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1. INTRODUCTION 

The present paper is a sequel to our paper [2] on differential games of 
survival and is also related to the work of Fleming [4] on Cauchy problems 
for degenerate parabolic equations. Our notation and terminology, again 
outlined in Section 2, is that of [2]. 

In our recent paper [3], using a related stochastic game, we proved that 
for fixed time differential games our value U is the same as the upper value I’+ 
of Friedman [5] (see also [I, Sect. 41). In Section 3 of this paper we extend 
this result to games of survival and prove that if the boundary aF of the 
terminal set F is regular then U = I’ = Q+, where Q+ is the upper value 
introduced in [2]. 

We next prove that if there are upper and lower solutions of the related 
Isaacs-Bellman equation then U is Lipschitz continuous and so, almost 
everywhere, a solution of the equation. 

We then consider a nonlinear equation of the form 

Lv = ; + G(t, x, Vv) = 0 

together with the boundary condition v  1 3F = g. Under certain hypotheses 
on G we show by constructing a related differential game that if there are Cr 
functions 8r and 8, such that LO, 3 0 > LB, and t$ = @a = g on aF then the 
value of the differential is a generalized solution of the above boundary value 
problem. Finally we prove that the solution thus obtained is independent of 
how a differential game is associated with the problem, that is, the “differential 
game solution” is unique. 
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2. GAMES OF SURVIVAL 

We consider a differential game of survival with control sets Y and 2 
which are compact metric spaces. The dynamics of the game are given by 

dxjdt = &(t) = f(t, x, y, z) (1) 

where x E R” and t E [to , cc). f: R x RR”fl x Y x Z-t R” is continuous 
and satisfies a constant Lipschitz condition in X: 

llf(4 x1 , Y, 4 - f(t, x2 , Y, 4 G K I/ x1 - x2 II (2) 

We suppose the trajectory satisfies the initial condition 

x(t,) = xg . (3) 

A closed terminal set F C R x R” such that F 3 [T, co) x Rm for some 
fixed T is considered and the game ends the first time t, , that the trajectory 
enters F. The payoff computed is then 

p(Y, 2) = g(tF > X(tF)) + I t f  h(t, x(t), y(t), z(t)) dt (4) 
to 

where g: R x R” --f R and h: R x R* x Y x Z are continuous. Player J1 

controlling y  E Y is trying to maximize P whilst player J2 controlling z E 2 
is trying to minimize P. We denote by G(to , x,,) the differential game with 
dynamics (I), initial condition (3) and payoff (4). 

dl(to) denotes the space of measurable functions on [to , co) with values 
in Y. (A function y  E cA?l(t,) is measurable if for every continuous real valued 
function $ on Y # oy is Lebesgue measurable, and functions equal almost 
everywhere are identified.) Jae,(t,,) d enotes the space of measurable functions 
[to , co) -+ 2. For s 3 0 an s-delay strategy (y. for J1 is a map 01: d2(to) + Al(to) 

such that wherever 

then 

xl(t) = x2(t) a.e. t, < t e 4 > 

(02~) (t) = (0~7~~) (t) a.e. t, < t < t, + s. 

The set of s-delay strategies for J1 is denoted by P,&s). s-delay strategies 
for Jz are defined similarly and the set denoted by dts(S). For 01 E Pto(0) its 
value is defined as 

U(U) = inf[P(arz, a); z E Af2(t,)]. 



230 ELLIOTT AND KALTON 

Then 

U(to P x0) = sup[44; rx E rt,,m. 

For j3 E A ,JO) we define 

v(B) = SUP]P(Y, 13Y)i Y E 4(4Jl 
and 

v(to , x0> = WV(B); B E A t,(O>l. (6) 

We also define upper and lower values 

(5) 

(7) 

(8) 

For B, 8’ E At&O) we say that /3’ E O;0(/3) if for any y E &..(t,) 

WY) W = 634 W a.e- t,+s<t<co. 

The s-delay value of p E A to(O) is defined as 

v,(P) = su~[v(B’); B’ E 4,&W 

Write A$(t,,) for the space of measurable functions x: [to, t, + s] -+ Z and 
also define At,[s / a] as the set of strategies fi E Ate(s) such that fiy(t) = z(t) 
a.e. to < t < t, + S, where x E .AaS[to] is fixed. We define the value 

Qs+(to , x0) = sup inf v(p). (9) 
~~A’,*[t,l B~A~&S zl 

Clearly we have the relation 

Finally 

Q+(to 3 x0) = py Q!s+(to ,301 

= f%f Qs+(to > x0). 
(10) 

There are similar definitions (see [2]) for the s-delay value u,(a) of 01 E r,JO), 
Qs-(to , x0> and Q-PO , x0>- 
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From [I, 2, and 31 we collect the following results. 

THEOREM 2.1. 

For fixed time games (i.e., F = [T, CO) x R”) 

and 

Q-P, > xo) = Wo , xo) = J% , x,,) (12) 

Q+(to , x0) = v+(t, , x0) = U(t, , x0). (13) 

Consider a map 7: Afl(to) x A$(to) + [to, co) which prescribes a stopping 
time corresponding to any pair of control functions. 7 is said to be nonanti- 
cipating if whenever 

y’(t) = y(t) a.e. to G t < T(Y, z), 

z’(t) = z(t) a.e. to s t < T(Y, z>, 

then ~(y’, a’) = ~(y, a). Consider a nonanticipating map T with 
~(y, a) < tF(y, z) for ally, z and a real-valued function 6’ defined on R x R1”. 
We define a game GT(t,, , x,,; 6) as the game with initial condition (3), dyna- 
mics (1) and payoff: 

p~,tdY, 2) = e(dY, z>, +(y, z)) + ,:,i”“’ h(t, x(t),y(t), z(t)) dt. (14) 

The various upper and lower values for G,(t, , x0; 0) are defined in analo- 
gous ways in [2, Section 33 but the particularly important cases are when 0 is 
itself a value of the game G(r(y, a), x(~(y, a))). The following dynamic 
programming results are then obtained in [2]. 

THEOREM 2.2. Suppose 7 is non-anticipating and 7 ,( t, . Then 

and 

U(t, , x0) = qt, , x0; U), 

v+(to 3 x0) 3 V+(h) x0; V’), 

Qs+(to , xo) < Q:,(to > xo; Qs+>, 

(15) 

(16) 

(17) 

(18) Qs+(to , xo) 3 QXto , xo; W. 
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Similar results hold for the various lower values. Further, if 

vi Qs+(t, x) = Q+(t, 4 

uniformly on compacta then 

Q+(to 9 xo) < QT+(to , xo; Q+). (19) 

3. EQUALITIES FOR VALUE FUNCTIONS 

In this section we extend the identity (13) of Theorem 2.1 to games of 
survival. 

For each (t, x) E Rm+l - intF define 

%+(t, 4 = ,‘iyy y, Qs+(t, 4. 
5, + ,r 

DEFINITION 3.1. A point (t, x) of 8F is Q’-regular if it satisfies 

lii Qs+(t, x) = g(4 4 (20) 

and U is continuous at (t, x). aF is Q+-regular if every point of aF is Q+- 
regular. 

We can now prove the following result. 

THEOREM 3.2. Suppose f  satisfies a Lipschitx condition in both t and x 

Ilf(tl ? Xl >Y, 4 -f@z v x2 >Y, 4 < K(I t, - t2 I + II Xl - x2/0 

and aF is Q+-regular. Then 

(21) 

wto ) xo> = Wo > xo) = Q+(to , xo) for all (to , x0) E Rm-+l - int F. (22) 

Proof. Theorem 6.4 of [2] states that under these hypotheses 

V’(to , xo) = Q+(to > xo) 

so only the identity involving U remains to be proved; the present proof, 
by contradiction, is similar. As quoted in Theorem 2.1, for fixed time games 
we know 

qto 1 x0) = v+cto 7 %I> = ,O+eo , x0>. 



BOUNDARY VALUE PROBLEMS 233 

Suppose (to, x,,) E 8F. Theorem 6.3 of [2] states that if 8F is Q+-regular then 
Q+ is continuous on P+l - int F and lim,,, Qs+(t, X) = Q+(t, x) uniformly 
on compacta. Therefore, from the definitons, for (to , x,,) E 8F 

W, , x,,) = W, , xo) = Q+(t,, , 4. 

Suppose now (to , x0) E R m+l - F is a point where 

Q+(t, ) x0) - U(to , x0) = E > 0. 

Then every trajectory with initial point (t,, , x,,) is contained in a sphere 

B, = {(t, x): 1 t / + /j x jj < R} 

for some R > 0. Let 

Determine inductively a sequence (t, , x,) in B, for n > 1 with p(tn , x,) > 0 
for all rr. Here p(t, X) denotes the distance from (t, X) to F. Suppose (tK , xk) 
has been determined. Write 

Tk == (2(M + I))-’ p(t, , Xk) + t, (23) 

and consider G,,(tk , x,; Q+). 

Then by (19) 

G7,C is a fixed duration game so Q+(f, , xk) < U,,;(tk , x,; Q+). But by (15) 

u(tk, xk) = u,,(tk , xk; u, 

so 

Q+(t,c , xk) - U(tk , Xk) < U&k, Xa;Q+) - U;,..tk > xk; u). 

Therefore, there is a trajectory t(t) in Gr,(tk , xk) such that 

Q+(t,+, P %+I) - u(tk+, , -%k+l) > ,o+@k > xk) - u(t, , xk) - 4”+‘, 

where 

Also 

tBtl = Tk and &k+l) = %+l . 

&k+l , xk+l) 3 ,@k > xk) - (I’ + I) @,+I - tk) > o 
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and certainly (t, , xn) is a sequence in B, because each (t, , x,J is reached 
from (to , x,,) by a trajectory. By construction 

Q+(tn 7 x78) - U(t, 7 Xn) 3 < 

i 

1 _ f 2-(1.+1) 

1 

> E/2. (24) 
L=l 

For each n (t, , x,) +F so t, < T for all n. Thus 

!E t, = f, + f (&+I - tk) = t 
k=l 

exists and we have 
lim(t,+, - tk) = 0. k-x 

As II ++I- xk I/ < M(tk+l - tk) the sequence xk converges to x say and 
by (23) lim,,, p(t, , xk) = 0. Th erefore (i, 5) E F so by the continuity of 
Q+ and U: 

limi(Q+(tk , xk) - U(tk , xk)) = 0. 

However, this contradicts (24) so we must have 

Q+(to ) x0) = LJ(t, ) x0) = V’+(t, , x0). 

4. LIPSCHITZ CONTINUITY 

In this section we prove under certain hypotheses that the value functions 
are Lipschitz continuous and so almost everywhere they are solutions of the 
Isaac’s-Bellman equation. A consequence of Section 3 is that we can confine 
our attention to the value U, which because it satisfies, for example, identity 

(15), has several advantages. 

THEOREM 4.1. Suppose f  satisfies the Lipschitz condition (21) in (t, x), 
suppose h is Lipschitz in (t, x) and suppose U is uniformly Lipschitz in (t, x) 
on aF in any bounded region of R m+l. Then U is unzyormly Lipschitx in any region 
of the form 

(R”+l - int F) n ((To < t < T) x R”‘). 

Proof. The initial part of the proof is similar to that of Theorem 6.3 
of [2]. Consider the set C = B, n (R m+l - intF) for some r > 0. Then any 
trajectory of (1) with initial point in C is contained for r < T in some set B, . 
Suppose (tl , x1) and (tz , xs) E C and write: 

CJ = t, - t, (25) 

6 = I t, - t, I + Ii x2 - Xl II . (26) 
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For y  = y(t) E &r(tr) and z = x(t) E JK.(~J we associate controls 

Y * = Y *w 65 JG(t2) and z* = z*(t) E dqt,) 

by 
Y*(t) = y(t - 4 z*(t) = x(t - u). 

The map (Y, 4 - (Y*, a*) is a nonanticipating bijection and it induces a 
map between the spaces of strategies in G(t, , x1) and G(tf , x2). Suppose tI(t) 
and (a(t) are trajectories corresponding to (y, a) and (y*, z*), respectively, 
in G(t, , x1) and G(ta , xa). Then 

from which we deduce 

I’ &(t) - (,(t + u)ll < seK(f-t’) - 1 u / < 8eK(=+1) - 1 u j for tl < t ,( T. 

(27) 
A stopping time T: dl(tl) x AC2(tl) --f R is defined by 7 = ~(y, z) where 

minb(T, iT1(~)); P(T + 0, 52(7 + u>)) = 0 

but 

min{p(t, El(t)); At + 0, t2(t + u))> > 0 for t, < t < 7. 

Then 7 is non-anticipating and r < T. 
Suppose, without loss of generality, that (T, [r(7)) E 3F. Then by (27) 

P(T+a,~~(T+u))~se(~+~)-IuI. 

By hypothesis there is a constant K’ such that 

I h(t1 > LX1 7 Y,  z) - &? > 22 ,y, z)I < q  t, - t, I + II Xl - x2 II) (28) 

and a constant L such that 

1 U(T, &(T)) - U(T + up t2(7 + u))l <L,(l u 1 + /i &(T) - 42(7 + u)Ilh 

that is: 

Therefore, 

I g(T, G(T)) - W + 0, 5,(~ + u>)I < LW(T+~). (29) 

j If; h(4 41(t), r(t), 4t)) - (‘” 46 L(t), y”(t), z*(t)) dt ) 

< K’ 
s 

’ (I u j + &~~(1‘+~) - 1 u I) dt 

< K’(r”+ T) &=K(T+r 
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so, 
I P,,,(h , x1; y, z) - PT+n,u(t2 , x,; y*, z*>I < se-+yL + K'(Y + T)). 

(30) 

The same inequality is true if (7 + o, .$(0 + u)) E aF so by the remarks 
above on strategies in G(t, , x1) and G(tz , x2): 

I u~,,(t, > 21) - U,+,,u(t, > 41 G Ma (31) 

where 

M = CK(T+yL + K’(Y + T)). 

BY (15) 

and so U is uniformly Lipschitz continuous in regions of the form 

(P+l - int F) n ((T, < t ,< T) x R”). 

THEOREM 4.2. Suppose f and h are Lipschitz in (t, x) and suppose that 
there exist functions 8, , 0, , both C1 on R’mi-1 - int F, such that 8, = 8, = g 
on 3F and L+f?, < 0 < L+O, on Rm+l - int F, where 

L+tl = g + mjn my(V0f + h). 

Then the value U of the game is almost everywhere a solution of the equation 
L+U = 0 satisfying the boundary condition U JaF = g. 

Remark. It is proved in Theorem 7.1 of [2] that the existence of functions 
o1 and 0, as above implies aF is Q+-regular. Therefore, by Theorem 3.2 of the 
present paper U = V+ = Q+, so that V+ and Q+ also satisfy the equation and 
boundary condition. 

Proof of 4.2. By Theorems 5.3 and 5.4 of [2], for (t, X) E Rm+l - intF: 

Certainly 

4(7, 8 = UC,, 5) = O&T, 5) = g(T, E) for (7, [) E aF. 

and so 

4(t,4 - w, 0 < u(t, 4 - ub, 0 G qt, X) - qT, 0 
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By the mean value theorem for 0, and 0, there is a constant L such that 

I 4, 4 - U(T, 5)l < L(l t - 7 I + II x - E II> for (7, E) 6 aF 

L is just a bound for the derivative of 8, and 8, , and so is bounded in compact 
sets of Rnl+l, U is, therefore, uniformly Lipschitz in (t, X) on iP in any 
bounded region of R 7n+1 and so by Theorem 4. I, U is uniformly Lipschitz in 
bounded regions of Rnl+ l - int F. 

By Rademacher’s Theorem (see Section 4.1 of [5]) U(t, X) is thus dif- 
ferentiable at almost all points (t, X) and so by Theorem 4.4 of [2] L+U = 0 
almost everywhere. 

We state without proof the analogous theorem for lower values: 

THEOREM 4.3. Suppose f and h are Lipschitz in (t, x) and suppose there 
exist functions 0, , ti2 both Cr on Rm+l - int F, such that 0, = 0, = g on aF 

and L-0, > 0 3 L-0, on Rm-tl - int F where 

L-8 = M/at + rn? m>(V0 . f + h). 

Then the value V of the game is almost everywhere a solution of the equation 
L-V = 0 satisfying the boundary condition V (aF == g. 

5. NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS 

We now apply Theorem 4.3 to obtain results for boundary value problems 
for certain non-linear partial differential equations. This extends work of 
Fleming [4] on the Cauchy problem for such equations. We construct a 
generalized solution, that is a function differentiable almost everywhere which 
at points of differentiability satisfies the equation. 

As in Section 1 F C R x R” denotes a closed set such that F 3 [T, CCJ) x Rm 
for some fixed T. Also t E [to , co) and x x R”. Consider the nonlinear partial 
differential operator 

Lv = %/at + G(t, x, Vv). (32) 

and G(t, X, p) is uniformly Lipschitz in all variables. Further, we suppose 
there is a constant B, such that 

1 G(t, x, 0)l < B, . (33) 

For suitable bounds OL, /3 we introduce the control sets 

Y=={y~R?jyj <CY} (34) 

Z=(ZER~‘:IZ~ G/3} (35) 
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and the functions 

G(t, 3, Y) Y 
f@, %Y, 4 = ] + , y ,2 + 2 

44 X>Y9 4 = 
G(t, x, Y) 
, + , y (2 - Y * .x. 

(36) 

(37) 

Writing 

G,(y) = G(t, x,r)/l + IY I2 

and, for i = l,..., m, 

G(Y) = G(t, xv Y) yill + I Y I2 

it is proved in Fleming [4, p. 9981 that there is a constant B, such that 

j G,(Y) - G,(P) + iz (G(Y) - G,(P)>P~ 1 G 4 I Y - I’ I . (38) 

From this Fleming deduces that if 1 P / < c1 and B, = p then 

m;x m$(p .f + h) 

=myaxm$(G(t,x,y)(l +P’Y)(] +IY/2)-1+z.(P-YY)) (39) 

= G(t, x, P). 

THEOREM 5. I. Consider the nonlinear partial dt@rential equation 

Lv = &.@t + G(t, x, Vv) = 0 (40) 

together with the boundary condition v lar = g. 
Here G is un~ormly Lipschiltx in (t, x, p) and satis$es inequality (33). Suppose 

there are functions 8, and l& both Cl on R m+l - int F such that the derivatives of 

8, and 8, are uniformly bounded on Rm+l - int F, 8, = e2 = g on aF and 

L(4) 2 0 > L(4) on Rm+l - int F. 

Then there is a generalized solution V(t, x) of the boundary value problem (40) 
in any region of the form 

(R” - int F) A ((T, < t < T) x R”). 

Proof. Consider the differential game with dynamics 

(40) 
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initial condition X(T) = f  and payoff 

P(Y, 4 = &F 9 x(tJ) + j” h(t, x(t), y(t), 4t)) dt (41) 
7 

where f and h are the functions defined in (36) and (37). The control sets Ii 
and Z are subsets of Euclidean space as in (34) and (35). The bound /3 is 
taken to be the constant B, given by inequality (38). Because the derivatives of 
0, and 0, are bounded on Rm+l - int F by L’ say, we see as in Theorem 4.2 
that the value V(t, x) of this game is uniformly Lipschitz continuous on aF 
and so on all Rnl+l - int F. This Lipschitz constant L” for V(t, X) is, there- 
fore, a bound for the derivatives of V at points of differentiability. Taking 
(Y = max(L’, L”) we see from (39) that 

my”x rn$(VB< . f + h) = G(t, X, Oe,), i- I,2 

and at points of differentiability: 

my”x m$(VV .,f + h) = G(t, x, Vl’). 

Therefore, for the differential game (40), (41) we have that 

L-e, = ae,pt + qt, %, ve,) 
=Le, 2 0, 

~-0, = Le, < 0 

and so by Theorem 4.3 the value V of this game is a generalized solution of 
L-V = LV = 0 satisfying V laF = g. 

Remark 5.2. If  the complement D of the terminal set F is bounded then 
we need only require that G(t, x, 0) and the derivatives of 0, and e2 are 
bounded in Q. 

In Equations (36) and (37) we have, following Fleming, given one way of 
constructing a differential game associated with a nonlinear equation. How- 
ever, the solution obtained is independent of how the differential game is 
constructed. 

THEOREM 5.3. The dz$@rential game solution of the boundary value problem 
of Theorem 5.1 is unique. 

Proof. We first prove that for a nonlinear equation of the form (40) with 
a fixed final time Cauchy condition 

409/46/1-16 
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the differential game solution is unique. Suppose A, and (1, are two differen- 
tial games of fixed duration associated with this equation. That is, if di 
has dynamics &(t) = f(t, xi , yi , zi), initial condition xi(~) = 8 E R” and 
payoff J’F hi(t, xi , yi , .zi) dt then for p, 

x E R” mYax rn{n(p *f + h) = G(t, x, p) 
I I 

for i = 1 and 2. 
The value functions V~(T, 0, V~(T, 5) obtained from A, and A, respectively 

are then generalized solutions of the Equation (40) satisfying Vi( 7’, x) = g(x), 
i = 1, 2. However, as proved in [3] or [4], each Vi is equal almost everywhere 
to lim,,,+, where +< is the unique solution of the non-linear parabolic 
equation EV% + L, = 0 with boundary condition (42). By continuity 
V, = V, everywhere. 

Consider now the situation of Theorem 5.1. Suppose again that A, and A, 
are differential games associated with (40), with value functions Vl(t, x), 
Vz(t, x), respectively, both satisfying the boundary value problem. Suppose 
there is some point (to , x0) E R”+l - F where 

VI@” , X”) - v&l , x0) = 6 > 0. 

Now suppose 7 is a constant such that 7 < t, for any trajectory from (to , x,,) 
in both A, and A, . Consider fixed time games with the same dynamics and 
integral payoff as A, and A, , starting at (to , x0) and ending at time 7. By 
the identity for P- corresponding to (15) we have: 

Vl’;(&l , x0) = vl,,(t” , x0; VI), (43) 

Vz(to , x0) == V2,7(to 7 x0; v,>. (44 

However. we could consider A, with a terminal payoff r, at time T, so 
by uniqueness for fixed time games we have: 

Therefore 

Vz(to , x0) = v1,4to 7 x0; r/,1. (45) 

and we can apply the inductive construction of Theorem 3.2 to deduce a 
contradiction. Therefore, Vl(to , x0) = Vz(to , x0) for all (to , x0) E Rmfl - intF 
and the differential game solution is unique. 

THEOREM 5.4. Under the hypotheses of Theorem 5.1 a unique differential 
game solution of the boundary value problem (40) exists in Rm+l - int F. 
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Proof. We proved that a differential game solution exists in 

(ZP+l - int F) n ((TO < t < T) X R”). 

If T,’ < T,, a differential game solution also exists in 

(Pl+l - int F) x ((TO’ < t < T) x I+). 

By Theorem 5.3 the two solutions are equal on the intersection of their 
domains. 
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