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POWER-BOUNDED OPERATORS AND RELATED
NORM ESTIMATES

N. KALTON, S. MONTGOMERY-SMITH,
K. OLESZKIEWICZ and Y. TOMILOV

Abstract

It is considered whether L = lim supn→∞ n‖T n+1 − T n‖<∞ implies that the operator T is
power-bounded. It is shown that this is so if L < 1/e, but it does not necessarily hold if L = 1/e.
As part of the methods, a result of Esterle is improved, showing that if σ(T )= {1} and T �= I,
then lim infn→∞ n‖T n+1 − T n‖ � 1/e. The constant 1/e is sharp. Finally, a way to create many
generalizations of Esterle’s result is described, and also many conditions are given on an operator
which imply that its norm is equal to its spectral radius.

1. Introduction

Let T be a bounded linear operator on a complex Banach space X. One of the
classical problems in operator theory is to determine the relation between the size
of the resolvent (T − λI)−1 when λ is near the spectrum σ(T ), and the asymptotic
properties of orbits {Tnx : n � 0} for each x ∈ X. The inequality

‖(T − λI)−1‖� C

dist(λ, σ(T ))
, λ ∈ C \σ(T ),

has been extensively studied by, for example, Benamara and Nikolski [2] and also,
very recently, by Borovykh, Drissi and Spijker [8], and El-Fallah and Ransford [12];
see also [20, 22, 24, 30]. Such an inequality is extreme in the sense that the converse
inequality (with C = 1) is always satisfied. In most cases the relationship to such
an inequality and the properties of the orbits are very difficult to determine.

Thus it is interesting that one has a very clean equivalence for the resolvent
condition introduced by Ritt [27], which says there is a constant C > 0 such that

‖(T − λI)−1‖� C

|λ − 1| (|λ|> 1).

Nagy and Zemánek [22], and independently Lyubich [19], proved the following
result (see also [23, Theorem 4.5.4]).

Theorem 1.1. Let T be an operator on a complex Banach space. Then T
satisfies the Ritt resolvent condition if and only if

(i) T is power bounded;
(ii) supn n‖Tn+1 − Tn‖<∞.
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We recall a result of Esterle [13] saying that if σ(T )= {1} and T is not the
identity operator, then lim infn→∞ n‖Tn+1 − Tn‖ � 1/12. (The citation given only
has 1/96; this was improved by Berkani [3] to 1/12.) Moreover, it was noted in [23,
Theorem 4.5.1] that if 1 is a limit point of σ(T ), then lim supn→∞ n‖Tn+1 − Tn‖ �
1/e. Thus both the Ritt resolvent condition and condition (ii) are extremal, and
it is natural to ask whether these two conditions are equivalent, at least in the
case when σ(T )= 1. Note that it was only recently that Lyubich [20] constructed
operators satisfying the Ritt condition and σ(T )= {1}.

Another reason that such a question is interesting is because of the famous
Esterle–Katznelson–Tzafriri theorem [13, 16], which states that if T is power
bounded, and its spectrum meets the unit circle only at the point 1, then
‖Tn+1 − Tn‖ → 0 as n → ∞. Thus a positive answer to our question would provide
a partial converse.

Towards this conjecture, it is known that if lim supn→∞ n‖Tn+1 − Tn‖< 1/12,
then T is power bounded in a rather trivial manner, that is, it is the direct sum
of an identity operator and an operator whose spectral radius is less than 1. This
follows directly from the result of Esterle cited above.

In this paper, we improve these results. We answer a conjecture of Esterle [13]
(see also [3]) and show that in his result 1/12 may be replaced by 1/e.
Furthermore an example shows that 1/e is sharp. As a corollary we show
that if lim supn→∞ n‖Tn+1 − Tn‖< 1/e, then T is power bounded. Again we
provide an example to show that 1/e is sharp. In particular, the condition
supn n‖Tn+1 − Tn‖<∞ does not necessarily imply that T is power bounded. We
leave open the question as to whether it implies power boundedness in the case that
σ(T )= {1}.

We create a general framework which shows how to easily create results in the
same vein as Esterle’s result. For example, one can give conditions concerning
‖Tn − Tm‖ which imply that an operator with σ(T )= {1} is the identity. We also
give results similar to the special case of Sinclair’s theorem [28] considered by
Bonsall and Crabb [7], giving many different conditions on an operator that imply
that its norm is equal to its spectral radius.

Finally, we note that the condition supn n‖Tn+1 − Tn‖<∞ appears in the paper
by Coulhon and Saloff-Coste [11], and also in the papers by Blunck [5, 6], which
give many applications of this condition to maximal regularity problems.

Throughout this paper, we will take the Fourier transform to be f̂(ξ)=∫∞
−∞ f(x)e−ixξ dx and the inverse Fourier transform to be

ǧ(x) = (1/2π)
∫∞

−∞
g(ξ)eixξ dξ.

All Banach spaces will be complex in the remainder of the paper.

2. Esterle’s result

To illustrate the ideas, let us first give a continuous time version. The methods
used are similar to those in a paper by Bonsall and Crabb [7] in their proof of a
special case of Sinclair’s theorem [28]. After this present paper was finished, the
authors learned of the papers by Berkani, Esterle and Mokhtari [4] and Esterle and
Mokhtari [14] which use similar methods. The function W described below is often
called the Lambert function (see [10]).
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Theorem 2.1. Let A be a bounded operator on a Banach space such
that σ(A)= {0}. For each t > 0 such that ‖AetA‖� 1/et, we have ‖A‖� 1/t. In
particular, if lim inft→∞ t‖AetA‖< 1/e, then A= 0.

Proof. Let f(z)= zez. There is an analytic function W such that W (f(z))= z
in some neighborhood of 0. In particular, by the Riesz–Dunford functional calculus,
W (tAetA)= tA. Now

W (z)=
∞∑

m=1

pmzm,

where, by Lagrange’s inversion formula [1, Ch. 5, Ex. 33],

pm =
1
m!

dm−1

dzm−1

(
z

f(z)

)m
∣∣∣∣∣
z=0

=
(−m)m−1

m!
.

The radius of convergence of W is 1/e, and
∑∞

m=1 |pm|e−m = 1, since f(−1)=−1/e.
Therefore ‖W (tAetA)‖� 1, and the result follows.

Theorem 2.2. Let T be a bounded operator on a Banach space such that
σ(T )= {1}. For each positive integer n such that ‖Tn+1 − Tn‖�nn/(n+1)n+1, we
have ‖T − I‖� 1/(n + 1). In particular, if lim infn→∞ n‖Tn+1 − Tn‖< 1/e, then
T = I.

Proof. Let fn(z)= z(1 + z/n)n. There is an analytic function Wn such that
Wn(fn(z))= z in some neighborhood of 0. In particular, by the Riesz–Dunford
functional calculus, Wn(n(Tn+1 − Tn))= n(T − I). Now

Wn(z)=
∞∑

m=1

pnmzm

where

pnm =
1
m!

dm−1

dzm−1

(
z

fn(z)

)m
∣∣∣∣∣
z=0

=
(−1)m−1

nm−1(nm + m − 1)

(
nm + m − 1

m

)
.

The radius of convergence of Wn is rn = (n/(n+ 1))n+1, and
∑∞

m=1 |pnm|rm
n =

n/(n+ 1), since fn(−n/(n+1))=−rn. Therefore ‖Wn(n(Tn+1 − Tn))‖� n/(n+1)
and the result follows.

In Section 4, we will generalize this approach and give many extensions of these
results.

Now let us turn our attention to whether the constant 1/e in Theorems 2.1
and 2.2 can be improved. By the results of Lyubich [20] combined with Theorem 1.1,
we know that there must be some upper bound on the numbers C > 0 such that
σ(T )= {1} and lim infn→∞ n‖Tn+1 − Tn‖< C imply that T = I. In fact we will be
able to modify the examples of Lyubich to show that C = 1/e is sharp.
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We will consider the fractional Volterra operators, parameterized by α > 0, on
Lp([0, 1]) for 1� p�∞, given by the formula

Jαf(x)=
1

Γ(α)

∫x

0

(x − y)α−1f(y) dy,

and also modified fractional Volterra operators

Lαf(x)=
1

Γ(α)

∫x

0

(x − y)α−1ey−xf(y) dy.

It is well known (and easy to show) that (Jα)α>0 is a C0-semigroup. Similarly
(Lα)α>0 is also a C0-semigroup. Thus it is easily seen that ‖(Lα)n‖= ‖Lαn‖ �
1/Γ(αn + 1), and hence the spectral radius of Lα is zero.

Let us also consider an extension of this operator L̃α on L2(R) given by the
formula

L̃αf(x)=
1

Γ(α)

∫x

−∞
(x − y)α−1ey−xf(y) dy.

This is a convolution operator. Therefore, ̂̃Lαf(ξ)= mα(ξ)f̂(ξ), where mα is
the Fourier transform of xα−1

+ e−x/Γ(α). Direct calculation shows that mα(ξ)=
(1 + iξ)−α, where here we are taking the principal branch.

Next, let M denote the operator of multiplication by the indicator function
of [0, 1], then it is not so hard to see that for any entire function f we have
f(Lα)= Mf(L̃α)M , and so ‖f(Lα)‖� ‖f(L̃α)‖.

Now we see that
̂L̃αe−tL̃α f(ξ)= k(ξ)f̂(ξ),

where k(ξ)= mα(ξ)e−tmα (ξ). If 0 < α < 1, then Re(mα(ξ))> 0, and
limξ→±∞ arg(mα(ξ))= απ/2. Hence it is easy to see that

lim sup
t→∞

t
∥∥Lαe−tLα∥∥ � lim sup

t→∞
t
∥∥L̃αe−tL̃α∥∥ � 1/e cos(απ/2).

This is enough to show that the constant C = 1/e is sharp in Theorem 2.1.
However, we can do a little better.

Theorem 2.3. (i) There exists an operator A �= 0 on a Hilbert space, with
σ(A)= {0}, and lim supt→∞ t‖AetA‖� 1/e.

(ii) There exists an operator T �= I on a Hilbert space, with σ(T )= {1}, and
lim supn→∞ n‖Tn+1 − Tn‖� 1/e.

Proof. Let us consider the operator on L2([0, 1])

A= −
∫1/2

0

Lα dα,

where the integral converges in the strong operator topology. Lyubich [20] showed
that the operator B =

∫∞
0

Jα dα has spectral radius equal to 0 on Lp([0, 1]) for all
1� p�∞. Now both −A and B are operators with positive kernels, and the kernel
of −A is bounded above by the kernel of B. It follows that on Lp([0, 1]) for p= 1 or
p=∞, ‖An‖� ‖Bn‖ for all positive integers n. Thus A has spectral radius equal to
0 on Lp([0, 1]) for p= 1 and p=∞, and hence, by interpolation, for all 1� p�∞.
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We also define the operator on L2(R)

Ã = −
∫1/2

0

L̃α dα.

Following the above argument, we see that ‖AetA‖� ‖ÃetÃ‖, and ̂̃AetÃf(ξ)=
k(ξ)f̂(ξ), where

|k(ξ)|= |h(ξ)| exp(−tRe(h(ξ))),

and

h(ξ)=
∫1/2

0

mα(ξ) dα.

We see that arg(h(ξ)) → 0 as ξ → ∞, and hence it is an easy matter to see that
lim supt→∞ t‖AetA‖� 1/e.

The second example is given by T = eA. Note that T �= I, because otherwise
A= log(T )= 0. The estimate is easily obtained since Tn+1 − Tn =

∫n+1

n
AetA dt.

3. Power boundedness

Theorem 3.1. Let T be a bounded operator on a Banach space X such that
lim supn→∞ n‖Tn+1 − Tn‖< 1/e. Then X decomposes as the direct sum of two
closed T -invariant subspaces such that T is the identity on one of these subspaces,
and the spectral radius of T on the other subspace is strictly less than 1. In
particular, Tn converges to a projection.

Proof. First note that σ(T ) must be contained in {1} ∪ {z : |z|<α} for some
α < 1, otherwise it is easy to see that limit superior of the spectral radius of Tn+1−
Tn is at least 1/e (see, for example [23, Theorem 4.5.1]). Thus there is a projection
P that commutes with T such that σ(T |image(P ))= {1}, and the spectral radius of
T |ker(P ) is strictly less than 1. The result now follows by applying Theorem 2.2 to
T |image(P ).

A very similar proof works also for the following continuous time version.
However, we were also able to produce a different proof of this same result.

Theorem 3.2. Let A be a bounded operator on a Banach space X such that
L= lim supt→∞ t‖AetA‖< 1/e. Then X decomposes as the direct sum of two closed
A-invariant subspaces such that A is the zero operator on one of these subspaces,
and on the other subspace the supremum of the real part of the spectrum is strictly
negative. In particular, etA converges to a projection.

Proof. To illustrate the ideas, let us first prove that etA converges in the case
that L< 1/4, that is, there are constants c < 1/4 and t0 > 0 such that ‖AetA‖� c/t
for t � t0. It follows that ‖A2e2tA‖� c2/t2 for t � t0, or ‖A2etA‖� 4c2/t2 for
t � 2t0. Then for t � 2t0 we have

‖AetA‖=
∥∥∥∥ lim

τ→∞

∫ τ

t

A2esA ds

∥∥∥∥� 4c2

t
,
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since AeτA → 0 as τ → ∞. Iterating this process, we get ‖AetA‖� (4c)2
k

/4t for
t � 2kt0. To put this another way, ‖AetA‖� (4c)t/2t0/4t for t � t0. It follows that

et1A − et2A =
∫ t1

t2

AesA ds

converges to zero as t1, t2 → ∞, that is, etA is a Cauchy sequence. Hence it
converges.

The case when L < 1/e is only marginally more complicated. Again, there are
constants c < 1/e and t0 > 0 such that ‖AetA‖� c/t for t � t0. For any integer
M � 2 we have ‖AMetA‖� (cM)M/tM for t � Mt0. Integrating (M − 1) times we
obtain

‖AetA‖� (cM)M

t(M − 1)!
for t � Mt0.

A simple computation shows that

(cM)M

(M − 1)!
� M

e
(ce)M ,

and hence iterating we obtain that if t>Mkt0 then

‖AetA‖ �
(

M

e

)−1/(M−1)
(

ce

(
M

e

)1/(M−1)
)Mk

1
t
.

By choosing M sufficiently large, we see that there exist constants c1, c2 > 1 such
that ‖AetA‖� c1c

−t
2 /t for t � t0, and hence ‖etA‖ converges.

Now it is clear that S = limt→∞ etA is a bounded projection (because S2 = S)
such that SetA = etAS =S. Let X1 = Im(S), and X2 = Ker(S), so X =X1 ⊕X2.
These spaces are clearly invariant under etA, and hence invariant under
A= limt→0(etA − I)/t. Since S|X1 = I|X1 we see immediately that etA|X1 = I|X1 ,
and so A|X1 = limt→0(etA|X1 − I|X1)/t = 0. Furthermore, we have etA|X2 → 0. Let
t0 be such that ‖et0A|X2‖� 1/2. Then the spectral radius of et0A|X2 is bounded by
1/2, and so supRe(A|X2)< − log(2)/t0.

We also point out that Theorem 3.1 could be proved in a similar manner, but
the details can be quite complicated. It is also possible to deduce Theorem 3.1
from Theorem 3.2. Briefly, if ‖Tn+1 − Tn‖� (1 + ε)L/(n + 1) for large enough n,
then by writing out the power series for (T − I)etT about t = 0 one obtains
‖(T − I)etT ‖� (1 + 2ε)Let/t for large enough t. The result now follows quickly
by applying Theorem 3.2 to A= T −I, remembering that σ(T ) ⊂ {1}∪{z : |z|< 1}.

Now we give some counterexamples to show that in general the condition
supn n‖Tn+1 − Tn‖<∞ does not necessarily imply power boundedness.

Theorem 3.3. There exists a bounded operator T on L1(R) such that
supn n‖Tn+1 − Tn‖<∞, and ‖Tn‖ ≈ log n.

Proof. The example is a multiplier on L1(R) given by T̂ f(ξ)= m(ξ)f̂(ξ). It is
well known that such an operator is bounded if the inverse Fourier transform m̌ is
a measure of bounded variation, and indeed that the norm is equal to the variation
of m̌.
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Let us consider the case

m(ξ)=
{

1 if |ξ|� 1
exp(1 − |ξ|) if |ξ|> 1.

An explicit computation shows that the inverse Fourier transform of mn is

nx cos(x) + n2 sin(x)
πx(x2 + n2)

and that the inverse Fourier transform of mn+1 − mn is

(x2 − n(n + 1)) cos(x) + (2nx + x) sin(x)
π(x2 + n2)(x2 + (n + 1)2)

,

and it is now easy to verify the claims.

We now show that for any infinite-dimensional Banach space we can find
an operator T : X −→X with lim supn→∞ n‖Tn − Tn+1‖= 1/e but such that
limn→∞ ‖Tn‖=∞. To do this we will need to construct a special bi-orthogonal
system in an arbitrary Banach space. We recall that a family (ej , e

∗
j )j∈J where

ej ∈ X, e∗j ∈ X∗ for j ∈ J is called a bi-orthogonal system if e∗j (ej) = 1 for j ∈ J
and e∗j (ek)= 0 whenever j �= k. We refer to [18, 25, 26] for known results on the
construction of bi-orthogonal systems in a separable Banach space.

The following proposition is the key to the construction. We will give a short
proof valid in a Hilbert space and then prove a lemma which allows us to remove
this restriction in an arbitrary Banach space; the reader whose main interest is in
construction of an operator on a Hilbert space may simply omit this lemma.

Proposition 3.4. Let X be an infinite-dimensional Banach space and suppose
that (cn)∞n=1 is a sequence such that limn→∞ cn =∞ and limn→∞ cnn−1/2 = 0. Then
X contains a bi-orthogonal system (en, e∗n)∞n=1 such that the following hold.

(a) If Pnx=
∑n

k=1 e∗k(x)ek then ‖Pn‖ � cn.
(b) limn→∞ ‖e∗n‖‖en‖= 1.

Proof. Let us suppose that X is a Hilbert space. We pick an orthonormal
sequence (fn)∞n=0 and a decreasing sequence of positive reals (τm)∞m=1 such that
limm→∞ τm = 0 and τm � 2cnn−1/2 whenever 2m−1 � n < 2m. Note that this
implies that limm→∞ 2m/2τm =∞ since limn→∞ cn =∞. Denote by (f∗

n)∞n=0 the
sequence bi-orthogonal to (fn) with ‖f∗

n‖= 1 (that is f∗
n(x) = (x, fn)).

Define en = fn + τmf0 for n � 1 and 2m � n < 2m+1. Let e∗n = f∗
n. Then

(en, e∗n)∞n=1 is a bi-orthogonal system with limn→∞ ‖en‖‖e∗n‖= 1. Note that ‖P1‖ �
τ1 � c1. Now suppose that 2m � n < 2m+1 where m � 1. Then∥∥∥∥∥

2m −1∑
k=2m −1

ek

∥∥∥∥∥ � τm2m−1.

On the other hand, for any r >m + 1∥∥∥∥∥
2m −1∑

k=2m −1

ek − τmτ−1
r 2m−r

2r −1∑
k=2r−1

ek

∥∥∥∥∥ � 2(m−1)/2 + τmτ−1
r 2m−(1/2)(r+1).
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The second term on the right tends to zero as r → ∞. We deduce that ‖Pn‖ �
τm2(m−1)/2 � 1

2τm+1
√

n � cn.

Now let us indicate how to extend this to an arbitrary Banach space. In fact it
is clear that the argument goes through with minor modifications if we have the
following lemma.

Lemma 3.5. If X is an infinite-dimensional Banach space then X contains a
bi-orthogonal system (fn, f∗

n)∞n=0 such that ‖fn‖= 1 for n � 0, ‖f∗
0 ‖= 1,

lim
n→∞

‖fn‖‖f∗
n‖= 1

and for each m= 1, 2, . . . and scalars (an)2
m −1

n=2m −1 ,∥∥∥∥∥
2m −1∑

k=2m −1

akfk

∥∥∥∥∥ � 2

(
2m −1∑

k=2m −1

|ak|2
)1/2

.

Proof. We will need two basic facts from Banach space theory, which we review
for the convenience of the reader.

(1) Dvoretzky’s theorem [21]: If ε> 0,m ∈ N there exists N = N(m, ε) so that if
X is an N -dimensional (real or complex) Banach space then X contains a subspace
E of dimension m whose Banach–Mazur distance to �m

2 is at most 1 + ε.
(2) Lemma of Krein, Krasnoselskii and Milman [17] (see also [29, p. 269]): If E

and F are two finite-dimensional subspaces of a Banach space X and dim F > dim E
then there exists f ∈ F with d(f,E)= mine∈E ‖f − e‖= ‖f‖.

Let (σn) be a descending sequence with σ1 < 2 and limσn = 1. We will construct
(fn, f∗

n)∞n=0 inductively to satisfy the conditions of the lemma and ‖f∗
n‖ � σ2

m for
2m−1 � n < 2m. We start by picking f0, f

∗
0 so that ‖f0‖= ‖f∗

0 ‖= f∗
0 (f0). Now

suppose that (fn, f∗
n)2

m −1−1
n=0 have been chosen (where m � 1).

Let F be the linear span [fn]2
m −1−1

n=0 . Let X0 = {x ∈ X : f∗
n(x) = 0, 1 � n �

2m−1 − 1}. By using Dvoretzky’s theorem twice we may find a subspace V of X0

of dimension 2m so that there are Hilbertian norms | · |0 and | · |1 on V with the
properties that

‖x‖� |x|0 � σm‖x‖, x ∈ V

and

σ−1
m d(x, F )� |x|1 � d(x, F ), x ∈ V.

Let (vj)2
m

j=1 be an orthonormal basis of (V, | · |0) which is also orthogonal in (V, | · |1).
We may assume that |vj |1 decreases in j; note that |vj |1 � 1 for all j. Then for
x ∈ [vj ]2

m

j=2m −1 we have |x|1 � |v2m −1 |1|x|0 and hence d(x, F ) � σ2
m|v2m |1‖x‖.

Since 2m + 1> dimF = 2m it follows from the result of Krein, Krasnoselskii and
Milman cited above that |v2m |1 � σ−2

m . Let V0 = [vj ]2
m

j=1; then for x ∈ V0 we have
|x|0 � σ2

m|x|1 and hence ‖x‖ � σ2
md(x, F ). We then define f2m −1+k−1 = vk/‖vk‖ for

1 � k � 2m; note that σ−1
m � ‖vk‖ � 1. Suppose that a1, . . . , a2m −1 are scalars and
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2m � k � 2m+1 − 1. Then

|ak| �

∣∣∣∣∣∣
2m −1∑

j=2m −1

ajfj

∣∣∣∣∣∣
0

� σ2
m

∣∣∣∣∣∣
2m −1∑

j=2m −1

ajfj

∣∣∣∣∣∣
1

� σ2
md

 2m −1∑
j=2m −1

ajfj , F

 � σ2
m

∥∥∥∥∥∥
2m −1∑
j=1

ajfj

∥∥∥∥∥∥ .

Hence by the Hahn–Banach theorem we can define bi-orthogonal functionals f∗
k for

2m−1 � k � 2m − 1 so that ‖f∗
k‖ � σ2

m. To complete the inductive step we need
only observe that∥∥∥∥∥

2m −1∑
k=2m −1

akfk

∥∥∥∥∥ �
∣∣∣∣∣

2m −1∑
k=2m −1

ak‖vk‖−1vk

∣∣∣∣∣
0

� σm

(
2m −1∑

k=2m −1

|ak|2
)1/2

. �

Theorem 3.6. Suppose that 0< a < 1
2 . On any infinite-dimensional

Banach space X, there exists a bounded operator T : X −→X such that
lim supn→∞ n‖Tn+1 − Tn‖= 1/e and for some c> 0 we have ‖Tn‖ � c(log n)a for
all n� 2.

Proof. Suppose that a < b < 1
2 . By Proposition 3.4 we may pick a bi-orthogonal

sequence (en, e∗n)∞n=1 in X so that limn→∞ ‖en‖‖e∗n‖= 1 and the operators Pn satisfy
‖Pn‖ � nb. Let M = maxn�1 ‖en‖‖e∗n‖.

Define T : X −→ X by

Tx =x +
∞∑

k=1

(λk − 1)e∗k(x)ek,

where λk = exp(−1/(2k)!). Since |λk − 1| � 1/(2k)! it follows that T is bounded
and ‖T‖ � Me + 1.

Consider

(Tn − Tn+1)x=
∞∑

k=1

(λn
k − λn+1

k )e∗k(x)ek.

Hence

n‖Tn − Tn+1‖ �
∞∑

k=1

ne−n/(2k)!

(2k)!
‖ek‖‖e∗k‖.

To estimate this sum suppose that (2m − 1)! � n < (2m + 1)!. Then

n‖Tn − Tn+1‖ � M

∑
k �=m

n

(2k)!
e−n/(2k)!

 +
n

(2m)!
e−n/(2m)!‖en‖‖e∗n‖.

Simple estimates show that the first term converges to 0 as n → ∞. We also note
that te−t � e−1 for t> 0. Hence lim supn n‖Tn − Tn+1‖� 1/e.

Next we estimate ‖Tn‖. If (2m − 1)! � n � (2m + 1)! then

(Pm + Tn)x= x +
m∑

k=1

λn
ke∗k(x)ek +

∞∑
k=m+1

(λn
k − 1)e∗k(x)ek.
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Hence

‖Pm + Tn‖ � 1 + M

(
e−n/(2m)! +

m−1∑
k=1

e−n/(2k)! +
∞∑

k=m+1

n

(2k)!

)
.

Again it is simple to see that

‖Pm + Tn‖ � M1

for some suitable constant M1 independent of n. Thus ‖Tn‖ � ‖Pm‖ − M1 �
mb −M1. Since log n� (2m+1) log(2m+1) we have (log n)a � C1m

b for a suitable
constant C1 and the result follows.

Remark 3.7. It would be interesting to know if one can do better than the
growth rate for ‖Tn‖ of (log n)1/2−ε in this theorem in the case of a Hilbert space.
If X = �p, when p> 2 one can use the canonical basis in the construction and get an
example where ‖Tn‖ � c(log n)1−1/p−ε, and by duality if p < 2 one has an example
with ‖Tn‖ � c(log n)1/p−ε.

4. A general approach

In this section we will discuss how to extend Theorems 2.1 and 2.2 by a more
general approach. We first isolate the argument used.

To do this, let us introduce a class of analytic functions. Let f be an analytic
function defined on a disk {z : |z| < R} (we allow the case when f is entire and
R =∞).

We will say that f ∈ P if the following hold.
(1) f(0)= 0.
(2) f ′(0) �= 0.
(3) f(x) ∈ R if −R < x < R.
(4) The local inverse function ϕ= f−1 of f at the origin, which is defined in a

neighborhood of 0 with ϕ(0)= 0, satisfies the conditions ϕ(n)(0) � 0 for all n � 1.

We remark that in [7] the key idea is that f(z)= sin z is in class P. In §2,
we essentially used the fact that the functions ze−z and z(1 − z/n)n are in class
P. Before proceeding let us include another simple example which illustrates the
basic ideas. During the late 1960s a series of papers investigated conditions on the
sequence of norms ‖I − Tn‖ which imply that T = I. A typical result is that of
Chernoff [9], which says that if supn�0 ‖I − T 2n ‖ < 1 then T = I. Later Gorin
[15] considered similar results for sequences (qn)∞n=0 replacing (2n); he showed that
the result is also true for sequences qn = 3n, 4n, 5n but not 6n. More generally the
conclusion is true if q0 = 1 and qn+1/qn � 5. Let us prove the following simple
result.

Theorem 4.1. Suppose that T is a bounded operator on a Banach space X.
Suppose that λ = 1 is the only complex solution of the system of inequalities

|1 − λn| � ‖I − Tn‖, n= 1, 2, . . . .

Then T = I.
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Proof. It is clear that σ(T )= {1}. Assume that 0 < a < 1. Then there exists
n ∈ N so that ‖I − Tn‖ < 1 − an. Consider the function f(z) = 1 − (1 − z)n. This
is in class P and ϕ is given by ϕ(z) = 1 − (1 − z)1/n for |z| < 1. Let A= I − T so
that A, f(A) are quasi-nilpotent. By the Riesz–Dunford functional calculus,

A= ϕ(f(A))=
∞∑

k=0

ϕ(k)(0)
k!

f(A)k.

In particular, ‖A‖� ϕ(‖f(A)‖) < 1 − a. It follows that A= 0 and T = I.

We now derive a corollary which is a slightly stronger form of the results of Gorin
cited above. Note that if c < 5 we have 2 sin(π/(c + 1))> 1.

Corollary 4.2. Suppose that T is an operator on a Banach space such that
lim infn→∞ ‖I−Tn‖ < 1. Suppose that for some c> 1 there is a sequence of positive
integers (qn)∞n=0 with q0 = 1 and qn+1 � cqn if n � 0 such that ‖I − T qn‖ <
2 sin(π/(c + 1)) for n � 0. Then T = I.

Proof. This follows very simply from Theorem 4.1. Indeed if |1−λn| � ‖I−Tn‖
for all n then the fact that lim infn→∞ ‖I−Tn‖ < 1 is enough to imply that |λ|= 1.
Now if λ = eiθ where |θ| � π we have |θ| < 2π/(c + 1). If θ �= 0, let N be the least
integer such that qN+1|θ| � 2π/(c + 1). Then qN+1|θ| � cqN |θ| � 2cπ/(c + 1) so
that |1 − λqN +1 | � 2 sin(π/(c + 1)). This yields a contradiction and so λ = 1.

Our next lemma gives us a recipe for constructing examples of functions in class
P, when explicit calculation of the inverse function ϕ may be difficult.

Lemma 4.3. Let f, h be analytic functions on the disk {z : |z| < R}. Suppose
that f ∈ P and that h satisfies h(0)> 0, h(n)(0) � 0 for all n � 1 and h is
nonvanishing. Then if F (z)= f(z)/h(z) we have F ∈ P.

Proof. The first three conditions are obvious. For the last condition, let ϕ be
the local inverse of f at the origin defined on some disk centered at the origin.
Let 0 < ρ < 1

2 be chosen so that ρ is smaller than the radius of convergence of
the power series expansions of h and ϕ around the origin and let M � 1 be an
upper bound for |h|, |h′|, |ϕ| and |ϕ′| on the disk {z : |z| � ρ}. For fixed w consider
the map Φw(z)= ϕ(wh(z)) for |z| � ρ. Then if M |w| < ρ, we have |Φw(z)| �
M |w||h(z)| � M2|w|. Thus if |w| < M−2ρ then Φw maps {z : |z| � ρ} to itself. We
also have |Φ′

w(z)| � M2|w| < ρ. We conclude that if |w| < M−2ρ then Φw maps
the disk {z : |z| � ρ} to itself and satisfies |Φ′

w(z)| � 1
2 for |z| � ρ. By the Banach

contraction mapping principle, if |w| < M−2ρ we can define gn(w) by gn(0)= 0 and
then gn(w) = Φw(gn−1(w)) and gn(w) converges to the unique fixed point ψ(w) of
Φw. The convergence is uniform on the disk {w : |w| < M−2ρ}. By induction each
gn is analytic and has non-negative coefficients in its Taylor series expansion about
the origin. It follows that ψ has the same properties, and ψ is clearly the inverse
function of F .
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Let us say f ∈ P is admissible if there exists 0 < x < R such that f ′(x) = 0. If f
is admissible let ξ be the least positive solution of f ′(x)= 0 and suppose that δ is
the radius of convergence of the power series expansion of ϕ.

Lemma 4.4. If f is admissible then δ = f(ξ) and

ξ =
∞∑

k=0

ϕ(k)(0)
k!

f(ξ)k.

Proof. Clearly, we have ϕ(x)< ξ if 0< x < δ. Let η = limx→δ ϕ(x) so that η � ξ.
If η = ξ we are done. Assume that η < ξ. Then it is clear that ϕ′ is bounded above,
for |z|< δ, by L= f ′(η)−1. Let U = {ϕ(z) : |z| < δ}). Let Un = {z : d(z, U)< 1/n}.
Then U is contained in the disk {z : |z|< η} and so for large enough n, Un is
contained in the domain of f . Then f cannot be univalent on any Un, for, if it were,
ϕ could be extended to an analytic function on a disk of radius greater than δ.
Pick zn, wn ∈ Un so that wn �= zn and f(wn)= f(zn). We can find w, z ∈ U so
that (w, z) is an accumulation point of (wn, zn). If w = z then f ′(w)= 0 and this
implies that ϕ′ cannot be bounded above, yielding a contradiction. If w �= z, then
we choose un, vn with |un| < δ, |vn| < δ and ϕ(un) → w, ϕ(vn) → z. Then
un, vn → f(w)= f(z) but

|w − z| � lim sup
n→∞

L|un − vn|= 0.

This also yields a contradiction and the proof is complete.

Theorem 4.5. Let A be a quasi-nilpotent operator on a Banach space X.
Suppose that f is an admissible analytic function defined on a disk {z : |z| < R} and
suppose that ξ is the smallest positive solution of f ′(x) = 0. Then if ‖f(A)‖ � f(ξ)
we have ‖A‖ � ξ.

Proof. Let ϕ be the local inverse at the origin. Then we have

A= ϕ(f(A))=
∞∑

n=0

ϕ(n)(0)
n!

(f(A))n.

Hence by Lemma 4.4

‖A‖ �
∞∑

n=0

ϕ(n)(0)
n!

f(ξ)n = ξ.

Let us note at this point that we can recapture Theorems 2.1 and 2.2 (without
computing derivatives explicitly). Indeed, z belongs to P and hence f(z)= ze−z is
admissible with ξ = 1 and f(ξ) = 1/e. Similarly f(z) = (1−z)n−(1−z)n+1 = z(1−z)n

is admissible with ξ = 1/(n + 1) and f(ξ)= nn(n + 1)−n−1.
Let us now extend these results slightly. The first theorem below is a trivial

application of the same ideas.

Theorem 4.6. Suppose that A is a quasi-nilpotent operator and for some
positive integer m, ‖Ae−Am ‖ � (me)−1/m. Then ‖A‖ � m−1/m. Hence if
lim inft→∞ ‖tAe−tm Am ‖ < (me)−1/m then A= 0.
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Theorem 4.7. Suppose that T is a bounded operator with σ(T )= {1} and for
some m,n ∈ N with m > n we have

‖Tm − Tn‖ �
(
1 − n

m

) ( n

m

)n/(m−n)

.

Then ‖T − I‖ � 1 − (n/m)1/(m−n).

Proof. We show that f(z) = (1− z)n − (1− z)m is admissible. This follows from
Lemma 4.3 since f(z) = (1− z)n(1− (1− z)m−n) and the function 1− (1− z)m−n is
in P since its local inverse at the origin is given by 1 − (1 − z)1/(m−n). Now apply
Theorem 4.5 to I − T .

It is possible to derive other formulas of the type of Theorem 2.2 from
Theorem 4.7. For example we have the following corollaries.

Corollary 4.8. Suppose that T is a bounded operator with σ(T )= {1}. If

lim inf
m/n→∞

‖Tm − Tn‖ < 1,

then T = I.
More precisely, if

lim sup
m/n→∞

m

n log(m/n)
(1 − ‖Tm − Tn‖)> 1,

then T = I.

Corollary 4.9. Suppose that T is a bounded operator with σ(T )= {1}. If

lim inf
p/n→0

n

p
‖Tn+p − Tn‖ <

1
e
,

then T = I.

Corollary 4.10. Suppose that T is a bounded operator with σ(T )= {1}.
Suppose that 0 < s < 1. If

lim inf
m/n→s
m,n→∞

‖Tm − Tn‖ < (1 − s)ss/(1−s),

then T = I.

The next theorem is a generalization of the argument used by Bonsall and Crabb
[7] to prove a special case of Sinclair’s theorem [28], namely that the norm of a
hermitian element A of a Banach algebra coincides with its spectral radius r(A).

Theorem 4.11. Suppose that f is an admissible entire function. Suppose that
for every −π < θ � π, we have one of the following.

(i) supt > 0 |f(teiθ)|> f(ξ).
(ii) |f(teiθ)| < f(ξ) for 0 < t < ξ.

Let A be any operator satisfying

sup
t > 0

‖f(tA)‖ � f(ξ).
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Then r(A)= ‖A‖. In particular, if A is quasi-nilpotent then A= 0. Furthermore, if

sup
t > 0

‖f(tA)‖ < f(ξ)

then A= 0.

Proof. We start by observing that if λ ∈ σ(A) then supt > 0 |f(tλ)| � f(ξ). Let
r = r(A). If tr < ξ then by (i) and (ii) we have |f(tλ)| < f(ξ) for every λ ∈ σ(A).
Thus applying the Riesz–Dunford functional calculus to tA we have tA= ϕ(f(tA))
and so

t‖A‖ <

∞∑
n=0

ϕ(n)(0)
n!

f(ξ)n = ξ.

Hence ‖A‖ < ξ/t and it follows that ‖A‖ � r(A).
For the last part of the theorem, assume that σ(A) �= {0}. Then there exists

−π < θ � π with supt > 0 |f(teiθ)| < f(ξ). It is easy to see that this implies that ϕ
is unbounded on the disk {z : |z| < f(ξ)} which contradicts Lemma 4.4. Hence A is
quasi-nilpotent and the conclusion follows.

In the Bonsall–Crabb argument for Sinclair’s theorem one takes f(z)= sin z and
shows that it verifies the hypotheses and hence ‖ sin tT‖ � 1 for all t> 0 implies
that the norm and spectral radius of T coincide. Other functions are permissible
however, and lead to more general results of this type.

Theorem 4.12. Let A be an operator on a Banach space X. Then each of the
following conditions implies that r(A)= ‖A‖.

(i) supt > 0 t‖Ae−tA‖ � e−1.
(ii) supt > 0 t‖Ae−tAm ‖ � (me)−1/m for m> 1 an integer.
(iii) supt > 0 ‖e−tA − e−stA‖ � (s − 1)s−s/(s−1) for some s> 1.
(iv) supt > 0 ‖e−(s+i)tA − e−(s−i)tA)‖ � 2e−s arctan(1/s)/

√
1 + s2 for some s � 0.

In each case a strict inequality implies that A= 0.

Proof. The first two are immediate deductions from Theorem 4.11. We then
must show for the remaining cases that e−z − e−sz for s> 1 and e−sz sin z for s> 0
satisfy the conditions of Theorem 4.11 (the case s= 0 is Sinclair’s theorem).

Note first that f(z)= e−z(1 − e−(s−1)z) is admissible by Lemma 4.3, since 1 −
e(s−1)z ∈ P. In this case ξ = (s − 1)−1 log s and f(ξ) < 1. Let us assume that
−π < θ < π and θ �= 0. If |θ|> π/2 then f(teiθ) is unbounded; if |θ|= π/2 then
supt > 0 |f(teiθ)|= 2> 1. If |θ| < π/2 then we observe that

|f(teiθ)|= e−t cos θ
∣∣1 − e−(s−1)teiθ ∣∣.

Assume that supt > 0 |f(teiθ)| � f(ξ). Pick t0 so that (s − 1)t0| sin θ|= π/2. Then

e−ξ > f(ξ) � |f(t0eiθ)| � e−t0 cos θ.

Hence t0 cos θ > ξ. Choose t1 < t0 so that t1 cos θ = ξ. Then |f(t1eiθ)| � f(ξ) implies
that (s − 1)t1| sin θ| is a multiple of 2π. Since t1 < t0 this is impossible.

Next consider f(z)= e−sz sin z where 0 < θ < π/2. In this case ξ = arctan s−1.
We can again use Lemma 4.3 to see that f is admissible. Clearly, if |θ| � π/2 then
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f(teiθ) is unbounded on {t > 0}. If 0 < |θ| < π/2 we use the fact that if z = x + iy
then

|f(z)| � e−sx cosh y| sin x|.

Hence |f(teiθ)|> |f(t cos θ)| and so supt > 0 |f(teiθ)|> f(ξ).
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