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1. Introduction

In this paper we answer a question raised in [1]. We recall that a twisted Hilbert space
is a Banach space X such that one can construct a short exact sequence 0 → H1 →
X → H2 → 0, where H1, H2 are Hilbert spaces (equivalently, X has a subspace E

that is isomorphically Hilbertian and such that X/E is also isomorphically Hilbertian).
In [1] it was asked whether a twisted Hilbert space with unconditional basis is necessarily
Hilbertian. We show that this is the case (Theorem 2.3 below).

In fact, the solution requires very little extra work from the results of [1]. For the
convenience of the reader, we first give a somewhat simpler proof of a result equivalent
to [1, Theorem 3.9], and then we show that this leads very quickly to the conclusion by
using the Rademacher space Rad X associated to X.

In some ways, our approach is unsatisfactory because it only answers the question of
the existence of an unconditional basis for a twisted Hilbert space. We do not know the
similar result for local unconditional structure, or even if a twisted Hilbert space which
is a Banach lattice is necessarily Hilbertian.

2. The results

Let A be any subset of a Banach space X. We denote by [A] the closed linear span of A.
In particular, we denote by [xn]∞n=1 the closed linear span of the sequence (xn)∞

n=1. We
call a sequence (xn)∞

n=1 semi-normalized if 0 < inf ‖xn‖ � sup ‖xn‖ < ∞.
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We start with a few well-known remarks about complemented unconditional basic
sequences.

Let X be a Banach space with an unconditional Schauder decomposition (En)∞
n=1 and

let Rn : X → En be the associated projections. Suppose xn ∈ En is any sequence of non-
zero vectors. (xn) is then an unconditional basic sequence. If [xn]∞n=1 is complemented,
it is well known that there is a projection P onto [xn]∞n=1 of the form

Px =
∞∑

n=1

x∗
n(x)xn,

where x∗
n ∈ R∗

n(X∗) and x∗
n(xn) = 1. In particular, if (un)∞

n=1 is an unconditional
basis with biorthogonal sequence (u∗

n)∞
n=1 and (xn) is a block basic sequence with

xn ∈ [upn−1+1, . . . , upn
], then we can assume x∗

n ∈ [u∗
pn−1+1, . . . , u

∗
pn

]. These well-known
results follow from similar arguments to those of [3, Proposition 1.c.8].

If X has an unconditional finite-dimensional Schauder decomposition (En)∞
n=1 where

each dim En = 2, then it is shown in [1] that X has an unconditional basis (or even local
unconditional structure) if and only if we can choose an unconditional basis (un)∞

n=1
such that En = [u2n−1, u2n]. These conditions are also easily seen to be equivalent to
the existence of non-zero xn ∈ En, so that [xn]∞n=1 is complemented. On the other
hand, if (un)∞

n=1 is a semi-normalized unconditional basis and xn ∈ [u2n−1, u2n] is a
semi-normalized sequence and [xn]∞n=1 is complemented, then (xn)∞

n=1 is equivalent to a
subsequence (ujn

)∞
n=1, where jn = 2n − 1 or jn = 2n.

In our first proposition, we give another sufficient condition for such a sequence to
span a complemented subspace. It is equivalent to [1, Theorem 3.9], but the proof is
more direct.

Proposition 2.1. Let X be a Banach space with a normalized unconditional basis
(un)∞

n=1 with biorthogonal functionals (u∗
n)∞

n=1. Suppose that (xn)∞
n=1 is a normalized

sequences of the form
xn = a2n−1u2n−1 + a2nu2n.

Let E = [xn]∞n=1 and Q : X → X/E denote the quotient map. Let (yn)∞
n=1 be a normal-

ized unconditional basis of X/E with yn ∈ [Qu2n−1, Qu2n]. Assume (yn)∞
n=1 is equivalent

to (xn)∞
n=1, i.e. there exists C such that, for any ξ1, . . . , ξn, we have

C−1
∥∥∥∥

n∑
k=1

ξkyk

∥∥∥∥ �
∥∥∥∥

n∑
k=1

ξkxk

∥∥∥∥ � C

∥∥∥∥
n∑

k=1

ξkyk

∥∥∥∥.

Then [xn] is equivalent to a sequence [ujn
]∞n=1 where jn = 2n − 1 or jn = 2n and [xn] is

complemented in X.

Proof. In this proof we use c00 to denote the space of finitely non-zero sequences and
c00(A) to denote the subset of such sequences supported on a subset A of N.

We may suppose by renorming that the basis (un) is 1-unconditional. We also suppose,
for notational convenience, that (un) is reordered so that |a2n−1| � |a2n| for all n. We
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will show that (xn) is equivalent to (u2n)∞
n=1. Once this is done, the projection P given

by

Px =
∞∑

n=1

a−1
2n u∗

2n(x)xn

is easily seen to be bounded.
Let δ = 10−2C−2. We first split N into two complementary sets by setting

A = {n : |a2n−1| � δ} and B = N \ A.

Note first that |a2n| � 1
2 by the triangle law and so, for any (ξn)∞

n=1 ∈ c00, we have

∥∥∥∥
∞∑

n=1

ξnu2n

∥∥∥∥ � 2
∥∥∥∥

∞∑
n=1

ξnxn

∥∥∥∥. (2.1)

Let us show that, for any (ξn)∞
n=1 ∈ c00(A), we have

∥∥∥∥
∑
n∈A

ξnxn

∥∥∥∥ � 10C

∥∥∥∥
∑
n∈A

ξnu2n

∥∥∥∥. (2.2)

If (2.2) fails, there is a ξ ∈ c00(A) such that m = | supp ξ| is minimized and (2.2) fails.
Note that m � 2. Let D be a subset of supp ξ with |D| = m − 1. For any η ∈ c00(D), we
have ∥∥∥∥

∑
n∈D

ηnyn

∥∥∥∥ � C

∥∥∥∥
∑
n∈D

ηnxn

∥∥∥∥ � 10C2
∥∥∥∥
∑
n∈D

ηnu2n

∥∥∥∥.

Let (y∗
n)∞

n=1 be the sequence biorthogonal to (yn) in (X/E)∗ = E⊥ ⊂ X∗. Then we have
y∗

n = cn(a2nu∗
2n−1 − a2n−1u

∗
2n), where 1

2 � |cn| � 2 by use of the triangle law, since
‖y∗

n‖ = ‖u∗
2n‖ = ‖u∗

2n−1‖ = 1. It follows by duality that, for any η ∈ c00(D), we have
∥∥∥∥
∑
n∈D

ηnu∗
2n

∥∥∥∥ � 10C2
∥∥∥∥
∑
n∈D

ηny∗
n

∥∥∥∥.

Hence ∥∥∥∥
∑
n∈D

ηncna2n−1u
∗
2n

∥∥∥∥ � 20C2δ

∥∥∥∥
∑
n∈D

ηny∗
n

∥∥∥∥.

Since 20C2δ � 1
2 , we conclude that

∥∥∥∥
∑
n∈D

ηncna2nu∗
2n−1

∥∥∥∥ � 1
2

∥∥∥∥
∑
n∈D

ηny∗
n

∥∥∥∥.

Since |cna2n| � 1
4 , this implies

∥∥∥∥
∑
n∈D

ηny∗
n

∥∥∥∥ � 8
∥∥∥∥
∑
n∈D

ηnu∗
2n−1

∥∥∥∥.
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Now duality gives the inequality
∥∥∥∥
∑
n∈D

ηnu2n−1

∥∥∥∥ � 8
∥∥∥∥
∑
n∈D

ηnyn

∥∥∥∥.

Hence ∥∥∥∥
∑
n∈D

ηna2n−1u2n−1

∥∥∥∥ � 8δ

∥∥∥∥
∑
n∈D

ηnyn

∥∥∥∥,

and this implies, since 8δ < 1
2 , that
∥∥∥∥
∑
n∈D

ηna2nu2n

∥∥∥∥ � 1
2

∥∥∥∥
∑
n∈D

ηnyn

∥∥∥∥.

In particular, since |a2n| � 1
2 ,

∥∥∥∥
∑
n∈D

ξnyn

∥∥∥∥ � 4
∥∥∥∥
∑
n∈D

ξnu2n

∥∥∥∥.

Applying this inequality for every subset D with cardinality m−1 of supp ξ and averaging
gives ∥∥∥∥

∞∑
n=1

ξnyn

∥∥∥∥ � 4m

m − 1

∥∥∥∥
∞∑

n=1

ξnu2n

∥∥∥∥ � 8
∥∥∥∥

∞∑
n=1

ξnu2n

∥∥∥∥.

Hence ∥∥∥∥
∞∑

n=1

ξnxn

∥∥∥∥ � 8C

∥∥∥∥
∞∑

n=1

ξnu2n

∥∥∥∥,

and this contradicts our choice of ξ.
If n ∈ B, we note that |cna2n−1| > 1

2δ, and so
∥∥∥∥
∑
n∈B

ηnu∗
2n

∥∥∥∥ � 2
δ

∥∥∥∥
∑
n∈B

ηny∗
n

∥∥∥∥, η ∈ c00(B).

Hence, by duality, ∥∥∥∥
∑
n∈B

ξnyn

∥∥∥∥ � 2
δ

∥∥∥∥
∑
n∈B

ξnu2n

∥∥∥∥, ξ ∈ c00(B).

Hence ∥∥∥∥
∑
n∈B

ξnxn

∥∥∥∥ � 2C

δ

∥∥∥∥
∑
n∈B

ξnu2n

∥∥∥∥. (2.3)

Combining (2.1), (2.2) and (2.3) gives the proof. �

We use the term sequence space to denote a Banach space of sequences such that the
canonical basis vectors form a normalized 1-unconditional basis.
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Proposition 2.2. Let S be a fixed sequence space. Let X be a Banach space with an
unconditional Schauder decomposition (En)∞

n=1.
For every n, let Fn be a closed non-trivial subspace of En. Let Y = [Fn]∞n=1, so that

(Fn) is an unconditional Schauder decomposition of Y and En/Fn is an unconditional
Schauder decomposition of X/Y . Suppose that there is a constant C such that, if yn ∈ Fn

and zn ∈ En/Fn are finitely non-zero sequences, then

C−1‖(‖yk‖)∞
k=1‖S �

∥∥∥∥
∞∑

k=1

yk

∥∥∥∥
Y

� C‖(‖yk)∞
k=1‖S

and

C−1‖(‖zk‖)∞
k=1‖S �

∥∥∥∥
∞∑

k=1

zk

∥∥∥∥
X/Y

� C‖(‖zk‖)∞
k=1‖S .

Now suppose (un)∞
n=1 is a normalized sequence with un ∈ En. Then, if [un]∞n=1 is

complemented, we have that (un)∞
n=1 is equivalent to the canonical basis of S.

Proof. Let (en) be the canonical basis of S. Let Rn : X → En be the projections
associated to the Schauder decomposition. If [un]∞n=1 is complemented, we can find a
projection P of the form

Px =
∞∑

n=1

u∗
n(x)un,

where u∗
n ∈ R∗

n(X∗). If we let A = {n : un ∈ Fn}, it is clear that (un)n∈A is equivalent
to (en)n∈A. Now let B = {n : u∗

n ∈ F⊥
n }. Then, for any y ∈ Y and ξ ∈ c00(B), we have

∥∥∥∥
∑
n∈B

ξnun

∥∥∥∥ � ‖P‖
∥∥∥∥
∑
n∈B

ξnun + y

∥∥∥∥,

and so, denoting by Q the quotient map onto X/Y ,
∥∥∥∥
∑
n∈B

ξun

∥∥∥∥ � ‖P‖
∥∥∥∥
∑
n∈B

ξnQun

∥∥∥∥.

Thus (un)n∈B is equivalent to (Qun)n∈B and hence to (en)n∈B. We can thus reduce the
problem to the case when un /∈ Fn and u∗

n /∈ F⊥
n . We may make a further reduction by

replacing En by [Fn, un] and so we may assume that dim En/Fn = 1.
Let Hn = ker u∗

n ∩ Fn, so that Hn has codimension one in Fn. Pick xn ∈ Fn with
‖xn‖ < 2 and d(xn, Hn) = 1.

Let Tn be a projection of Fn onto Hn with ‖Tn‖ � 2. Then we can define a bounded
projection T : Y → [Hn]∞n=1 by

T

( ∞∑
n=1

yn

)
=

∞∑
n=1

Tnyn if yn ∈ Fn.
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In fact, ∥∥∥∥
∞∑

n=1

Tnyn

∥∥∥∥ � 2C2
∥∥∥∥

∞∑
n=1

yn

∥∥∥∥.

Let X0 = X/[Hn]∞n=1 and Q0 be the quotient map. Pick xn ∈ ker Tn with ‖Q0xn‖ = 1.
It follows that (Q0xn)∞

n=1 is an unconditional basic sequence equivalent to (xn)∞
n=1 and

hence to (en)∞
n=1.

From our construction, the projection P factors to a bounded projection on X0. Fur-
thermore, X0 has a two-dimensional (UFDD) (Gn)∞

n=1 given by Gn = Q0(En). Hence
(Q0un)∞

n=1 is a complemented unconditional basic sequence with Q0un ∈ Gn; further-
more, (Q0un)∞

n=1 is equivalent to (un)∞
n=1. It follows that we can form an unconditional

basis (Q0u1, v1, Q0u2, v2, . . . ) of X0 with vn ∈ Gn.
We will now verify the conditions of Proposition 2.1. We have seen that (Q0xn)∞

n=1

is equivalent to (en)∞
n=1. Now X0/[Q0xn]∞n=1 is naturally isomorphic to X/Y . Denote

by Q1 : X0 → X0/[Q0xn]∞n=1 the quotient map. If yn ∈ Q1(Gn) with ‖yn‖ = 1, then
(yn)∞

n=1 is also equivalent to (en)∞
n=1. By Proposition 2.1, we see that (Q0xn)∞

n=1 spans
a complemented subspace of X. It thus follows that we can pick zn ∈ Gn such that
{Q0x1, z1, Q0x2, z2, . . . } is an unconditional basis of X; furthermore, (zn)∞

n=1 is equivalent
to (yn)∞

n=1 and hence to (en)∞
n=1.

It now follows that since Q0un ∈ [Q0xn, zn] = Gn, then (Q0un)∞
n=1 is also equivalent

to (en)∞
n=1. �

We are now in position to prove the main result.

Theorem 2.3. Let Y be a complemented subspace of a twisted Hilbert space X. If Y

has an unconditional basis, then Y is isomorphic to a Hilbert space.

Proof. We start with the short exact sequence

0 → H1
J−→ X

Q−→ H2 → 0,

where H1 and H2 are Hilbert spaces. This clearly induces a short exact sequence

0 → L2([0, 1], H1) → L2([0, 1], X) → L2([0, 1], H2) → 0.

Let εn(t) denote the standard Rademacher functions on [0, 1]. For any Banach space
E, denote by Rad E the subspace of L2([0, 1], E) of functions of the form

f =
∞∑

n=1

εn ⊗ en
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(with convergence in norm). It is a theorem of Pisier [4] that if E has non-trivial
Rademacher type, then the canonical projection of L2(E) onto RadE, given by

Pf =
∞∑

n=1

εn ⊗
(∫ 1

0
f(t)εn(t) dt

)
,

is bounded.
Now Y has non-trivial type (see [2]) and the canonical projection P restricts to the

canonical projection from L2(H1) to Rad H1 and similarly factors to the canonical pro-
jection from L2(H2) to RadH2. We thus obtain a short exact sequence

0 → RadH1
J̃−→ RadX

Q̃−→ RadH2 → 0.

Note that

J̃

( ∞∑
n=1

εn ⊗ hn

)
=

∞∑
n=1

εn ⊗ Jhn

and

Q̃

( ∞∑
n=1

εn ⊗ xn

)
=

∞∑
n=1

εn ⊗ Qxn.

Now assume that (un)∞
n=1 is a normalized unconditional basic sequence and that

R : X → Y = [un]∞n=1 is a bounded projection. Then R takes the form

Rx =
∞∑

n=1

u∗
n(x)un,

where (u∗
n)∞

n=1 is a (complemented) unconditional basic sequence in X∗. Note that if
A = {n : Qun = 0}, then un ∈ J(H1) for n ∈ A; thus (un)n∈A is equivalent to the
canonical basis of �2. Similarly, if B = {n : J∗u∗

n = 0}, then (u∗
n)n∈B is equivalent to the

canonical basis of �2 and the same is then true for (un)n∈B. It follows that we need only
consider the case when Qun �= 0 and J∗u∗

n �= 0 for every n.
Let us define R̃ : RadX → RadX by

R̃

( ∞∑
n=1

εn ⊗ xn

)
=

∞∑
n=1

u∗
n(xn)εn ⊗ un.

Then R̃ is a bounded projection onto the subspace [εn ⊗ un]∞n=1. The proof that R̃ is
bounded is standard. There is a constant C so that we have∥∥∥∥

∞∑
k=1

εk(s)u∗
k(x)uk

∥∥∥∥ � C‖x‖, 0 � s � 1, x ∈ X.

Thus ∥∥∥∥
∞∑

k=1

εk(s)u∗
k

( ∞∑
j=1

εj(s)xj

)
uk

∥∥∥∥ � C

∥∥∥∥
∞∑

j=1

εj(s)xj

∥∥∥∥
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whenever (xj)∞
j=1 is a finitely non-zero sequence in X. Hence(∫ 1

0

∥∥∥∥
∞∑

k=1

εk(t)u∗
k(xk)uk

∥∥∥∥
2

dt

)1/2

=
(∫ 1

0

∫ 1

0

∥∥∥∥
∞∑

k=1

εk(t)u∗
k(xk)uk

∥∥∥∥
2

dtds

)1/2

�
(∫ 1

0

∫ 1

0

∥∥∥∥
∞∑

j=1

∞∑
k=1

εj(s)εk(s)εk(t)u∗
j (xk)uj

∥∥∥∥
2

dsdt

)1/2

� C

(∫ 1

0

∫ 1

0

∥∥∥∥
∞∑

k=1

εk(s)εk(t)xk

∥∥∥∥
2

dsdt

)1/2

= C

∥∥∥∥
n∑

k=1

εk ⊗ xk

∥∥∥∥.

The space Rad X has an unconditional Schauder decomposition En = (εn ⊗ X)∞
n=1.

If we let Fn = εn ⊗ JH1, then it is trivial to see that the assumptions of Proposition 2.2
are satisfied with S = �2. Hence (εn ⊗ un)∞

n=1 is equivalent to the canonical basis of �2;
the same is clearly then true for (un)∞

n=1. �

Let us note that this argument can be phrased in purely finite-dimensional terms. Thus
we have a result for finite-dimensional Banach spaces. For X a finite-dimensional Banach
space of dimension n, let dX be its Euclidean distance, i.e. the Banach–Mazur distance
d(X, �n

2 ).

Theorem 2.4. Given any constant C, there is a constant K such that, if X is
finite-dimensional Banach space with a C-unconditional basis and a subspace E with
dE , dX/E � C, then dX � K.

As pointed out by the referee, to extend our results requires a refinement of this theorem
where X is merely assumed to be well complemented in a space with unconditional basis.
More precisely, we have the following conjecture.

Conjecture 2.5. Given any constant C, there is a constant K such that, if X is a
finite-dimensional Banach space with a C-unconditional basis, Y is a C-complemented
subspace of X and E is a subspace of Y for which dE , dY/E � C, then dY � K.
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