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1. INTRODUCTION 

This paper is motivated by certain ideas which arise in the theory of 
differential games (see [3, 41). We abstract the particular features of differ- 
ential games which are relevant in the notion of a positional game. Suppose S 
is a topological space, and g is a continuous real-valued function on S. We 
consider a game between two players, whom we call the maximizer and the 
minimizer, which falls into two phases. 

Phase 1. According to some given process, subject to control by both 
players and possibly random moves, a point s E S is determined. 

Phase 2. The pay-off is computed as g(s). The aim of the maximizer is to 
maximize g(s), and similarly the minimizer aims to minimize g(s). 

This is best illustrated by a differential game. Consider a game with 
dynamics 

dx/dt = f(t, x, y, z) (1) 

and initial condition 

where x E Rm, f: R x R*’ x Y x Z-t R is continuous and Lipschitz in the 
.r-variable, and Y and Z are compact metric spaces. Let UC R x Rm be an 
open set containing (to , x0), such that there exists T > to and if (t, X) E U 
then t < T. 

We shall assume that the maximizer controls the y-variable and the 
minimizer the z-variable in Eq. (1). 

Suppose now the pay-off is given by 

p = go*, dt*>), 
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NONLINEAR FUNCTIONALS 727 

where g is a continuous function on aU and t* is the first time for which 
(t*, s(t”)) I$ u. 

The game we have described is a game of survival ([4, Chap. 51). This is 
an example of a positional game in which S = FU. The outcome of Phase I 
is a point of the topological space aU. In this particular game, there is no 
randomness involved. However, we can consider a stochastic differential 
game of survival (cf. [2, 51) with dynamics given by 

d.v =f(t, x, 3’, z) dt + u(t, x) &a (4 

in place of (I), where w is an m-dimensional Brownian motion and o(t, s) 
is an m s m-matrix-valued function satisfying certain measurability condi- 
tions. With the same form of the pay-off this is again a positional game. 

A much simpler example is a two-person zero-sum matrix game. Let S 
be the discrete space {(i,j): 1 -< i < m, 1 <i < n). Then a matrix game can 
be considered as a positional game in which Phase 1 consists of the determina- 
tion of a pair of pure strategies (i,i), i.e., a point of S, and then in Phase 2 the 
pay-off g(i,i) is computed. 

The object is to study the way in which the value of such a game varies 
with the pay-off function g. Of course, there may be several notions of value 
attached to a given positional game. For example, in a matrix game we may 
consider the upper value 

ti7+(g) = min max g(i,j) 
l&g2 l$iqnt 

the lower value 

V-(g) = max min g(i,j, 
l(i<n l<i<n 

or the von Neumann value 

Recently Moulin [8] described another notion of value for matrix games, 
which is rather more difficult to formulate explicitly. 

Equally, for differential games, there are many different concepts of value 
(see [3], for example); in particular we would like to draw attention to the 
Danskin u-value [I]. 

Suppose S is compact and V: C(S) ---f R is a value function for some 
positional game. Then it is clear that V must satisfy certain conditions: 

(i) Positivity. If f > g then V(f) 3 V(g), 

409154/3-g 
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(ii) Positive homogeneity. If a: E R, OL 3 0, then V(af) = aV(f) for 

f E cw 
(iii) Translation invariance. If (Y E R then V(f + a) = V(f) + a for 

f E C(S)- 
We call a functional on C(S) satisfying these three conditions a gamonic 

functional. The main result of this paper is that any gamonic functional 
can be realized as the upper value of a positional game. Thus, I/ has a repre- 
sentation in the form 

where $Y? is a collection of subsets of the space P(S) of Radon probability 
measures on S. In the first phase of the positional game the minimizer selects 
C E V, then the maximizer selects p E C, and then a point s E S is selected 
according to the probability measure p. 

The other main results are concentrated on characterizing those functionals 
I’ which arise from purely deterministic positional games, i.e., have a repre- 
sentation 

where 8 is a collection of subsets of S. By a utility transformation we mean a 
continuous increasing map @: R - R. If I’ arises from a deterministic game 
then it is clear that for any utility transformation @ 

Here our main result is that if this equation holds for just one nonlinear 
utility transformation then V arises from a deterministic game. 

The results in this paper were announced in [6]. The author intends to 
use these results to develop an abstract theory of differential games [7]. 

2. POSITIVELY HOMOGENEOUS FUNCTIONALS ON LOCALLY CONVEX SPACES 

Let X be a real locally convex topological vector space and let w: X- R 
be a uniformly continuous positively homogeneous functional on X. In this 
section we shall give a general representation theorem for w. 

LEMMA 2.1. Let p(x) = supyEr[w(~ + y) - w(y)]. Then p is a continuous 
sublinear functional on X. 

Proof. Clearly p is positively homogeneous, and P(X + y) < p(.v) + p(y) 
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for X, y E S. Hence p is sublinear. As w is uniformly continuous there exists a 
neighborhood U of 0 such that p( x < 1 for s E U. Hence p is continuous. ) 

DEFINITION 1. The support of w is the subset Supp w of S’ of all linear 
functionals Q such that p(x) <p(x) for x E X. 

We remark that Supp zu is a ~$27, X)-compact convex subset of X’. which 
is equicontinuous. 

LEMMA 2.2. Suppose x,y E X. Then there exists q E Supp m such that 
l&x) I-- w(x) and q(y) 5; w(y). 

Proof. For (Y E R, , 

w(q) + p(x - av) 3 w(x). 

We define 

a = jnnf [eu(ory) + p(.Y - CXy)]. 
+ 

Then clearly w(x) < a ,( p(x). Thus for /3 E R, , 

and 
pa - p(@ - y) < p(y) 

+u - p( +3x - y) < -pw(x) - p( +3x - y) 

-< - w( -y). 

Hence we may define 

b = W~[X” - p(h -- Y>l. 

Then for A E R, 

ha - h < p(Ax - y). 

Nowfor/?ER+, 

so that for X, p E R, 

(3) 

(A + PI fz G PLO + I.4 xl 
< P(PX + Y) + POX - y). 



730 N. J. KALTON 

Hence 

and therefore 

Hence 

(4) 

Combining (3) and (4), we see that for p, X E R, 

pa + Ml < P(P + $J), 

and hence by the Hahn-Banach theorem there is a linear functional ‘p E X 
such that p)(z) ,< p(z), a E X and F(X) = a, q(y) = b. 

Nowforor,flER+, 

so that 

(a + 8) W(Y) = 4” + B) Y) - 43 

3 -PC-b + BY) 

3 -P(x - ay) - P(-x - &h 

Hence 

4~) + P(x - aY> > -kWv> - d-x - /W- 

i.e., 

a > -+wY) -PC-x - PY), 

/WY) a --a - d-x - PY)? /3 >o. 

Hence for y > 0 

W(Y) 3 -w - P(-YX -Y). (5) 

Also, for a E R, , 

a - Ax - ay) d ~69, 

so that for y > 0, 

P - Pb - Y) G W(Y). (6) 

Combining (5) and (6), and the case y = 0 we obtain 6 < w(y). Thus 
a = q(x) > w(x), while b = v(y) < w(y) as required. 
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DEFINITION 2. A subset C of X’ is w-admissible if C is u(X’, -Y)-compact 
convex and 

7;; P)(x) 2 4.4, x E s. 

DEFINITION 3. k’(w) is the set of minimal w-admissible sets in X’. 

LEM~IA 2.3. If C is zu-admissible, then there exists C, E M(w) zuith CO C C. 

Proof. By Zorn’s lemma, let C, be a descending chain of w-admissible 
sets contained in C and let 

p&s) = itf rn;x (p(x). 
h 

Then p,, is sublinear and continuous, since p,(x) < max,,, F(X), and 
p,,(x) 3 w(x). Hence if CD0 = (9: T(X) < pO(s), Vs E X) then CPO is w-admis- 
sible and C,O C n C, . 

THEOREM 2.4. Let w: A+ R be a uniformly continuous positiz?e<?l homo- 
geneous map. Then 

w(x) = min max p)(x). 
CE”l(rn) pEC 

Proof. Clearly w(x) < mince,,, max,,, T(X). Conversely for fixed y, let 

c = {p’ E supp w: qJ(,l’) < w(V)}. 

Then bv Lemma 2.2, for any x E S, 

so that C is w-admissible. Now select CO E d(w) such that C,, C C by Lemma 
2.3. Then 

and the theorem follows. 

COROLLARY 2.5. The o(S’, X)- 1 d c ose convex hull of u(C: C E ,X(w)) is 
supp zc. 

Proof. Let D = Co u [C: CE&(W)]. Then, by 2.4, 

w(.r + y) - w(.$ ,< n-y d?J), 

so that D 1 Supp w. Conversely, suppose C E d(z). 



132 N. J. KALTON 

Then for x E X, 

44 d W(Y) + P(X - Y), 

where p(z) = max,,,,nn, v(z). Thus 

and so the sublinear functional q given by 

satisfies q(x) > w(x), Vx E X. Now let C’s = {cp: r&x) < q(x) Vx E X}. Then 
C, is w-admissible and C,, C C n Supp w. Hence, as C is minimal, 
CC Supp w. Therefore D C Supp w and the result is proved. 

3. GAMONIC FUNCTIONALS 

Let S be a compact Hausdort? space. 

DEFINITION 4. A functional V: C(S) + R is gutnonic if 

(i) V(f) > V(g) whenever f > g with f, g E C(S), 

(ii) v(f + 4 = v(f) + 01 whenever f E C(S), a! E R, 

(iii) V(mf) = aV( f) whenever f E C(S), 01 E R+ . 

LEMMA 3.1. If V: C(S) -+ R is gamonic then 

Vf + g) - V(f) G y&x g(s) f9 g E C(S). 

Proof. f+g<f+ maxg and by the positivity of V, 

Uf+g) d Vf+ maxg) 

= v(f) + m=g. 

The sublinear functional g - max g is generated by the set P(S) of regular 
probability measures on S. Thus Lemma 3.1 implies that Supp VC P(S). 
We can now state formally our main theorem which is simply a rewording of 
Theorem 2.4. 

THEOREM 3.2. Let S be a compact Hausdorff space and suppose 
V: C(S) + R is a gamonic functional. Then 

V(f) = min max 
CE”qy(v) &EC s 

fdp, f EC(S), 
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zohere A&‘(V) is the collection of closed convex subsets C of P(S) ajhich are minimal 
zcith respect to the condition 

Uf> < ~2 /-fh f 6 C(S). 

If we write V*(f) = - V(-f), then F’* is also gamonic. and hence 

\Ve deduce: 

COROLLARY 3.3. 

F(f) = max min f dp. 
cE”qF-) LLeC . i 

It is of interest to determine a similar representation for locally compact 
spaces S (particularly for application to stochastic differential games). Here 
we consider functionals defined on C,,(S) and note that P(S) is no longer a 
weak*-closed subset of C,(S)*. 

THEOREM 3.4. Let S be a localb compact Hausdorff space and suppose 
r-: C,(S) 4 R is a functional satisfying: 

(i) iffy C,,(S) and 01 E R, then V(af) = aV(f); 

(4 for f, g E C,(S), 

inf( f (s) - g(s)) < V(f) - T.(g) -Z su,p( f (s) - g(s)). 
SES 

Then there is a collection .B! of weak*-closed subsets of P(S) such that 

r-(f) = inf sup 
CE.d &’ . 

1 f dp. 

Proof. Let ,!? = S u (c~) be the one-point compactification of S and 
define 1’: C(S) + R by 

f(f) = r-(f -f(a)) +f(m). 

Then P is gamonic and so 

P(f) = F&t; y$FJ’f dPl 

where $9 is a collection of closed convex subsets of P(s). Now P(S) is weak*- 
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dense in P(s) in C(S)*. F or each C E %? let S(C) be the set of all open neigh- 
borhoods of C in P(s). Then 

P(f) = min inf SUP ‘f& 
CM VEs(c)wVnP(s) J 

= inf sup f + 
CM eVnP(S) s 

Vcr(C) 

Restricting to C,(S) we obtain the result. 
A min-max theorem in this case is only apparently attainable under some 

additional assumptions. 

THEOREM 3.5. Under the same assumptions as Theorem 3.4, suppose in 
addition that for every E > 0 there is a compact subset K, of S such that if 
f E C,,(S) and h E C,(S) with 11 h 11 < 1; then 

Vf + h) < J’-(f) + zgx h(s) + 6. 
F 

Then there is a collection & of weak*-closed subsets of P(S) such that 

Proof. Construct P: C(S) --f R as in Theorem 3.4. Now suppose 

A~Supp P and hEC,(S) is such that h = -1 on K, and -1 <h <O 
everywhere. Then for f E C(S), 

p(f + h) - p(f) = V(f -f(m) +h) - V(f -f(a)) 

< sgx h(s) + E 
E 

==E-1. 

Hence as A E Supp P, 

I hdh<r--1. 
s 

Therefore, 

s hdA<r-1 
s 

and X(S) > 1 - E. Thus X(W) < , E and as E > 0 is arbitrary, we have that 
if h E Supp 8, then X E P(S). Thus the canonical representation of Theorem 
3.2 restricts to C,(S) as required. 
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4. CONVERGENCE THEOREMS 

Suppose again that S is compact and Hausdorff, and let B(S) denote the 
space of bounded Bore1 functions on S. In view of the results of Section 3 a 
gamonic functional I’ on C(S) may be extended to B(S) in two different 
canonical ways: 

F'-(f) = sup inf ‘fdp 
CE.Nf w I/EC I 

The author does not know whether it is true in general that V+(f) = V-(f) 
for all bounded Bore1 functions. In this section we show that this is the case 
for semicontinuous functions and also establish some monotone convergence 
theorems. 

PROPOSITION 4.1. For aq g E B(S), V-(g) < V+(g). 

Proof. Suppose C E A( I’) and C’ E A( V*). Suppose C n C’ = @ ; then 
by the Hahn-Banach theorem, since both C and C’ are weak*-compact, there 
exists f E C(S) such that 

However, V(f) < max,,, jf dp and V(f) > min,,,, sf dp. Hence it 
follows by contradiction that C n C’ f o and therefore if g E B(S), 

and the result follows. 

THEOREM 4.2. Let f be a bounded lower-semicontinuous function on S and 
let {fa> be any increasing net of bounded lower-semicontinuous functions such that 
f = sup, fa . Then 

(9 v+(f) = m&,m) SUP,,C .ff dp; 

(ii) s'+(f) = V-(f); 

(iii) lim, V+(fJ = V+(f). 

Conversely, if g is a bounded upper-semicontinuous function and g is any decreas- 
ing net of bounded upper-semicontinu functions such that g = inf, g, , then 

0)’ Wg) 7 m=cE.m infuG, Sg 4; 
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(ii)’ V+(g) = V-(g); 

(iii)’ lim, V-(g,) = V-(g). 

Proof. Clearly (i)‘, (ii)‘, and (iii)’ are proved in precisely the same way 
as (i), (ii), and (iii), and so we shall only prove the first half of the theorem. 

Let us suppose, to begin with, that the net {fm} consists of continuous 
functions and let o = sup, V(fa). We have immediately that ZJ < V+(f). 

For each 01, let C, = {CL E P(S): jfm dp 9 v}; then C, is certainly V-admis- 
sible and hence, if p, is the associated sublinear functional, 

~a(4 = zy j h 4 b W+ 
01 

The nets (C,) and (p,) decrease and hence, if 

d4 = iyfP,@h 

then q is sublinear and q(h) 2 V(h). Let C, = (Y: j h dv < q(h) Vh E C(S)}. 
Then C, is V-admissible and hence contains some D E A(V). If p E D then 
p E C, for every ff. 

Then 

J-fdp= "gP/fmd~ 

(since each fa is lower-semicontinuous and {f=> converges monotonically to f ), 
so that 

Hence 

sup fdp<v 
USD I 

and V+(f) < v. We have thus proved (i) and (iii) for increasing nets of 
continuous functions. To prove (iii) for each {f=} lower-semicontinuous 
we now observe that the net {h: h E C(S) h < fa some a} directed by the 
ordering of C(S) converges pointwise to f. Hence 

V+(f) = sup{V(h): h < fa some 0~) 

= “yJ v+(fJ, 

proving (iii) in general. 
Finally, we observe that (ii) follows, since 

V+(f) = sup{V(‘(h): h <f} 

< V-(f) G v+(f) by 4.1. 
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5. DETERMINISTIC FUNCTIONALS 

If S is compact and Hausdorff and V: C(S) - R is a gamonic functional, 
then we define 8( I’) as the collection of subsets E of ‘3 minimal with respect 
to the condition 

ysf(s) 2 Jr(f). 

DEFINITION 5. V is deterministic if I,(f) = min,,b(v) max,e,Ef(S). 

Remarks. For any gamonic V the collection a(V) is nonempty. For if 
{Eu} is a descending chain of closed subsets such that 

for each (Y, then E, = no. E, is nonempty, and by the compactness of S 

The existence of sets in 6’(V) follows by Zorn’s lemma. Furthermore, the 
minimum in Definition 5 is attained. For if E, E 8( If) are such that 

(again by the compactness of S) and hence E, contains a set F in b(V) and 

LEMMA 5.1. If V is deterministic and E E b(V), then P(E) E .&Z(V). 

Proof. From the definition 

P(E) = (p E P(S): p(E) = l> 

is a weak*-closed convex subset of P(S). If E E e?(V), then P(E) is V-admis- 
sible and so there exists D E .A( V) with D C P(E). Suppose s E E and let 6, 
be the unit mass at S. 

If U is an open neighborhood of s in E, then since E is minimal with respect 
to the condition max,,,J(S),> V(f), there exists f E C(S) such that 
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Let g(s) = min(f(s), V(f)) for s E S. Then since V is deterministic 

JW = V(f)* 
Now there exists p E D such that 

s g dcla V(g) 

and hence 

Hence p(U) = 1. Such a p E D can be constructed for any open neighborhood 
of S, and so, as D is weak*-closed, S?E D. This is true for any s and 
so G{S,: s E E} C D; i.e., P(E) = D. 

For any gamonic functional V, we define the indicator set function I, of V 

bY 

Iv(K) = V+(XK) 

whenever K is a closed subset of S. The indicator function does not determine 
T’ in general (unlike the linear case when the induced measure determines 
the linear functional on C(S)). H owever, we can use the indicator set function 
to determine deterministic functionals. 

DEFINITION 6. A utility transformation is a continuous increasing map 
@: R+R. 

We can now state our main theorem on deterministic functionals. 

THEOREM 5.2. Let S be a compact Hausdorff space and V: C(S) -+ R be a 
gamonic functional. Then the following conditions are equivalent. 

(i) V is deterministic. 

(ii) I, tahes only the values 0 and 1. 

(iii) For every utility transformation 0, we have 

VP of 1 = @vYf NY f E C(S)- 

(iv) For a single nonlinear utility transformation Q, we have 

VP of 1 = @W(f N, f E C(S). 

PYOOf. 

(i) * (iii): This is immediate from Definition 5. 

(iii) * (iv): Obvious. 
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(iv) =- (ii): First we observe that if u is bounded and upper-semi- 
continuous then 

where (g,; is decreasing net of continuous functions converging to u point- 
wise. Thus 

V+(@ 0 u) = li,tn @( 1,~(gb)) 

= q Vf(u)). 

Now suppose E is closed and EC S with I,(E) = 6, where 0 < 6 < 1. 
Since @ is monotonic, @ is differentiable on a dense subset of points of R. 
Suppose c is a point of differentiability of @. and t > 0. Then 

qv+(c + fXE)] = v+p @ (c + Q(E)) 
= I/“(@(C) + (@(c + t) - Q(c)) XE). 

Therefore 

or 

@(c + fS) = Q(c) + S(@(c + t) - Q(c)) 

qc + tS) - D(c) = S(@(c + t) - CD(c)). 

By induction, 

qc + tsy - D(c) = S”(@(c + t) - Q(c)) 
and therefore, taking limits as n---f GO, 

t@‘(c) = @(c + t) - @(c). 

It follows that @ is linear on [c, co) with slope W(c). However, c can be any 
of a dense subset of points of R, and hence @ is linear contrary to assumption. 
Thus 6 = 0 or 6 = 1. 

(ii) 2 (i). First we observe that in general, 

qr(f) < pg y@. 

Let 

l&i; rflEaEXf(S) = ff and r’(f) = P 

and suppose /3 < 01. Let y = +(OL + ,8), and ,y be the characteristic function 
of the set E, = {S:!(S) 3 ~1. 
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Then 
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minf + (y - minf) x <j 

and therefore 

minf + (y - minf) I&?$) < B. 
Hence I,(,?&) < 1 and so I,(&) = 0. 

Now let F, = {s:~(s) < r}; then for any h E C(S), 

and therefore 

Hence F, contains a set E, E 8 and 

contrary to assumption. Hence V(f) = minEE8 maxSEEf(S) as required. 
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