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Abstract

We discuss `p-maximal regularity of power-bounded operators and relate the discrete to the continuous
time problem for analytic semigroups. We give a complete characterization of operators with `1 and
`∞-maximal regularity. We also introduce an unconditional form of Ritt’s condition for power-bounded
operators, which plays the role of the existence of an H∞-calculus, and give a complete characterization
of this condition in the case of Banach spaces which are L1-spaces, C(K )-spaces or Hilbert spaces.
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1. Introduction

Let T be a power-bounded operator on a Banach space X . In [4] and [5], Blunck
studied `p-maximal regularity for the discrete equation

un = T un−1 + xn for all n ≥ 1,

where u0 = 0. See Section 2 for precise definitions. Blunck studied the case
1< p <∞. The cases p = 1 and p = ∞ are studied in [17] where some discrete
analogues of the results of Baillon [2] and Guerre-Delabrière [9] are given.
However, these analogues are not completely satisfying and, moreover, the proofs of
Theorems 4.4 and 4.5 are rather confused.

In this paper we improve these results and also give a complete description of
operators T with `1 or `∞ regularity. We then point out that one can obtain the
analogous and apparently new descriptions for closed operators A such that −A
generates a bounded analytic semigroup and has either L1 or L∞-maximal regularity.
We relate our results to classical result of Da Prato and Grisvard on L∞-maximal
regularity in real interpolation spaces.
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In the final section we introduce and study an unconditional form of Ritt’s
condition for power-bounded operators. This is analogous to McIntosh’s definition
of an H∞-calculus for sectorial operators [14]. We show that on an L1-space
the unconditional Ritt condition is equivalent to `1-maximal regularity and dually
on a C(K )-space it is equivalent to `∞-maximal regularity. These results use
Grothendieck’s theorem. Finally, we give a discrete analogue of a result of Auscher
et al. [1] characterizing the unconditional Ritt condition on Hilbert spaces.

2. Preliminaries

Suppose −A is the generator of a bounded analytic semigroup on a (complex)
Banach space X . We shall say that A has L p-maximal regularity if the solution of
the abstract Cauchy problem

u′
+ Au = f (t) for all 0 ≤ t <∞,

u(0) = 0

given by

u(t)=

∫ t

0
e−(t−s)A f (s) ds

has the property that u′
∈ L p(R+, X) whenever f ∈ L p(R+, X). This is equivalent to

the requirement that there is a constant C such that(∫
∞

0

∥∥∥∥∫ t

0
Ae−(t−s)A f (s) ds

∥∥∥∥p

dt

)1/p

≤ C‖ f ‖p.

(Note that we have no need of u ∈ L p(R+, X) which is sometimes additionally
required.)

Similarly, suppose that T is a bounded operator. We say that T satisfies Ritt’s con-
dition (or generates a discrete analytic semigroup) [18] if there is a constant C so that

‖(1 − λ)R(λ, T )‖ ≤ C for all |λ| ≥ 1. (2.1)

The following characterization of operators satisfying Ritt’s condition is due to
Nagy and Zemánek [15] and Lyubich [13].

THEOREM 2.1. T satisfies Ritt’s condition (2.1) if and only if T is power-bounded and

sup
n≥1

‖n(T n−1
− T n)‖<∞. (2.2)

Note for future reference that (2.2) implies

sup
n≥1

‖n2(I − T )2T n−1
‖<∞. (2.3)

More generally, if

C = sup ‖n(T n−1
− T n)‖
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then
‖nr (I − T )r T n−1

‖ ≤ Crr for all n = 1, 2, . . . , r = 1, 2 . . . . (2.4)

We say that T has `p-maximal regularity if the solution of the difference equation

un = T un−1 + xn for all n = 1, 2, . . . ,

u0 = 0

has the property that (un − un−1)
∞

n=1 ∈ `p(X) whenever (xn)
∞

n=1 ∈ `p(X). This is
equivalent to the requirement that there exists a constant C such that( ∞∑

n=1

∥∥∥∥ n∑
k=1

T n−k(T − I )xk

∥∥∥∥p)1/p

≤ C

( ∞∑
k=1

‖xk‖
p
)1/p

. (2.5)

This definition was suggested and investigated by Blunck [4] and [5]. It was shown by
Blunck [4] that a necessary condition for T to have `p-maximal regularity for some p
is that T satisfies Ritt’s condition (2.1).

There is a simple connection between these problems.

PROPOSITION 2.2. In order that A has L p-maximal regularity it is necessary and
sufficient that the operator Th = e−h A has `p-maximal regularity uniformly (that is,
with uniform constants) for 0< h <∞.

PROOF. Suppose that 0< h <∞ and that (xn)
∞

n=1 ∈ `p(X). Let

F(t)=

∫ t

0
Ae−(t−s)A f (s) ds

where

f =

∞∑
k=1

xkχ((k−1)h,kh).

Similarly, let

vn =

n∑
k=1

T n−k
h (Th − I )xk for all n = 1, 2, . . . .

Then

F(nh)= −vn

and more generally

F((n − 1)h + τ)= −e−τ Avn−1 + (I − e−τ A)xn for all 0< τ < h.

It follows that

‖F((n − 1)h + τ)‖ ≤ M‖vn−1‖ + (M + 1)‖xn‖ for all 0< τ < h,

where M = supt>0 ‖e−t A
‖.
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Now if we assume that Th has `p-maximal regularity uniformly in h we obtain a
uniform estimate

‖F‖p ≤ C‖ f ‖p,

where C is independent of h and hence A has L p-maximal regularity.
Conversely, assume that T has L p-maximal regularity. Then

vn = Thvn−1 + (Th − 1)xn

= −e−(h−τ)A F((n − 1)h + τ)− xn + e−(h−τ)Axn for all 0< τ < h.

Hence

‖vn‖ ≤ Mh−1/p
(∫ nh

(n−1)h
‖F(s)‖p

)1/p

+ (M + 1)‖xn‖.

Thus ( ∞∑
n=1

‖vn‖
p
)1/p

≤ C Mh−1/p
‖ f ‖p,

which gives a uniform estimate( ∞∑
n=1

‖vn‖
p
)1/p

≤ C

( ∞∑
n=1

‖xn‖
p
)1/p

. 2

The following proposition is essentially contained in [17] but we state the result and
give the brief proof here for completeness.

PROPOSITION 2.3. Let T be a power-bounded operator. Suppose that 1 ≤ p ≤ ∞

and 1/p + 1/q = 1. Then T has `p-maximal regularity if and only if T ∗ has
`q -maximal regularity.

PROOF. Consider the operator S : c00(Z, X)→ `∞(Z, X) given by

(S(x j ) j∈Z)n =

n∑
k=−∞

T n−k(T − I )xk .

If 1 ≤ p <∞, T has `p-maximal regularity if and only if S extends to a bounded
operator S : `p(Z, X)→ `p(Z, X). If p = ∞ we must consider S as an operator
S : c0(Z, X)→ `∞(Z, X).

The formal adjoint S∗
: c00(Z, X)→ `∞(Z, X∗) is given by

(S∗(x∗

j ) j∈Z)n =

∞∑
k=n

(T k−n(T − I ))∗x∗

k .

If we denote by U : `∞(Z, X∗)→ `∞(Z, X∗) the map

U(x∗

j ) j∈Z = (x∗

− j ) j∈Z,

it is clear that S∗
= USU . From this it is easy to check the result. 2
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3. Operators with `1 or `∞-maximal regularity

THEOREM 3.1. Let T be a power-bounded operator on a Banach space X. Then the
following conditions on T are equivalent:

(i) T has `1-maximal regularity;
(ii) there is a constant C such that

∞∑
k=1

‖(T k
− T k−1)x‖ ≤ C‖x‖ for all x ∈ X. (3.1)

PROOF. Assume that (i) holds. Then (ii) follows trivially from considerations of the
sequence x1 = x and xk = 0 for k ≥ 2 in (2.5).

Assume that (ii) holds. If (xk)
∞

k=1 is any sequence,

∞∑
n=1

n∑
k=1

‖T n−k(I − T )xk‖ =

∞∑
j=1

∞∑
k=1

‖T j−1(I − T )xk‖ ≤ C
∞∑

k=1

‖xk‖,

that is, we have (2.5) for p = 1. 2

Before proving the corresponding result for `∞-maximal regularity, let us record a
lemma that we will use several times.

LEMMA 3.2. Let T be a power-bounded operator on a Banach space X. Suppose
that x ∈ X is such that limn→∞ ‖T n−1(I − T )x‖ = 0. Then for x∗

∈ X∗,

∞∑
k=1

|x∗(T k−1(I − T )x)| ≤ 4
( ∞∑

k=1

k‖(T ∗)k−1(I − T ∗)x∗
‖

2
)1/2

×

( ∞∑
k=1

k‖T k−1(I − T )x‖
2
)1/2

(3.2)

and

∞∑
k=1

|x∗(T k−1(I − T )x)| ≤ 4
( ∞∑

k=1

‖(T ∗)k−1(I − T ∗)x∗
‖

)
sup
k≥1

‖kT k−1(I − T )x‖.

(3.3)

PROOF. Since limn→∞ x∗(T n−1(I − T )x)= 0,

x∗(T k−1(I − T )x)=

∞∑
j=k

x∗(T j−1(I − T )2x).
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Hence
∞∑

k=1

|x∗(T k−1(I − T )x)| ≤

∞∑
k=1

k|x∗(T k−1(I − T )2x)|

≤

∞∑
k=1

2k|x∗(T 2k−1(I − T )x)|

+

∞∑
k=1

(2k − 1)|x∗(T k−2(I − T )x)|.

Now

2k|x∗((I − T )2T 2k−1x)| ≤ 2k‖((I − T )T k)∗x∗
‖‖(I − T )T k−1x‖

and

(2k − 1)|x∗((I − T )2T 2k−2x)| ≤ (2k − 1)‖((I − T )T k−1)∗x∗
‖‖(I − T )T k−1x‖.

Then (3.2) and (3.3) follow from the Cauchy–Schwarz inequality and the trivial case
of Hölder’s inequality. 2

THEOREM 3.3. Let T be a power-bounded operator. Then the following conditions
are equivalent:

(i) T has `∞-maximal regularity;
(ii) T satisfies Ritt’s condition (2.1) and there is a constant C so that

‖x‖ ≤ C

(
sup
n≥1

n‖(T n
− T n−1)x‖ + lim sup

n→∞

‖T nx‖

)
. (3.4)

PROOF. We prove that (i) implies (ii). Suppose that T has `∞-maximal regularity;
then T ∗ has `1-maximal regularity and satisfies (3.1) for some constant C . In
particular, T ∗ and T satisfy Ritt’s condition. It follows from (3.3), for any x∗

∈

X∗, x ∈ X and N ∈ N, that

|x∗(x − T nx)| ≤ C‖x∗
‖ sup

k≥1
k‖T k−1(I − T )x‖.

Hence

‖x − T nx‖ ≤ C sup
k≥1

k‖T k−1(I − T )x‖

and (3.4) follows.
Assume that (ii) holds. Suppose that ‖xk‖ ≤ 1 for 1 ≤ k ≤ n and let y =∑n
k=1(T

k
− T k−1)xk . For any m ≥ 1,

(T m
− T m−1)y =

n∑
k=1

(T − I )2T m+k−2xk,

so that we have an estimate (using the analyticity of the semigroup and (2.3))
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‖(T m
− T m−1)y‖ ≤ C1

n∑
k=1

1

(m + k)2
≤ C2m−1

for absolute constants C1, C2.
On the other hand,

T m y = (T m
− T m−1)

n∑
k=1

T k xk

so that limm→∞ T m y = 0. Using (ii) we see that ‖y‖ ≤ CC2 and this proves (i). 2

The continuous analogue of the next theorem is well known (see, for example,
[8, Theorem 7.1]).

COROLLARY 3.4. Suppose that T is an operator that has either `1 or `∞-maximal
regularity. Then T has `p-maximal regularity for every 1< p <∞.

PROOF. We need only consider the case where T has `∞-maximal regularity, since,
once this case is done, the other case follows by duality. Suppose that (xk)

∞

k=1 ∈ c00(X)
and

yn =

n∑
k=1

T n−k(T − I )xk for all 1 ≤ n <∞.

Then, for any j ,

‖ jT j−1(I − T )yn‖ =

∥∥∥∥ n−1∑
k=0

jT k+ j−1(I − T )2xn−k

∥∥∥∥
≤ C

n−1∑
k=0

j

(k + j)2
‖xn−k‖

≤ C max
1≤r≤n

1
r

n∑
k=n−r+1

‖xk‖.

Now by Theorem 2.1, since lim j→∞ T j yn = 0,

‖yn‖ ≤ C max
1≤r≤n

1
r

n∑
k=n−r+1

‖xk‖

and so ( ∞∑
n=1

‖yn‖
p
)1/p

≤ C ′

( ∞∑
n=1

‖xn‖
p
)1/p

by the boundedness of the discrete maximal function on `p. 2
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We next prove the discrete analogues of the results of Baillon [2] and Guerre-
Delabrière [9].

THEOREM 3.5. Suppose that either:

(a) X contains no copy of c0 and T has `∞-maximal regularity; or
(b) X contains no complemented copy of `1 and T has `1-maximal regularity.

Then X splits as a direct sum X1 ⊕ X2 of T -invariant subspaces such that T |X1 = IX1

and the spectral radius of T |X2 is strictly less than one.

PROOF. (a) We first estimate ‖
∑n

k=1ak(T k−1
− T k)‖ if |ak | ≤ 1. By Theorem 3.3(ii),

for a suitable constant C ,∥∥∥∥ n∑
k=1

ak(T
k−1

− T k)

∥∥∥∥
≤ C

(
sup
m≥1

m

∥∥∥∥ n∑
k=1

ak T k+m−2(I − T )2
∥∥∥∥ + lim sup

m→∞

∥∥∥∥ n∑
k=1

ak(T
m+k−1

− T m+k)

∥∥∥∥)
.

The second term reduces to 0 and the first is estimated by

C sup
m≥1

sup
k≥1

m

(m + k − 1)2
≤ C ′

for some suitable C ′. Thus for each x ∈ X the series
∑

∞

k=1(T
k−1

− T k)x is a weakly
unconditionally Cauchy series and by the Bessaga–Pełczyński theorem [3] the series
converges in norm. Hence Px = limn→∞ T nx exists for all x ∈ X and P is a bounded
projection onto the eigenspace X1 = {x ∈ X | T x = x}. Now (I − T )X is dense in
the complementary space X2 = (I − P)X since T nx → 0 for x ∈ X2. We therefore
deduce that

lim
n→∞

n(I − T )T n−1x = 0 for all x ∈ X.

On X2 the map x → (n(T n−1x − T nx))∞n=1 is thus an embedding of X2 into
c0(X2). If X2 contains no copy of c0 a standard gliding hump argument shows that
there exist N and a constant C1 so that

‖x‖ ≤ C1 max
1≤k≤n

k‖T k−1x − T k x‖ for all x ∈ X2.

This implies that

‖T m x‖ ≤ C1 max
1≤k≤n

k‖T m+k−1x − T m+k x‖ ≤ C2

(
max

1≤k≤n

k

m + k

)
‖x‖.

Thus lim sup ‖T m
‖< 1.

(b) If T has `1-maximal regularity then
∑

∞

k=1(T
k−1

− T k)x converges absolutely
for x ∈ X . Thus the projection Px = limn→∞ T nx is well defined. We can split
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X = X1 ⊕ X2 so that T |X1 = IX1 and X2 is T -invariant with limn→∞ T nx = 0 for
x ∈ X2.

To complete the proof, we will reduce to the situation where limn→∞ T nx = 0
for x ∈ X . If X contains no complemented copy of `1 then c0 does not embed into
X∗. Since T ∗ has `∞-maximal regularity we can use (a). Suppose T ∗x∗

= x∗; then
x∗(x − T x)= 0 for x ∈ X and this implies that x∗

= 0. Hence by (a), T ∗ and hence
T has spectral radius less than one. 2

THEOREM 3.6. Let −A be the generator of a bounded analytic semigroup. The
following conditions on A are equivalent:

(i) A has L1-maximal regularity;
(ii) there is a constant C so that∫

∞

0
‖Ae−t Ax‖ dt ≤ C‖x‖ for all x ∈ X. (3.5)

PROOF. We prove that (i) implies (ii). If A has maximal regularity then e−h A has
`1-maximal regularity uniformly for h > 0, so that

∞∑
k=0

‖(e−kh A
− e−(k−1)h A)x‖ ≤ C‖x‖ for all h > 0, x ∈ X. (3.6)

Hence letting h → 0, we obtain (3.5).
Assume that (ii) holds. Equation (3.5) trivially implies (3.6). 2

THEOREM 3.7. Let −A be the generator of a bounded analytic semigroup. The
following conditions on A are equivalent:

(i) A has L∞-maximal regularity;
(ii) there is a constant C so that

‖x‖ ≤ C sup
t>0

‖t Ae−t Ax‖ + lim sup
t→∞

‖e−t Ax‖ for all x ∈ X. (3.7)

REMARK. If A is has dense range then limt→∞ e−t Ax = 0 for every x ∈ X and we
can drop the last term.

PROOF. Assume that (i) holds. Then (ii) is very similar to the preceding theorem
case (i).

Assume that (ii) holds. Observe that if f ∈ L∞(R+, X) with ‖ f ‖∞ ≤ 1, then∥∥∥∥∫ t

0
Ae−(t−s)A f (s) ds

∥∥∥∥ ≤ C sup
τ>0

∥∥∥∥∫ t

0
τ A2e−(t+τ−s)A f (s) ds

∥∥∥∥
≤ C1 sup

τ>0

∫ t

0

τ

(t + τ − s)2
ds

≤ C2,

where C1, C2 are suitable constants depending on A. 2
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At this point let us remark that it is now easy to recover the results of Da Prato
and Grisvard [7] on L∞-maximal regularity in real interpolation spaces. Da Prato
and Grisvard consider maximal regularity on a finite interval which is equivalent to
maximal regularity on the infinite interval for s + A for some s > 0. Thus it is enough
to consider the case of an invertible operator.

Let us consider the real interpolation space (X, Dom(A))(θ,∞) for 0< θ < 1 which
is defined by the norm

‖x‖(θ,∞) = sup
t>0

t−θK (t, x)

where

K (t, x)= K (t, x; X, Dom(A))= inf{‖y‖ + t‖Az‖ : y + z = x}.

The space (X, Dom(A))(θ,∞) can be given several equivalent norms, see [7] and [12];
we will need one of these which we now describe for completeness. If x = y + z,

‖t Ae−t Ax‖ ≤ ‖t Ae−t A
‖‖y‖ + ‖e−t A

‖‖t Az‖,

so that

‖t Ae−t Ax‖ ≤ C K (t, x).

On the other hand,

K (t, x) ≤ ‖x − e−t Ax‖ + ‖t Ae−t Ax‖

≤

∫ t

0
‖Ae−s Ax‖ ds + ‖t Ae−t Ax‖.

If t ≥ 1, then

K (t, x)≤ ‖x‖,

while if 0< t < 1, then

K (t, x)≤ 2θ−1tθ sup
0<s<1

s1−θ
‖Ae−s Ax‖.

We may pick τ > 0 so that ‖e−τ A
‖< 1/2. Then

‖x‖ ≤ ‖e−τ Ax‖ +

∫ τ

0
‖Ae−s Ax‖ ds

so that

‖x‖ ≤ 2θ−1τ θ sup
0<s<τ

s1−θ
‖Ae−s Ax‖.
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Combining these remarks, we see that ‖ · ‖θ,∞ is equivalent to

‖x‖0 = sup
t>0

t1−θ
‖Ae−t Ax‖.

Now −A generates a bounded analytic semigroup on the space Yθ which is defined
to be the closure of Dom(A) in (X, Dom(A))(θ,∞).

THEOREM 3.8 (Da Prato and Grisvard [7]). A has L∞-maximal regularity on Yθ .

PROOF. For x ∈ Y ,

sup
t>0

‖Ae−t Ax‖0 = sup
s,t>0

s1−θ t‖A2e−(s+t)Ax‖.

Hence for a suitable constant,

sup
t>0

t2−θ
‖A2e−t Ax‖ ≤ C sup

t>0
‖Ae−t Ax‖0.

Now

‖Ae−t Ax‖ ≤

∫
∞

t
‖A2e−s Ax‖ ds ≤ (1 − θ)−1tθ−1 sup

t>0
t2−θ

‖A2e−t Ax‖,

so that

‖x‖0 ≤ C(1 − θ)−1 sup
t>0

‖Ae−t Ax‖0. 2

4. The unconditional Ritt condition

In this section we study the discrete analogue of the H∞-calculus for sectorial
operators which was introduced by McIntosh [14].

Before proceeding, we develop some basic ideas which will be useful later. Assume
that T satisfies the Ritt condition. For any m ≥ 0 we consider the operator Vm defined
by

Vm =

∞∑
k=0

ck(T
km

− T (k+1)m) (4.1)

where

ck =
(2k)!

22k(k!)2
.

Note that there is a constant M so that |ck | ≤ M/
√

k for k ≥ 1, so that it follows from
(2.2) that the series in (4.1) converges absolutely. Of course V0 = 0.

LEMMA 4.1. For m ≥ 1 we have V 2
m = I − T m .
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PROOF. Consider the function

Fm(t)=

∞∑
k=0

ck(t
km T km

− t (k+1)m T (k+1)m) for all 0 ≤ t ≤ 1.

Since

tkm T km
− t (k+1)m T (k+1)m

= tkm(T km
− T (k+1)m)

+ (tkm
− t (k+1)m)T (k+1)m) for all 0 ≤ t ≤ 1,

it follows that the series on the right converges uniformly to Fm(t) for 0 ≤ t ≤ 1. If
0< t < 1,

Fm(t)= (I − tm T m)

∞∑
k=0

ck tkm T km,

and as

(1 − z)−1/2
=

∞∑
k=0

ck zk for all |z|< 1,

we deduce that

Fm(t)
2
= I − tm T m for all 0< t < 1.

Letting t tend to 1, and using uniform convergence, we deduce that

V 2
m = I − T m . 2

LEMMA 4.2. Suppose that T satisfies the Ritt condition and define

ρk(x)= max
2k

−1≤u≤2k+1
−1

2k
−1≤v≤2k+2

−1

‖(T u
− T v)x‖ for all x ∈ X, k = 0, 1, 2, . . .

and

σk(x)= max
2k−1≤n<2k+1−1

‖T n
− T n+1x‖ for all x ∈ X, k = 0, 1, 2, . . . .

Then ρ0(x)= σ0(x)= ‖(I − T )x‖ and, in general,

ρk(x)≤ 2kσk(x)+ 2k+1σk+1(x) for all x ∈ X, k = 0, 1, 2, . . . , (4.2)

2kσk(x)≤ C(ρk(x)+ ρk−1(x)) for all x ∈ X, k = 1, 2, . . . , (4.3)

for a suitable constant C.
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PROOF. Inequality (4.2) is trivial. Next, suppose that 2k
− 1 ≤ m < n < 2k+1

− 1
where k ≥ 1. Then pick m′ with m − m′

≥ 2k−1 and 2k−1
− 1 ≤ m′ < 2k

− 1. Then

(T m
− T m+1)x − (T n

− T n+1)x = T m−m′

(I − T )(T m′

− T m′
+n−m)x,

so that if C1 = supn≥1 n‖T n
− T n+1

‖, then

‖(T m
− T m+1)x − (T n

− T n+1)x‖ ≤ 2C12−k
‖(T m′

− T m′
+n−m)x‖

≤ 2C12−kρk−1(x).

Summing gives

‖(T 2k
−1

− T 2k+1
−1)x − 2k(T n

− T n+1)x‖ ≤ 2C3ρk−1(x),

and so

2kσk(x)≤ 2C3ρk−1(x)+ ρk(x). 2

Let us say that an operator T satisfies the unconditional Ritt condition if there is a
constant C such that∥∥∥∥(I − T )

N∑
k=0

ak T k
∥∥∥∥ ≤ C max

0≤k≤N
|ak | for all a0, . . . , aN ∈ C, N = 1, 2, . . . .

(4.4)
This is easily seen to be equivalent to the condition

∞∑
k=1

|x∗(T k−1(I − T )x)| ≤ C‖x‖‖x∗
‖ for all x ∈ X, x∗

∈ X∗. (4.5)

The unconditional Ritt condition is a discrete analogue of the existence of an
H∞-calculus with angle less than π/2 for a sectorial operator (see [14] and [6]). We
will discuss the connection at the end of the paper.

PROPOSITION 4.3. If T satisfies the unconditional Ritt condition (4.4) then T satisfies
the Ritt condition (2.1).

PROOF. From (4.4) we deduce that

‖(I − T )(I − λ−1T )−1
‖ ≤ C for all |λ|> 1,

that is,

‖(I − T )R(λ, T )‖ ≤ C |λ|−1 for all |λ|> 1.

Hence

‖(1 − λ)R(λ, T )‖ ≤ 1 + C |λ|−1 for all |λ|> 1. 2

Now let (rk)
∞

k=0 and (mk)
∞

k=0 be any pair of sequences of integers such that

0 ≤ mk < 2k+3
− 1, 2k

− 1 ≤ rk < 2k+1
− 1 for all k = 0, 1, . . . . (4.6)
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LEMMA 4.4. Suppose that T satisfies the unconditional Ritt condition. Then there is
a constant C such that for any pair of sequences (rk)

∞

k=0 and (mk)
∞

k=0 satisfying (4.6),∥∥∥∥ N∑
k=0

ak T rk Vmk

∥∥∥∥ ≤ C max
0≤k≤N

|ak |. (4.7)

PROOF. Suppose that max0≤k≤N |ak | ≤ 1 and x ∈ X and x∗
∈ X∗ with ‖x‖ = ‖x∗

‖

= 1. Then∣∣∣∣x∗

( N∑
k=0

ak T rk Vmk x

)∣∣∣∣ ≤

N∑
k=0

|x∗(T rk Vmk x)|

≤

N∑
k=0

∞∑
l=0

cl |x
∗((T rk+mk l x − T rk+mk(l+1))x)|

=

∞∑
l=1

d j |x
∗((T j

− T j+1)x)|,

where

d j =

∑
rk≤ j

c[ j−rk/mk ].

Assume that 2s
− 1 ≤ j < 2s+1

− 1. Then rk ≤ j implies that k ≤ s. If k ≤ s − 2,
then [ j − rk/mk]> 2s−1/mk ≥ 2s−4−k . Thus,

d j ≤ 2 + M
s−2∑
k=0

2(k−s+4)/2.

Thus we get an estimate

d j ≤ C1 M

where C1 is an absolute constant. Hence∣∣∣∣x∗

( N∑
k=0

ak T rk Vmk x

)∣∣∣∣ ≤ C0C1 M

where C0 is the constant in (4.4) and thus∥∥∥∥ N∑
k=0

ak T rk Vmk

∥∥∥∥ ≤ C0C1 M. 2

The following result is the discrete analogue of a similar result for sectorial
operators with an H∞-calculus proved in [11]. We recall that a Banach space X is
called a GT-space (for Grothendieck theorem) if every bounded operator T : X → `2
is absolutely summing. See [16].
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THEOREM 4.5. Let X be a GT-space (for example, X = L1, `1 or X = L1/H1). Let
T : X → X be any operator. Then T has `1-maximal regularity if and only if T
satisfies the unconditional Ritt condition.

PROOF. Assume that T satisfies the unconditional Ritt condition (4.4). Let C1 be the
constant in (4.7).

Suppose that (uk)
∞

k=0 and (vk)
∞

k=0 are two sequences of natural numbers such that

2k
− 1 ≤ uk ≤ 2k+1

− 1 and 2k
− 1 ≤ vk ≤ 2k+2

− 1.

For k ≥ 0 we write uk+1 = rk + sk where 0 ≤ rk − sk ≤ 1 and mk = vk − uk .
Thus 2k

+ 1 ≤ rk, sk ≤ 2k+1
− 1 and 0 ≤ mk < 2k+3, that is, (rk)

∞

k=0 and (mk)
∞

k=0
satisfy (4.6).

At this point we use the hypothesis that X is a GT-space, which means that there is a
constant K so that for any operator T : X → `2 we have π1(T )≤ K‖T ‖ where π1(T )
is the usual absolutely summing norm. For any x∗

0 , x∗

1 , . . . , x∗

N ∈ X∗ with ‖x∗

k ‖ ≤ 1
and any a0, . . . , aN ∈ C with

∑N
k=0 |ak |

2
≤ 1, consider the operator S : X → `N+1

2
defined by

Sx = (ak x∗

k (x))
N
k=0.

Then ‖S‖ ≤ 1 and so π1(S)≤ K . Hence for any x ∈ X ,

N∑
k=0

‖ST rk Vmk x‖ ≤ K C1‖x‖.

In particular,

N∑
k=0

|ak ||x
∗

k (T
rk Vmk x)| ≤ K C1‖x‖.

Since this is true for all such choices of (ak)
N
k=0 and (x∗

k )
N
k=0,( N∑

k=0

‖T rk Vmk x‖
2
)1/2

≤ K C1‖x‖ for all x ∈ X.

Now, for any fixed x∗

0 , . . . , x∗

N ∈ X∗ with ‖x∗

k ‖ ≤ 1, consider the operator R : X →

`N+1
2 defined by

Rx = (x∗

k (T
sk Vmk x))N

k=0

and observe that

π1(R)≤ K‖R‖ ≤ K 2C1.



360 N. J. Kalton and P. Portal [16]

It thus follows that

N∑
k=0

‖RT rk Vmk x‖ ≤ K 2C2
1‖x‖ for all x ∈ X,

and, as before,

N∑
k=0

|x∗

k (T
rk+sk V 2

mk
x)| ≤ K 2C2

1‖x‖ for all x ∈ X.

Again this implies that

N∑
k=0

‖T uk (I − T mk )x‖ ≤ K 2C2
1‖x‖ for all x ∈ X.

We conclude that if (uk)
∞

k=0 and (vk)
∞

k=0 satisfy 2k
≤ uk < 2k+1 and uk ≤ vk ≤ 2k+2,

then

∞∑
k=1

‖(T uk − T vk )x‖ ≤ C2‖x‖ for all x ∈ X,

where C2 = K 2C2
1 .

Thus we have an estimate

∞∑
k=1

ρk(x)≤ C2‖x‖ for all x ∈ X,

which implies by Lemma 4.2 an estimate

∞∑
k=0

2kσk(x)≤ C3‖x‖ for all x ∈ X,

and hence that

∞∑
k=1

‖T k−1x − T k x‖ ≤ C3‖x‖.

The result now follows by Theorem 3.1.
The converse direction is trivial. 2

The dual result is now easy.

THEOREM 4.6. Let X be a Banach space such that X∗ is a GT-space (for example, X
is a C(K ) space or the disc algebra). If T is a power-bounded operator on X then T
has `∞-maximal regularity if and only if T satisfies the unconditional Ritt condition.
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Finally we establish a corresponding result for Hilbert spaces. The continuous
analogue which we discuss later is due to McIntosh [14]. See also further discussion
in [6] and [1].

THEOREM 4.7. Let T be a power-bounded operator on a Hilbert space H. Then T
satisfies the unconditional Ritt condition if and only if there is a constant C such that

C−1
‖x‖ ≤

( ∞∑
k=1

k‖T k−1x − T k x‖
2
)1/2

+ lim sup
n→∞

‖T nx‖ ≤ C‖x‖ for all x ∈ H.

(4.8)

PROOF. Suppose that T satisfies the unconditional Ritt condition with constant C0.
We first observe that for every x ∈ H the series

∑
∞

k=1(T
k−1x − T k x) is weakly

unconditionally Cauchy and hence unconditionally convergent to some Px where P
is a projection whose kernel is the eigenspace {x | T x = x}. We may therefore easily
reduce to the case where limn→∞ T nx = 0 for every x ∈ H .

Then, for any pair of sequences (uk)
∞

k=0, (vk)
∞

k=0 with 2k
− 1 ≤ uk ≤ 2k+1

− 1 and
2k

− 1 ≤ vk ≤ 2k+2
− 1, we have an estimate∥∥∥∥ N∑

k=0

εk(T
uk − T vk )

∥∥∥∥ ≤ 2C0 for all εk = ±1, k = 1, 2, . . . , N ,

and it follows from the generalized parallelogram law that( ∞∑
k=0

‖(T uk − T vk )x‖
2
)1/2

≤ 2C0‖x‖ for all x ∈ H. (4.9)

Thus ( ∞∑
k=0

ρk(x)
2
)1/2

≤ 2C0‖x‖ for all x ∈ H. (4.10)

Now by Lemma 4.2 we can deduce an estimate( ∞∑
k=0

k‖T k−1x − T k x‖
2
)1/2

≤ C1‖x‖ for all x ∈ H,

for a suitable constant C1. Thus the right-hand side of (4.8) follows. Note that the
same inequality also holds for the adjoint T ∗, that is,( ∞∑

k=0

k‖(T ∗)k−1x − (T ∗)k x∗
‖

2
)1/2

≤ C1‖x∗
‖ for all x∗

∈ H.
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We now turn to the left-hand estimate. If x ∈ H , pick x∗
∈ H∗ with ‖x∗

‖ = 1 and
x∗(x)= ‖x‖. Then, since we assume limn→∞ ‖T nx‖ = 0,

‖x‖ = x∗(x)

≤

∞∑
k=1

|x∗(T k−1(I − T ))x |

≤ 4C1

( ∞∑
k=0

k‖T k−1x − T k x‖
2
)1/2

by an application of (3.2) combined with (4.9) and (4.10).

We now turn to the converse. Assuming (4.8), let us first show that T satisfies
the Ritt condition. Note that we have limn→∞ ‖T n−1(I − T )x‖ = 0 for every x .
Therefore

‖nT n−1(I − T )x‖
2

≤ C2
∞∑

k=1

n2k‖T n+k−2(I − T )2x‖
2

≤ C2
∞∑

k=1

k3
‖T k−1(I − T )2x‖

2

≤ 6C2
∞∑

k=1

k∑
j=1

j (k + 1 − j)‖T k−1(I − T )2x‖
2

= 6C2
∞∑
j=1

∞∑
k=1

jk‖T j+k−2(I − T )2x‖
2

≤ 6C4
∞∑
j=1

‖T j−1(I − T )x‖
2

≤ 6C6
‖x‖

2,

so that

‖T n−1(I − T )‖ ≤
√

6C3/n.

Thus T satisfies the Ritt condition (2.1).

Now suppose that (xk)
∞

k=1 is any finitely nonzero sequence in H . Let

y =

∞∑
k=1

k1/2(T k−1
− T k)xk .
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Note that limn→∞ T n y = 0. Then

‖ j1/2(T j−1
− T j )y‖ ≤

∞∑
k=1

( jk)1/2‖T j+k−2(I − T )2xk‖

≤ C0

∞∑
k=1

( jk)1/2

( j + k)2
‖xk‖

≤ C0

∞∑
k=1

1
j + k

‖xk‖.

The matrix a jk = (1/( j + k)) j,k defines a bounded operator on `2 by Hilbert’s
inequality. Thus, for a suitable constant C1,( ∞∑

j=1

j‖(T j−1
− T j )y‖

2
)1/2

≤ C1

( ∞∑
k=1

‖xk‖
2
)1/2

.

We conclude from (4.8) that

‖y‖ ≤ C1

( ∞∑
k=1

‖xk‖
2
)1/2

.

Now suppose that x∗
∈ H∗. For N ∈ N, pick x1, . . . , xN with

‖xk‖ = 1 and x∗(T k−1(I − T )x)= ‖(T ∗)k−1(I − T ∗)x∗
‖.

Then for any scalars a1, . . . , aN ,

N∑
k=1

akk1/2
‖(T ∗)k−1(I − T ∗)x∗

‖ ≤ ‖x∗
‖

∥∥∥∥ N∑
k=1

akk1/2T k−1(I − T )xk

∥∥∥∥
≤ C1‖x∗

‖

( N∑
k=1

|ak |
2
)1/2

.

Hence ( ∞∑
k=1

k‖(T ∗)k−1(I − T ∗)x∗
‖

2
)1/2

≤ C1‖x∗
‖.

At this point we can appeal to (3.2):
∞∑

k=1

|x∗(T k−1(I − T )x)| ≤ C2‖x‖‖x∗
‖ for all x ∈ H, x∗

∈ H∗.

This implies the unconditional Ritt condition. 2

Now suppose again that −A is the generator of a bounded analytic semigroup on a
Banach space X , and suppose also for convenience that A has dense domain and range
(that is, A is sectorial). Then limt→∞ ‖e−t Ax‖ = 0 for x ∈ X . The continuous version
of the unconditional Ritt condition is
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∞

0
|x∗(Ae−t Ax)| dt ≤ C‖x‖‖x∗

‖ for all x ∈ X, x∗
∈ X∗. (4.11)

Let us call this the continuous unconditional Ritt condition. If (4.11) holds then e−t A

uniformly satisfies the unconditional Ritt condition.
We recall that A has an H∞(6ψ )-calculus where 6ψ = {z : |arg z|<ψ} if f (A) is

a bounded operator for every f ∈ H∞(6ψ ); see [6] for more details. Let ω(A) be the
infimum of all φ so that we have the resolvent estimates

‖λR(λ, A)‖ ≤ C, |arg z| ≥ φ,

and let ωH (A) be the infimum of all φ so that A has an H∞(6φ)-calculus.
It is easy to show that if ωH (A) < π/2 then A satisfies the continuous unconditional

Ritt condition.
Conversely, it follows from [6, Theorem 4.5] that if A satisfies the continuous

unconditional Ritt condition, then A has an H∞(6ψ )-calculus as long as ψ > π/2;

thus ωH (A)≤ π/2. If X is a Hilbert space, then results of McIntosh [14] imply
that ωH (A)= ω(A) < π/2. One cannot apply this argument for an arbitrary Banach
space [10]. Thus it is open whether the continuous Ritt condition is equivalent to
ωH (A) < π/2.

It is easy to prove continuous versions of Theorems 4.5, 4.6 and 4.7 as in
Theorem 3.6.

THEOREM 4.8. Let A be the generator of a bounded analytic semigroup with dense
domain and range. Then:

(i) if X is a GT-space then A satisfies the continuous unconditional Ritt condition if
and only if there is a constant C so that

C−1
‖x‖ ≤

∫
∞

0
‖Ae−t Ax‖ dt ≤ C‖x‖ for all x ∈ X;

(ii) if X∗ is a GT-space then A satisfies the continuous unconditional Ritt condition
if and only if there is a constant C so that

C−1
‖x‖ ≤ sup

t>0
t‖Ae−t Ax‖ ≤ C‖x‖ for all x ∈ X;

(iii) if X is a Hilbert space then A satisfies the continuous unconditional Ritt
condition if and only if there is a constant C so that

C−1
‖x‖ ≤

(∫
∞

0
t‖Ae−t Ax‖

2 dt

)1/2

≤ C‖x‖ for all x ∈ X.

In view of our remarks above, (iii) is simply a special case of the result of
McIntosh [14] on the equivalence of the H∞-calculus with certain quadratic estimates.
Similarly, (i) is a close relative of [11, Proposition 7.2].
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