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A Schauder basis {xn} of a locally convex space E is called equi-Schauder if the

projection maps Pn given by

/ oo \ n

are equicontinuous; recently, Cook [3] has shown that if E possesses a Schauder
basis which is equi-Schauder for the weak topology on JE, then E is isomorphic to a
subspace of co, the space of all scalar (real or complex) sequences, with the topology
of co-ordinatewise convergence. In this paper I shall characterize subspaces of co
in which every Schauder basis is equi-Schauder, or in which every Schauder basis is
unconditional; this will be achieved by establishing dual results for locally convex
spaces of countable algebraic dimension.

In general if {xn} is a Schauder basis of E, the dual sequence in E' will be denoted
by {/„} so that for x e E, x = £*= x fn(x) xn. The Schauder basis {*„} is shrinking
if {/„} is a basis for E' in the strong topology; it is boundedly-complete if, whenever
{£k

n=1anxn; k = l,2,...} is bounded, Zn°°=i«n^ converges.

1. Spaces of countable dimension

PROPOSITION 1.1. If E is a locally convex space of countable dimension and F is
an infinite-dimensional subspace of E, then E possesses a Hamel Schauder basis {xn}
such that xneF infinitely often.

Proof As E has countable dimension, there exists an increasing sequence En of
subspaces such that dim En = n and []En = E. Choose xx e F; then one may choose
an increasing sequence {mn} of integers, and sequences {xn} in E and {/,} in E' such
that

(i) {xu x2,..., xmn} is a Hamel basis of £OTn,

(ii) /,(*,) = SU (8U = 1 if i = j , Su = 0 otherwise),

(iii) x m n + 1 e F f o r all n.

Suppose that {mn}*=1, {xn}^t1 and {/„}"£ x have been determined; then as F is of
infinite dimension, there exists xmk+1 e F such that/j(xmfc+1) = 0 for i = 1, 2 , . . . , mk.
Then there exists mk+1 such that xmk+ieEmk+i; extend the sequence xlt..., xmk+l

to a basis xlt ...,xmk+l of Emk+i so that/{(*;) = 0 for i < mk and ; > mk. By using
the Hahn-Banach theorem one may determine fmit+u •••,fmk+i in E' such that
fi(xj) = dij for 1 < ;• < mk+1, and mk+1 < i ^ mk+1.

It is clear that (A:B) is a Hamel basis of E, while if x e E, and x = 2?L j a,- x,,
= <Xj, so that (xn) is also a Schauder basis of E.
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It is clear that there exist locally convex spaces of countable dimension with
Schauder bases which are not Hamel bases (e.g. the subspace of the Banach space /,
spanned by (en) and e = ZOA*2) en where {en} is the natural basis of/). The following
two lemmas concern the construction of Schauder bases in a space of countable
dimension, and are preparatory for Theorem 1.4.

LEMMA 1.2. Let {xn} be a Hamel Schauder basis ofE, and let {mn} be an increasing
sequence of integers; then, ifzmk = Z?=i xmi and zn = xnfor n # mk. the sequence {zn}
is a Hamel Schauder basis ofE.

Proof. Clearly {zn} is a Hamel basis of E; if further gn=fn for n # mk and
gmk =/mfc-/mk+l5 then gfa) = Su. It follows that {zj is a Schauder basis of E.

LEMMA 1.3. Let {xn} be a Hamel Schauder basis ofE and let {mn} be an increasing
sequence of integers such that xmn -> 0; then, if zmk = xmk~

xmk+i> an^ zn = xn for

n T* mk, {zn} is a Schauder basis ofE.

Proof Let gmk = Z?= Jmt and let gn = /„ for n ? mk.

For- given n, suppose mk < n < mk+,; for x e E

£ fi(x)Xi- Z Si(*)*i = Z fmt(x)xmt- Z gmi(x)zm

However

sup \gmk(x)\ = sup
k k

Z/mi
1 = 1

< oo

as {*„} is a Hamel basis of E; also xmk+l -> 0. Thus

00 00

*= Z ft(x)xt= £ gt(x)zt-
1 = 1 1 = 1

As gi(zj) = Sij, it follows that {z,} is a Schauder basis of E.

THEOREM 1.4. Let E be a locally convex space of countable dimension; the follow
ing conditions on E are equivalent.

(i) Every bounded set in E is contained in a subspace of finite dimension.

(ii) E is sequentially complete.

(iii) E is semi-reflexive.

(iv) Every Hamel Schauder basis ofE is boundedly-complete.

(v) Every Schauder basis ofE is a Hamel basis.

(vi) Every Schauder basis ofE is unconditional.

(vii) No subsequence of any Hamel Schauder basis ofE converges to zero.
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Proof. The theorem will be proved according to the logical scheme

(i) => (iii) => (ii) => (iv) => (vii) =s> (i), and (i) => (v) => (vi) => (vii).

(i) => (iii): If (i) holds, then clearly the strong topology on E' coincides with the
weak topology.

(iii) => (ii): Immediate.

(ii)=>(iv): Suppose that {xn} is a Hamel Schauder basis of E and {£H
i=1i

aixi>
n— 1, 2,...} is bounded; then (an xn) is bounded and hence, if £ is sequentially com-
plete, 2*=i (\ln2)anxn converges. As {*„} is a Hamel basis, (l/n2)an = 0 eventually
so that an = 0 eventually; hence '^fLlaixi converges.

(iv) => (vii): Suppose that {xn} is a Hamel Schauder basis of E and xmn -> 0; then
(SiUi (l/n2)xmn; k = 1, 2, ...) is bounded and hence converges. This is a contra-
diction as {xn} is a Hamel basis.

(vii) => (i): Suppose that B is a bounded absolutely convex subset of £ not contained
in any subspace of finite dimension. Then F = \J™=1 nB is an infinite-dimensional
subspace of E; hence E possesses a Hamel Schauder basis {xn} with a subsequence
xmn e F. As F = y £L l nB, there exist an ^ 0 such that an xmn e B, and so there
exists a Hamel Schauder basis {zj with zmn = (l/;i)anxmn and zk = xfe for k ^ mn

such that zmii -> 0.

(i)=>(v): If {xn} is a Schauder basis of E and if X"=10Bxn converges, (flBJCn) is
bounded, and hence an = 0 eventually.

(v) => (vi): A Hamel basis is unconditional.

(vi) => (vii): Let {*,,} be a Hamel Schauder basis of E with a bounded subsequence
{xmi}, and suppose that every Schauder basis of E is unconditional.

Suppose that {#„} is a sequence of scalars with 6n # 0 and 0n -> 0. Then the
sequence {zn} given by zmk = 9kxmk-9k+lxmk+i> zn = xn for n # mfc, is a Schauder
basis of E by Lemma 1.3. Hence {zn} is unconditional; thus, since

for any /e£ '

i-e- f \ekf(xmk)-9k+lf(xmk+l)\<oo.
It = 1

For fixed /, the signs of Ok may be chosen so that

\ekf(xmk)-ek+l f(xmk+l)\ = ioft| \f(xntk)\ + \ek+l\ \f(xm+l)\.

Hence £ |0J |/(^Mk)| < «
fc = i

whenever 0fc -+ 0.
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Therefore

00

In particular the sequence {£k
i=lxmt}j?=i is bounded; by Lemma 1.2, the sequence

wn, given by

£ *», * = 1,2,.. .
i = 1

and

is a Hamel Schauder basis of E, with {wmk} a bounded subsequence; hence, using
the argument above f o r / e E',

f i I/KJI < «•

However/i(wmk) = 1 for all k, and so this is a contradiction; thus no subsequence
of {xn} is bounded, and in particular no subsequence converges to zero.

2. Subspaces of co

The results of §1 can be dualized to give results about subspaces of the space co.
All the results of this section apply trivially to finite-dimensional subspaces of co,
and so are proved for infinite dimensional subspaces. Since any subspace of co
has a weak topology, the next proposition is an immediate consequence of the
theorem of Cook [3].

PROPOSITION 2.1. Let E be a subspace of co; then a Schauder basis {xn} of E is
an equi-Schauder basis if and only if{fn} is a Hamel basis ofE'.

Using Proposition 1.1 on the space {£', o(E', E)} which is of countable dimension
one obtains:

PROPOSITION 2.2. Every subspace of co possesses an equi-Schauder basis.

PROPOSITION 2.3. If E is a subspace of co, then a Schauder basis {xn} of E is
shrinking if and only if it is equi-Schauder.

Proof. If (*„) is equi-Schauder then (/„) is a Hamel basis of E' and hence a
basis in the strong topology on £'. Converselyf as E is metrizable, the strong dual
of E is complete (see [1; Theordme 3, corollaire]) and so by Theorem 1.4, if (xn)
is shrinking, (fn) is a Hamel basis of E'; therefore (xn) is equi-Schauder.

Theorem 1.4 may be dualized in the following form:

THEOREM 2.4. If E is a subspace of co, then the following conditions on E are
equivalent.

11 am grateful to the referee for pointing out a simplification in the proof of this proposition.
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(i) E is barrelled.

(ii) Every Schauder basis ofE is shrinking.

(iii) Every Schauder basis ofE is equi-Schauder.

(iv) Every Schauder basis ofE is unconditional.

Proof. Consider the space E' with the weak topology o(E', E). Then, as the
topology on E is metrizable and hence equal to the Mackey topology T(£ , £'), E'
satisfies condition (iii) of Theorem 1.4 if and only if E satisfies condition (i). By
Proposition 2.1, (iii) is similarly equivalent to condition (v) of Theorem 1.4; and
(iv) is obviously equivalent to condition (vi) of Theorem 1.4. Finally conditions
(ii) and (iii) were shown to be equivalent in Proposition 2.3.

Not every barrelled subspace of co is closed (an example is constructed by Webb
[5]). A theorem of Dynin and Mitiagin [4] states every Schauder basis of a nuclear
Fre"chet space is unconditional; Theorem 2.4 raises then the following problem.

Problem 1. Suppose E is nuclear and metrizable and every Schauder basis of
E is unconditional; is E barrelled?

The other main problem which the theorem raises is

Problem 2. Suppose £ is a metrizable locally convex space which has a Schauder
basis; if every Schauder basis is equi-Schauder, is E barrelled?

I conclude with a few remarks about Schauder bases in subspaces of co. Every
closed infinite dimensional subspace of co is isomorphic to co.

PROPOSITION 2.5. Let E be a subspace of co in which every Schauder basis is
boundedly-complete; then E is closed.

Proof. By Propositions 2.2 and 2.3, £ possesses a shrinking Schauder basis;
by a theorem of Cook [2], E is therefore semi-reflexive and hence quasi-complete.
As co is metrizable, E is closed in co.

Two bases {xn} and {yn} are said to be equivalent if 2~̂ = j an xn converges if and
only if £"= i an yn converges. It is easy to show that any two Schauder bases of co
are equivalent.

PROPOSITION 2.6. IfE is a subspace ofco then all Schauder bases ofE are equivalent
if and only ifE is closed.

Proof. Suppose that all Schauder bases of E are equivalent. Let {xn} be an
equi-Schauder basis of E (using Proposition 2.2); then for any sequence of scalars
en such that |ej = 1 for all n, (enxn) is a Schauder basis of E. Thus if 2*=i anxn
converges, then £* = x en an xn converges. Consequently {xn} is an unconditional
basis of E and by Theorem 2.4, £ is barrelled.

If {xn} is a Hamel basis of £, then so is every Schauder basis and, by Theorem
1.4, £ is sequentially complete and hence closed; however no closed subspace of co
is of countably infinite dimension. Hence it may be assumed that there exists a
sequence {an}, with ax # 0 and an not eventually zero, such that £ " = 1 an xn converges.

Now {/„} is a Hamel Schauder basis of £', and by Lemma 1.2, so is gn = 2"=i/ i-
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Let {zn} be the dual sequence to {#„}; then {zn} is a Schauder basis of E. As
£,?= i««*» converges, so does In°°= x |aj *„, and hence, if x = £n°°= t |aj xn, then

x = 2*
n = :

Thus

I" ft "I

i L*=i J

converges, i.e. there exists a sequence, bt # 0 for all i with EfL,&j.Ki convergent.
If (en) is any scalar sequence then cn = dn+en with rfn ^ 0 for all «, and en ^ 0 for
all «. As ( ^ n " 1 ^ ^ ) and (bn~

ienxn) are Schauder bases of £, S^L^n^n anc^
£* = 1 enxn converge, so that £"=t cnxn converges.

Thus Z*=i cn^« converges for all scalar sequences (cn); hence any Schauder
basis of E is boundedly-complete, and so by Proposition 2.5, E is closed.

If E is closed, any Schauder basis {x,,} of E is equi-Schauder (since £ is barrelled);
thus {/„} is a Hamel basis of E', and so, for any scalar sequence cn, (2£=i cn xn}^=l

is a Cauchy sequence in E. As E is complete ]£*= j cn xn converges, and so all Schauder
bases are equivalent; clearly E is isomorphic to co.
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