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1. INTRODUCTION 

A two-person zero-sum differential game can be considered as a control 
problem in which these are present two controllers or players, Jr and Jz , 
with directly conflicting interests. The dynamics of the game are described 
by a system of differential equations and at the end of the game a (real-valued) 
quantity, called the payoff, is computed; this represents the cost of the game 
to Jz , or the amount received by J1 . During the course of the game the 
players can affect the outcome of the game, that is the final payoff, by choosing 
certain control variables. The greatest payoff that J1 can force is called the 
lower value of the game whilst the least value the minimizing player Jz can 
force is called the upper value. Our objective is to study when these values 
are the same, that is, when the game “has value.” 

In earlier papers [2,3] we have studied differential games of fixed duration, 
that is the game ends after a predetermined length of time. We have shown 
that if the Isaacs condition [see (9) below] is satisfied then the game has value. 
In the present paper we consider the more complicated situation where the 
game ends when the trajectory enters a certain set F, called the terminal set. 
The time at which this occurs is called the capture time. In a pursuit-evasion 
game the payoff is just the length of time elapsed up to the capture time. This 
includes the case of a pursuer P chasing an evader E in some finite-dimensional 
space Rp. Considering the dynamics of the two players as one system of 
equations, the trajectory of the game lies in R2”. In terms of the trajectory 
variables the terminal set F, that is, the set of points where capture occurs, 
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is the diagonal subspace of R 2~ described by the coordinates of the two 
players being the same. 

In a generalized pursuit-evasion game, the same again ends when capture 
occurs, but the payoff is now the integral up to the capture time of some 
nonnegative function h, representing the energy used by the pursuer. A game 
of survival is even more complicated in that the payoff is now the integral up 
to capture time of a function h which may be positive or negative, possibly 
together with a terminal payoff. Mention should be made here of the work 
of Friedman 16-81 and Varaiya and Lin [12], on pursuit-evasion and survival 
games. Rowever, our approach is an extension of ideas of our earlier papers 
P, 31. 

We study generalized pursuit-evasion games by considering certain 
approximating fixed-time games. The main result is that, if a slightly modified 
Isaacs condition is satisfied all the approximating games have value and the 
limit of their values is shown to be a certain “extended value” of the original 
game. Our definition of extended value is slightly similar to one of Friedman 
[S, 81, but the details are quite different. 

Finally in Section 6 relaxed controls are introduced for survival games and, 
in terms of the related relaxed game, the upper and lower extended values are 
related to the upper and lower values. 

2. NOTATION 

A differential game G played by two players Jr and Js for the time interval 
I = [to, Ts] is considered. Many of the concepts defined below, and the 
related results, exist if the time interval is allowed to be infinite. As, however, 
some of the quantities might then be infinite the situation where T,, < co 
will be discussed. 

Let Y and Z be two compact metric spaces. A map cp : I -+ Y (resp., Z) 
is mea.wrabZe if for every continuous map $J : Y +. R (resp., z,l~ : Z -+ R, 
the real numbers) the map $0 ~JJ is measurable in the usual Lebesgue sense 
on I. At each time t E 1, J1 picks an element y(t) from Y and Js picks an 
element s(t) from 2 in such a way that the resulting functions, y : I--+ Y 
and x : I -+ 2, are measurable. When selecting y(t) J1 is aware only of the 
history of the game up to time t, and a similar restriction applies to Js . 
The set of all measurable functions y : I + Y is denoted by Al; the elements 
of A1 are called control functions for J1 . ~3’~ , the set of control functions 
for Ja , is similarly defined with 2 replacing Y. 

The dynamics of the differential game are given by the family of ordinary 
differential equations: 

* = f@, x, y(t), q)), 01 
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together with an initial condition 

x(&J = x, . 

Here x E Rm and t E I. f is a continuous function from I x R” x Y x 2’ to 
R” satisfying a Lipschitz condition 

IIf@, Xl ,YY 4 -.f& % ,Y? 41 G Wll% - x211, (2) 

whenever x r , x2 E R”, t E I, y E Y and x E 2. K is a Lebesgue measurable 
function on I satisfying 

s 

TO 
h(t) dt = A < co. (3) 

to 

Throughout the game the player Jr chooses y(t) so that the final payoff, 
defined below, is as large as possible, whilst the player J2 tries to make the 
final payoff as small as possible. We distinguish three types of differential 
game according to the form of the payoff P. First we have games of fixed 
duration where 

P = ~(4.)) + 1; W> 4% r(t), 4t>> dt. (4) 

Here Jr : I x R” x Y x 2 -+ R is continuous and p is a (nonlinear) 
real-valued continuous functional on the Banach space C(I)m of trajectories 
in R”. These games are treated in our paper [3]. 

Secondly, supposeF is a closed subset of R”+l such that 

[T,, , m) x R” CF. (5) 

F is called the terminal set. Given a control function y(t) for J1 and a control 
function a(t) for Ja the conditions (2) and (3) imply there is a trajectory x(t) 
which satisfies (1) almost everywhere, and the condition (5) implies there is 
a smallest value oft, tF(x), such that (t, x(t)) E F. tF(x) will be called the capture 
time of the trajectory x(t). Suppose now that P is of the form 

P = At= 3 x(tp)) + s$(” Nt, x(t), r(t), Nt)) & (6) 

where as before h is continuous and g : Rmfl --t R is continuous. Such a game 
is called a game of survival (Friedman [fl). 

A particular case of a game of survival is obtained if we take g = 0 and 
h = 1 in (6). The payoff P is then just the capture time tF(x) so the player J1 , 
called the evader, is trying to avoid capture and make tF(x) as large as possible 
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whilst Ja , the pursuer, is trying to make z~(x) as small as possible. Under 
these conditions G is called a pursuit+vas~on game. 

Finally, if g = 0 and h > 0 then G is called a generalized pursuit-evasion 
game. 

3. STRATEGIES AND TTALUES 

The problem of assigning a value to a differential game has been approached 
in at least three different ways [3-51. We shall follow a method first suggested 
by Roxin [ll] and adopted in our previous paper [3]. However, the reader 
should also be referred to the alternative definition given by Friedman [5]. 
It is not certain, except in the special case of fixed-duration games, that 
Friedman’s concept of value coincides with the one used here. 

A map CY : A, -+ &?i is a strategy for Ji if whenever 

zJt) = x2(t) a.e. to < t < t, 

then 

OF+(~) = m2(t) a.e. to < t < t, . 

The set of strategies for J1 is denoted by r. We say a: E r is a delay strategy 
if there exists s > 0 such that whenever 

,x1(t) = z2(t) a.e. to < t < t, 

then 

c%(t) = mdt> a.e. t, < t < min(T, ) t, + s). 

The set of delay strategies is denoted by I’, . The value for Q! E J’ is defined as 

We then define 

u(a) = inf(P(olx, x); x E As). 

u = sup(z4(~); 01 E q, 

v- = sup(u(cX); 01 E r,). 

Note that V- as defined here corresponds to V-(O) or U+(O) in [3, Section 23. 
It is not clear that Theorem 3.4 applies to survival games so it is not obvious 
that VT coincides with the V- defined by Friedman [S, 6, 81. 

Similar definitions are made for the set of strategies d and delay strategies 
A, for Ja . For p E d we define 

49 = sup(J?y, fly); Y E JCL 

V = inf(Q); p E Ll), 



508 

and 

ELLIOT AND KALTON 

V+ = inf(z@); /3 E 8,). 

From the definitions it is clear that V- < U, it also follows that U < V+. 
For if LY. E r and /3 E da then by an inductive construction one can find controls 
y(t) and x(t) such that 

olz =y, py = 2. 

[As /3 is a delay strategy one can initially construct z(t) for t,, < t < t, + s, 
for some s. From this y(t) for to < t < t,, + s can be determined. This 
process is then repeated.] 

Thus 

+% 4 = P(Y, PY) 

so 

Thus 

A more detailed argument is given in [3, Section 21 for fixed-time games. It 
follows that V- < U, V < V+. G is said to have value if V-- = V+ and 
weak value if U = V. 

Finally we quote the principal result from our paper [3] on games of fixed 
duration. (See also [2] and Friedman [8].) We assume, therefore that the 
payoff is given by (4). 

Define 

= mjnmyax(p*f+A) 

forpER”, xERnzand tel. 
Similarly 

F-(t, x, p) = my= mjn (P *f + 4, 

forpER*,xE@andtEL 

DEFINITION 3.1. The game is said to satisfy the Isaacs condition if 

F+(t, x, P) = F-(t, x, P). 

(7) 

(8) 

(9) 
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THEOREM 3.2. If the Isaacs condition is satisfied the game G, defined by (l), 
(2), and (4) has value, i.e., 

p Lzz v- (= V say). 

This is the main result, Theorem 10.1, of [3]. 

4. EXTENDED VALUES 
In this section we discuss an alternative concept of value convenient for 

games of survival. Our approach is slightly related to that of Friedman [q; 
however, the details differ considerably from those of Friedman. 

Consider a game G defined by (l), (2), and (6). Define the real-valued 
function z on I by 

4) = f” 4, x(s), Y(S), 44) ds 

and consider the map t --+ (x(t), s(t)) from I into Rm+l. Lemma 3.3 of [3] 
tells us that the set of all possible trajectories in R”+l is relatively compact in 
the Banach space of continuous R-l-valued functions on I. 

An approximate strategy A for player Jr is a sequence (a,) of delay strategies, 
i.e., 0~~ tz .P, for all n. Similarly, an approximate strategy B for Js is a sequence 
of delay strategies. Corresponding to a pair (A, B) we may determine a payoff 
as follows. Since DZ~ and & are each delay-strategies there exist unique 
-%I E&s, Yn E .k’I with 01,x, = yn and Pnyn = x, (see f3, Section 11-j). 
The controls (y,(t), z,(t)) induce a trajectory (zJt),q(t)) in Rr”+l. By the 
relative compactness of the set of possible trajectories the sequence (xJ,t), s%(t) 
has at least one accumulation point (z(t), Z(t)). For each such accumulation 
point we determine the payoff 

where f is the first time t^ 2 to with s(t) EF, the set of such payoffs is called 
thepayo#set P(A, B) of the pair A, B. Now define 

V,+ = inf sup (sup P(A, B)), (11) 
B A 

V,- = s;p tf (inf P(A, B)). 02) 

G is said to have extended value if V,+ = V,- (= V,). Further, a pair of 
approximate strategies (A*, B*) is an approximate saddle point if for any other 
pair (A, B) 

P(A, B*) < P(A*, B*) < P(A*, B) 
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(where we say S, < S, for two subsets A’,, S, of R if s, < sa whenever 
sI E 8, and ss E A’,). 

We now restrict attention to generalized pursuit-evasion games with a 
payoff given by 

where h > 0. We shall relate the extended value to properties of the ordinary 
value when the terminal set F is varied. For E > 0 let F, denote the set of 
(t, x) E Rm+l with p(t, X) = distance of (t, X) from F < E. Fe is then a closed 
subset of Rm+l. Consider the generalized pursuit-evasion game G, with 
terminal set F, replacing F. The upper and lower values of G, will be denoted 
by V+(F,) and V-(F,). 

THEOREM 4.1. 

Proof. Clearly, as B --+ 0, V+(F,) and V-(FE) increase to some limits Zr and 
1s , respectively. It is, therefore, sufficient to consider the sequence V+(F,,,) 
and liT’-(F,,,). F or each n there exists a delay strategy /In* for the.pursuer Jz 
such that 

(where v, denotes the value in the game G&. Consider the approximate 
strategy B* = (fin*) and suppose A = (an) is an approximate strategy for 
the evader. Then there is a unique sequence y* E A!, with 

and (yra , /3,*yJ induces a trajectory (x,(t), I+) in Rm+l. Let t, be the time 
at which x,(t) first enters Fl,% so that we have 

Suppose (Qt), z%,(t)) is a convergent subsequence of the trajectories 
(x,(t), +Jt)) converging to the trajectory (g(t), Z(t)); we may suppose, 
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selecting a further subsequence, that t4 ---f t for some t. Then we clearly 
have s(f) E F so that the payoff P of (z, Z) satisfies 

13) 

However, if B = (/3,) is any approximate strategy then for a fixed Q we may 
select control functions yn E A’, with 

PE(Y, , PnYn) 2 v+(FJ - E. (14) 

Define A then to be the approximate strategy (an) where 01%~ = y* for any 
ZEJzTg. 

Let (x~, 2,) be the sequence of trajectories of (A, B) and suppose some 
subsequence (x~, , So&) converges to the trajectory (2, G). If f is the first time 
at which (E, z(f)) is in F then P = G(i). For large enough R, (f, x+(t)) EF, 
so that 

So by (14) 

and taking limits 

Thus 

P(A,B) >, V+(F,)- E 
so 

if,+ > I;$$ (V-t(F,) - E 

= 4. 
Combining this with (14) we obtain 

v,+ = II . 

505/d3-7 
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Consider now V,-. First observe that there exists a sequence (an*) = A* 
of delay strategies for the evader (JJ with 

Consider, for a fixed k, the “constant” approximate strategy A, = (ollc*), 
i.e., A, = (01,) where 01~ = OIL* for all n. 

For any B = &) let (xn , s,) be the trajectories induced by A, and B, 
and suppose for some subsequence (xn, , G,,) -+ (8 Z). Let i be the first time 
that (f, I) E F. For large enough p we have 

so that u,(~l,*) < z,,(t). Asp -+ CO we obtain 

Therefore 

so that 

Conversely, given any approximate strategy A = (a,J we may determine 
x, E cd2 with 

Defining /Iny = x, we obtain an approximate strategy B = (/3,) for the 
pursuer. Then we may show as above that 

so that 

Combining with (15) 

v,- = 1, . 

COROLLARY 4.2. 

lii V&+(F,) = Ve+, 
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by the theorem so the result is immediate; similarly for V,-. 
In the special case of an ordinary pursuit-evasion game, where h = 1, 

we can interpret these results as follows. The game has upper value T+ if 
the pursuer can in any time T+ + E, E > 0, guarantee to force the evader 
into the terminal set. However, for the extended upper value T,+ the pursuer 
can in any time T,+ + E only guarantee to force the evader arbitrarily close 
to the terminal set. 

5. EXTENDED VALUES IN GENERALIZED PURSUIT-EVASION GAMES 

In a generalized pursuit-evasion game the pursuer’s problem is to minimize 
the amount of “energy” 

consumed in forcing x(t) into the terminal set F. Let us now consider a 
related fixed-time game in which the pursuer is “given” a fixed quantity of 
energy to drive as close as possible to the terminal set. That is, we consider 
the game C?‘s defined by 

dxldt = f(t, x, Y, 4, 

dzx/dt = h(t, x,y, x), 
W) 

with initial conditions 

x&J = x0 > z(to) = 0 

and payoff 

PEM*), 4.>1 = Wp(t, x(t)> : 4) S E, to S t d T,), 

where E > 0 is fixed. 
We make two assumptions on h: first we assume that h satisfies a Lipschitz 

condition in x, i.e., 
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where, as in (2) 

ELLIOT AND KALTON 

s 

TO 
K,(t) dt < CO. 

to 

We also assume that h is bounded away from zero, i.e., 

h(t, x, Y, z) b ho > 0 PO> 

for all (t, x, y, z) EI x R” x Y x 2. These two assumptions enable us 
to use results from the theory of fixed-time games on GE . Assumption (19) 
guarantees that the equation (17) satisfies a Lipschitz condition of type (2). 
From assumption (20) we obtain 

LEMMA 5.1. pE is unz~o~mly continuous on the set of possible trajectwies in 
GE [considered as a subset of C(I)-tl]. 

Proof. Let X denote the set of all possible trajectories; i.e., all solutions 
of (17) for measurable functions y(t) E A1 , a(t) E A2 . As observed in 
Section 4, X is relatively compact, so in particular the set of all attainable 
points in RW+l is bounded. Therefore, there is a uniform bound for f, i.e., 
for(x,m)EXandyEY,zEZ 

If (4 4th Y, 41 G Af* 

Also we have a lower bound for h, so that 

dG/dt > h, . 

We now show that pE is uniformly continuous on X. For E > 0 take 

6 = h,E/(h, + M + 1). 

Suppose (x1 , ml) and (xs , ~a) E X are such that 

Then 

where 

BY (24) 

(21) 

(22) 

(23) 

w 



GAMESOFPURSUITAND EVASION 515 

and by (22) it follows that there exists tl’ with 

to < t,’ < tl 

and 

m&l’) < E 

t, - tl’ < h,% 

Combining (25) and (21) we have 

II x&J - &Yl < Jf&p. 

(25) 

However, 

and so 

II %@l) - ~l(tl)ll < 6, 

and by symmetry 

We now introduce the “reverse Isaacs condition”: 

DEFINITION 5.2. G sat&fies the reverse Isaacs condition if for p E FP 

rn~&na(p*f -h)=yeyAn(p*f -h). (28) 

If G satisfies (9) (the Isaacs condition) and (28) we shall say that G satisfies 
the extended Isaacs condition. 

LEMMA 5.3. G satisj?es the extended Isaacs condition if and only if for all 
pEW,pER 
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Proof. For 4 # 0 (29) follows from (28) or (9) by multiplication by 1 4 I. 
For fixed p E R” the functions 

4+m;nmy=(P*f+qh), 

4 -+ my= mjn (P . f + 24, 

are continuous, so that (29) follows also for 4 = 0. 

THEOREM 5.4. If G is a generalized pursuit-evasion game satisfying (19), 
(20), and the extended Isaacs condition, then for each E 3 0, CY?E has value, 
denoted by p(E). 

Proof. By Lemma 5.1 and the Tietze extension theorem we may suitably 
define ,uE off the space of possible trajectories in e, so that ,uE is continuous 
on C(I)m+l. Thus &E is a game of the type described by (l), (2), and (4). Also, 
the Isaacs condition for & takes the form (29) so that, by Lemma 5.3, we can 
quote Theorem 3.2 to assert that eE has value, p(E). 

The function h is bounded on the set of possible trajectories, and so for 
large enough E 

That is, p(E) = 0 for large enough E. Clearly p(E) decreases in E, so we 
make the following definition. 

DEFINITION 5.5. 

E* = inf(E : v(E) = 0). (30) 

THEOREM 5.6. If G is a generalized pursuit-evasion game satisfring (19) 
and (20) and the extended Isaacs condition, then G has extended value E*, i.e., 

v,+ = v,- = B”. 

Proof. Suppose E > 0. Then there is an El with El < E* + E and 

V(E,) = 0. 

Hence, there exists a delay strategy /3 for the pursuer whose value v@) in 
GBz satisfies 

vq(P) G 6. 
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For any control function y(t) E ~&!r for the evader let (x(t), c(t)) be the trajec- 
tory corresponding to (y, py). Then pEJx(t), a(b)) < E and so for some tS, 
with t,, < t, < To, 

4&l G 4 
and 

Pk 3 4t3> d E. (31) 

Now consider the delay strategy /3 in G, (see Section 4 above). By (31) the 
payoff P, corresponding to ( y, fiy) satisfies 

so that 

Hence 

Letting E 3 0 we obtain by Theorem 4.1 

V,+ < E”. 

Conversely, if 0 < E < E* then 

p(E) > 0 

and so there exists a delay strategy CL for the evader with 

(32) 

&(a) = 2’1 > 0. (33) 

If z(t) E &a is a control for the pursuer then (01z, z) induces a trajectory 
(x(t), z(t)) satisfying 

& x(t)) 2 27 

whenever 

z(t) < E. 

Consider 01 as a delay strategy in G,,; then ~,(a) >, E so that 

V-(F,,) > E. 
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Letting q + 0 

V,- > E” 

by Theorem 4.1. Hence, combining (32) and (34) 

V,- = V,+ = E”. 

(34) 

THEOREM 5.7. If G is a generalized pursuit-evasion game satisfuing (19) 
and the extended Isaacs condition, then G has extended value, i.e., 

v,+ = v,-. 

Proof. For each n consider the game G(“) with the same dynamics and 
initial conditions as G, but with payoff 

where 

p(n) = 
s tF h(“Ys, x(s), Y(S), @) 0% (35) 

to 

hyt, x, y, x) = h(t, x, y, x) + I/n. 

Then Gtn) satisfies (19), (20), and the generalized Isaacs condition, so that 
by Theorem 5.6 

V,+(Gcn)) = V,-(G(n)). 

For E > 0 we consider the game Gy) with terminal set F, and payoff 

pp) = 
s 

tFc 
h(‘V, x(s), Y(S), 4s)) ds. (36) 

to 

For fixed controls y(s), x(s) 

1 P.c”) - P E 1 < (l/n)(To - t ) E \ 03 

where P, is the payoff in G, . Hence it follows that 

I V+(G(“);F,) - WFJI d (l/4(~o - toI, 

I V-(G(“); F,> - V-(FJI < (VW, - to) 

andsoasn-+co 

V+(G(“+ FE) -3 V+(F,), 

V-( Gtn); FE) -+ V-(F,) 
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uniformly in E > 0. In particular 

lim lim V+(G(“); FE,) = I’,+ n-too <+o 

and 

Therefore 

lim lim I’-(G(“); FJ = V,-. n-02 c-0 

V,‘- = lii v+(FJ 

= iii $;_mm V+(G(“); FE) 

= $+i I!$ V+(G(“) ; FE) 

= -Ii+2 V&+(G(“)) 

= lj+? Ve-(G(“)) by Theorem 5.4. 

= $2 lo+? V-( G@) ; F,) 

= lii v-p,) = v,-. 

Remarks. In the special case of a pursuit-evasion game, that is, h z 1, 
Theorem 5.6 has the following interpretation. For each fixed T < T, the 
fixed-time game Gr over the interval [t, , T] is considered, with dynamics 
given by (1) and payoff 

p = I+) = &&A4 4t)>. 

For such a game the Isaacs condition takes the form 

mpm;xp*f = m;xmjnp*f. (37) 

If (37) is satisfied the game Gr has a value p(T) and for large enough T 
p(T) = 0. 

Write 

T* = inf(T : p(T) = 0). 

An immediate consequence of Theorem 5.6 is the following result: 

COROLLARY 5.8. If the Isaacs condition (37) is satirfied then in a pwsuit- 
evasion game 

V,+ = V,- = T”. 
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The conditions imposed on Gin Theorem 5.7 do not seem the best possible. 
Condition (19) a Lipschitz condition on h, is only necessary to ensure that 
G is of the same type of game as that studied in [3]. It would seem likely that 
this condition may be removed altogether. Another, apparently superfluous, 
condition is the reverse Isaacs condition (28). This condition is intuitively 
unnecessary for the existence of value, although its removal seems to present 
severe technical difficulties. However, the extended Isaacs condition is not 
too restrictive. Two main practical cases are covered by this condition: the 
case of separated variables studied by Friedman [5, 6, 81 when 

and the case of relaxed controls studied by the authors and Markus [l, 31 
(see Section 6 below). In both these cases Theorem 5.7 is valid. 

6. APPLICATIONS OF RELAXED CONTROLS 

In [I] the authors in collaboration with Markus applied the ideas of 
relaxed controls, already studied in control theory by Warga [I 51, to differential 
games. Essentially, one idealizes the possible controls available to each player 
by extending them to include probability measures on Y and 2. At any time t 
jr may choose an element from the space (1(Y) of regular probability 
measures on Y, similarly Ja may choose from A(Z). The spaces fl( Y) and d(Z) 
are topologized in a natural way so that they become compact metric spaces 
(see [I, 151 for details); the functionsf and h are extended thus 

44 x9 u9 4 = j, j, h(t, x, y, x) dT(X) du( y), (39) 

so that 

f:IxR"xA(Y)xA(Z)+Rm, 

h:IxR""xA(Y)xA(Z)+R 

are continuous, and both satisfy a Lipschitz condition in x of the same type 
as satisfied by the original f and h. We shall refer to a game in which both 
players may use relaxed controls as a relaxed game. 

LEMMA 6.1. In a relaxed game the extended Isaacs condition holds. 
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Pmof. For p f Rn”, the equations (9) and (28) follow from the fundamental 
theorem of two-person games over compact convex sets due to Wald [14] 
(see also von Neumann [13]). 

In the relaxed game the spaces ~4’~ and .Mz of available control functions 
are replaced by the spaces AI* and &Is* of measurable maps o : I-+ A(Y) 
and r : I + .flZ(). We may identify AI* as a compact subset of the dual of 
the Banach space U(C( Y)) of integrable functions g, : I -+ C(Y) with the 
weak* topology; we similarly topologize kg*. 

LEMMA 6.2. Fo? fixed I EA“~* the map 2, : Al* -+ (C(I))n+l is 
continz1ous, where C(I) m+l is the Banach space of continuous Rm+l-valued 
functions on I and &(a(t)) is the solution of 

dx/dt = At, x, u(t), +>>, 

dz/dt = h(t, X, u(t), r(t)), 

subject to x(tO) = x0 and z(t,,) = 0. 

Proof. See [I] or [15]. Note that ~&‘r* is metrizable. 
Next we topologize the space of possible maps 01 : ~#‘a* -+ AI* by the 

product topology (~Hr*)“@z*; the set of strategies for Jr is then a subset of this 
space. 

LEMMA 6.3. The set of strategies is closed and, therefore, compact. 

Proof. See [3, Theorem 11.21. 
We now consider the effect of relaxed controls on extended values for 

games of survival. 

THEOREM 6.4. Let G be a relaxed game of survival: then we have 

u 3 v,-, 

Proof. By the definition of V,- [Eq. (12)] there exists an approximate 
strategy A* = (m%*) such that: inf, inf P(A*, B) > V,- - E. Let CL* be any 
cluster point of A* in (~&‘~*)-‘@l*. Then (II* is a strategy. Let T = r(t) be any 
fixed control function in 2,“. Then .&(o~*T) is a cluster point of &(01,%) in 
C(I)m+r. Define B = (&J by pm(u) = T for all n. Then B is an approximate 
strategy and P(o~*T, T) E P(A*, B). Therefore 

24(a*) > i%f inf P(A*, B) 

>, v,- - E 
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SO 
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u = sup U(fx) 3 V,-. 
Lv. 

The other inequality is similarly proved. 

COROLLARY 6.5. In a relaxed game of survival V,- < V+ and V,+ > V-. 
If G has value and G has extended value, then they are equal. 

THEOREM 6.6. Let G be a relaxed generalized puw&evasion game satis- 
fying (19). Then G has extended value V, and 

v, = v- = v < u < v+. 

Proof. By Theorem 5.7 and Lemma 6.1 G has extended value, i.e., 
V,+ = V,- = V, , say. Then by Theorem 6.4 V- < V < V, . For any 
E > 0 V-(F,) < V- and so by Theorem 4.1, 

iii v-p,) = v,- = v, < v-. 

Hence 

v, = v- = v 

and the remaining inequalities follow. 
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