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Let G be a differential game of prescribed duration {0, 1] with control sets
Y and Z which are compact metric spaces. The dynamics of G are given by
(xe R™)

dxdt = f(2, x(1), y(t), 2(t)), (1)

where f: [0, 1] X R X ¥ X Z— R™ is a continuous function satisfying a
Lipschitz condition in x of the form

”f(t) xl )yy Z) _*f(t) x2 )y) z)' g k(t) ” xl - x2”)

where
j k(t) dt < .
The pay-off is given by
P = u(x(1)) + fol h(t, x(t), y(2), 2(2)) dt, )

where £:[0,1] X R® X ¥ X Z— R is continuous and u is a continuous
functional on the Banach space of all possible trajectories in R™. We suppose
that player [, controlling the y-variable aims to maximize P while ],
controlling the 2-variable aims to minimize P.

In [4] we studied the problem of existence of value for such games. Using
the same notation we review some of the results of [4]. An upper value U is
introduced in Section 2, and a further upper value ¥+ in Section 3; this latter
value is that employed by Friedman [9]. It is also shown in Section 3 that
U<V,
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90 ELLIOTT AND KALTON

Let us now suppose that £, 4 are uniformly Lipschitz in (¢, x) and that
1
P = [t x5,%) <+ glx(D), 3

where g is twice continuously differentiable. Then in Section 5, a concept of
value is introduced which is due to Fleming, and we define the Fleming
upper value W-.

In Theorem 8.1 it is concluded that }7~ <l I{™-. Later Friedman [10]
(quoted in [3]) proved that '+ = W+; however we believe his proof to be
fallacious, as Lemma 1 involves an unjustifiable interchange of order of
expectation and “inf sup.” In this paper we supply a proof that U = ¥,
and it follows that in general U - I/~

In order to simplify the argument we shall suppose at first that P takes
the form

P == g(x(1)), 4)

where g is twice continuously differentiable, and its derivatives &g/ot, 8%/éx, ,
o%/ex; ox; are all Lipschitz continuous in (¢, x). We shall suppose also that f
is Lipschitz continuous in (¢, x) and K will serve as the Lipschitz constant in
all cases. We shall also suppose that f, g vanish outside some bounded set
(see [4, Section 9]).

For (¢, x, p) € [0, 1] X R™ X R™ we define

H(t,x,p) = mzin nbax(p f(t %, 3, 2)). (5)

The following result is quoted by Fleming [7] from results of Friedman
[8] or Oleinik and Kruzkhov [11].

THEOREM A. For ¢ >> 0 there is a unique solution ¢ of the equation

(¢%/2) V¢ + (84/0t) + H(t, x, V) = 0 (6)
subject to
#(1, &) = £(8), )

and ¢ has the property that od[ot and 0%*p|ox; Ox; are bounded and satisfy
Hélder inequalities of the form (0 <y < 1)

[(t, %) — (e, &) S QL1 — /P2 + |a— &), ®)
From this Fleming [7] proves that
THEOREM B. If ¢¢ is the solution of (6) subject to (7) then
lim,_o (0, 0) = W+,
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The other results needed for the proof are given in [5, Lemmas 4.2 and 4.3].
We summarize them in

THroReM C. Let p: Y X Z — R be a continuous real-valued function on
Y x Z. Then there is a strategy « for ], such that

po(t), 2(t)) = min max p(y, ?) ae. 0L

for z € M, (the space of measurable control functions for J,).

For completeness we sketch the proof of Theorem C. Since Y is compact
and metrizable there is a continuous surjection 8: K — Y where K is the
Cantor subset of the unit interval. For each 2 € Z, let S, be the set of ke K
such that

p(Bk, z) = max p(y, )

Then S, is closed and we select y(z) to be the least member of S, . We thus
define a2(-) = 0, y{z(')} for 2 = 2(*) € A, . Since 2(-) € #, , for each e > 0
there is a subset E of [0, 1] such that mE > | — € and z is continuous on E.
1t is easy to show that az is then upper semicontinuous on E and therefore
measurable. It follows that oz is measurable on [0, 1] and so az € .#, as
required. It is also clear that « is a strategy.

Before proceeding to the proof of the main theorem, let us observe that
the proof given below is very similar to that given by Fleming [6] or {7] for
Theorem B. In order to avoid some problems of integrability we have adopted
Fleming’s approach in [6] (as opposed to [7]) of ‘“‘discretizing” the
probabilistic perturbation of the game. These problems are overcome in
[7] by supposing strategies to be Borel functions; this is quite reasonable but
leads to considerable technical difficulties. These are hidden in Fleming’s
statement {7, p. 992] that: “A proof by induction on the number of moves
shows that V(s, x) is the value of the game with initial data (s, x).” Even
with discrete noise this is technically arduous to prove; compare the similar
Lemma 1 given below. It should perhaps be observed that Lemma 1 is
intuitively quite obvious; nevertheless we felt obliged to supply a strict proof,
since this result is basic to the theory of differential games, and an analogous
lemma is required in Fleming’s theory. The remainder of the proof is
essentially an amalgamation of Fleming’s arguments in [6 and 7].

Let N be an integer and let 8 = 1/N; for 0 <j << N we write ¢, = jb.
Suppose {n;;; 1 = 1,2,..., N, j =1, 2,...,m} is a collection of independent
random variables each taking the values +1 with probability 1/2. Let v,
denote the vector 5,; in R™ and let 5 == (v, ,..., nx); let L denote the lattice of
possible values of » in (R™)¥. We denote by m;(n) the sequence of vectors

(M 5o M)
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We let #,(7) and .#,(j) be the spaces of control functions for J; and J,
defined on [t;, 1]. We denote by I the set of strategics on [¢;, 1] for ],
Le., maps

a: Mo J) = H())
such that if
2)(t) 7= 24(2) a.e. b St

then

AN

azy(t) = azy(t) a.c. G <t sl

Then a stochastic control 8 of order j for J, is map n — 6, 6: L — .#,(§)
such that:

(i) 6,(¢) is independent of 7 for ¢; < ¢t < #;,
(i) If n, =n* k=j+ 1.1 (where I <N) then 8, () = 6, .(t)
ae f; <t <ty

Note that 6§ is independent of 7, ,..., %, . The set of stochastic controls of
order j will be denoted by &;.
A stochastic strategy A for ], is a map n — A4, , A: L — I'; such that

(1) If z(t) = z(t) ae. t; <t < 7 <, and 9, n* €L then
A (z)(t) = A,(2)(2) a.e. t; <t T
@) Iy =n* k=j5+ 1., <N)
(1) == 2(t) a.e. L<t<T
where 7 < ¢,_, then
A(z)(t) == A (2:)(2) a.e. L <t <<

Note again that 4 is independent of 7, ,...,m;. The set of all stochastic
strategies of order j will be denoted by (7; .

Now for { € R™ and ¢ > 0 we describe a game G (¢, , {). Let y € A ()
and 2z € .#,(j); the trajectory corresponding to (¥, 2) and n el is the
(discontinuous) solution of the equation

5 = L [ flr, 2,(7) 9(7), 5(7)) dir

+e812 Y o,

t<tp<t
The pay off is given by

P'nj(C;y’ z) - g(’é‘,,(l))
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For a given stochastic strategy A e (¥; and stochastic control € 6,
we define

Pi(; A,8) = (P AW, . 0.)
We define the value of 4 to J; by
uyl; A) = inf PAE; A, 6)
and the value of the game G/(¢;, {) to J; by

US(t; 1 &) = sup u(l; A).
Aell,
Clearly, we have

UA(L, §) = g(9).
LemMa 1. Forj < N

US(t;, §) =sup inf E(UL(L,,, %(t11))

aely zeMy(i)

where x is the trajectory corresponding to (a2, 2).

Proof. Let A € (¥; ; then the behaviour of 4 on (¢;, ¢;,,) is that of a fixed
strategy a € I'; (condition (i)). Suppose 24(t) € Ao §); then (a2, , 2,) induce
a trajectory x,(t) for y € L. In fact x,(t;,,) depends on 7;,, only. We denote the
possible values in R™ of n,_; by S; to 0 € § there corresponds a value {, of
x,(2;1,). We define 4° € (7;,, by

Anﬂ(z)(t) = ‘4-,,0(5)(0 oy <t <]
where
(@) M =, k#j+1,
N1 = 0,
(b) 2e.,(j) is defined by
2(2) - (1) ST,
=2 iy <t<L

Clearly for each o€ S, A% is independent of 7, ,...,7;,; and belongs to
;... Now

ui+l(§o H Ao) < Ufb(tii-l 3 go)
and hence, given v > 0, there exists 8 € ©,,, such that

P, 5 4%,6%) < Uty L) = v.



94 ELLIOTT AND KALTON

Now define d € 8, by

Bn(t) = Zo(t), t <<t <ty
= 0,7‘7([), tj+1 <t \< 1 and n;.y <O
Then
1 )
7w 2 P 5 40, 69)

g€S

< éO(ljtﬁ(tﬂ-l ’ x'n(tj+l)) =+ .

Pi(; 4,0) =

Hence u({; 4) < &(US(t;,1, %,(2;41))) and so as z, € My(j) is arbitrary

u(l A) < inf UMty s 5lts1)
296 M 3(3)

and hence,
Ul(t;, §) <sup inf E(UL(L11, %,(ti11)))-

ael’; ze.My(5)

Conversely fix ae I';; then for z€.#,(j) there is a trajectory x!(z)
corresponding to (a2, 2) and n€eL. Now let {¥ = x!P(t;,,) when 7, , = ¢
(note x*(t;,,) depends only on 7;,;). For (e R™ and v > 0 there exists
A(L) € ;4 such that

u;,1(8, AQ) = Uldtisn, O — v.
Define 4 € Z; by
Aa(t) = oa(t), <t <t
= A4, tu<t<lnpa=a

where 2 is the restriction of z to #,(j + 1). It is easy (but tedious!) to check
that A € ;. For € 6, define 6° € 8;,, by

9.,,"([) = 01;°(t)! hast<l

As 0 6,, 0,(t) is independent of n on [t;, t;,,], e.g 0,(t) = 2(¢). If we
condition %;,, = o we have

Pi(L; A,8,,8,) = Py AL) 6, 6.7)
and since A(Z!”") and 6° are independent of 7,,, we obtain
E(PAL; Ay, 0,) | miay = 0) = EPI(CY; 4,8 6,0, 6)
= P A1), 6°)
(885 ALY
Ul(tyen» L) — .

A\
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Hence,
Pl A,8) = E Uty (F) — v
= E(Utir > % (t4y))) — v
Therefore

UL(t;, §) = sup inf  E(UL(tj4), %o(ti41))

ael; ze M)

as required. The lemma is thus proved.

LemMa 2. For any 8

Ut §) = U, D)
Proof. By Lemma 1

Ud(t;, §) = sup inf  Ug(ty41, 2(8541));

ael’; zeMy(5)

and since U satisfies the same conditions with the same terminal condition,
[5] Theorem 3.1, we obtain the result by induction.

LEmMA 3. Let x,° and x be the trajectories corresponding to the comtrols
(,2) and neL in GXt;, () and G(t; , {). Then

faf(l) — x(1)f < 82K |2 ||

where
L&
fwil = sup |} i
J+1<kEN i+l

Proof. (cf. [6, p. 204])

5700 = #(0) = [ (S0t %00, 00, 505) — £t 360), 0e), 30)) dr

T 0

where

wt) = Y

ti<t;<t
Hence

Il #.5(8) — ()l < J.: K| %,5(7) — x(7)ll dr + €812 w(2)]

505/14/1-7



96 ELLIOTT AND KALTON

and therefore it is easy to show that

f il 2,6(t) — ()l dr << (1)

where ¢ is the solution of

Y = K+ dV2 w(r),

However
§(t) = et [ (o)) e dr
< (2K || (K — 1)
and hence
W) < (eizz)wwl’(e"— ), 4 <t<1
and

[ 5,4) — 3(2)), < eBU2eK || o]
The lemma follows.

Lemma 4. &(w!) < 2mNV2,

Proof. (cf. [6, p. 203)).
For a fixed coordinate /, we have

k '
Z it ‘) = 2('5”(
i=1 /

& (max
k

S

This follows from the result of Doob [2, p. 106] by elementary calculations.

Hence
L) <2 (e (g )

= 2N —

& (max
k

since Var(n;) =1 and &(n;,) = 0 for all 4, /, and they are mutually
independent.
Hence adding over coordinates

&(lwl) < 2m(N — U
< 2mN2,
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Lemma 5. | UMY, &) — Uy, €), < 2meKeX.
Proof. Let A€l and 8 € 8, ; then given y € L, (4, ) induce trajectories
x,(t) and x(t) in G8(t; , £) and GJ(¢; , £), respectively. By Lemmas 3 and 4

E( x,5(1) — x, (D)) < 2meeX,
and hence
E() g(x,5(1)) — g 1)) < 2meKeX.

It follows then easily that for given 4 e (7; with values «* and ¥ in G2 and
G’, respectively
| ue — ui X 2meKeX,

and hence that
| U, , &) — Ul , €)] < 2meKeX.
Now apply Lemma 2.
Lemma 6. Let §(t, x) be the solution of (6)-(7) in the strip 0 <t < 1.
Then limg_ U220, 0) = (0, 0).

Proof. ¢ and its derivatives 0¢[ot, ¢%p|0x; éx; satisfy Holder conditions
of the form (8). Hence following Fleming [7, p. 998] we may write

Mo+ 75430 = H05) + @0+ V- x + 5T ot xan

-+ P(t’ X, T, X)
where | p(t, x, 7, x)| < My(r'*72 — = || x i + || x [*+).
Now for fixed 8, let
¥(t;, §) =sup inf E(¢(t4y, %,(ti1))-

ael; zeMy(j

We can by Theorem C select « € I'; such that
pof(t;, & oa(t) 2(1) = H(t;, 6,p)  ae 4 <ty

where p = Vé(¢;, £), and H(¢, £, p) = min, max, (p * f(¢, £, ¥, 2)).
For 3 € #,(j) we obtain a trajectory x,(t) corresponding to (az, z) and
n €L with

xn(ti+1) = f + x

where

X = J; ) f(r, (1), o=(7), 2(7)) dr + 8/, .
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Then we have
80 = [ Al (e, 2(s), 5(r) dr

var(y;) == €28

and
S x: 1) < ([E(x)]? ~ var(x)'?
< Mgdte.

We aise have that y; and y; are independent so that
|6 (xax) = 1 € (%) € ()i
S M, &, i)

and
| E(u?) — €81 < M, 8.

It can also be checked that
é"(” ¥ i) < Mg 8+,
Finally we observe that

S0 = || ity 030, 2(e)) dr +7

where | 7| < M, 8% and hence setting these estimates together we obtain

EBltrr 5ot) = Bt ) 5 52

+ [0 S 0a(0), o) o

€2

+ 78V2¢ + 7,

where | 7’| < M, 12,
Hence by choice of «

E(D(tsr , Xo(ts1)) = (2, €) — M, 8147 /2
and so
Y(t,, &) = (4, &) — M, 3+2

Conversely by choosing 2(t) = 2, so that

mzin myaxp f= n'g'pr 'f(t} &, 3'0)’
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we may show by similar arguments that

W(t;, &) <4(L;, §) + Mg+t

Now let
A; == sup [ §(1;, &) — U1, &)
¢
Then clearly,
Ai < Ai+l = S?P ]¢(t7' ’ x) — ,{l(tj » x).'

(using Lemma 1), and so

Ay < M2 N =M &%

where M is a constant independent of 8. This proves Lemma 6.

THEOREM (a). Let G be a differential game defined by (1) and (3); then
U.:V+ =W+

(b). If G is defined by (1) and (2), then U = V'+.

Proof. (a) First we establish the result for the particular case of payoff
of type 4. Then by Lemma 6 and Lemma 5

| (0, 0) — U | < 2mKeXe,
where ¢¢ is the solution of (6)—(7). Hence
U= Lim $40,0) = W~ (Theorem B).
Now the extension to g which are merely continuous is easy by approxi-

mation. Next we may reduce the case of payoff of type (8) with 4 Lipschitz
to this case by incorporating an extra coordinate

Ry == h(t, %, ¥, x).

Finally by approximation we may assume / simply continuous.

(b) This is obtained by the approximation methods of [4, Section 10].

It is perhaps worth pointing out that without recourse to the results of
Fleming concerning W+ we may still prove that U is the “Fleming solution”
of the Isaacs—Bellman equation.

(2/2t) + min max(V$ - f + k) = 0

as in [4, Section 5]. For after incorporating an extra coordinate x,,., it is
easy to see that for any §, ¢

L’(A(tl ’ f) £m+1) = f‘m—l + l]ca(tj ’ f: 0)
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and it follows that (modifying Lemma 6 to prove uniform convergence of

U1, x) to ¢¢(¢, x))
¢t & §nn) = bnn - (L €)
where ¢¢ is the unique solution of
(€4/2) V% -1- (é476) 4 min max(V -/ + ) ==
subject to (1, £) = g(€). Then lim,_ o (¢, £) = U(t, €).
We have been informed by ]J. Danskin that he has obtained similar results,

by rather different methods, relating his own concept of value for ¢ =—
(see [1]) to those adopted by Fleming and Friedman.
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