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Let G be a differential game of prescribed duration [0, I] with control sets 
Y and Z which are compact metric spaces. The dynamics of G are given by 
(JCE@) 

dxjdt = f(t, x(t), r(t), 4t)), (1) 

where) [0, 1] x Rm x Y x Z-+ Rm is a continuous function satisfying a 
Lipschitz condition in x of the form 

Ilfk “1 > Y, z) - f(t, % , y, z) I < k(t) II Xl - x2 II, 

where 

I 
k(t) dt < 30. 

The p~y-o# is given by 

P = tL(W + j-l W 4th y(t), 44) dt, 
0 

(2) 

where h: [0, I] x Rm x Y x Z -+ R is continuous and TV is a continuous 
functional on the Banach space of all possible trajectories in ZP. We suppose 
that player Jr controlling the y-variable aims to maximize P while I2 
controlling the z-variable aims to minimize P. 

In [4] we studied the problem of existence of value for such games. Using 
the same notation we review some of the results of [4]. An upper value U is 
introduced in Section 2, and a further upper value V+ in Section 3; this latter 
value is that employed by Friedman [9]. It is also shown in Section 3 that 
u -< V’. 
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Let us now suppose that!, h are uniformly Lipschitz in (t, s) and that 

P = 
i 

1 h(t, x, y, z) -:- g(.v( l)), 
0 

(3) 

where g is twice continuously differentiable. Then in Section 5, a concept of 
value is introduced which is due to Fleming, and we define the Fleming 
upper value W-. 

In Theorem 8.1 it is concluded that CT-- << II’--. Later Friedman [IO] 
(quoted in [3]) proved that Vi = W-; however we believe his proof to be 
fallacious, as Lemma 1 involves an unjustifiable interchange of order of 
expectation and “inf sup.” In this paper we supply a proof that CT .= IV’, 
and it follows that in general U :-- Vi. 

In order to simplify the argument we shall suppose at first that P takes 
the form 

p = .&(l)), (4) 

where g is twice continuously differentiable, and its derivatives Zg/at, @g/Z+ , 
2*g/& axi are all Lipschitz continuous in (t, x). We shall suppose also thatf 
is Lipschitz continuous in (t, X) and K will serve as the Lipschitz constant in 
all cases. We shall also suppose that I, g vanish outside some bounded set 
(see [4, Section 91). 

For (i, x, p) E [0, I] x R” x R” we define 

H(t, x, p) = m;ln myax(p *f(t, -5 y, 4). (5) 

The following result is quoted by Fleming [7] from results of Friedman 
[8] or Oleinik and Kruzkhov [I I]. 

THEOREM A. For t > 0 there is a una$u solution 4 of the equation 

(G/2) v*q5 + (agat) t H(t, x, V@ = 0 (6) 
subject to 

d(l, f) = g(f)9 (7) 

and 4 has the property that +%/at and a2$/8xi axj are bounded and sattkfy 
H&k inequalities of the form (0 < y < 1) 

1 $(t, x) - &t’, x’)l < Q[: t - t’ Iv/* -j- I x - x’ Ii’]. (8) 

From this Fleming [7] proves that 

THEOREM B. If +b is the solution of (6) subject to (7) then 

lim,,,~(O, 0) = W+. 
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The other results needed for the proof are given in [5, Lemmas 4.2 and 4.31. 
We summarize them in 

THEOREM C. Let p: Y x Z + R be a continuous reai-valued fun&m on 
E’ x 2. Then there is a strategy OL for I1 such that 

a.e. 0 < t < I 

for z E A2 (the space of measurable control functions for J.J. 

For completeness we sketch the proof of Theorem C. Since Y is compact 
and metrizable there is a continuous surjection 8: K -+ Y where K is the 
Cantor subset of the unit interval. For each z E 2, let S, be the set of K E K 
such that 

Then S, is closed and we select y(z) to be the least member of S, . We thus 
define az( .) = 8, y{z( .)} for z = z( .) E .M2 . Since z( .) E Ma , for each E > 0 
there is a subset E of [O, I] such that mE > 1 - E and z is continuous on E. 
It is easy to show that aa is then upper semicontinuous on E and therefore 
measurable. It follows that az is measurable on [0, I] and so az E .&‘, as 
required. It is also clear that OL is a strategy. 

Before proceeding to the proof of the main theorem, let us observe that 
the proof given below is very similar to that given by Fleming [6] or [7] for 
Theorem B. In order to avoid some problems of integrability we have adopted 
Fleming’s approach in [6] (as opposed to [7]) of “discretizing” the 
probabilistic perturbation of the game. These problems are overcome in 
[7] by supposing strategies to be Bore1 functions; this is quite reasonable but 
leads to considerable technical difficulties. These are hidden in Fleming’s 
statement [7, p. 9921 that: “A proof by induction on the number of moves 
shows that VN(s, x) is the value of the game with initial data (s, x).” Even 
with discrete noise this is technically arduous to prove; compare the similar 
Lemma 1 given below. It should perhaps be observed that Lemma 1 is 
intuitively quite obvious; nevertheless we felt obliged to supply a strict proof, 
since this result is basic to the theory of differential games, and an analogous 
lemma is required in Fleming’s theory. The remainder of the proof is 
essentially an amalgamation of Fleming’s arguments in [6 and 7]. 

Let N be an integer and let 6 = l/N; for 0 < j < N we write tj -= jS. 
Suppose {7Jij ; i = 1, 2 ,..., IV, j = 1, 2 ,..., m} is a collection of independent 
random variables each taking the values -cl with probability l/2. Let Q 
denote the vector qij in Rm and let 7 == (Q ,..., TV); let L denote the lattice of 
possible values of 7 in (Rm)N. We denote by nj(T) the sequence of vectors 
(71 a.*.> 7J 
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We let &r(j) and .ka(j) be the spaces of control functions for Ii and J2 
defined on [tj , 11. We denote by rj the set of strategies on [tj , I] for Ji , 
i.e., maps 

a: J1c2(j) --, Al(i) 

such that if 

then 

q(t) -.: z2(t) a.e. tj s; t : .I T 

wl(t) = a,(t) ax. tj 6‘ t -.< 7. 

Then a stochastic control f3 of order j for J2 is map 7 -+ 0, 0: L ---f .d2(j) 
such that: 

(i) e,,(t) is independent of 7 for tj < t < tj+i 

(ii) If 7r = vk* k = j f 1 ,*a., I (where I < N) then 0,,(t) = r+&.(t) 
a.e. ti < t < tr+i . 

Kate that 0 is independent of 7~~ ,..., vi . The set of stochastic controls of 
order j will be denoted by Oj . 

A stochastic strategy A for J, is a map 77 + A, , A: L --f rj such that 

(i) If .zl(t) = z*(t) a.e. tj < t < r < rj+l and 7, ?* EL then 

4(4(t) = 4h2Kt) a.e. tj < t .r= 7. 

(ii) If qk = ?lk* , K =: j + I,..., 1(1 < N) 

q(t) y- z*(t) a.e. tj < t .< ‘T 

where 7 < t,-, then 

A,(q)(t) =-; A,.(z,)(t) a.e. tj < t < 7. 

Note again that A is independent of Q ,..., vj . The set of all stochastic 
strategies of order j will be denoted by Gl?j . 

Kow for 5 E Rm and E > 0 we describe a game GCG(tr , 4). Let y E ./Yi( j) 
and z ~&a( j); the trajectory corresponding to (y, z) and 7 EL is the 
(discontinuous) solution of the equation 

The pay ofl is given by 
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For a given stochastic strategy A E Bj and stochastic control fJ F Oj 
we define 

Pj(5; A, 0) = S(f’n%; A,4 > ‘A,)) 

We define the value of A to J1 by 

~~(5; A) = ;Enef Pj(5; A, 0) 
9 

and the value of the game Gc6(tj , 5) to I1 by 

Clearly, we have 

LEMMA 1. For j < N 

Urs(fj 7 5) z SUP inf 8(Cr:(tj+l , x,(tj.+l))) 

d, zedX,(j) 

where x is the trajectory corresponding to (ou, z). 

Proof. Let A E flj ; then the behaviour of A on (tr , ljtl) is that of a fixed 
strategy OL E r, (condition (i)). Suppose z,,(t) E &a(j); then (u,, , z,,) induce 
a trajectory x,,(t) for 3 EL. In fact x,,(tj+3 depends on Q+~ only. We denote the 
possible values in RJR of rliel by S; to u E S there corresponds a value 5, of 
x,(tjil)e We define Aa E Clj+l by 

A;(z)(t) = -4,$)(t) tj,., ,< t < 1 

where 

(a) Q” = 7)k , k#j+l, 
0 

?j+l = O7 

(b) 0 E .A,( j) is defined by 

W) zow tj < 2 < tj-1 

=z(f) 4+1<t<1. 

Clearly for each cr E S, Au is independent of 7)1 ,..., Tj,l and belongs to 
ac,,, . Now 

uj+1(50 i Ao) < U:(fj--l 9 50) 

and hence, given Y > 0, there exists 0” E ej+r such that 

P’+‘(<” ; Au, eq < uC6(tj-1, 5,) --- Y. 
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Now define 8 E @j by 

eq(t) :-= z,(t), 

= e,qt), 

Then 

rj < t <; tj;l ) 

tj+l < t .< 1 and rlJ 1 z IT. 

Hence Uj([; A) < 6(U,6(t,,, , ~,(tj+l))) and SO as z,-, E AZ(j) is arbitrary 

ui(l;; 4 G L $flj, g(Uc’(G+l 9 dlj+l))) 
0 I 

and hence, 

u6a(rj 9 5) d SUP inf g(U,b(rj+l 9 xv(rj+l)))* 
uarj zeA2U,(i) 

Conversely fix (L E rj ; then for z E d2(j) there is a trajectory x:‘(t) 
corresponding to (m, z) and 7 EL. Now let {f’ = xt’(t,+,) when vjbl = u 
(note ~;‘(t,+~) depends only on qj+3. For [ E Rm and v > 0 there exists 
A([) E G!j+l such that 

uJ+1(5v A(5)) t u15(rj+l f 5) - v* 

Define A E C?!j by 

A+&) = 4th tJ < t < tj+l 9 

= A([?‘) Z(t), tj+l < t < 1, Tj+l = (I. 

where 0 is the restriction of z to A2(j + 1). It is easy (but tedious!) to check 
that A E G!, . For 8 E @j define Bo E @j+l by 

enu(t) = e,,(t), tj+l G t G I. 

AS e E e, , e,(t) is independent of 7 on [tj , tj+Jt e.g. e,(t) = Z(I). If we 
condition Tj+l = u we have 

~2~5; A,e, , e,) = 1$+1(5~); I,) e,o, e,q 

and since A([:)) and B0 are independent of r)j+l we obtain 

s(P,J~-; A,e,, e,) 1 7)j+l = u) = q~:fl(P); A,&)) ev-, eq 

= zJj+yp; A(&, em) 

>, u,+dt); AK:‘)) 

> ucytj+l ) p) - v. 
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Hence, 

Therefore 

as required. The lemma is thus proved. 

LEMMA 2. For any 6 

ugd(tj, 5) = u(tj, 5). 

Prooj. By Lemma 1 

"o*(tj I 5) = SUP inf ulJ'(tj+l, x(tj+l)), 

osrj zeAJj) 

and since V satisfieq the same conditions with the same terminal condition, 
[5] Theorem 3.1, we obtain the result by induction. 

LEMMA 3. Let x,,’ and x be the trajectories corresponding to the controls 
(y, Z) and 7 EL in Gc*(tj , 5) and Go*(tj , 5). Then 

where 

Proof. (cf. 16, p. 2041) 

%Tt) - Jc(t> = ( (f( t, x,,‘(d, ~(7),44 - f(t, 44, Y(T), +>> d7 

+ &‘2w(t) 

where 

Hence 

w(t) = c vi 
ti<ti<t 

II x,,‘(t) - x(t)ll < j-1 K II x,,~(T) - ~(41 d7 + dwz 11 w(t)ll 
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and therefore it is easy to show that 

I 
’ il X,‘(t) -- .V(T)II dT < (Cl(t) 

1, 

where # is the solution of 

Ir/ _ K# I &I’2 /’ w (‘1’ ’ 

However 

4(t) L-= &Y’2eKf 
! 
1: /, We! eeK7 dT 

< (cW2/K) ,I w I, (eK(‘-‘J) - 1) 

and hence 

f)(t) < (9) ‘, w 1: (eK - I), tj<t<l 

and 

The lemma follows. 

LEMMA 4. &‘(I! w 11) < 2mN1i2. 

Proof. (cf. [6, p. 2031). 
For a fixed coordinate I, we have 

This follows from the result of Doob [2, p. 1061 by elementary calculations. 
Hence 

since Var(qil) = 1 and S(?,J = 0 f or all i, I, and they are mutually 
independent. 

Hence adding over coordinates 

&(/I w Ii) < 2m(N - j)"" 

:., 2mN'l2. 
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LEMMA 5. 1 Crca(tj, 5) - U(tj , C), < 2mcK.C. 

Proof. Let A E UZ, and 0 E @j ; then given 77 EL, (A, 0) induce trajectories 
q’(t) and x(t) in G,8(tj , 5) and God(tj , [), respectively. By Lemmas 3 and 4 

and hence 
&(I; x;(l) - X,(l)li) < 2meeK, 

4 &,‘(I)) - &#))I) < 2m&eK. 

It follows then easily that for given .;1 E oCj with values Us and I( in G,* and 
Go*, respectively 

1 uc - u i Y< 2meKeK, 

and hence that 

I U:(tj , 5) - Uo’(tj , [)I ,< 2mcKeK. 

Now apply Lemma 2. 

LEMMA 6. Let +(t, x) be the solution of (6)-(7) in the strip 0 < t < 1. 
Then lim,,,, U:(O, 0) = 9(0,0). 

Proof. I$ and its derivatives +/at, Z2$/axi ax, satisfy Holder conditions 
of the form (8). Hence following Fleming [7, p. 9981 we may write 

+(t + 7, X + X) = +(t, X) -t (a+/af)T f v+ ' X + k z & XiXj 

+- p(4 4 7, x) 

where ) p(t, x, 7, ,v)l < Mr(++V’2 - 7 1) x 1;’ + II x l12+“). 
Now for fixed 6, let 

u(tj F 6) = SUP inf a($(tj+l , X,(tj+l))* 
aerj zE.Mt(j) 

We can by Theorem C select (Y E rj such that 

P .I Ctj , 5, w(t), z(t)) 3 H(tj ) 5‘, p> a.e. zj < t d tj+l 

where P = V4(tj , 51, and H(t, 5, p) = min, ma, (p *f (t, E, y, 2)). 
For a gM2(j) we obtain a trajectory x,(t) corresponding to (OLZ, a) and 

T] EL with 

%(4+1) = 5 + X 

where 

s 

tj+1 
X= f (7, %(‘), ou.(447)) d7 + ‘61’“Q+1 . 

ti 
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Then we have 

and 

va&) :-.= e26 

&(I Xi I) d ([g(Xi)]’ -7 ~~ar(,yJ)l:* 
< Mp’. 

We aise have that xi and xj are independent so that 

and 

I g(XiXj)i -1 I &(Xi) B’(Xj)i 

< M4 62, i Zj, 

1 S(x,“) - c26 i < M, 6’. 

It can also be checked that 

Finally we observe that 

S(xi) = i:‘-lL(rj 9 5‘9 W(T), Z(T)) dT f Y 
I 

where ( Y 1 < M, a*, and hence setting these estimates together we obtain 

+ 1:“‘~ .f(tj t 6, M(T), Z(T)) dT 

where 1 Y’ 1 < A, 81+yla. 
Hence by choice of 01 

and so 
W, , f) 3 d(& , 5) - M, s+~” 

Conversely by choosing z(t) = z,, so that 

ms$ my= P - f = m,y P * f (4 , & 95 4, 
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we may show by similar arguments that 

Now let 

Then clearly, 

/lj < (lj+l - 

(using Lemma 1), and so 

A, S $I &l-v!* hi -. M @!2 

where M is a constant independent of 6. This proves Lemma 6. 

THEOREM (a). Let G be a di@rentiul game defined by (1) and (3); then 
c; : v-’ = w+. 

(b). If G is defined by (1) and (2), then C’ = V+. 

Proof. (a) First we establish the result for the particular case of payoff 
of type 4. Then by Lemma 6 and Lemma 5 

I +(O, 0) - U I < 2mKe%, 

where + is the solution of (6)-(7). Hence 

u == ljny(O, 0) = w: (Theorem B). 

Kow the extension to g which are mereIy continuous is easy by approxi- 
mation. Next we may reduce the case of payoff of type (8) with h Lipschitz 
to this case by incorporating an extra coordinate 

*,,-, == h(t, x, y, x). 

Finally by approximation we may assume h simply continuous. 

(b) This is obtained by the approximation methods of [4, Section IO]. 
It is perhaps worth pointing out that without recourse to the results of 

Fleming concerning W+ we may still prove that 15’ is the “Fleming solution” 
of the Isaacs-Bellman equation. 

(3+/f%) + m;ln myax(V$ . f + h) = 0 

as in [4, Section 51. For after incorporating an extra coordinate x,+r it is 
easy to see that for any 6, E 

crc”(tj Y 59 5‘m+l> = I*-1 + uc”(tj 9 It 0) 
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and it follows that (modifying Lemma 6 to prove uniform convergence of 
Ut6(C 4 to C’(t, 4) 

where + is the unique solution of 

subject to @(I, 5) = g(t). Then lim,,, +(t, 6) : L:(t, 4). 
We have been informed by J. Danskin that he has obtained similar results, 

by rather different methods, relating his own concept of value for o :- 1 
(see [I]) to those adopted by Fleming and Friedman. 
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