

JOURNAL OF Approximation Theory

Journal of Approximation Theory 124 (2003) 89-95

http://www.elsevier.com/locate/jat

Convergence of the weak dual greedy algorithm in L_p -spaces $\stackrel{\text{theorem}}{\sim}$

M. Ganichev and N.J. Kalton*

Department of Mathematics, University of Missouri, 201 Mathematical Sciences Building, Columbia, MO 65211, USA

Received 15 December 2002; accepted in revised form 26 June 2003

Communicated by Amos Ron

Abstract

We prove that the weak dual greedy algorithm converges in any subspace of a quotient of L_p when 1 .

© 2003 Elsevier Inc. All rights reserved.

A subset D of a (real) Banach space X is called a *dictionary* if

- (i) D is normalized i.e. if $g \in D$ implies ||g|| = 1.
- (ii) D is symmetric i.e. D = -D.
- (iii) D is fundamental i.e. [D] = X.

Given $x \in X$ we are interested in algorithms which generate a sequence of approximations by *n*-term linear combinations of members of the dictionary. Many examples of such algorithms have been introduced and studied in approximation theory. We refer to the paper of Temlyakov [11] for a survey of possible algorithms. A desirable feature of a given algorithm is that the sequence of approximations always converge to x (i.e. the algorithm converges). Surprisingly, relatively few general convergence theorems are known for most of the basic algorithms available. In this paper we consider the so-called weak dual greedy algorithm (WDGA).

 $^{^{\}circ}$ The authors were partially supported by NSF Grants DMS-9870027 and DMS-0244515. *Corresponding author. Fax: +573-882-1869.

E-mail addresses: ganichev@math.missouri.edu (M. Ganichev), nigel@math.missouri.edu (N.J. Kalton).

The weak dual greedy algorithm is a natural generalization to Banach spaces of the so-called pure greedy algorithm (PGA) and its modification the weak greedy algorithm (WGA) for Hilbert spaces. The (PGA) was introduced and first studied by Huber [3]; its convergence was shown by Jones [4]. For the fact that the (WGA) converges in a Hilbert space see [8]; more general results are given in [9] and [7]. Very little is known about the convergence of the (WDGA) for an arbitrary dictionary in a Banach space; see [2]. In [11] it is conjectured that the (WDGA) converges whenever X is a uniformly smooth Banach space with power-type modulus of smoothness. Our main theorem in this paper is that for any subspace of a quotient of L_p when 1 the (WDGA) converges for any dictionary, thus proving a special case ofthe conjecture in [11]. As noted by one of the referees the convergence of the $(WDGA) in <math>L_p$ for 1 was previously unknown even for the dictionaryconsisting of the Haar basis.

For any $x \in X$ we define the *descent rate* associated to the dictionary D by

$$\rho_D(x) = \sup_{t>0} \sup_{g \in D} \frac{||x|| - ||x - tg||}{t} = \sup_{g \in D} \lim_{t \to 0+} \frac{||x|| - ||x - tg||}{t}.$$
 (1)

By the Hahn–Banach theorem

$$\rho_D(x) = \sup_{\substack{\||x^*\|| = 1 \\ x^*(x) = \||x\||}} \sup_{g \in D} x^*(g).$$
(2)

We will usually deal with Banach spaces with a Gateaux differentiable norm, i.e. such that for each $x \in X \setminus \{0\}$ there is a unique $x^* \in X$ with $x^*(x) = ||x||$ and $||x^*|| = 1$. We denote this functional by F_x . The map $x \to F_x$ is norm to weak*-continuous on $X \setminus \{0\}$; see [1, p. 7]. We set $F_0 = 0$ for notational convenience. Thus in this case we have

$$\rho_D(x) = \sup_{g \in D} F_x(g). \tag{3}$$

Suppose X has a Gateaux differentiable norm. Let us describe the *weak dual* greedy algorithm (WDGA) with parameter 0 < c < 1. Suppose $x \in X$. We construct a sequence $(g_n)_{n=1}^{\infty}$ with $g_n \in D$ and a sequence $(t_n)_{n=1}^{\infty}$ of reals with $t_n \ge 0$. Let $x_0 = x$ and construct $(x_n)_{n=0}^{\infty}, (g_n)_{n=1}^{\infty}, (t_n)_{n=1}^{\infty}$ inductively as follows. For each $n \ge 1$ pick $g_n \in D$ so that

$$F_{x_{n-1}}(g_n) \ge c\rho_D(x_{n-1}). \tag{4}$$

Pick $t_n \ge 0$ so that

$$||x_{n-1} - t_n g_n|| = \min_{t \ge 0} ||x_{n-1} - t g_n||.$$
(5)

Finally set

 $x_n = x_{n-1} - t_n g_n. (6)$

Thus the *n*-term approximation to x is given by $\sum_{k=1}^{n} t_k g_k$ and the error is given by x_n . The (WDGA) is said to converge at x if $\lim_{n\to\infty} x_n = 0$ and hence $x = \sum_{n=1}^{\infty} t_n g_n$. The (WDGA) (with parameter c) is said to converge if it converges for every $x \in X$.

Let us remark that Temlyakov [11] considers this algorithm for a sequence of parameters $(c_n)_{n=1}^{\infty}$ with $c_n > 0$ replacing c. Thus in place of (4) one has

$$F_{x_{n-1}}(g_n) \ge c_n \rho_D(x_{n-1}). \tag{7}$$

A necessary and sufficient condition in Hilbert spaces for convergence of the (WDGA) with a sequence $(c_n)_{n=1}^{\infty}$ of parameters is given in [10].

Lemma 1. Let X be a Banach space with a Gateaux differentiable norm and let D be a dictionary in X. Suppose $x = x_0 \in X$ and 0 < c < 1. Suppose further that $(x_n)_{n=0}^{\infty}, (g_n)_{n=1}^{\infty}$ and $(t_n)_{n=1}^{\infty}$ are sequences with $g_n \in D$, $t_n > 0$ which satisfy (4) and (6) but not necessarily (5). Suppose that

$$\frac{||x_{n-1}|| - ||x_n||}{t_n} \ge c\rho_D(x_{n-1}) \qquad n \ge 1.$$
(8)

Then if $\sum_{n=1}^{\infty} t_n = \infty$ we have $\lim_{n \to \infty} x_n = 0$ and

$$x=\sum_{n=1}^{\infty} t_n g_n.$$

Proof. Let $s_n = t_1 + \cdots + t_n$. Then we note that

$$\sum_{n=2}^{\infty} \log \frac{s_n - t_n}{s_n} = -\infty$$

and so

$$\sum_{n=1}^{\infty} \frac{t_n}{s_n} = \infty.$$

Now since $||x_n||$ is monotone decreasing the series $\sum_{n=1}^{\infty} (||x_{n-1}|| - ||x_n||)$ is convergent. We deduce the existence of a sequence (n_k) such that

$$\lim_{k \to \infty} \frac{s_{n_k+1}(||x_{n_k}|| - ||x_{n_k+1}||)}{t_{n_k+1}} = 0.$$

Let $\varepsilon_k = s_{n_k} \rho_D(x_{n_k})$. By (8), since $s_{n_k} < s_{n_k+1}$, we have $\lim_{k \to \infty} \varepsilon_k = 0$. Note in particular

$$\lim_{k \to \infty} \rho_D(x_{n_k}) = 0.$$
(9)

Now if $0 \leq l \leq n_k - 1$

$$\left|F_{x_{n_k}}\left(\sum_{j=l+1}^{n_k} t_j g_j\right)\right| \leqslant \sum_{j=1}^{n_k} t_j \rho_D(x_{n_k}) \leqslant \varepsilon_k$$

Hence

 $|F_{x_{n_k}}(x_l) - ||x_{n_k}|| \leq \varepsilon_k, \qquad 0 \leq l \leq n_k.$

Let x^* be any weak*-cluster point of the sequence $(F_{x_{n_k}})_{k=1}^{\infty}$. Then if $L = \lim_{n \to \infty} ||x_n||$ we have

 $x^*(x_l) = L \qquad 0 \leqslant l < \infty \,.$

If $L \neq 0$ we will obtain a contradiction. In this case $x^* \neq 0$ and so $\sup_{g \in D} x^*(g) = \theta > 0$. But then

 $\limsup_{k\to\infty} \sup_{g\in D} F_{x_{n_k}}(g) \ge \theta.$

This gives a contradiction to (9). \Box

The key to the proof of the main theorem is the following simple inequality. If $a \in \mathbb{R}$ we write $\operatorname{sgn}(a) = a/|a|$ when $a \neq 0$ and $\operatorname{sgn} 0 = 0$.

Lemma 2. Suppose $1 . There is <math>C_p > 0$ such that for any real numbers a and b $b|a+b|^{p-1}sgn(a+b) - b|a|^{p-1}sgn(a) \le C_p(|a+b|^p - pb|a|^{p-1}sgn(a) - |a|^p).$

Proof. By homogeneity it is enough to consider the case a = 1. Note that $|1 + b|^p - pb - 1 \ge 0$ with equality only at b = 0. Let

$$\varphi(b) = \frac{b(|1+b|^{p-1}\operatorname{sgn}(1+b)-1)}{|1+b|^p - p \ b - 1}, \qquad b \neq 0.$$

Then

$$\lim_{b \to 0} \varphi(b) = \frac{2}{p},$$
$$\lim_{b \to \infty} \varphi(b) = 1,$$
$$\lim_{b \to \infty} \varphi(b) = 1.$$

Since the function $\varphi(b)$ is continuous these estimates imply an upper bound $\varphi(b) \leq C_p$ for all $b \neq 0$ and the lemma follows. \Box

Let us say that a Banach space X with a Gateaux differentiable norm has property Γ if there is a constant $0 < \gamma \le 1$ such that if $x, y \in X$ and $F_x(y) = 0$ then

$$||x + y|| \ge ||x|| + \gamma F_{x+y}(y). \tag{10}$$

As pointed out by one of the referees, this condition has been considered previously in the context of greedy algorithms by Livshits [6, Theorem 1.2] although his formulation is somewhat different.

92

We recall that if X is a Banach space and E is a closed subspace then the quotient space X/E is a Banach space under the norm

$$||x + E|| = \inf_{e \in E} ||x + e||.$$

If X is reflexive (or more generally if E is reflexive) then the infimum is attained, i.e.

$$||x + E|| = \min_{e \in E} ||x + e||.$$

In the case $p \ge 2$ the following proposition was essentially proved in [6], Corollary 1.3.

Proposition 3. If $1 , every quotient of a subspace of <math>L_p$ has property Γ .

Proof. We first show that $L_p(0,1)$ has property Γ . Suppose $x, y \in L_p(0,1)$ and $F_x(y) = 0$. Then by Lemma 2,

$$\begin{split} y(s)|x(s) + y(s)|^{p-1} \mathrm{sgn}(x(s) + y(s)) \\ \leqslant C_p(|x(s) + y(s)|^p - |x(s)|^p) + (1 - pC_p)y(s)|x(s)|^{p-1} \mathrm{sgn}(x(s)). \end{split}$$

We have

$$\int y(s)|x(s)|^{p-1}\mathrm{sgn}(x(s))\,ds = 0$$

and so by integration we have

$$\int_0^1 y(s)|x(s) + y(s)|^{p-1} \operatorname{sgn}(x(s) + y(s)) ds \leq C_p(||x+y||^p - ||x||^p).$$

Thus (noting that $||x + y|| \ge ||x||$ since $F_x(y) = 0$),

$$||x + y||^{p-1} F_{x+y}(y) = \int_0^1 |x(s) + y(s)|^{p-1} \operatorname{sgn}(x(s) + y(s))y(s) \, ds$$

$$\leq C_p(||x + y||^p - ||x||^p)$$

$$\leq pC_p||x + y||^{p-1}(||x + y|| - ||x||)$$

and Γ follows with $\gamma = (pC_p)^{-1}$.

It is clear property Γ passes to subspaces, so we prove it also passes to quotients at least for reflexive spaces. Suppose X has property Γ and is reflexive. Let Y be a quotient, i.e. Y = X/E for some subspace E of X. Let $Q: X \to Y$ be the quotient map $x \to x + E$. If $x, y \in Y$ with $F_x(y) = 0$, we may pick $u, w \in X$ so that Qu = x, Qw = x + y and ||u|| = ||x||, ||w|| = ||x + y||. Note Y also has a Gateaux differentiable norm and furthermore we have $F_u = F_x \circ Q$ and $F_w = F_{x+y} \circ Q$. Hence $F_u(w - u) = F_x(y) = 0$ and so

$$||x + y|| = ||w|| \ge ||u|| + \gamma F_w(w - u) = ||y|| + \gamma F_{x+y}(y)$$

and the proposition follows. \Box

Theorem 4. Suppose X is a quotient of a subspace of L_p for some 1 . Then the (WDGA) converges for any dictionary and any parameter.

Proof. We note that if X is a quotient of a subspace of L_p for $1 has property <math>\Gamma$ by Proposition 3; also the norm on X is Fréchet differentiable since X is uniformly smooth (this follows quickly from the duality properties of uniform smoothness and uniform convexity, see [5, p. 61]).

We therefore show that if X has property Γ and a Fréchet differentiable norm then the (WDGA) with parameter 0 < c < 1 converges for every dictionary D and every $x \in X$. We shall use the fact that if the norm is Fréchet differentiable then the map $x \to F_x$ is norm-continuous on $X \setminus \{0\}$ (see e.g. [1, p. 7, Proposition 1.8]).

Let $x = x_0$ and suppose $(x_n)_{n=0}^{\infty}$, $(g_n)_{n=1}^{\infty}$ and $(t_n)_{n=1}^{\infty}$ are selected according to (4), (5) and (6). If $t_n = 0$ for any *n* then $\rho_D(x_{n-1}) = 0$ and so since *D* is fundamental, $x_k = 0$ for $k \ge n-1$. Thus we consider the case $t_n > 0$ for all *n*. We note that $F_{x_n}(g_n) = 0$ (by (5)) and so

$$||x_{n-1}|| \ge ||x_n|| + \gamma t_n F_{x_{n-1}}(g_n)$$

and hence,

$$c\gamma\rho_D(x_{n-1})\leqslant \frac{||x_{n-1}||-||x_n||}{t_n}.$$

By Lemma 1 (with *c* replaced by $c\gamma$) we have $\lim_{n\to\infty} x_n = 0$ if $\sum_{n=1}^{\infty} t_n = \infty$. To complete the proof we consider the case $t_n > 0$ for all *n* but $\sum_{n=1}^{\infty} t_n < \infty$ and $\lim_{n\to\infty} x_n = x_\infty \neq 0$. By the Fréchet differentiability of the norm we have $\lim_{n\to\infty} ||F_{x_n} - F_{x_\infty}|| = 0$. Thus $\lim_{n\to\infty} ||F_{x_n} - F_{x_{n-1}}|| = 0$. But observe that $F_{x_n}(g_n) = 0$ by (5) and so $\lim_{n\to\infty} F_{x_{n-1}}(g_n) = 0$. This implies by (4) that $\lim_{n\to\infty} \rho_D(x_{n-1}) = 0$ and so $F_{x_\infty}(g) = 0$ for every $g \in D$, which of course contradicts the fact that *D* is fundamental. \Box

It is possible to glean a little more from this argument. Let us introduce another algorithm which we call the *modified dual greedy algorithm* (*MDGA*) with parameter 0 < c < 1 as follows. Given $x \in X$ let (x_n) , (g_n) and (t_n) be chosen according to (4) and (6) but with (5) replaced by

$$F_{x_{n-1}-t_ng_n}(g_n) = cF_{x_{n-1}}(g_n).$$
(11)

Thus in the (MDGA) we do not choose t_n to minimize the error but in general we make a smaller choice of t_n , selecting a point at which the rate of decrease of $||x_{n-1} - tg_n||$ has fallen to a fixed fraction of its initial rate of descent.

Theorem 5. Suppose that X is a Banach space with Gateaux differentiable norm and D is a dictionary in X. Then the (MDGA) converges (for any parameter 0 < c < 1) provided either the norm is Fréchet differentiable or D is relatively norm compact.

Proof. The argument is similar to the preceding theorem. Suppose (x_n) , (g_n) and (t_n) are selected according to (4), (11) and (6). As before the case $\sum_{n=1}^{\infty} t_n = \infty$ is resolved

by Lemma 1. In fact,

$$||x_{n-1}|| - ||x_n|| \ge t_n F_{x_n}(g_n) = ct_n F_{x_{n-1}}(g_n) \ge c^2 t_n \rho_D(x_{n-1}).$$

Thus we can apply Lemma 1 (replacing c by c^2) to deduce that $\lim_{n\to\infty} x_n = 0$.

We can therefore suppose $t_n > 0$ for all *n* but $\sum_{n=1}^{\infty} t_n < \infty$. We again suppose $\lim_{n \to \infty} x_n = x_{\infty} \neq 0$.

Now in either case of the theorem we have

$$\lim_{n \to \infty} \sup_{g \in D} |F_{x_n}(g) - F_{x_\infty}(g)| = 0.$$
(12)

If the norm is Fréchet differentiable this follows since the map $x \to F_x$ is norm continuous on $X \setminus \{0\}$. If *D* is relatively norm compact it follows since F_{x_n} converges to $F_{x_{\infty}}$ weak^{*} by Gateaux differentiability of the norm. This means that

$$\lim_{n\to\infty} \sup_{g\in D} |F_{x_n}(g) - F_{x_{n-1}}(g)| = 0$$

and hence

 $(1-c)\lim_{n\to\infty} F_{x_{n-1}}(g_n) = 0.$

Thus $\lim_{n\to\infty} \rho_D(x_n) = 0$ which implies by (12) that $\rho_D(x_\infty) = 0$ which is a contradiction. \Box

References

- R. Deville, G. Godefroy, V. Zizler, Smoothness and Renormings in Banach Spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 64, Longman Scientific and Technical, Harlow, 1993.
- [2] S.J. Dilworth, D. Kutzarova, V.N. Temlyakov, Convergence of some greedy algorithms in Banach spaces, J. Fourier Anal. Appl. 8 (2002) 489–505.
- [3] P.J. Huber, Projection pursuit, Ann. Statist. 13 (1985) 435-525.
- [4] L.K. Jones, On a conjecture of Huber concerning the convergence of projection pursuit regression, Ann. Statist. 15 (1987) 880–882.
- [5] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces, Vol. II, Function Spaces, Springer, Berlin, 1979.
- [6] E.D. Livshits, On convergence of greedy algorithms in Banach spaces, Mat. Zametki 73 (2003) 371–389.
- [7] E.D. Livshits, V.N. Temlyakov, On the convergence of a weak greedy algorithm, (Russian) Tr. Mat. Inst. Steklova 232 (2001) 236–247; translation in Proc. Steklov Inst. Math. 232(1) (2001) 229–239.
- [8] L. Rejto, G.G. Walter, Remarks on projection pursuit regression and density estimation, Stochastic Anal. Appl. 10 (1992) 213–222.
- [9] V.N. Temlyakov, Weak greedy algorithms, Adv. Comput. Math. 12 (2000) 213–227.
- [10] V.N. Temlyakov, A criterion for convergence of weak greedy algorithms, Adv. Comput. Math. 17 (2002) 269–280.
- [11] V.N. Temlyakov, Nonlinear methods of approximation, Found. Comput. Math. 3 (2003) 33–107.