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Characterizations of strictly singular operators on Banach lattices

J. Flores, F. L. Hernández, N. J. Kalton and P. Tradacete

Abstract

New characterizations of strictly singular operators between Banach lattices are given. It is
proved that, for Banach lattices X and Y such that X has finite cotype and Y satisfies a lower
2-estimate, an operator T : X → Y is strictly singular if and only if it is disjointly strictly singular
and �2-singular. Moreover, if T is regular then the same equivalence holds provided that Y is
just order continuous. Furthermore, it is shown that these results fail if the conditions on the
lattices are relaxed.

Introduction

Strictly singular operators were introduced by Kato [18] in connection with the perturbation
theory of Fredholm operators. Recall that an operator T : X → Y between Banach spaces is
strictly singular if it is not an isomorphism when restricted to any infinite-dimensional (closed)
subspace of X. Strictly singular operators constitute a closed two-sided operator ideal that
contains the ideal of compact operators. Moreover, an operator T : X → Y is strictly singular if
and only if, for every infinite-dimensional subspace M of X, there exists an infinite-dimensional
subspace N of M such that the restriction T |N is compact.

In the context of Banach lattices, a weaker notion is the following: given a Banach lattice X,
a Banach space Y , and an operator T : X → Y , we say that T is disjointly strictly singular if it
is not an isomorphism when restricted to the closed linear span of any disjoint sequence in X.
This notion is quite a useful tool in the study of strictly singular operators on Banach lattices,
for example, in the context of domination problems for positive operators (cf. [10]), and for
comparing structures of rearrangement invariant spaces (cf. [13, 14]). Several properties of
disjointly strictly singular operators have been studied in [8, 9, 11].

In this paper, we are interested in giving characterizations of the strict singularity of
operators acting between Banach lattices. Since strictly singular operators are disjointly strictly
singular, we are mainly interested in converse statements.

Our motivation stems from the following facts. First, it is well known that an endomorphism
of Lp = Lp[0, 1], with 1 � p < ∞, is strictly singular if and only if it is �p-singular and
�2-singular [22, 25]. In other words, an endomorphism T on Lp is strictly singular if and
only if it is disjointly strictly singular and �2-singular. Recall that an operator between Banach
spaces is called �p-singular for some 1 � p � ∞ if it is not an isomorphism when restricted to
any subspace isomorphic to �p. For recent results on �p-singular operators, we refer to [16].

Given an order continuous Banach lattice X, if an operator T : X → Y is disjointly strictly
singular and �p-singular for every 1 � p � 2, then T is strictly singular. This can be seen
using the Kadeč–Pe�lczyński disjointification method and Aldous’ theorem on subspaces of L1

(see [2]). Furthermore, in the special case of X (or Y ) being a Banach lattice with type 2,
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if T : X → Y is disjointly strictly singular and �2-singular, then T is strictly singular. A similar
statement also holds for inclusion operators between rearrangement invariant spaces [12].

One of our main results in this direction is the following.

Theorem A. Let X and Y be Banach lattices such that X has finite cotype and Y satisfies
a lower 2-estimate. Then an operator T : X → Y is strictly singular if and only if it is both
disjointly strictly singular and �2-singular.

Then, we consider the class of regular operators, that is, those that are a difference of positive
operators, proving that, for this class, the equivalence given above in Theorem A is also true
under much weaker conditions on the lattices.

Theorem B. Let X and Y be Banach lattices such that X has finite cotype and Y is
order continuous. Then a regular operator T : X → Y is strictly singular if and only if it is
both disjointly strictly singular and �2-singular.

Both Theorems A and B are obtained by means of the following general result. If X is a
Banach lattice with finite cotype, Y a Banach space, and T : X → Y is disjointly strictly
singular and AM-compact, then T is strictly singular (see Theorem 2.4). Recall that, for
a Banach lattice X, an operator T : X → Y is called AM-compact if the image of every
order interval is a relatively compact set. The connection between AM-compact operators
and �2-singular operators is studied in Section 2 (see Propositions 2.5 and 2.6). Let us remark
that the motivation of this kind of result dates from Rosenthal [24], where it was proved that,
for endomorphisms on L1spaces, being AM-compact and �2-singular are equivalent notions.

As an application of these characterizations, a domination result for positive strictly singular
operators is easily obtained, improving a result of [10]. Precisely, given two operators 0 � R �
T : X → Y , with T strictly singular, then we have that R is also strictly singular provided that
X has finite cotype and Y is order continuous (Corollary 2.8).

In Section 3, we prove that the hypothesis in Theorem A on the range lattice Y cannot be
weakened, in the sense that the result is no longer true for Banach lattices Y with a lower
q-estimate for some q > 2. To this end, we consider the Banach lattice Lr(�q) that consists of
sequences x = (x1, x2, . . .) of elements in Lr such that

‖x‖Lr(�q) =

∥∥∥∥∥∥
( ∞∑

i=1

|xi|q
)1/q

∥∥∥∥∥∥
Lr

< ∞.

Theorem C. Consider the Banach lattices Lp and Lr(�q), where 1 < r < p < 2 < q < ∞.
For each p < s < 2, there exists an operator T : Lp → Lr(�q) such that it is �p-singular and
�2-singular, but not �s-singular.

In particular, the operator T is disjointly strictly singular and �2-singular, but not strictly
singular.

The proof of this fact requires some preliminary results. First, we present some technical
lemmas that make use of known estimates for independent and identically distributed (i.i.d.)
s-stable random variables for 1 < s < 2, given in [15] (see Proposition 3.1). We consider the
atomic lattice representation Hr of the space Lr, associated to the unconditional Haar basis
(hi), in order to define a suitable operator R from Hr to Lr(�q) that, restricted to Lp, satisfies
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the required conditions. More precisely, let (wn) denote a block basis of the Haar basis (hi) of
the form

wn =
qn∑

i=qn−1+1

aihi,

which is equivalent to a sequence of i.i.d. s-stable random variables in both Lp and in Lr (for
1 < r < p < s < 2). We can consider the operator R : Hr → Lr(�q), defined by

R
(
(ci)∞i=1

)
=

⎛⎝ qn∑
i=qn−1+1

ci hi

⎞⎠∞

n=1

.

The operator Ts : Lp → Lr(�q) is now defined as the composition RLJ , where J is the
canonical inclusion Lp ↪→ Lr and L is the isomorphism between Hr and Lr mapping each
sequence in Hr to the corresponding expansion as a series with respect to the Haar system.

We also show that the characterization for regular operators given in Theorem B fails if the
order continuity of the range lattice is missing.

1. Preliminaries

Let us start with some notation and definitions. We refer the reader to the monographs
[4, 20, 21, 28] for unexplained terminology from Banach lattices and positive operator theory.

Throughout, we will write SS and DSS for strictly singular and disjointly strictly singular
operators, respectively. Let us recall that a Banach space X has cotype q for some 2 � q < ∞
if there exists a constant C < ∞ so that, for every finite set of vectors (xj)n

j=1 in X, we have⎛⎝ n∑
j=1

‖xj‖q

⎞⎠1/q

� C

∫1

0

∥∥∥∥∥∥
n∑

j=1

rj(t)xj

∥∥∥∥∥∥ dt,

where rj denotes the jth Rademacher function.
A Banach lattice Y is q-concave for some 1 � q < ∞ if there exists a constant C < ∞ so

that, for every choice of vectors (yj)n
j=1 in Y , we have⎛⎝ n∑

j=1

‖yj‖q

⎞⎠1/q

� C

∥∥∥∥∥∥∥
⎛⎝ n∑

j=1

|yj |q
⎞⎠1/q

∥∥∥∥∥∥∥ .

Every q-concave Banach lattice with q � 2 is of cotype q.
A Banach lattice Y satisfies a lower q-estimate for some 1 < q < ∞ if there exists a constant

C < ∞ such that, for every choice of pairwise disjoint elements (yj)n
j=1 in Y , we have⎛⎝ n∑

j=1

‖yj‖q

⎞⎠1/q

� C

∥∥∥∥∥∥
n∑

j=1

yj

∥∥∥∥∥∥ .

Banach lattices with finite cotype are q-concave for some q < ∞ and have order continuous
norm. In what follows, any separable (or with a weak unit) order continuous Banach lattice
will be represented as a Köthe function space, that is, it is lattice isomorphic to an (in general,
not closed) ideal of L1(μ) for some probability space (Ω,Σ, μ) (cf. [20, Theorem 1.b.14]). Let
us recall the Kadec̆–Pe�lczyński disjointification method for order continuous Banach lattices
[7, Theorem 4.1].
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Proposition 1.1. Let X be an order continuous Banach lattice with a weak unit and
j : X ↪→ L1(μ) be the formal inclusion. For any (closed) subspace Y ⊂ X, one of the following
holds.

Either there exists a normalized almost disjoint sequence (xn) ⊂ Y (that is, there exists a
disjoint sequence (zn) ⊂ X such that ‖zn − xn‖ → 0 when n → ∞).

Or a subspace Y is isomorphic to a closed subspace of L1(μ) (in fact, j : X ↪→ L1 is an
isomorphism when restricted to Y ); in this case, we say that Y is a strongly embedded subspace.

Note that more can be said if, instead of a subspace, we consider a normalized sequence
(xn) ⊂ X; now the alternatives are as follows:

(1) either (‖xn‖L1) is bounded away from zero;
(2) or there exist a subsequence (xnk

) and a disjoint sequence (zk) ⊂ X such that
‖zk − xnk

‖ → 0 when k → ∞.
Recall that a subset M of an order continuous Banach lattice X is equi-integrable if

supf∈M ‖fχA‖ → 0 when μ(A) → 0. This concept has an analogue for general Banach lattices:
a bounded subset M of a Banach lattice X is L-weakly compact if, for every ε > 0, there exists
x ∈ Xa

+ such that M ⊂ [−x, x] + εBX (where Xa denotes the maximal order ideal in X on
which the induced norm is order continuous and BX denotes the closed unit ball of X). Note
that a bounded sequence (gk) in an order continuous Köthe function space (over a probability
space) is L-weakly compact if and only if it is equi-integrable.

We will make use of the following standard facts (cf., for example, [10, Lemmas 3.2 and 3.3]).

Lemma 1.2. Let T : X → Y be a regular operator from a Banach lattice X into a Banach
lattice Y with order continuous norm. If A ⊂ X is L-weakly compact, then T (A) is L-weakly
compact.

Lemma 1.3. Let X be an order continuous Banach lattice with a weak unit, and hence
representable as an order ideal in L1(μ) for some probability space. A norm bounded sequence
(gn) in X is convergent to zero if and only if (gn) is equi-integrable and ‖ ‖L1 -convergent to
zero.

A Banach lattice X with an order continuous norm satisfies the subsequence splitting
property [15, Chapter 6; 26] if, for every bounded sequence (fn) in X, there exist a subsequence
(fnk

) and sequences (gk) and (hk) in X with |gk| ∧ |hk| = 0 and fnk
= gk + hk for all k, such

that (gk) is equi-integrable in X, and (hk) is disjoint. It is known that every Banach lattice
with finite cotype has the subsequence splitting property (see [6] and [26, Theorem 2.5]).

We will make use of the following fact.

Lemma 1.4. Let (fn) be a weakly null normalized sequence in Lp(μ) for some finite measure
μ and 1 < p < ∞. Suppose that (fn) is uniformly bounded (that is, there exists M < ∞ such
that |fn| � M). Then, there is a subsequence (fnk

) equivalent to the unit vector basis of �2.

Proof. Since the sequence (fn) is uniformly bounded, it is, in particular, equi-integrable.
Thus, since it is a normalized sequence in Lp(μ), by Lemma 1.3 it follows that inf ‖fn‖L1 > 0.
Hence, (fn) is a seminormalized sequence in every Lq(μ), with 1 � q � ∞. Moreover, as the
sequence (fn) is weakly null in Lp(μ), it has to be weakly null in every Lq(μ) with 1 � q <
∞. Therefore, for every 1 < q < ∞, passing to a subsequence, (fn) will be equivalent to a
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block basis of the Haar system in Lq(μ) (cf. [19, Proposition 1.a.12]). Hence, since the Haar
system forms an unconditional basis of Lq(μ) (see [20, Theorem 2.c.5]), and the blocks of an
unconditional basis are also unconditional, then, passing to a further subsequence, (fnk

) can
be assumed to be an unconditional basic sequence in Lq(μ).

Let 1 < q � p with 1 < q � 2, and consider a subsequence (fnk
) that is seminormalized and

unconditional in both Lq(μ) and Lp(μ). Thus, for every finite sequence of scalars (ai)n
i=1,

we have

K1

∥∥∥∥∥
n∑

i=1

aifni

∥∥∥∥∥
Lq

�
∫1

0

∥∥∥∥∥
n∑

i=1

ri(t)aifni

∥∥∥∥∥
Lq

dt

� C1

(
n∑

i=1

‖aifni
‖2

Lq

)1/2

� C1(inf ‖fj‖Lq
)

(
n∑

i=1

|ai|2
)1/2

,

where C1 is the cotype 2 constant of Lq, and K1 is the unconditional constant of (fni
) in Lq(μ).

On the other hand, we have∥∥∥∥∥
n∑

i=1

aifni

∥∥∥∥∥
Lp

� K2

∫1

0

∥∥∥∥∥
n∑

i=1

ri(t)aifni

∥∥∥∥∥
Lp

dt

� K2 C2

∥∥∥∥∥∥
(

n∑
i=1

|aifni
|2

)1/2
∥∥∥∥∥∥

Lp

� 2K2 C2 M

(
n∑

i=1

|ai|2
)1/2

,

where C2 is the constant appearing in [20, Theorem 1.d.6], and K2 is the unconditional constant
of (fni

) in Lp(μ). This completes the proof.

2. Proofs of Theorems A and B

In the proofs of Theorems A and B we will make use of the following.

Proposition 2.1. If E is a Banach lattice with a lower 2-estimate, then every SS operator
T from �2 to E is compact.

Proof. Since E satisfies a lower 2-estimate, in particular, it is order continuous and, by
[20, Proposition 1.a.9], we can consider an ideal with a weak unit containing T (�2). By
[20, Theorem 1.b.14], this ideal can be represented as an order dense ideal in L1(μ) for some
probability measure μ. Thus, let us consider the operator T as an operator into L1(μ).

Let us see that T : �2 → E is compact. It clearly suffices to prove that ‖Ten‖E → 0, where
(en) is any weakly null normalized sequence in �2. Suppose that this is not the case; then,
by Proposition 1.1, either (‖Ten‖L1) is bounded away from zero or (Ten) has a subsequence
equivalent to a disjoint sequence.

First assume that the sequence (‖Ten‖L1) is bounded away from zero. Then, by
[3, Section 6, Theorem], there exists a constant δ > 0 and a subsequence (Tenk

) such that,
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for scalars (ak)m
k=1, we have

C ‖T‖
(

m∑
k=1

|ak|2
)1/2

�
∥∥∥∥∥

m∑
k=1

akTenk

∥∥∥∥∥
E

�
∥∥∥∥∥

m∑
k=1

akTenk

∥∥∥∥∥
L1

� δ

(
m∑

k=1

|ak|2
)1/2

,

where C > 0 is the equivalent constant between the sequence (en) and the unit vector basis of �2.
On the other hand, if (Tenj

) were equivalent to a disjoint sequence, then we would have

C ‖T‖

⎛⎝ k∑
j=1

|aj |2
⎞⎠1/2

�

∥∥∥∥∥∥
k∑

j=1

ajT (enj
)

∥∥∥∥∥∥
E

� M−1(inf ‖Ten‖E)

⎛⎝ k∑
j=1

|aj |2
⎞⎠1/2

,

where M is the constant appearing in the lower 2-estimate of E. Thus, in both cases we see
that T is not SS, and we reach a contradiction.

The following fact is well known.

Lemma 2.2. Let X be a Banach lattice, Y a Banach space and T : X → Y an AM-compact
operator. For every L-weakly compact set A in X, we have that T (A) is relatively compact.

We will make use of the following fact that relates �1-singular operators with operators that
do not preserve a disjoint copy of �1 (compare with [5, 23]).

Lemma 2.3. Let X be a Banach lattice with the subsequence splitting property, Y a Banach
space and T : X → Y an operator. If T is an isomorphism on a subspace of X isomorphic to
�1, then there exists a disjoint sequence (hj) in X equivalent to the unit vector basis of �1,
such that T restricted to the span [hn] is an isomorphism.

Proof. Let (xn) be a normalized sequence in X that is equivalent to the unit vector basis of
�1 and such that T restricted to [xn] is an isomorphism. By the subsequence splitting property,
there exist a subsequence (xnk

) and sequences (gk) and (hk), with (gk) equi-integrable, (hk)
disjoint, |gk| ∧ |hk| = 0, and xnk

= gk + hk, for every k ∈ N.
Now, by Rosenthal’s lemma, the sequence (Thk) has either a weakly Cauchy subsequence or

a subsequence equivalent to the unit vector basis of �1. Suppose that (Thk) is weakly Cauchy.
Then, since (gk) is equi-integrable, it has a weakly convergent subsequence, say (gkj

). This
would imply that Txnkj

= Tgkj
+ Thkj

is a weakly Cauchy sequence, in contradiction with
the fact that T is an isomorphism on the span [xn].

Therefore, passing to a subsequence, we can assume that (Thk) is equivalent to the unit
vector basis of �1. Thus, for scalars (ak)n

k=1 and some constant C > 0, we have

C
n∑

k=1

|ak| �
∥∥∥∥∥

n∑
k=1

akThk

∥∥∥∥∥ � ‖T‖
∥∥∥∥∥

n∑
k=1

akhk

∥∥∥∥∥ � ‖T‖
n∑

k=1

|ak|.

This completes the proof.

Theorem 2.4. Let X be a Banach lattice with finite cotype and Y be a Banach space. If
an operator T : X → Y is DSS and AM-compact, then it is SS.

Proof. Suppose that T : X → Y is DSS, AM-compact, and not SS. Then, using [20,
Theorem 1.c.9], we have that T is an isomorphism when restricted to the span of some
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unconditional basic sequence (un) in X. Now, by Rosenthal’s lemma, we can assume that some
subsequence (unk

) is weakly Cauchy. Otherwise, T would be an isomorphism on a subspace
isomorphic to �1 and, by Lemma 2.3, T would preserve a disjoint copy of �1, in contradiction
with the fact that T is DSS. Hence, taking differences, the sequence (unk

− unk+1) is weakly
null and seminormalized. Thus, there is a subsequence equivalent to a block basis of (un),
which is an unconditional basic sequence (see [19, Proposition 1.a.12, p. 19]). Let us denote
by (fn) this weakly null, unconditional sequence in [un].

Let α > 0 be such that, for every sequence of scalars (an), we have∥∥∥∥∥T

( ∞∑
n=1

anfn

)∥∥∥∥∥ � α

∥∥∥∥∥
∞∑

n=1

anfn

∥∥∥∥∥ .

Since X has the subsequence splitting property, we can extract a subsequence (still denoted by
(fn)) and sequences (gn) and (hn) such that |gn|, |hn| � |fn|, fn = gn + hn, and |gn| ∧ |hn| = 0,
where (gn) is equi-integrable in X and (hn) is disjoint.

We first consider the case ‖hn‖ → 0; then, passing to a subsequence if needed, the sequence
(fn) would inherit the equi-integrability from the sequence (gn). Therefore, since the operator
T is AM-compact, by Lemma 2.2, the sequence (Tfn) would have a convergent subsequence,
but, since T is invertible on [fn], this would imply that (fn) also has a convergent subsequence.
This is a contradiction with the fact that (fn) is weakly null and normalized.

Alternatively, let us suppose that ‖hn‖ � ρ > 0. We consider the operator V : [fn] → X
defined by

V

( ∞∑
n=1

anfn

)
=

∞∑
n=1

anhn,

which is bounded. Indeed, since |hn| � |fn| and X has finite cotype, for some constant C > 0,
we have (cf. [20, Theorem 1.d.6])∥∥∥∥∥V

(
n∑

i=1

aifi

)∥∥∥∥∥ =

∥∥∥∥∥
n∑

i=1

aihi

∥∥∥∥∥
=

∥∥∥∥∥∥
(

n∑
i=1

|ai|2|hi|2
)1/2

∥∥∥∥∥∥
�

∥∥∥∥∥∥
(

n∑
i=1

|aifi|2
)1/2

∥∥∥∥∥∥
� C

∥∥∥∥∥
∫1

0

∣∣∣∣∣
n∑

i=1

aifiri(t)

∣∣∣∣∣ dt

∥∥∥∥∥
� C

∫1

0

∥∥∥∥∥
n∑

i=1

aifiri(t)

∥∥∥∥∥ dt.

But now, if K denotes the unconditional constant of (fn), then we have
∫1

0

∥∥∥∥∥
n∑

i=1

aifiri(t)

∥∥∥∥∥ dt = 2−n
∑

εi=±1

∥∥∥∥∥
n∑

i=1

εiaifi

∥∥∥∥∥ � K

∥∥∥∥∥
n∑

i=1

aifi

∥∥∥∥∥ .

Hence, the operator V is bounded with ‖V ‖ � KC.
Therefore, the restriction operator T |[fn] : [fn] → Y can be decomposed as

T |[fn] = TV + T (I[fn] − V ),
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where I[fn] : [fn] ↪→ X is the identity inclusion. It holds that the operator TV : [fn] → Y is
SS. Indeed, if it were not the case, then TV would be invertible on some subspace M ⊂ [fn].
Then, T would also be invertible in the subspace V (M) ⊂ [hn]. Now, arguing as in the first
paragraph of the proof, we can find a normalized weakly null sequence in V (M), which will be
equivalent to a block basis of [hn], which is disjoint. More precisely, by [19, Proposition 1.a.12],
there exists a normalized sequence (vn) in V (M) with ‖vn −

∑mn+1
i=mn+1 cihi‖X → 0 for some

increasing sequence (mn) and scalars (ci). If we write v′
n =

∑mn+1
i=mn+1 cihi, then this sequence

is clearly disjoint and also satisfies ‖Tvn − Tv′
n‖Y → 0. So, by the perturbation argument,

passing to a further subsequence, (Tv′
n) is equivalent to (Tvn), and, by the invertibility of T

on V (M), this sequence is equivalent to (vn), and hence to (v′
n). This is a contradiction with

the fact that T is DSS.
Hence, the operator TV is SS, and, since T |[fn] is an isomorphism, we have, by [19,

Proposition 2.c.10], that the operator T (I[fn] − V ) has a finite-dimensional kernel and a closed
range.

Now, by Lemma 2.2, the sequence T (I[fn] − V )(fn) = T (gn) has a convergent subsequence.
Consider the decomposition

[fn] = Ker(TI[fn] − V ) ⊕ Z.

Since T (I[fn] − V ) has a closed range, the operator T (I[fn] − V ) is invertible on Z. Hence, the
sequence (fn) would also have a convergent subsequence. Again, this is a contradiction with
the fact that (fn) is weakly null and normalized.

Recall that an operator T : X → Y is �2-singular if it is not an isomorphism when restricted
to any subspace isomorphic to �2.

Proposition 2.5. Let X and Y be Banach lattices such that X has finite cotype. If
T : X → Y is an �2-singular operator, then T is also AM-compact under any of the following
conditions.

Either the Banach lattice Y satisfies a lower 2-estimate.
Or the Banach lattice Y is order continuous and T is regular.

Proof. Let x ∈ X+ be fixed and denote by Ex the closed ideal of X generated by x. Since
X is q-concave for some 1 < q < ∞, we have Lq(μ) ↪→ Ex ↪→ L1(μ) for a certain probability
measure μ (see [15, p. 14]). First, let us prove that (in both cases), for every positive constant
M, the set T [−M,M ] is relatively compact. To this end, let (fn) be such that |fn| � M . Since
the order intervals in X are weakly compact, without loss of generality, we can assume that
fn → 0 weakly.

Let us consider some p > max{q, 2}. Clearly, the sequence (fn) must also be weakly null and
seminormalized in Lp(μ). Otherwise, the sequence (Tfn) would have a convergent subsequence
and that would complete the proof. Moreover, passing to a further subsequence (still denoted
by (fn)) and using Lemma 1.4, the sequence (fn) spans in Lp(μ) a subspace isomorphic to �2.
Therefore, since a normalized disjoint sequence in Lp(μ) spans a subspace isomorphic to �p, by
Proposition 1.1, we say that [fn] has to be strongly embedded in Lp(μ), which means that on
[fn] the topology of Lp(μ) and L1(μ) coincide.

Thus, for certain constants α, β > 0 and any scalars (ai)n
i=1, we have

α

(
n∑

i=1

|ai|2
)1/2

�
∥∥∥∥∥

n∑
i=1

aifi

∥∥∥∥∥
L1

�
∥∥∥∥∥

n∑
i=1

aifi

∥∥∥∥∥
X

�
∥∥∥∥∥

n∑
i=1

aifi

∥∥∥∥∥
Lp

� β

(
n∑

i=1

|ai|2
)1/2

.

Thus, (fn) has a subsequence whose span in X is isomorphic to �2.
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On the one hand, suppose that Y satisfies a lower 2-estimate. Then (T (fn)) must have a
subsequence that tends to zero in norm. Otherwise, the operator T restricted to the span [fnk

]
that is isomorphic to �2, would not be a compact operator, and, by Proposition 2.1, T would
not be �2-singular. This is a contradiction.

Now consider the case where Y is order continuous and the operator T is regular. Then,
the sequence (T (fn)) is equi-integrable by Lemma 1.2. Hence, if (Tfn) is not convergent to
zero in Y , then, by Lemma 1.3, (‖T (fn)‖L1) is bounded away from zero. This implies that the
operator R : �2 → L1(ν), defined by the following diagram, is not compact:

�2
R

i

L1(ν)

[fnk
] T

Y

j

Here i is just an isomorphism, and j is the formal inclusion of Y in some L1(ν) (or of an ideal
with weak unit containing T (fn)) (see [20, Theorem 1.b.14]). By Proposition 2.1, is we see
that T is not �2-singular. This is a contradiction.

So far, we have shown that, in both cases, T [−M,M ] is a relatively compact set for
every positive constant M . Now, we use the density of L∞(μ) in X, which follows from the
representability of Ex as a function space between Lq(μ) and L1(μ). Hence, given ε > 0, we
can consider Mε < ∞ such that x ∈ [0,Mε] + ε‖T‖−1BX . Therefore, T [−x, x] ⊂ T [−Mε,Mε] +
εBY , and, since T [−Mε,Mε] is relatively compact, so is T [−x, x]. This completes the proof.

Proposition 2.5 has a partial converse.

Proposition 2.6. Let X be a Banach lattice and Y be a Banach space. Suppose that X
has finite cotype and does not contain any sequence of disjoint elements that span a subspace
isomorphic to �2. If an operator T : X → Y is AM-compact, then T is also �2-singular.

Proof. Suppose that T : X → Y is AM-compact, but not �2-singular. Therefore, there exists
a sequence (fn) in X that spans a subspace isomorphic to �2 and such that T is an isomorphism
when restricted to [fn].

Since X has the subsequence splitting property, passing to a subsequence, we have
fn = hn + gn with |hn| ∧ |gn| = 0, (gn) equi-integrable, (hn) disjoint, and |hn|, |gn| � |fn| for
all n. Again, arguing as in the proof of Theorem 2.4, the operator V : [fn] → X defined by
V (fn) = hn is bounded. Hence, since [fn] is isomorphic to �2, all three sequences (fn), (gn),
and (hn) must be weakly null.

Thus, by Lemma 2.2, the sequence (T (gn)) must have a subsequence that goes to zero in
norm. Therefore, (T (hn)) has a subsequence, say (T (hnk

)), equivalent to (T (fnk
)), which is

equivalent to the unit vector basis of �2. Then, there exist constants α and β, such that, for
any n and (ak)n

k=1, we have

α

(
n∑

k=1

|ak|2
)1/2

�
∥∥∥∥∥T

(
n∑

k=1

akhnk

)∥∥∥∥∥ � ‖T‖
∥∥∥∥∥

n∑
k=1

akhnk

∥∥∥∥∥
� ‖T‖‖V ‖

∥∥∥∥∥
n∑

k=1

akfnk

∥∥∥∥∥ � β‖T‖‖V ‖
(

n∑
k=1

|ak|2
)1/2

.

This means that [hnk
] is isomorphic to �2, and this is impossible according to the hypothesis

on X.
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Proof of Theorems A and B. Clearly, SS operators are DSS and �2-singular. Conversely, if
the operator T : X → Y is �2-singular, then, by Proposition 2.5, T must also be AM-compact.
The conclusion now follows from Theorem 2.4.

Remark 2.7. Note that Theorem B is still true if X is just an order continuous Banach
lattice with the subsequence splitting property.

As a consequence, we obtain a domination result for positive SS operators, which improves
[10, Theorem 3.1].

Corollary 2.8. Let X be a Banach lattice with finite cotype and Y be an order continuous
Banach lattice. Suppose that R � T : X → Y are positive operators. If T is SS, then R
is also SS.

Proof. Since the operator T is SS, it is obviously DSS and �2-singular. Now, since Y is order
continuous, [9, Theorem 1.1] yields that R is DSS. Moreover, by Proposition 2.5, the operator
T is AM-compact, and, by [21, Proposition 3.7.2], it follows that R is also AM-compact. Hence,
by Theorem 2.4, we conclude that the operator R is SS.

See [17] for related results concerning the domination of complementably �p-singular
operators.

3. Proof of Theorem C

In this section, we will construct operators in order to show that the conditions on Theorems
A and B cannot be relaxed.

First, we need some preliminary lemmas. The first of them will be deduced from the following
result for i.i.d. p-stable random variables given in [15, Lemma 3.10].

Proposition 3.1. Let X be a finite-dimensional Banach space with a 1-unconditional basis
(xi)n

i=1, and let Y be a q-concave Banach lattice for some 1 < q < ∞. Let T be an isomorphism
from X into Y and let (gi)n

i=1 be a sequence of i.i.d. p-stable random variables over a probability
space (Ω,Σ, μ) for some 1 < p < 2. Then, for every scalar sequence (ai)n

i=1 for which
∫
Ω

∥∥∥∥∥
n∑

i=1

aigi(ω)xi

∥∥∥∥∥
X

dμ(ω) �
∥∥∥∥∥

n∑
i=1

aixi

∥∥∥∥∥
X

,

the following inequality holds:

K

∥∥∥∥∥
n∑

i=1

aixi

∥∥∥∥∥
X

�
∥∥∥∥ max

1�i�n
|aiTxi|

∥∥∥∥
Y

�

∥∥∥∥∥∥
(

n∑
i=1

|aiTxi|p
)1/p

∥∥∥∥∥∥
Y

� ‖T‖‖g1‖−1
L1

∥∥∥∥∥
n∑

i=1

aixi

∥∥∥∥∥
X

for certain constant K (depending only on the q-concavity constant of Y ).

In what follows, the expression ‖
∑k

n=1 anfn‖ ∼ ‖
∑k

n=1 angn‖ will mean, as usual, that there
exist constants c, C > 0 such that, for any k ∈ N and any (an)k

n=1, we have

c

∥∥∥∥∥
k∑

n=1

anfn

∥∥∥∥∥ �
∥∥∥∥∥

k∑
n=1

angn

∥∥∥∥∥ � C

∥∥∥∥∥
k∑

n=1

anfn

∥∥∥∥∥ .
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Lemma 3.2. Let 1 < q < s < 2 and let T : �s → Lq(μ) be an isomorphic embedding. If fn =
T (en) denotes the image under T of (en), the canonical basis of �s, then, for every 2 � r < ∞,
we have ∥∥∥∥∥

k∑
n=1

anfn

∥∥∥∥∥
Lq

∼

∥∥∥∥∥∥
(

k∑
n=1

|anfn|r
)1/r

∥∥∥∥∥∥
Lq

∼
∥∥∥∥ max

1�n�k
|anfn|

∥∥∥∥
Lq

for any scalar sequence (an)k
n=1.

Proof. Take n ∈ N and let X = �n
s , Y = Lq(μ), and T = T |X in Proposition 3.1. If (gi)n

i=1

is a sequence of i.i.d. p-stable random variables with s < p < 2, then

∫
Ω

∥∥∥∥∥
n∑

i=1

aigi(ω)ei

∥∥∥∥∥
�s

dμ(ω) =
∫
Ω

(
n∑

i=1

|aigi(ω)|s
)1/s

dμ(ω)

�
(∫

Ω

n∑
i=1

|aigi(ω)|s dμ(ω)

)1/s

=

(
n∑

i=1

|ai|s
∫
Ω

|gi(ω)|s dμ(ω)

)1/s

= ‖g1‖Ls

∥∥∥∥∥
n∑

i=1

aiei

∥∥∥∥∥
�s

.

Since ‖g1‖Ls
< ∞, using Proposition 3.1, we obtain

K‖g1‖1/2
Ls

∥∥∥∥∥
n∑

i=1

aiei

∥∥∥∥∥
�s

�
∥∥∥∥ max

1�i�n
|aifi|

∥∥∥∥
Lq

�

∥∥∥∥∥∥
(

n∑
i=1

|aifi|p
)1/p

∥∥∥∥∥∥
Lq

� ‖T‖ ‖g1‖−1
L1

‖g1‖1/2
Ls

∥∥∥∥∥
n∑

i=1

aiei

∥∥∥∥∥
�s

for certain constant K independent of n.
Since

‖ max
1�i�n

|aifi|‖Lq
�

∥∥∥∥∥∥
(

n∑
i=1

|aifi|2
)1/2

∥∥∥∥∥∥
Lq

�

∥∥∥∥∥∥
(

n∑
i=1

|aifi|p
)1/p

∥∥∥∥∥∥
Lq

by the previous inequality, we immediately obtain

∥∥∥∥ max
1�i�n

|aifi|
∥∥∥∥

Lq

∼

∥∥∥∥∥∥
(

n∑
i=1

|aifi|2
)1/2

∥∥∥∥∥∥
Lq

∼

∥∥∥∥∥∥
(

n∑
i=1

|aifi|p
)1/p

∥∥∥∥∥∥
Lq

.
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On the other hand, since (fn) is an unconditional basic sequence, we have∥∥∥∥∥
k∑

n=1

anfn

∥∥∥∥∥
Lq

∼
∫1

0

∥∥∥∥∥
k∑

n=1

rn(t)anfn

∥∥∥∥∥
Lq

dt.

Thus, [20, Theorem 1.d.6(i)] yields∥∥∥∥∥
k∑

n=1

anfn

∥∥∥∥∥
Lq

∼

∥∥∥∥∥∥
(

k∑
n=1

|anfn|2
)1/2

∥∥∥∥∥∥
Lq

.

Therefore, for every 2 � r � ∞, we have∥∥∥∥∥
k∑

n=1

anfn

∥∥∥∥∥
Lq

∼

∥∥∥∥∥∥
(

k∑
n=1

|anfn|r
)1/r

∥∥∥∥∥∥
Lq

.

The next result shows why Lemma 3.2 cannot be extended to the case s = 2. Given functions
f, g : N → R, by f = o(g) we mean, as usual, that f(m)/g(m) → 0 when m → ∞.

Lemma 3.3. Let 1 < p < 2. If T : �2 → Lp(μ) is a bounded operator and fn = T (en), where
(en) denotes the canonical basis of �2, then, for each natural number m, we have

inf
|A|=m

∥∥∥∥max
j∈A

|fj |
∥∥∥∥

Lp

= o(
√

m).

Moreover, for any 2 < q < ∞, we have

inf
|A|=m

∥∥∥∥∥∥∥
⎛⎝∑

j∈A

|fj |q
⎞⎠1/q

∥∥∥∥∥∥∥
Lp

= o(
√

m).

Proof. By Krivine’s theorem (cf. [20, Theorem 1.f.14]), given any finite family (xi)n
i=1 of

vectors in �2, we have∥∥∥∥∥∥
(

n∑
i=1

|Txi|2
)1/2

∥∥∥∥∥∥
Lp

� KG‖T‖

∥∥∥∥∥∥
(

n∑
i=1

|xi|2
)1/2

∥∥∥∥∥∥
�2

= KG‖T‖
(

n∑
i=1

‖xi‖2
�2

)1/2

,

where KG is Grothendieck’s constant. Now, by Maurey’s factorization theorem
(cf. [1, Theorem 7.1.2]), there exists a density function h on Ω (that is, h > 0 and

∫
h dμ = 1)

such that

�2
T

T̃

Lp(μ)

L2(h dμ) i
Lp(h dμ)

J

where T̃ (x) = h−1/pT (x) for every x ∈ �2, i denotes the canonical inclusion, and J is the
isometry mapping each f ∈ Lp(h dμ) to J(f) = fh1/p.

Let us write f̃n = T̃ (en) ∈ L2(h dμ). Since L2(h dμ) satisfies the subsequence splitting
property, there exist a subsequence (f̃nk

) and sequences (gk) and (hk), with (hk) disjoint
and (gk) equi-integrable in L2(h dμ), such that f̃nk

= gk + hk and |gk| ∧ |hk| = 0. Therefore,
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the sequence (J(hk)) is disjoint in Lp(μ), and, for scalars (ak)n
k=1, we have∥∥∥∥∥

n∑
k=1

akJ(hk)

∥∥∥∥∥
Lp

�
∥∥∥∥∥

n∑
k=1

akhk

∥∥∥∥∥
L2(h)

=

∥∥∥∥∥∥
(

n∑
k=1

|akhk|2
)1/2

∥∥∥∥∥∥
L2(h)

�

∥∥∥∥∥∥
(

n∑
k=1

|akf̃nk
|2

)1/2
∥∥∥∥∥∥

L2(h)

� KG‖T̃‖

∥∥∥∥∥∥
(

n∑
k=1

|akenk
|2

)1/2
∥∥∥∥∥∥

�2

= C

(
n∑

k=1

|ak|2
)1/2

,

with a constant C independent of n (cf. [20, Theorem 1.f.14]). Now, if infk ‖J(hk)‖Lp
> 0,

then, for some constant c and for all (ak)n
k=1, we have

c

(
n∑

k=1

|ak|p
)1/p

�
∥∥∥∥∥

n∑
k=1

akJ(hk)

∥∥∥∥∥
Lp

� C

(
n∑

k=1

|ak|2
)1/2

,

which is impossible (since 1 < p < 2).
Thus, passing to a subsequence, we can assume that ‖J(hk)‖Lp

→ 0 as k → ∞. Now, for
each m ∈ N, let us write

φ(m) =
∥∥∥∥ max

1�k�m
|gk|

∥∥∥∥
L2(h)

,

and let us take disjoint measurable sets Am
1 , Am

2 , . . . , Am
m in Ω such that

max
k�m

|gk| =
m∑

k=1

|gk|χAm
k

.

Claim 3.4. We have φ(m)/
√

m → 0 when m → ∞.

Proof of Claim 3.4. Assuming the contrary, then there exist ε > 0 and an increasing
sequence mn → ∞ such that

φ(mn)√
mn

� ε;

that is, for all n ∈ N, we can choose an integer mn and disjoint sets Amn
1 , Amn

2 , . . . , Amn
mn

such that

1
mn

mn∑
k=1

∫
Amn

k

|gk|2h dμ =
1

mn

∥∥∥∥∥
mn∑
k=1

|gk|χAmn
k

∥∥∥∥∥
2

L2(h)

=
(

φ(mn)√
mn

)2

� ε2 (3.1)

for every natural n. From this fact we conclude that, for every N ∈ N, we can find B1, . . . , BN

disjoint sets in Ω such that

sup
k

{∫
Bn

|gk|2h dμ

}
� ε2

2

for all n = 1, . . . , N .
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Otherwise, suppose that there exists N such that, for n large enough, the set

Sn =

{
k � mn :

∫
Amn

k

|gk|2h dμ � ε2

2

}
always has cardinality less than N . Then, for n large enough so that (mn − N)/mn < 1 and
N supk ‖gk‖L2/mn < ε2/2, we have

1
mn

mn∑
k=1

∫
Amn

k

|gk|2h dμ <
1

mn

[
(mn − N)

ε2

2
+ N sup

k
‖gk‖L2

]
< ε2,

which is a contradiction with (3.1).
Hence, by [27, Theorem III.C.12], we reach a contradiction with the fact that (gk) is equi-

integrable in L2(h dμ). Therefore, φ(m)/
√

m → 0 when m → ∞, and the claim is proved.

Now, since ‖J(hk)‖Lp
→k→∞ 0, we have that, for every m ∈ N and for every ε > 0, there

exists a set Aε = {k1, k2, . . . , km} of natural numbers such that ‖J(hk)‖Lp
< ε/m for all k ∈ Aε.

Therefore,
inf

|A|=m
‖max

j∈A
|fj |‖Lp

� inf
|A|=m

‖max
j∈A

J(|gj | + |hj |)‖Lp

� φ(m) + ‖max
j∈Aε

J(|hj |)‖Lp

� φ(m) + ε,

and, since this inequality holds for all ε > 0, we obtain that inf |A|=m ‖maxj∈A |fj |‖Lp
� φ(m),

which implies that

inf
|A|=m

∥∥∥∥max
j∈A

|fj |
∥∥∥∥

Lp

= o(
√

m).

Now, the second assertion of the lemma is obtained by a Hölder-type inequality
[20, Proposition 1.d.2]. Indeed, given m ∈ N, for any A ⊂ N with |A| = m, we have∥∥∥∥∥∥∥

⎛⎝∑
j∈A

|fj |q
⎞⎠1/q

∥∥∥∥∥∥∥
Lp

�

∥∥∥∥∥∥∥∥
⎛⎜⎝

⎛⎝∑
j∈A

|fj |2
⎞⎠1/2

⎞⎟⎠
θ (

max
j∈A

|fj |
)1−θ

∥∥∥∥∥∥∥∥
Lp

�

∥∥∥∥∥∥∥
⎛⎝∑

j∈A

|fj |2
⎞⎠1/2

∥∥∥∥∥∥∥
θ

Lp

∥∥∥∥max
j∈A

|fj |
∥∥∥∥1−θ

Lp

for θ = 2/q ∈ (0, 1). Now, by the first part of the lemma, the function

ϕ(m) = inf
|A|=m

∥∥∥∥max
j∈A

|fj |
∥∥∥∥

Lp

satisfies ϕ(m)/
√

m → 0 as m → ∞. Moreover, by passing to a subsequence, (fj) can be assumed
to be unconditional, and so we have∥∥∥∥∥∥∥

⎛⎝∑
j∈A

|fj |2
⎞⎠1/2

∥∥∥∥∥∥∥
Lp

∼

∥∥∥∥∥∥
∑
j∈A

fj

∥∥∥∥∥∥
Lp

� ‖T‖
√

m.

Thus, for some constant C < ∞ and for any q > 2, we have

inf
|A|=m

∥∥∥∥∥∥∥
⎛⎝∑

j∈A

|fj |q
⎞⎠1/q

∥∥∥∥∥∥∥
Lp

� (C ‖T‖
√

m)θ(ϕ(m))1−θ,
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and clearly
(C ‖T‖√m)θϕ(m)1−θ

√
m

−→ 0

as m → ∞.

Lemma 3.5. Let 1 < p < 2. If a sequence (fn) ⊂ Lp(0, 1) satisfies∥∥∥∥∥∥
( ∞∑

n=1

|an|2|fn|2
)1/2

∥∥∥∥∥∥
Lp

� C

( ∞∑
n=1

|an|2
)1/2

for some constant C > 0 and every finitely non-zero scalar sequence (an), then, for 2 < q < ∞,
we have

inf
|A|=m

∥∥∥∥∥∥∥
⎛⎝∑

j∈A

|fj |q
⎞⎠1/q

∥∥∥∥∥∥∥
Lp

= o(
√

m).

Proof. Let us consider the operator T : �2 → Lp([0, 1] × [0, 1]) defined by T (en) = fn ⊗ rn,
where (en) denotes the canonical basis of �2, (rn) are the Rademacher functions on [0, 1], and
fn ⊗ rn(s, t) = fn(s)rn(t). By Khintchine’s inequality, for scalars (an), we have∥∥∥∥∥

k∑
n=1

anfn ⊗ rn

∥∥∥∥∥
Lp

=

(∫1

0

∫1

0

∣∣∣∣∣
k∑

n=1

anfn(s)rn(t)

∣∣∣∣∣
p

dt

)1/p

� Cp

∥∥∥∥∥∥
( ∞∑

n=1

|an|2|fn|2
)1/2

∥∥∥∥∥∥
Lp

for certain constant Cp. Therefore, by the hypothesis of the lemma, this operator is bounded,
and hence, by Lemma 3.3, we have

inf
|A|=m

∥∥∥∥∥∥∥
⎛⎝∑

j∈A

|fj ⊗ rj |q
⎞⎠1/q

∥∥∥∥∥∥∥
Lp

= o(
√

m).

But, since |fj | = |fj ⊗ rj |, the proof is completed.

We are now in a position to state and prove the main result of this section. We shall consider
the Banach lattice Lr(�q) for 1 � r, q < ∞, defined as the set of all sequences x = (x1, x2, . . .)
of elements of Lr such that

‖x‖Lr(�q) = sup
n

∥∥∥∥( n∑
i=1

|xi|q
)1/q∥∥∥∥

Lr

< ∞

(cf. [20, pp. 46–47]).

Proof of Theorem C. Since 1 < r < p < 2, we can consider the formal inclusion J :
Lp[0, 1] ↪→ Lr[0, 1]. Let us denote by Hr the atomic Banach lattice whose lattice structure
comes from the unconditional Haar basis (hn) in Lr[0, 1], and which is isomorphic to Lr[0, 1].
Let L : Lr[0, 1] → Hr be this isomorphism.

Now, given p < s < 2, consider a sequence (fn) of i.i.d. s-stable random variables in Lp[0, 1].
Hence the span [fn] is isometrically isomorphic to �s both in Lp[0, 1] and Lr[0, 1]. Now,
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since fn → 0 weakly in Lp[0, 1], there exists a block basis (wn) of (hn) of the form

wn =
qn∑

i=qn−1+1

aihi,

with (qn) being an increasing sequence of natural numbers, such that (wn) is equivalent to a
subsequence of (fn) (still denoted by (fn)). In fact, we have that ‖fn − wn‖Lp

→ 0 and, since
r < p, we also have ‖fn − wn‖Lr

→ 0. Hence, passing to a further subsequence, we have that
(fn) and (wn) are equivalent both in Lp[0, 1] and Lr[0, 1].

Let us now consider the operator R defined by

R : Hr −→ Lr(�q)

(ci)∞i=1 �−→

⎛⎝ qn∑
i=qn−1+1

cihi

⎞⎠∞

n=1

,

which is clearly bounded. Indeed, since q > 2 and the Haar basis (hn) is unconditional in
Lr[0, 1], we have

‖R(ci)‖Lr(�q) = sup
k

∥∥∥∥∥∥∥
⎛⎝ k∑

n=1

∣∣∣∣∣∣
qn∑

i=qn−1+1

cihi

∣∣∣∣∣∣
q⎞⎠1/q

∥∥∥∥∥∥∥
Lr

� sup
k

∥∥∥∥∥∥∥∥
⎛⎜⎝ k∑

n=1

∣∣∣∣∣∣
qn∑

i=qn−1+1

cihi

∣∣∣∣∣∣
2
⎞⎟⎠

1/2
∥∥∥∥∥∥∥∥

Lr

� C

∥∥∥∥∥
∞∑

i=1

cihi

∥∥∥∥∥
Lr

= C‖(ci)‖Hr

for certain constant C > 0.
Let us now consider the operator T : Lp[0, 1] → Lr(�q) defined as follows.

Lp
T

J

Lr(�q)

Lr
L

Hr

R

The operator T = RLJ is not �s-singular. Indeed, T is an isomorphism when restricted to
the subspace [wn] in Lp, which is isomorphic to �s, since, by Lemma 3.2, we have∥∥∥∥∥T

( ∞∑
n=1

bnwn

)∥∥∥∥∥
Lr(�q)

= sup
k

∥∥∥∥∥∥∥
⎛⎝ k∑

n=1

∣∣∣∣∣∣bn

qn∑
i=qn−1+1

aihi

∣∣∣∣∣∣
q⎞⎠1/q

∥∥∥∥∥∥∥
Lr

∼
∥∥∥∥∥

∞∑
n=1

bnwn

∥∥∥∥∥
Lr

∼
∥∥∥∥∥

∞∑
n=1

bnwn

∥∥∥∥∥
Lp

∼
( ∞∑

n=1

|bn|s
)1/s

.
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In particular, T is not SS. On the other hand, the operator T is �p-singular because so is the
inclusion J : Lp ↪→ Lr.

Let us now prove that T does not preserve an isomorphic copy of �2. To see this, it suffices
to show that RL preserves no isomorphic copy of �2. Indeed, if this were not the case, then
let (gn) be a sequence equivalent to the unit vector basis of �2 in Lr, so that (RL(gn)) is also
equivalent to it. Since gn → 0 weakly, without loss of generality, we can suppose that (gn) is a
block basis of the Haar system. In fact, we can extract a subsequence (still denoted by (gn))
such that

gn =
pn∑

k=pn−1+1

ψn
k ,

where each ψn
k ∈ [hqjk−1+1, . . . , hqjk

] for a certain increasing sequence (jk) in N (notice that
the sequence (qn) has already been fixed in the definition of the operator R).

Now, the sequence (ψn
k )∞n=1,k=pn−1+1,...,pn

forms an unconditional basic sequence since it is
a sequence of blocks of the Haar basis, which is unconditional in Lr(0, 1). Therefore, for every
finitely non-zero sequence of scalars (an), we have∥∥∥∥∥∥∥

⎛⎝ ∞∑
n=1

pn∑
k=pn−1+1

|anψn
k |2

⎞⎠1/2
∥∥∥∥∥∥∥

Lr

∼

∥∥∥∥∥∥
∞∑

n=1

pn∑
k=pn−1+1

anψn
k

∥∥∥∥∥∥
Lr

=

∥∥∥∥∥
∞∑

n=1

angn

∥∥∥∥∥
Lr

∼
( ∞∑

n=1

a2
n

)1/2

(see [20, Theorem 1.d.6]). Let us consider

fn =

⎛⎝ pn∑
k=pn−1+1

|ψn
k |q

⎞⎠1/q

.

Since q > 2, we have

∥∥∥∥∥∥
( ∞∑

n=1

a2
nf2

n

)1/2
∥∥∥∥∥∥

Lr

=

∥∥∥∥∥∥∥∥
⎛⎜⎝ ∞∑

n=1

a2
n

⎛⎝ pn∑
k=pn−1+1

|ψn
k |q

⎞⎠2/q
⎞⎟⎠

1/2
∥∥∥∥∥∥∥∥

Lr

�

∥∥∥∥∥∥∥
⎛⎝ ∞∑

n=1

a2
n

pn∑
k=pn−1+1

|ψn
k |2

⎞⎠1/2
∥∥∥∥∥∥∥

Lr

∼
( ∞∑

n=1

a2
n

)1/2

.

Now, by Lemma 3.5, we obtain

inf
|A|=m

∥∥∥∥∥∥
(∑

n∈A

|fn|q
)1/q

∥∥∥∥∥∥
Lr

= o(
√

m).
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However, by hypothesis, there exists some constant C > 0 such that

C
√

m � inf
|A|=m

∥∥∥∥∥∑
n∈A

RLgn

∥∥∥∥∥
Lr(�q)

= inf
|A|=m

∥∥∥∥∥∥∥
⎛⎝∑

n∈A

pn∑
k=pn−1+1

|ψn
k |q

⎞⎠1/q
∥∥∥∥∥∥∥

Lr

= inf
|A|=m

∥∥∥∥∥∥
(∑

n∈A

|fn|q
)1/q

∥∥∥∥∥∥
Lr

= o(
√

m).

This is a contradiction; thus, the operator RL is �2-singular, and so is T = RLJ .

Remark 3.6. Note that, if the sequence (qn), appearing in the definition of the operator
T : Lp → Lr(�q) given above, increases fast enough, then it can be seen that the operator T
is not �sn

-singular, where (sn) is a countable dense set in the interval (p, 2). From this fact,
using an approximation argument for s-stable random variables, we can conclude that T is not
�s-singular for any s ∈ (p, 2).

Remark 3.7. The hypothesis of order continuity of the range Banach lattice Y in Theorem
B cannot be removed.

Indeed, consider the operator T : Lp → Lr(�q) constructed in Theorem C and the canonical
isomorphic embedding j : Lr(�q) → �∞. Now, the composition jT : Lp → �∞ is a regular
operator (cf. [21, Theorem 1.5.11]) that is DSS and �2-singular, but it is not SS (because
T is not SS and j is an isomorphic embedding).
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