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Abstract

We prove that the weak dual greedy algorithm converges in any subspace of a quotient
of L, when 1<p<co.
© 2003 Elsevier Inc. All rights reserved.

A subset D of a (real) Banach space X is called a dictionary if

(i) D is normalized i.e. if ge D implies ||g|| = 1.
(i) D is symmetric i.e. D = —D.
(i) D is fundamental i.e. [D] = X.

Given xeX we are interested in algorithms which generate a sequence of
approximations by n-term linear combinations of members of the dictionary. Many
examples of such algorithms have been introduced and studied in approximation
theory. We refer to the paper of Temlyakov [11] for a survey of possible algorithms.
A desirable feature of a given algorithm is that the sequence of approximations
always converge to x (i.e. the algorithm converges). Surprisingly, relatively few
general convergence theorems are known for most of the basic algorithms available.
In this paper we consider the so-called weak dual greedy algorithm (WDGA).
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The weak dual greedy algorithm is a natural generalization to Banach spaces of
the so-called pure greedy algorithm (PGA) and its modification the weak greedy
algorithm (WGA) for Hilbert spaces. The (PGA) was introduced and first studied by
Huber [3]; its convergence was shown by Jones [4]. For the fact that the (WGA)
converges in a Hilbert space see [8]; more general results are given in [9] and [7]. Very
little is known about the convergence of the (WDGA) for an arbitrary dictionary in a
Banach space; see [2]. In [11] it is conjectured that the (WDGA) converges whenever
X is a uniformly smooth Banach space with power-type modulus of smoothness. Our
main theorem in this paper is that for any subspace of a quotient of L, when
1<p< oo the (WDGA) converges for any dictionary, thus proving a special case of
the conjecture in [11]. As noted by one of the referees the convergence of the
(WDGA) in L, for 1<p<oo was previously unknown even for the dictionary
consisting of the Haar basis.

For any xe X we define the descent rate associated to the dictionary D by

—|]x —t . —lx—t
o) — sup sup I =0l el = el 0
t>0 geD t geD 10+ t
By the Hahn—Banach theorem
pp(x) = sup sup x*(g). (2)
bell=1 oep
x*(x) = [Ix|

We will usually deal with Banach spaces with a Gateaux differentiable norm, i.e.
such that for each xe X\{0} there is a unique x* € X with x*(x) = ||x|| and ||x*|| = 1.
We denote this functional by F,. The map x— F, is norm to weak”*-continuous on
X\{0}; see [1, p. 7]. We set Fy = 0 for notational convenience. Thus in this case we
have
pp(x) = sup Fi(g). (3)
geD
Suppose X has a Gateaux differentiable norm. Let us describe the weak dual
greedy algorithm (WDGA) with parameter 0 <c< 1. Suppose xe X. We construct a
sequence (g,),-, with g,€D and a sequence (7,),-, of reals with #,>0. Let xo = x
and construct (x,),~o, (gn),—» (ta),—; inductively as follows. For each n>1 pick
gn€D so that

F,  (gn)Zcpp(xn-1)- 4)
Pick #,>0 so that

[[Xn-1 = tugnl| = r,n;%)l |[Xn—1 — tgnll- (5)

Finally set

Xp = Xp—1 — lnGn- (6)
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Thus the n-term approximation to x is given by > ;_,%gx and the error is given by
x,. The (WDGA) is said to converge at x if lim,,_, ,,x, = 0 and hence x = Zf: 1 tnGn-
The (WDGA) (with parameter ¢) is said to converge if it converges for every xe X.

Let us remark that Temlyakov [11] considers this algorithm for a sequence of

parameters (c¢,),-, with ¢, >0 replacing c¢. Thus in place of (4) one has

Fy,  (gn) = cnpp(Xn-1)- (7)

A necessary and sufficient condition in Hilbert spaces for convergence of the
(WDGA) with a sequence (c,),~, of parameters is given in [10].

Lemma 1. Let X be a Banach space with a Gateaux differentiable norm and let D be a
dictionary in X. Suppose x = xoe X and 0<c<1. Suppose further that (x,),—o, (9n) ey
and (1), are sequences with g, € D, t,>0 which satisfy (4) and (6) but not necessarily
(5). Suppose that

MZC[,D(X”_I) n>1. (8)
n

Then if Y2 1ty = o0 we have lim,,_, ,,x, = 0 and

0
X = Z tgn-
n=1

Proof. Let s, = t; + --- + t,. Then we note that

Sy — 1
Z log =—00
n=2 Sn
and so
0 E_
=1 n
Now since ||x,|| is monotone decreasing the series > 7 (|[xu—1|| — [|xal]) is

convergent. We deduce the existence of a sequence (7,) such that

lim Si’lk+1(|‘xnk” — Hxﬂk+1||)

k— o L1

=0.

Let & = supp(xn.). By (8), since s, <s,41, we have limi_ & =0. Note in
particular

lim pD(xl’lk) =0. (9)

k— o0

Now if 0</<n;, — 1

N
Fy,, ( > ?/9/)

J=I+1

53
1

tipp(Xn,) <é.

Mk
j=
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Hence

|E‘cnk(x/) - Hxnk|||<8ka 0<l<nk
Let x* be any weak’-cluster point of the sequence (Fy, );Z;. Then if L=
lim,, -, o || x4 || We have

X*(x)) =L 0</< 0.
If L#0 we will obtain a contradiction. In this case x*#0 and so sup,.p x*(¢g) =
0> 0. But then

limsup sup Fy, (g9)=0.
k—>w geD k

This gives a contradiction to (9). [

The key to the proof of the main theorem is the following simple inequality. If
aeR we write sgn(a) = a/|a| when a#0 and sgn0 = 0.
Lemma 2. Suppose 1 <p< oo. There is C,>0 such that for any real numbers a and b

bla + b’ sgn(a + b) — blal’ " sgn(a)< Gy (la + b — pblal’sgn(a) — |al’).

Proof. By homogeneity it is enough to consider the case @ = 1. Note that |1 + b|’ —
pb — 1=0 with equality only at » = 0. Let

_ b(|1+ b 'sgn(1 +b) — 1)

o(b) = TS0 —p b1 , b+#0.

Then

. 2
[ljli% (p(b) _]_77

lim ¢(b) = 1,

b— o

lim o(b) = 1.

b—>—w

Since the function ¢(b) is continuous these estimates imply an upper bound
¢(b)< C, for all b#0 and the lemma follows. [J

Let us say that a Banach space X with a Gateaux differentiable norm has property
I' if there is a constant 0 <y<1 such that if x,ye X and F,(y) = 0 then

[+ pll =[xl + 7Py () (10)

As pointed out by one of the referees, this condition has been considered previously
in the context of greedy algorithms by Livshits [6, Theorem 1.2] although his
formulation is somewhat different.



M. Ganichev, N.J. Kalton | Journal of Approximation Theory 124 (2003) 89-95 93

We recall that if X is a Banach space and E is a closed subspace then the quotient
space X/E is a Banach space under the norm

[|x + E|| = inf ||x + ¢||.
ecE
If X is reflexive (or more generally if E is reflexive) then the infimum is attained, i.e.
[|x + E|| = min ||x + e]|.
ecE

In the case p>2 the following proposition was essentially proved in [6], Corollary
1.3.

Proposition 3. If'1<p< o0, every quotient of a subspace of L, has property I'.

Proof. We first show that L,(0,1) has property I". Suppose x,yeL,(0,1) and
Fi(y) =0. Then by Lemma 2,

P(EIX(s) + p(5) P sen(x(s) + p(s))
<G (x(5) +¥(5) = X)) + (1 = pCy)p(s)x(s) sen(x(s)).
We have
/ () |(s) P sen(x(s)) ds = 0

and so by integration we have

1
/0 YO)x(s) + ()" sen(x(s) + y(5))ds< G(||x + yI” = [|x]]7).
Thus (noting that ||x + y|| >||x|| since Fy(y) = 0),

1
[l + 3" Feny () = /0 [x(s) + ()" 'sgn(x(s) + y(s))(s) ds
< G(llx + 11" = 11x")
< pGllx +yIP (Ilx + 1l = llxl])

and T follows with y = (pCp)_l.

It is clear property I' passes to subspaces, so we prove it also passes to quotients at
least for reflexive spaces. Suppose X has property I' and is reflexive. Let Y be a
quotient, i.e. ¥ = X/E for some subspace E of X. Let Q: X > Y be the quotient
map x—x+ E. If x,yeY with F,(y) =0, we may pick u,weX so that Qu =
x, Ow=x+y and ||ul|=|x||, |[w|| =I|lx+y||. Note Y also has a Gateaux
differentiable norm and furthermore we have F, = F°Q and F,, = F.;,~Q. Hence
F,(w—u)=F¢(y) =0 and so

[+ 2l = [l = [ull + pE(w =) = [[y]] + 7Fxy ()

and the proposition follows. [
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Theorem 4. Suppose X is a quotient of a subspace of L, for some 1 <p< oo. Then the
(WDGA) converges for any dictionary and any parameter.

Proof. We note that if X is a quotient of a subspace of L, for 1 <p < oo has property
I' by Proposition 3; also the norm on X is Fréchet differentiable since X is uniformly
smooth (this follows quickly from the duality properties of uniform smoothness and
uniform convexity, see [5, p. 61]).

We therefore show that if X has property I and a Fréchet differentiable norm then
the (WDGA) with parameter 0 <c<1 converges for every dictionary D and every
xe X. We shall use the fact that if the norm is Fréchet differentiable then the map
x— F\ is norm-continuous on X\{0} (see e.g. [1, p. 7, Proposition 1.8]).

Let x = x and suppose (x,),—o, (gn)ne; and (z,),-, are selected according to (4),
(5) and (6). If ¢, = 0 for any n then p,(x,—;) =0 and so since D is fundamental,
x, =0 for k=n—1. Thus we consider the case 7,>0 for all n. We note that
Fy, (gn) =0 (by (5)) and so

|[xn—1[| = 1Xul| + 2nFx, ., (9n)
and hence,

Xp— — ||X
<|| n 1|| || n||.

cypp(Xn-1) ;

By Lemma 1 (with ¢ replaced by ¢y) we have lim,_ ,x, =0 if >~ 7, = o0. To
complete the proof we consider the case 7,>0 for all n but >~ ¢, <oo and
lim,_, »x, = x, #0. By the Fréchet differentiability of the norm we have
lim,_, o ||Fy, — Fy, || = 0. Thus lim,_, o ||Fx, — Fy,_,|| = 0. But observe that Fy, (g,) =
0 by (5) and so lim,_, » Fy,_,(g,) = 0. This implies by (4) that lim,_, o, pp(x,—1) =0
and so Fy_(g) =0 for every ge D, which of course contradicts the fact that D is
fundamental. [l

It is possible to glean a little more from this argument. Let us introduce another
algorithm which we call the modified dual greedy algorithm (MDGA) with parameter
0<c<1 as follows. Given xe X let (x,), (g9,) and (#,) be chosen according to (4) and
(6) but with (5) replaced by

Fro i —t,g.(gn) = cFx,_ (gn)- (11)

Thus in the (MDGA) we do not choose ¢, to minimize the error but in general we
make a smaller choice of ¢,, selecting a point at which the rate of decrease of
[|x4—1 — tgu|| has fallen to a fixed fraction of its initial rate of descent.

Theorem 5. Suppose that X is a Banach space with Gateaux differentiable norm and D
is a dictionary in X. Then the (MDGA) converges (for any parameter 0<c<1)
provided either the norm is Fréchet differentiable or D is relatively norm compact.

Proof. The argument is similar to the preceding theorem. Suppose (x,), (g,) and (z,)
are selected according to (4), (11) and (6). As before the case } -, = o is resolved
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by Lemma 1. In fact,
[[Xn—1]] = [ Xa]] =1,Fy, (gn) = Ctannq(gn)>cztnpD(xn—l)~

Thus we can apply Lemma 1 (replacing ¢ by ¢?) to deduce that lim,_, ,,x, = 0.
We can therefore suppose 7,>0 for all n but Y~ t,<oo. We again suppose
lim,,_, X, = X, #0.
Now in either case of the theorem we have
lim sup |Fy,(g9) — Fx, (9)| = 0. (12)
n— oo gGD
If the norm is Fréchet differentiable this follows since the map x— F, is norm
continuous on X\{0}. If D is relatively norm compact it follows since F,, converges
to Fy,_ weak™ by Gateaux differentiability of the norm. This means that
lim sup |[Fx,(9) = Fx,, (9)| =0

n—>om g
and hence
(1 - C) nlingo Fi,_, (gn) =0.

Thus lim, pp(x,) =0 which implies by (12) that pp(x,) =0 which is a
contradiction. [
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