_k \right\|^2 \right)^{1/2} &= \left(\mathbb{E} \left\| \sum_{k=1}^{n} \epsilon_k \| x_k \| (x^* \otimes u_k) x \right\|^2 \right)^{1/2} \\ &\leq C \left(\mathbb{E} \left\| \sum_{k=1}^{n} \epsilon_k \| x_k \| x \right\|^2 \right)^{1/2} = C \| x \| \left(\sum_{k=1}^{n} \| x_k \|^2 \right)^{1/2} \\ &= C \left(\sum_{k=1}^{n} \| x_k \|^2 \right)^{1/2}. \end{aligned}$$

Thus, X has type 2. \Box

For some spaces, semi-R-boundedness is equivalent to R-boundedness and we are able to completely characterize these spaces in the next theorem. Let us recall that a Banach space X is called a *GT-space* if every bounded operator $T: X \to \ell_2$ is absolutely summing. Examples of GT-spaces of cotype 2 are L_1 , the quotient of L_1 by a reflexive subspace [14,19], and L_1/H_1 [8]. It is unknown whether every GT-space has cotype 2.

Theorem 2.2. Suppose X is separable. Then the following are equivalent:

- (i) Every semi-R-bounded family of operators on X is R-bounded.
- (ii) X is isomorphic to ℓ_2 or X is a GT-space of cotype 2.

Proof. First we prove that (i) implies (ii). Suppose that every semi-R-bounded family of operators on X is R-bounded. Let us note that this implies the existence of a constant K so that if \mathcal{T} has semi-R-boundedness constant C then it has R-boundedness constant KC; for otherwise we could find a sequence \mathcal{T}_n of families with semi-R-boundedness constant one and R-boundedness constant at least 4^n ; then the family $\bigcup_{n \ge 1} 2^{-n} \mathcal{T}_n$ contradicts our

assumption. Fix M > 1 and take $x \in X$. Choose $n \in \mathbb{N}$. By Dvoretzky's theorem [16] we can find $e_1, \ldots, e_n \in X$ such that for any $a_1, \ldots, a_n \in \mathbb{C}$ we have

$$M^{-1}\left(\sum_{k=1}^{n} |a_k|^2\right)^{1/2} \leq \left\|\sum_{k=1}^{n} a_k e_k\right\| \leq M\left(\sum_{k=1}^{n} |a_k|^2\right)^{1/2}.$$

Consider the family of operators $\mathcal{T}_n = \{u^* \otimes e_k: ||u^*|| = 1, k = 1, ..., n\}$. Then each \mathcal{T}_n is semi-R-bounded with constant M as follows. A finite subfamily of \mathcal{T}_n is of the form $\{u_{kj}^* \oplus e_k: 1 \le k \le n, 1 \le j \le m_k\}$ for some $m_1, ..., m_n \in \mathbb{N}$. Then for every $a_{11}, ..., a_{nm_n} \in \mathbb{C}$ we have (letting ϵ_{kj} denote independent Rademachers)

$$\left(\mathbb{E}\left\|\sum_{k=1}^{n}\sum_{j=1}^{m_{k}}\epsilon_{kj}a_{kj}u_{kj}^{*}(x)e_{k}\right\|^{2}\right)^{1/2} \leq M\left(\mathbb{E}\sum_{k=1}^{n}\left|\sum_{j=1}^{m_{k}}\epsilon_{kj}u_{kj}^{*}(x)a_{kj}\right|^{2}\right)^{1/2} \\ \leq M\left(\sum_{k=1}^{n}\mathbb{E}\left|\sum_{j=1}^{m_{k}}\epsilon_{kj}u_{kj}^{*}(x)a_{kj}\right|^{2}\right)^{1/2} \leq M\left(\sum_{k=1}^{n}\sum_{j=1}^{m_{k}}|a_{kj}|^{2}\right)^{1/2} \|x\|.$$

Our assumption implies that each \mathcal{T}_n is R-bounded with constant KM. Let $x_1, \ldots, x_n \in X$ and write $x_k = ||x_k||u_k$, where $||u_k|| = 1$. Choose $u_k^* \in X^*$ such that $u_k^*(u_k) = 1$ and $||u_k^*|| = 1$. Now we have

$$\left(\sum_{k=1}^{n} \|x_{k}\|^{2}\right)^{1/2} \leq M\left(\mathbb{E}\left\|\sum_{k=1}^{n} \epsilon_{k} \|x_{k}\| e_{k}\right\|^{2}\right)^{1/2}$$
$$= M\left(\mathbb{E}\left\|\sum_{k=1}^{n} \epsilon_{k} \|x_{k}\| u_{k}^{*}(u_{k}) e_{k}\right\|^{2}\right)^{1/2}$$
$$= M\left(\mathbb{E}\left\|\sum_{k=1}^{n} \epsilon_{k} \|x_{k}\| (u_{k}^{*} \otimes e_{k})(u_{k})\right\|^{2}\right)^{1/2}$$
$$\leq KM^{2}\left(\mathbb{E}\left\|\sum_{k=1}^{n} \epsilon_{k} \|x_{k}\| u_{k}\right\|^{2}\right)^{1/2} = KM^{2}\left(\mathbb{E}\left\|\sum_{k=1}^{n} \epsilon_{k} x_{k}\right\|^{2}\right)^{1/2}$$

This shows that *X* has cotype 2.

Let us assume that X has non-trivial type. Then by results of Pisier [19] and also by Figiel and Tomczak-Jaegermann [12], ℓ_2^n is uniformly complemented in X. Thus, for some constant C, for every $n \in \mathbb{N}$ we can choose a biorthogonal system $\{(e_k, e_k^*): k = 1, ..., n\}$ in $X \times X^*$ such that

$$\left\|\sum_{k=1}^{n} a_k e_k\right\| \leqslant C\left(\sum_{k=1}^{n} |a_k|^2\right)^{1/2}$$

and

$$\left\|\sum_{k=1}^{n} a_k e_k^*\right\| \leqslant C\left(\sum_{k=1}^{n} |a_k|^2\right)^{1/2}$$

for all $a_1, \ldots, a_n \in \mathbb{C}$. Note that for any $x \in X$ and $a_1, \ldots, a_n \in \mathbb{C}$,

$$\left|\sum_{k=1}^{n} a_{k} e_{k}^{*}(x)\right| \leq C \left(\sum_{k=1}^{n} |a_{k}|^{2}\right)^{1/2} ||x||$$

and so

$$\left(\sum_{k=1}^{n} |e_{k}^{*}(x)|^{2}\right)^{1/2} \leq C ||x||.$$

Consider the family of operators $\mathcal{T}_n = \{e_k^* \otimes u: ||u|| = 1, k = 1, ..., n\}$. Let $x \in X$. Then for any $a_1, ..., a_n \in \mathbb{C}$ and every $u_1, ..., u_n \in X$ of norm one we have

$$\mathbb{E}\left\|\sum_{k=1}^{n} \epsilon_{k} a_{k} (e_{k}^{*} \otimes u_{k})(x)\right\| = \mathbb{E}\left\|\sum_{k=1}^{n} \epsilon_{k} a_{k} e_{k}^{*}(x) u_{k}\right\| \leq \sum_{k=1}^{n} \|a_{k} e_{k}^{*}(x) u_{k}\|$$
$$= \sum_{k=1}^{n} |a_{k}| |e_{k}^{*}(x)| \leq \left(\sum_{k=1}^{n} |a_{k}|^{2}\right)^{1/2} \left(\sum_{k=1}^{n} |e_{k}^{*}(x)|^{2}\right)^{1/2} \leq C \left(\sum_{k=1}^{n} |a_{k}|^{2}\right)^{1/2} \|x\|.$$

We conclude that \mathcal{T}_n is semi-R-bounded with constant *C* and hence \mathcal{T}_n is R-bounded for constant *KC* independent of *n*. This implies that *X* has type 2 as follows. Choose any $x_1, \ldots, x_n \in X$ and write $x_k = ||x_k||u_k$, where $||u_k|| = 1$. Then

$$\left(\mathbb{E}\left\|\sum_{k=1}^{n}\epsilon_{k}x_{k}\right\|^{2}\right)^{1/2} = \left(\mathbb{E}\left\|\sum_{k=1}^{n}\epsilon_{k}\|x_{k}\|u_{k}\right\|^{2}\right)^{1/2} \\
= \left(\mathbb{E}\left\|\sum_{k=1}^{n}\epsilon_{k}\|x_{k}\|e_{k}^{*}(e_{k})u_{k}\right\|^{2}\right)^{1/2} \\
= \left(\mathbb{E}\left\|\sum_{k=1}^{n}\epsilon_{k}\|x_{k}\|(e_{k}^{*}\otimes u_{k})(e_{k})\right\|^{2}\right)^{1/2} \\
\leqslant KC \left(\mathbb{E}\left\|\sum_{k=1}^{n}\epsilon_{k}\|x_{k}\|e_{k}\right\|^{2}\right)^{1/2} \leqslant KC^{2} \left(\sum_{k=1}^{n}\|x_{k}\|^{2}\right)^{1/2}. (2.1)$$

Now, X has type 2 and cotype 2 and is therefore isomorphic to ℓ_2 by Kwapien's theorem [25].

Now suppose on the contrary that X has trivial type. We will show that X is a GT-space, i.e., any $T: X \to \ell_2$ is 1-summing. Fix $T: X \to \ell_2$ of norm one. Since X has cotype 2 we can equivalently show that any such T is 2-summing [11]. It suffices to check that for any $n \in \mathbb{N}$ and operator $S: \ell_2^n \to X$ such that $||S|| \leq 1$ we have $\pi_2(TS) \leq C$, where C does not depend on n [25]. One can assume that $TS: \ell_2^n \to \ell_2^n$ and that TS is diagonal with respect to the canonical orthonormal basis (e_k) in ℓ_2^n , i.e., $TSe_k = \lambda_k e_k$ for some $\lambda_1, \ldots, \lambda_n$. Then it suffices to show uniform boundedness of the Hilbert–Schmidt norms $||TS||_{\text{HS}} = (\sum_{k=1}^n ||TSe_k||^2)^{1/2}$. Write $f_k^* = T^*e_k^* \in X^*$ and $f_k = Se_k \in X$. Consider $\{f_k^* \otimes u: k = 1, \ldots, n, ||u|| = 1\}$. We will show that this family is semi-R-bounded

with constant one. Take $u_1, \ldots, u_n \in X$ of norm one and $a_1, \ldots, a_n \in \mathbb{C}$. Then for $x \in X$ we have

$$\mathbb{E}\left\|\sum_{k=1}^{n} \epsilon_{k} a_{k} f_{k}^{*}(x) u_{k}\right\| \leq \sum_{k=1}^{n} |a_{k}| |f_{k}^{*}(x)| \leq \left(\sum_{k=1}^{n} |a_{k}|^{2}\right)^{1/2} \left(\sum_{k=1}^{n} |e_{k}^{*}(Tx)|^{2}\right)^{1/2}$$
$$= \left(\sum_{k=1}^{n} |a_{k}|^{2}\right)^{1/2} ||Tx|| \leq \left(\sum_{k=1}^{n} |a_{k}|^{2}\right)^{1/2} ||x||.$$

Therefore, $\{f_k^* \otimes u: k = 1, ..., n, \|u\| = 1\}$ is R-bounded with constant K.

Since *X* has trivial type, it contains ℓ_1^n uniformly [19]. Hence, for fixed M > 1 and every $n \in \mathbb{N}$ there are $y_1, \ldots, y_n \in X$ with $||y_k|| = 1$ for $1 \le k \le n$ such that

$$\sum_{k=1}^{n} |a_k| \leqslant M \left\| \sum_{k=1}^{n} a_k y_k \right\|.$$
(2.2)

Choose any scalars b_1, \ldots, b_n . Now using R-boundedness and Kahane's inequality for p = 1 with constant A we have

$$\sum_{k=1}^{n} |b_{k}||\lambda_{k}| = \sum_{k=1}^{n} |b_{k}| \left| f_{k}^{*}(f_{k}) \right| \leq M \left(\mathbb{E} \left\| \sum_{k=1}^{n} \epsilon_{k} b_{k} f_{k}^{*}(f_{k}) y_{k} \right\|^{2} \right)^{1/2}$$
$$= M \left(\mathbb{E} \left\| \sum_{k=1}^{n} \epsilon_{k} b_{k} (f_{k}^{*} \otimes y_{k}) (f_{k}) \right\|^{2} \right)^{1/2} \leq K M \left(\mathbb{E} \left\| \sum_{k=1}^{n} \epsilon_{k} b_{k} f_{k} \right\|^{2} \right)^{1/2}$$
$$\leq K M \left(\mathbb{E} \left\| \sum_{k=1}^{n} \epsilon_{k} b_{k} e_{k} \right\|^{2} \right)^{1/2} \leq K M \left(\sum_{k=1}^{n} |b_{k}|^{2} \right)^{1/2}.$$

Thus,

$$\left(\sum_{k=1}^n |\lambda_k|^2\right)^{1/2} \leqslant KM,$$

and so $||TS||_{\text{HS}} \leq KM$. Therefore, any operator $T: X \to \ell_2$ is 2-summing. This completes the proof of (i) implies (ii).

Now we will show that (ii) implies (i). Suppose that *X* is a GT-space of cotype 2, and that \mathcal{T} is a family of semi-R-bounded operators. We will show that \mathcal{T} is R-bounded. Since *X* is separable, there is a quotient map $Q: \ell_1 \to X$. First, we show that any semi-R-bounded family of operators from ℓ_1 into *X* is already R-bounded. Let S be such a family with semi-R-boundedness constant one. Suppose $S_1, \ldots, S_n \in S$ and $x_1, \ldots, x_n \in \ell_1$. Then $x_k = \sum_{j=1}^{\infty} \xi_{jk} e_j$, where (e_j) is the canonical basis of ℓ_1 .

Let us denote by C the constant in the Kahane–Khintchine inequality for any Banach space:

$$\left(\mathbb{E}\left\|\sum_{k=1}^{n}\epsilon_{k}x_{k}\right\|^{2}\right)^{1/2} \leq C\mathbb{E}\left\|\sum_{k=1}^{n}\epsilon_{k}x_{k}\right\|.$$

378

Thus

$$\left(\mathbb{E}\left\|\sum_{k=1}^{n}\epsilon_{k}S_{k}x_{k}\right\|^{2}\right)^{1/2} \leq C\mathbb{E}\left\|\sum_{k=1}^{n}\epsilon_{k}S_{k}x_{k}\right\|.$$

Then

$$\mathbb{E}\left\|\sum_{k=1}^{n}\epsilon_{k}S_{k}x_{k}\right\| = \mathbb{E}\left\|\sum_{k=1}^{n}\epsilon_{k}S_{k}\sum_{j=1}^{\infty}\xi_{jk}e_{j}\right\| \leq \sum_{j=1}^{\infty}\mathbb{E}\left\|\sum_{k=1}^{n}\epsilon_{k}\xi_{jk}S_{k}e_{j}\right\|$$
$$\leq \sum_{j=1}^{\infty}\left(\mathbb{E}\left\|\sum_{k=1}^{n}\epsilon_{k}\xi_{jk}S_{k}e_{j}\right\|^{2}\right)^{1/2} \leq \sum_{j=1}^{\infty}\left(\sum_{k=1}^{n}|\xi_{jk}|^{2}\right)^{1/2}.$$

Combining and using the Khintchine inequality again we obtain

$$\begin{split} \left(\mathbb{E} \left\| \sum_{k=1}^{n} \epsilon_k S_k x_k \right\|^2 \right)^{1/2} &\leq C^2 \sum_{j=1}^{\infty} \mathbb{E} \left| \sum_{k=1}^{n} \epsilon_k \xi_{jk} \right| = C^2 \mathbb{E} \left(\sum_{j=1}^{\infty} \left| \sum_{k=1}^{n} \epsilon_k \xi_{jk} \right| \right) \\ &= C^2 \mathbb{E} \left\| \sum_{j=1}^{\infty} \sum_{k=1}^{n} \epsilon_k \xi_{jk} e_j \right\|_{\ell_1} = C^2 \mathbb{E} \left\| \sum_{k=1}^{n} \epsilon_k \sum_{j=1}^{\infty} \xi_{jk} e_j \right\| \\ &= C^2 \mathbb{E} \left\| \sum_{k=1}^{n} \epsilon_k x_k \right\|. \end{split}$$

Combining the previous two computations gives that S is R-bounded.

Now let \mathcal{T} be a family of operators on X with semi-boundedness constant one. Let $Q: \ell_1 \to X$ be a quotient map and note that the family $\mathcal{S} = \{TQ: T \in \mathcal{T}\}$ is R-bounded with some constant B by the above calculation.

We will apply a characterization of GT-spaces of cotype 2 due to Pisier [19].

Proposition 2.3 (Pisier). *X* is a GT-space of cotype 2 if and only if there is a constant C > 0 such that for any $n \in \mathbb{N}$, $x_1, \ldots, x_n \in X$, there are $y_1, \ldots, y_n \in \ell_1$ such that $Qy_k = x_k$, $k = 1, \ldots, n$, and

$$\mathbb{E}\left\|\sum_{k=1}^{n}\epsilon_{k}y_{k}\right\| \leqslant C\mathbb{E}\left\|\sum_{k=1}^{n}\epsilon_{k}x_{k}\right\|.$$
(2.3)

Now take $n \in \mathbb{N}$, $T_1, \ldots, T_n \in \mathcal{T}$ and $x_1, \ldots, x_n \in X$. Choose $y_1, \ldots, y_n \in \ell_1$ according to Proposition 2.3. Then

$$\mathbb{E}\left\|\sum_{k=1}^{n}\epsilon_{k}T_{k}x_{k}\right\| = \mathbb{E}\left\|\sum_{k=1}^{n}\epsilon_{k}T_{k}Qy_{k}\right\| \leq B\mathbb{E}\left\|\sum_{k=1}^{n}\epsilon_{k}y_{k}\right\| \leq CB\mathbb{E}\left\|\sum_{k=1}^{n}\epsilon_{k}x_{k}\right\|.$$

Thus, \mathcal{T} is R-bounded. The proof is complete. \Box

For a set \mathcal{T} of bounded linear operators we will use the notation $\mathcal{T}^* = \{T^*: T \in \mathcal{T}\}$.

Lemma 2.4.

- (i) If T is R-bounded then T^{**} is R-bounded (with the same constant).
- (ii) If T is WR-bounded then T^* and T^{**} are WR-bounded (with the same constant).
- (iii) If T is semi-R-bounded then T^{**} is semi-R-bounded (with the same constant).

Proof. The proofs of (i) and (iii) are similar. For (i) suppose $T_1, \ldots, T_n \in \mathcal{T}$ and that \mathcal{T} has R-boundedness constant one. Let $\Omega = \{-1, 1\}^n$ with \mathbb{P} normalized counting measure on Ω . Let ϵ_k be the sequence of coordinate maps on Ω . Let $\text{Rad}(\Omega; X)$ be the subspace of $L_2(\Omega, \mathbb{P}; X)$ generated by the functions $\epsilon_k \otimes x$ for $1 \leq k \leq n$ and $x \in X$ (this space is isomorphic to X^n). Then $\text{Rad}(\Omega; X^{**})$ can be identified naturally with a subspace of $\text{Rad}(\Omega; X)^{**}$. Consider the map $\mathbf{T}: \text{Rad}(\Omega; X) \to \text{Rad}(\Omega; X)$ defined by

$$\mathbf{T}\left(\sum_{k=1}^{n}\epsilon_{k}\otimes x_{k}\right)=\sum_{k=1}^{n}\epsilon_{k}\otimes T_{k}x_{k}.$$

Then $\|\mathbf{T}\| \leq 1$ and so $\|\mathbf{T}^{**}\| \leq 1$ and (i) follows.

Let us now prove (ii). Suppose \mathcal{T} is WR-bounded with constant one and $T_1, \ldots, T_n \in \mathcal{T}$. Suppose $x_1^*, \ldots, x_n^* \in X^*$ are such that

$$\left(\mathbb{E}\left\|\sum_{k=1}^{n}\epsilon_{k}x_{k}^{*}\right\|^{2}\right)^{1/2} \leq 1.$$

Then, using the identification of $\operatorname{Rad}(\Omega, X^{**})$ as the bidual of $\operatorname{Rad}(\Omega, X)$ we observe that the set of functions of the form $\sum_{k=1}^{n} \epsilon_k x_k^{**}$ in $\operatorname{Rad}(\Omega, X^{**})$ such that

$$\sum_{k=1}^{n} \left| \left\langle T_k^* x_k^*, x_k^{**} \right\rangle \right| \leqslant 1$$

is weak*-closed and contains the unit ball of $\operatorname{Rad}(\Omega, X)$. By Goldstine's theorem it contains the unit ball of $\operatorname{Rad}(\Omega, X^{**})$ and this implies that \mathcal{T}^* is WR-bounded with constant one. \Box

Now it is time to give an example of a family of operators that is uniformly bounded but not WR-bounded. The previous lemma will imply that the corresponding dual family is semi-R-bounded but not WR-bounded.

Example. Let $X = \ell_p$, $1 \le p < 2$. Pick any non-zero element $x \in X$ and choose $u^* \in X^*$ of norm one such that $u^*(x) \ne 0$. Define $T_k = u^* \otimes e_k$, where (e_k) is the canonical basis of X. The family $\{T_k\}$ is uniformly bounded, $\|T_k\| = 1$, but we will show that it is not WR-bounded. Consider the dual basis (e_k^*) in $(\ell_p)^*$. Then

$$\sum_{k=1}^{n} |\langle T_k x, e_k^* \rangle| = \sum_{k=1}^{n} |\langle u^*(x) e_k, e_k^* \rangle| = n |u^*(x)|.$$
(2.4)

On the other hand, we have

$$\left(\mathbb{E}\left\|\sum_{k=1}^{n}\epsilon_{k}x\right\|^{2}\right)^{1/2}\left(\mathbb{E}\left\|\sum_{k=1}^{n}\epsilon_{k}e_{k}^{*}\right\|^{2}\right)^{1/2} = \|x\|n^{1/2}n^{1/q}.$$
(2.5)

Here *q* satisfies 1/p + 1/q = 1. If p < 2 then q > 2 and 1/2 + 1/q < 1, so for $1 \le p < 2$ the family $\{T_k\}$ cannot be WR-bounded.

We have $T_k^* = e_k^{**} \otimes u^*$ on $X^* = \ell_q$, where $2 < q \leq \infty$. Consider $q \neq \infty$. Since by reflexivity $T_k^{**} = T_k$ and using Lemma 2.4 we see that $\{T_k^*\}$ is not WR-bounded. However, X^* has type 2 and hence $\{T_k^*\}$ is semi-R-bounded by Proposition 2.1.

3. The main results

Suppose X is any Banach space. We shall say that a sequence $\mathcal{T} = (T_k)_{k=1}^{\infty}$ is an *approximating sequence* if $\lim_{k\to\infty} ||x - T_k x|| = 0$ for every $x \in X$. We will say that \mathcal{T} is compact (relatively, weakly compact) if each T_k is compact (relatively, weakly compact). We will say that \mathcal{T} is commuting if we have $T_k T_l = T_l T_k$ for $l, k \in \mathbb{N}$.

If \mathcal{T} is a commuting approximating sequence, let us define the subspace $E_{\mathcal{T}}$ of X^* to be the closed linear span of $\bigcup_k T_k^*(X^*)$. The following lemma is trivial.

Lemma 3.1. If T is a commuting approximating sequence then E_T is a norming subspace of X^* , i.e., for some C we have

$$||x|| \leq C \sup_{x^* \in B_{E_{\mathcal{T}}}} |x^*(x)|, \quad x \in X,$$

and, if T is weakly compact, $\lim_{n\to\infty} T_n^* x^* = x^*$ weakly for $x^* \in E_T$.

Let us recall that a Banach space X has property (V) of Pełczyński if every unconditionally converging operator $T: X \to Y$ is weakly compact. The spaces C(K) have property (V) [17] and more generally any C^* -algebra has property (V) [18]. The disk algebra $A(\mathbb{D})$ also has property (V) [10,14]; see also [23]. We also recall that a Banach space X is said to have property (V^{*}) if whenever (x_n) is a bounded sequence in X then either

- (i) (x_n) has a subsequence which is weakly Cauchy or
- (ii) (x_n) has a subsequence (y_n) such that for some sequence (y_n^*) in X^* and $\delta > 0$ we have $|y_n^*(y_n)| \ge \delta$ and

$$\left\|\sum_{k=1}^{n} a_k y_k^*\right\| \leqslant \max_{1 \leqslant k \leqslant n} |a_k|, \quad a_1, \dots, a_n \in \mathbb{C}, \ n \in \mathbb{N}.$$

Property (V^{*}) was introduced by Pełczyński [17]. We note that Bombal [4] shows that every Banach lattice not containing c_0 has property (V^{*}). Any subspace of a space with property (V^{*}) also has property (V^{*}).

Lemma 3.2. Let X, Y be Banach spaces and let $T = (T_k)_{k=1}^{\infty}$ be any sequence of operators in $\mathcal{L}(X, Y)$. Suppose either

(i) T is semi-R-bounded or

(ii) T is WR-bounded and Y has property (V^{*}).

Then for every $x \in X$ the sequence $(T_k x)_{k=1}^{\infty}$ has a weakly Cauchy subsequence.

Proof. If not, by passing to a subsequence we can suppose $(T_k x)_{k=1}^{\infty}$ is equivalent to the canonical ℓ_1 -basis [21,22]. If \mathcal{T} is semi-R-bounded we observe that for some C we have

$$\mathbb{E}\left\|\sum_{k=1}^{n}\epsilon_{k}a_{k}T_{k}x\right\| \leq C\left(\sum_{k=1}^{n}|a_{k}|^{2}\right)^{1/2}\|x\|, \quad a_{1},\ldots,a_{n}\in\mathbb{C}, n\in\mathbb{N}.$$

This gives a contradiction.

In case (ii), we can pass to a subsequence and assume the existence of $y_n^* \in Y^*$ such that

$$\left\|\sum_{k=1}^n a_k y_k^*\right\| \leq \max_{1 \leq k \leq n} |a_k|, \quad a_1, \dots, a_n \in \mathbb{C}, \ n \in \mathbb{N},$$

and $|y_n^*(T_n x)| \ge \delta > 0$ for all *n*. Then

$$n\delta \leqslant \sum_{k=1}^{n} \left| y_{k}^{*}(T_{k}x) \right| \leqslant C \left(\mathbb{E} \left\| \sum_{k=1}^{n} \epsilon_{k}x \right\|^{2} \right)^{1/2} \left(\mathbb{E} \left\| \sum_{k=1}^{n} \epsilon_{k}y_{k}^{*} \right\|^{2} \right)^{1/2} \leqslant C\sqrt{n}$$

This also yields a contradiction. \Box

Theorem 3.3. Let X be a Banach space with a commuting weakly compact approximating sequence T. Suppose either that

- (i) T is semi-R-bounded and X is weakly sequentially complete or
- (ii) T is WR-bounded and X has property (V^{*}).

Then X is isomorphic to a dual space.

Proof. In either case we consider the family $\mathcal{T}^{**} \subset \mathcal{L}(X^{**}, X)$. By Lemma 3.2 for each $x^{**} \in X^{**}$ we can find a subsequence $T_{k_n}^{**}x^{**}$ so that $T_{k_n}^{**}(x^{**})$ is weakly convergent to some $y \in X$. Then for $x^* \in X^*$,

$$x^{*}(T_{k}y) = \lim_{n \to \infty} x^{*} (T_{k}T_{k_{n}}^{**}x^{**}) = \lim_{n \to \infty} x^{*} (T_{k_{n}}T_{k}^{**}x^{**})$$

so that $T_k y = T_k^{**} x^{**}$. Hence $\lim_{k\to\infty} ||y - T_k^{**} x^{**}|| = 0$. We now show that E_T^* can be identified with *X*. Clearly *X* canonically embeds in E_T^* since E_T is norming. If $f^* \in E_T^*$ then by the Hahn–Banach theorem there exists $x^{**} \in X^{**}$ with $||x^{**}|| = ||f^*||$ and $x^{**}(x^*) = f^*(x^*)$ for $x^* \in E_T$. Let $y = \lim_{k\to\infty} T_k^{**} x^{**}$. Then for $x^* \in E_T$,

$$x^{*}(y) = \lim_{k \to \infty} x^{*} (T_{k}^{**} x^{**}) = \lim_{k \to \infty} x^{**} (T_{k}^{*} x^{*}) = f^{*}(x^{*}).$$

Hence $E_{\mathcal{T}}^* = X$. \Box

Theorem 3.4. The space $L_1(0, 1)$ does not have a commuting weakly compact approximating sequence which is either semi-R-bounded or WR-bounded.

Proof. L_1 is not a dual space [25]. \Box

Of course a semi-R-bounded sequence in L_1 is actually R-bounded.

Theorem 3.5. Let X be a separable Banach space with property (V). If X has a commuting weakly compact approximating sequence $(T_n)_{n=1}^{\infty}$ which is WR-bounded, then X^* is separable, and has a WR-bounded commuting weakly compact approximating sequence.

Proof. Since X has (V), it follows that X^* has property (V^{*}). We show that $\lim_{n\to\infty} T_n^* x^*$ = x^* weakly for $x^* \in X^*$. Indeed $T_n^* x^*$ converges weak* to x^* and it must have a weakly convergent subsequence by Lemma 3.2. Hence $x^* \in E_T$ so $X^* = E_T$. Now $T_n^*(B_{X^*})$ is weakly compact by Gantmacher's theorem also and weak*-metrizable, hence norm separable. Thus X^* is separable, and so by Mazur's theorem, and a diagonal argument, we can find a sequence of convex combinations $(S_n^*)_{n=1}^{\infty}$ of $(T_n^*)_{n=1}^{\infty}$ which is an approximating sequence. \Box

Corollary 3.6. If K is an uncountable compact metric space then C(K) has no WRbounded commuting weakly compact approximating sequence. The disk algebra has no WR-bounded weakly compact approximating sequence.

We now consider C(K) when K is countable. In this case C(K) is homeomorphic to a space $C(\alpha) = C([1, \alpha])$, where α is a countable ordinal. There is a characterization of such C(K) due to Bessaga and Pełczyński [3].

Theorem 3.7 (Bessaga–Pełczyński). If $\alpha < \beta$, $C(\omega^{\alpha} \cdot k)$ is isomorphic to $C(\omega^{\beta} \cdot n)$ if and only if $\beta < \alpha \cdot \omega$. Consequently, $C(\omega^{\omega^{\gamma}}), 0 \leq \gamma < \omega_1$, is a complete list of representatives of the isomorphism classes of C(K) for K a countable compact metric space.

The following lemma can be obtained as an applications of ℓ_1 -indices [1,5,6]. However, for convenience of the reader we will give a direct proof by construction.

Lemma 3.8. Let α be a countable ordinal with $\alpha \ge \omega^{\omega}$. Then there exists $f \in C(\alpha)^{**}$ so that whenever $f_n \in C(\alpha)$ converges to $f \in C(\alpha)^{**}$ weak^{*} then for any $m \in \mathbb{N}$ there exist $n_1, \ldots, n_m \in \mathbb{N}$ such that

$$\left\|\sum_{k=1}^{m}\epsilon_{k}f_{n_{k}}\right\| \geq \frac{1}{2}m, \quad \epsilon_{k}=\pm 1, \ k=1,2,\ldots,m.$$

ш

Proof. In this case $C(\alpha)^{**}$ can be identified with $\ell_{\infty}(\alpha)$. It is easy to see that it suffices to consider the case $\alpha = \omega^{\omega}$.

Consider the case $\alpha - \omega^{-1}$. Consider $f \in X^{**}$ defined by $f(\sum_{k=0}^{N} \omega^k l_k) = (-1)^{\sum_{k=0}^{N} l_k}$ and $f(\omega^{\omega}) = 1$. Writing K for the space $[1, \omega^{\omega}]$ let $K^{(p)}$ denote the *p*th derived set of K. Then $K^{(p)}$ consists of all ordinals of the form $\sum_{k=p}^{n} \omega^k l_k$ together with ω^{ω} . For each $p \in \mathbb{N}$, $K^{(p)}$ is non-empty. Furthermore for each $\alpha \in K^{(p)}$ and every open neighborhood V of α we have that f takes both values ± 1 on $V \cap K^{(p-1)}$.

Let $f_n \in C(K)$ be any sequence such that (f_n) converges to f weak^{*}.

Fix $0 < \delta < 1/2$ and $m \in \mathbb{N}$. We construct $(f_{n_1}, \ldots, f_{n_m})$ inductively. We start from $K^{(m)}$. By definition of f we can pick $\alpha_1^1, \alpha_2^1 \in K^{(m)}$ such that $f(\alpha_j^1) = (-1)^j$ for j = 1, 2. Then find $n_1 \in \mathbb{N}$ such that $|f_{n_1}(\alpha_j^1) - (-1)^j| < \delta$. Since f_{n_1} is continuous we can choose open neighborhoods U_j^1 of α_j^1 such that $|f_{n_1}(\alpha) - (-1)^j| < \delta$ for all $\alpha \in U_j^1$.

For the inductive step, suppose that $(n_j)_{j=1}^k$, $(\alpha_j^k)_{j=1}^{2^k}$ and open sets $(U_j^k)_{j=1}^{2^k}$ have been chosen so that $\alpha_j^k \in U_j^k$. Then for $i = 1, ..., 2^k$ find points $\alpha_{2i-1}^{k+1}, \alpha_{2i}^{k+1} \in U_i^k \cap K^{(m-k+1)}$ with $f(\alpha_j^{k+1}) = (-1)^j$. By pointwise convergence, we can select $n_{k+1} > n_k$ such that $|f_{n_{k+1}}(\alpha_j^{k+1}) - (-1)^j| < \delta$. Since $f_{n_{k+1}}$ is continuous, there are neighborhoods $U_{2i-1}^{k+1}, U_{2i}^{k+1} \subset U_i^k$, $i = 1, ..., 2^k$, such that for all $\alpha \in U_j^{k+1}$ we have $|f_{n_{k+1}}(\alpha) - (-1)^j| < \delta$.

In the *m*th iteration this will give 2^m neighborhoods and *m* functions f_{n_1}, \ldots, f_{n_m} so that for any $\epsilon_1, \ldots, \epsilon_m \in \{-1, +1\}$ there is α contained in one of these neighborhoods such that $|f_k(\alpha) - \epsilon_k| < \delta$ for all $k = 1, \ldots, m$. Hence

$$\left\|\sum_{k=1}^{m}\epsilon_{k}f_{n_{k}}\right\| \ge (1-\delta)m. \qquad \Box$$

Theorem 3.9. Let K be a compact metric space. Suppose there is an R-bounded commuting weakly compact approximating sequence in C(K). Then C(K) is isomorphic to c_0 .

Proof. By Corollary 3.6 we need only consider the case when *K* is countable. By Theorem 3.7 it suffices to consider the case when $K = [1, \alpha]$, where $\alpha \ge \omega^{\omega}$. Pick $f \in C(K)^{**}$ satisfying the hypotheses of Lemma 3.8.

Suppose (T_n) is an *R*-bounded weakly compact approximating sequence for C(K). Then (T_n^*) is an approximating sequence for $C(K)^*$ by Theorem 3.5 and hence $T_n^{**}f$ converges to f weak^{*}. It follows that for any m we can choose n_1, \ldots, n_m so that

$$\left\|\sum_{k=1}^{m} \epsilon_k T_{n_k}^{**} f\right\| \ge \frac{1}{2}m, \quad \epsilon_k = \pm 1.$$

Hence

$$\left(\mathbb{E}\left\|\sum_{k=1}^{m}\epsilon_{k}T_{n_{k}}^{**}f\right\|^{2}\right)^{1/2} \geq \frac{1}{2}m$$

This contradicts the fact that T_n is R-bounded (or even semi-R-bounded). \Box

Remark. We can replace the assumption of R-boundedness by the assumption that (T_n) and (T_n^*) are both semi-R-bounded. By Theorem 2.2 this hypothesis would imply that (T_n^*) is actually R-bounded and hence that (T_n) is WR-bounded. We only used the fact that (T_n) is both semi-R-bounded and WR-bounded.

Let us conclude by stating our main result with respect to semigroups. (Actually our results are somewhat stronger than stated below.)

Theorem 3.10. *Let X be a separable Banach space with an R-bounded strongly continuous semigroup* $(T_t)_{t>0}$ *consisting of weakly compact operators. Then if*

(1) X = L₁(μ) for some measure μ then X is isomorphic to l₁ (i.e., μ is purely atomic).
(2) X = C(K) then X is isomorphic to c₀.

Acknowledgment

The authors thank Dale Alspach for drawing their attention to the notion of the ℓ_1 index of sequences.

References

- [1] D. Alspach, R. Judd, E. Odell, The Szlenk index and local l1-indices, Positivity, in press.
- [2] E. Berkson, T.A. Gillespie, Spectral decompositions and harmonic analysis on UMD spaces, Studia Math. 112 (1994) 13–49.
- [3] C. Bessaga, A. Pełczyński, Spaces of continuous functions (IV), Studia Math. 19 (1960) 53-62.
- [4] F. Bombal, On (V^*) sets and Pełczyński's property (V^*) , Glasgow Math. J. 32 (1990) 109–120.
- [5] J. Bourgain, On convergent sequences of continuous functions, Bull. Soc. Math. Belg. 32 (1980) 235-249.
- [6] J. Bourgain, Remarks on the double dual of a Banach space, Bull. Soc. Math. Belg. 32 (1980) 171–178.
- [7] J. Bourgain, Some remarks on Banach spaces in which martingale difference sequences are unconditional, Ark. Mat. 21 (1983) 163–168.
- [8] J. Bourgain, W.J. Davis, Martingale transforms and complex uniform convexity, Trans. Amer. Math. Soc. 294 (1986) 501–515.
- [9] P. Clément, B. de Pagter, F.A. Sukochev, H. Witvliet, Schauder decomposition and multiplier theorems, Studia Math. 138 (2000) 135–163.
- [10] F. Delbaen, Weakly compact operators on the disc algebra, J. Algebra 45 (1977) 284-294.
- [11] J. Diestel, H. Jarchow, A. Tonge, Absolutely Summing Operators, in: Cambridge Studies in Advanced Mathematics, vol. 43, Cambridge Univ. Press, Cambridge, 1995.
- [12] T. Figiel, N. Tomczak-Jaegermann, Projections onto Hilbertian subspaces of Banach spaces, Israel J. Math. 33 (1979) 155–171.
- [13] N. Kalton, L. Weis, The H^{∞} -calculus and sums of closed operators, Math. Ann. 321 (2001) 319–345.
- [14] S.V. Kisliakov, The Dunford–Pettis, Pełczyński and Grothendieck conditions, Dokl. Akad. Nauk SSSR 225 (1975) 1252–1255 (in Russian).
- [15] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces I, Springer, Berlin, 1977.
- [16] V.D. Milman, G. Schechtman, Asymptotic Theory of Finite-Dimensional Normed Spaces, in: Springer Lecture Notes, vol. 1200, 1986.
- [17] A. Pełczyński, Banach spaces on which every unconditionally converging operator is weakly compact, Bull. Acad. Polon. Sci. Sr. Sci. Math. Astronom. Phys. 10 (1962) 641–648.
- [18] H. Pfitzner, Weak compactness in the dual of a C*-algebra is determined commutatively, Math. Ann. 298 (1994) 349–371.

- [19] G. Pisier, Factorization of Linear Operators and Geometry of Banach Spaces, in: CBMS Regional Conference Series, vol. 60, American Mathematical Society, Providence, RI, 1986.
- [20] G. Pisier, Holomorphic semigroups and the geometry of Banach spaces, Ann. Math. 115 (1982) 375–392.
- [21] H.P. Rosenthal, A characterization of Banach spaces containing l¹, Proc. Nat. Acad. Sci. USA 71 (1974) 2411–2413.
- [22] E. Odell, H.P. Rosenthal, A double-dual characterization of separable Banach spaces containing l^1 , Israel J. Math. 20 (1975) 375–384.
- [23] S.F. Saccone, The Pełczyński property for tight subspaces, J. Funct. Anal. 148 (1997) 86-116.
- [24] L. Weis, Operator-valued Fourier multiplier theorems and maximal L_p -regularity, Math. Ann. 319 (2001) 735–758.
- [25] P. Wojtaszczyk, Banach Spaces for Analysts, in: Cambridge Studies in Advanced Mathematics, vol. 25, Cambridge Univ. Press, Cambridge, 1991.