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ABSTRACT. We provide an unified approach of results of
L. Dor on the complementation of the range, and of D.
Alspach on the nearness from isometries, of small into-
isomorphisms of L1. We introduce the notion of small
subspace of L1, and show lifting theorems for operators
between quotients of L1 by small subspaces. We construct
a subspace of L1 which shows that extension of isometries
from subspaces of L1 to the whole space are no longer true
for isomorphisms, and that nearly isometric isomorphisms
from subspaces of L1 into L1 need not be near from any
isometry.
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I. Introduction. The Banach space L1 is of fundamental importance
for Fourier analysis, probability theory, and many other fields of pure and
applied analysis. However, its Banach space structure is not yet fully un-
derstood. In particular, the study of operators from L1 to L1 lead to simply
stated but apparently very hard problems: for instance, it is not known
whether a complemented subspace of L1 is necessarily isomorphic to L1 or
`1 (see [35]). A major tool for handling operators on L1(Ω) is their rep-
resentation through a “matrix” whose “rows” are indexed by the points ofΩ and consist of measures on Ω ([18]; see also [9]). This representation

245

Indiana University Mathematics Journal ©, Vol. 49, No. 1 (2000)



246 G. GODEFROY, N. J. KALTON & D. LI

will play a major role in the present work, together with duality arguments,
which will allow us to use methods and results from the isometric theory of
Banach spaces. We will focus on several natural aspects of operator theory
on L1: perturbation of operators which are close to isometries, lifting of op-
erators between quotient spaces, extensions of operators defined on linear
subspaces. Such questions have of course been considered before and im-
portant theorems have been obtained (see e.g. [1], [7], [8], [15], [19], [21],
[32], and references therein). Our work provides on one hand alternative
simpler proofs to some known theorems, which are subsequently improved,
and on the other hand new statements. We now turn to a detailed descrip-
tion of our results.

Section II begins with a simple inequality, whose proof relies on Gaus-
sian randomization, which provides a control of the atomic part of norm-
increasing operators (Lemma II.1). This inequality leads to a unified ap-
proach to Dor’s complementation theorem (Theorem II.3) and to Alspach’s
perturbation theorem (Theorem II.7). These two results follow from a
Hahn-Banach argument applied to the atomic part of the relevant oper-
ator, considered as taking values in a vector-valued L1. Let us mention
that our approach provides a quantitative improvement of Alspach’s theo-
rem, but do not improves the constant

√
2 in the statement of Dor’s result.

The new notion of “small subspace” is introduced in Section III (Defini-
tion III.1). Roughly speaking, a “small subspace” is a subspace of L1 which
is nowhere “locally equal” to L1. Operators which have a non trivial “di-
agonal” in their “matrix” representation are denoted strong Enflo operators
(Definition III.3). The link between these two notions is that operators
which take their values in a small subspace are not strong Enflo; in fact,
more is true (Proposition III.6). Small subspaces are studied within the class
of translation invariant subspaces; it is also shown that a closed direct sum
of two small subspaces is small (Proposition III.9). Smallness of spaces is a
crucial concept in Section IV, which is devoted to the lifting of operators
between quotient spaces: the main result of this section is that, if X and Y
are small subspaces, and the quotient spaces L1/X and L1/Y are close to each
other in Banach-Mazur distance, then there is an isomorphism of L1 which
maps X close to Y with respect to the Hausdorff distance (Theorem IV.3).
When one of the spaces X or Y has the lifting property (e.g. if one of these
spaces is complemented in its bidual), it follows that there is an invertible
operator of L1 which maps X onto Y (Corollary IV.8). This result can be
seen as a substitute in L1 of a theorem of Lindenstrauss and Rosenthal on
`1 ([24]; see [25], Th.2.f.8). Note, however, that the quantitative behaviour
of the liftings is actually better in the L1 case (see Remark IV.9). Finally,
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Section V provides a counterexample, showing the “sensibility over ε” of the
positive results obtained so far about isometries: there is a subspace X of L1

such that, although isometries from this space into L1 extend to isometries
of the whole space L1, there are linear maps T from X into L1, which are
arbitrarily close to isometries, and such that no small perturbation of T is
actually an isometry from X into L1; in particular, these “near isometries”
do not extend to near isometries defined on L1 (Theorem V.1). This space
X is arbitrarily close in the Banach-Mazur sense to weak-star closed sub-
spaces of `1, though it is far in the Hausdorff distance of any subspace of
L1 spanned by disjoint functions; hence, although it has a strong “`1” be-
haviour (for instance, its unit ball is compact locally convex in measure, see
[12]), it cannot be decomposed into essentially disjoint finite dimensional
parts (compare with [7], [33]). The construction of X makes a crucial use
of p-stable random variables with p close to 1.

Our notation is classical. All the Banach spaces we consider are indiffer-
ently real or complex, except in Section V, where we work only in real case.
All the measure spaces are separable and purely non-atomic, and the mea-
sures are (unless other stated) probability measures; hence the corresponding
L1-spaces are isometric to L1(0,1), but for convenience we use sometimes a
more general probability space. When writing L1([0,1],m), we understand
thatm is a Lebesgue measure. The following representation of operators on
L1 ([18], Theorem 3.1) will be very useful: for every operator T : L1 → L1

there are measures µx, with x , µx weak∗-measurable, such that, for almost
every x,

(R) Tf(x) =
∫ 1

0
f(s)dµx(s) =

+∞∑
n=1

an(x)f(σn(x))+
∫ 1

0
f(s)dνx(s),

where
∑+∞
n=1an(x)δσn(x) and νx are the atomic and continuous part of µx.

Section III and IV are essentially independent of Section II.
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II. Projections and small into-isomorphisms of L1. In this section,
we provide a unified approach to results of D. Alspach and L. Dor on iso-
morphisms from L1 into L1 with small bounds. A short proof of the special
case of convolutors, which points towards the main lemma, will be given at
the end of the section (see Remark II.8). The key result of this approach is
the following lemma:

Lemma II.1. Let T : L1([0,1],m) → L1([0,1],m), and write

Tf(s) =
∞∑
n=1

an(s)f(σn(s))+
∫ 1

0
f(t)dνs(t).

Suppose that ‖Tf‖1 ≥ ‖f‖1 for all f ∈ L1. Then, for all f ∈ L1,

‖f‖1 ≤
∥∥∥( ∞∑
k=1

|ak(s)|2 |f(σk(s))|2
)1/2∥∥∥

1
.

Proof. Let (γk) be a sequence of i.i.d. Gaussian (real or complex) ran-
dom variables on a probability space (Ω,P), normalized in L1. For any l > 0,
we let

Dlk =
[
k−1

2l
,
k
2l

[
, 1 ≤ k ≤ 2l,

be the dyadic intervals of level l.

Fact. Let ν be a diffuse measure on [0,1]. Defining

ϕl =
2l∑
k=1

|ν(Dlk)|2,

one has limlϕl = 0.

Indeed,ϕl ≤ ‖ν‖1 ·maxk
(|ν(Dlk)|), since (

∑|λk|2) ≤ (∑|λk|) · (max|λk|)
for every sequence (λk) of scalars. Since ν is diffuse, this maxk tends to 0
when l goes to infinity, and the conclusion follows. ❐

Let now ρ be an arbitrary measure on [0,1]. Let us write

ρ =
∞∑
n=1

anδxn +ν = α+ν,



Operators Between Subspaces and Quotients of L1 249

where α is atomic and ν is diffuse. For any l and N = 2l, one has

N∑
k=1

|ρ(Dlk)|2 =
N∑
k=1

|α(Dlk)+ν(Dlk)|2,

and from the Fact, it follows easily that

(1) lim
N

N∑
k=1

|ρ(Dlk)|2 =
∞∑
n=1

|an|2.

We now denote Dlk = Dk, and for a given N = 2l, any ω ∈ Ω, and any
f ∈ L1, we define

fω =
N∑
k=1

γk(ω)1Dkf .

With this notation, one has

∫
Ω‖fω‖1dP(ω) =

∫∫
[0,1]×Ω |fω(t)|dtdP(ω)

=
∫∫
[0,1]×Ω

∣∣∣ N∑
k=1

γk(ω)1Dk(t)f (t)
∣∣∣dtdP(ω)

=
∫
Ω
( N∑
k=1

|γk(ω)|
∫
Dk
|f(t)|dt

)
dP(ω) = ‖f‖1,

and it follows from the assumption on T that, for any f , one has

‖f‖1 ≤
∫
Ω‖T(fω)‖1dP(ω).

We now use the representation (R) of T

(R) Tf(s) =
∫ 1

0
f(t)dµs(t) =

∞∑
n=1

an(s)f(σn(s))+
∫ 1

0
f(t)dνs(t),

and for any given f ∈ L1 we define, for all s, a measure ρs by dρs = f ·dµs.
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With this notation, one has

T(fω)(s) =
N∑
k=1

γk(ω)ρs(Dk),

and thus, by Fubini’s Theorem,

∫
Ω‖T(fω)‖1dP(ω) =

∫ 1

0

∫
Ω
∣∣∣ N∑
k=1

γk(ω)ρs(Dk)
∣∣∣dP(ω)ds

=
∫ 1

0

( N∑
k=1

|ρs(Dk)|2
)1/2

ds.

It follows that

‖f‖1 ≤
∫ 1

0

( N∑
k=1

|ρs(Dk)|2
)1/2

ds.

On the other hand, by applying (1) to ρ = ρs , we have for almost every s:

lim
N

( N∑
k=1

|ρ(Dk)|2
)1/2 =

( ∞∑
n=1

|an(s)f(σn(s))|2
)1/2
.

Since (R) implies that

‖ρs‖ ≤ |T |(|f |)(s),
we may apply the dominated convergence theorem, and it follows then that

‖f‖1 ≤
∥∥∥( ∞∑
k=1

|ak(s)|2 |f(σk(s))|2
)1/2∥∥∥

1
,

which is Lemma 1. ❐

Lemma II.2. Let T : L1([0,1],m) → L1([0,1],m) and α ≥ 1 be such that
α‖f‖1 ≥ ‖Tf‖1 ≥ ‖f‖1 for all f ∈ L1. Write

Tf(s) =
∞∑
n=1

an(s)f(σn(s))+
∫ 1

0
f(t)dνs(t).
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Then, for all f ∈ L1,

∥∥∥ ∞∑
n=1

|an(s)| |f(σn(s))|
∥∥∥

1
≤ α‖f‖1,(∗)

α−1‖f‖1 ≤ ‖max
n
|an(s)| |f(σn(s))|‖1.(∗∗)

Proof. It follows e.g. from (R) that
∥∥ |T | ∥∥ = ‖T‖, hence

∥∥ |T |(f )‖1 ≤
α‖f‖1, which shows (∗). For (∗∗) we observe that, for any s ∈ [0,1],

( ∞∑
k=1

|ak(s)|2 |f(σk(s))|2
)1/2

≤
( ∞∑
k=1

|ak(s)| |f(σk(s))|
)1/2
(max
k
|ak(s)| |f(σk(s))|)1/2,

hence by the Cauchy-Schwarz inequality

∥∥∥( ∞∑
k=1

|ak(s)|2 |f(σk(s))|2
)1/2∥∥∥

1

≤
∥∥∥( ∞∑
k=1

|ak(s)| |f(σk(s))|
)∥∥∥1/2

1
·
∥∥max

k
|ak(s)| |f(σk(s))|

∥∥1/2
1 .

It follows now from (∗) and Lemma 1 that

‖f‖1 ≤
√
α
∥∥f∥∥1/2

1

∥∥max
k
|ak(s)| |f(σk(s))|

∥∥1/2
1 ,

which shows (∗∗). ❐

Lemma II.2 allows us to show the following theorem due to L. Dor ([7],
Corollary 3.3) through a Hahn-Banach argument, distinct however from
the original argument ([7]). Note that we do not have the better constant
1.6 obtained by L. Dor in the real case.

Theorem II.3. Let T : L1 → L1 be an isomorphism into L1 such that ‖T‖ ·
‖T−1‖ <

√
2, with T−1 : T(L1) → L1. Then T(L1) is a complemented subspace

of L1.
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Proof. We may and do assume that T satisfies the assumptions of Lemma
II.2, with α <

√
2. Define Ψ : L1 → L1(c0) by

Ψ(f ) = (|an(s)|f(σn(s)))n≥1.

Note that, by (∗), Ψ actually takes its values in L1(`1). By (∗∗), we have

‖Ψ(f )‖L1(c0) ≥ α−1‖f‖1 for all f ∈ L1.

Hence, there exists F ∈ L1(c0)∗ = L∞(`1), with F ≥ 0, ‖F‖ ≤ α, such that

∫ 1

0
f(s)ds = F[Ψ(f )] for all f ∈ L1.

That means there exists a sequence (bn)n≥1 of positive functions such that

∥∥∥ ∞∑
n=1

bn(s)
∥∥∥∞ ≤ α,

and

∫ 1

0
f(s)ds =

∫ 1

0

∞∑
n=1

bn(s)|an(s)|f(σn(s))ds for all f ∈ L1.

Choose disjoint measurable subsets En, n ≥ 1, of [0,1]× [0,1] such that

m({x | (s,x) ∈ En}) = bn(s)α for all s ∈ [0,1], n ≥ 1.

We define U : L1([0,1]) → L1([0,1]2) by

Uf(s,x) =
∞∑
n=1

an(s)f(σn(s))1En(s,x).

For any f ∈ L1, one has

‖Uf‖1 =
∫ 1

0

∞∑
n=1

bn(s)
α
|an(s)| |f(σn(s))|ds = 1

α
‖f‖1.
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Hence U(L1) is isometric to L1, and it follows (see [22], Chap. 6, Section
17, Theorem 3) that U(L1) is 1-complemented in L1([0,1]2).

Define T : L1([0,1]) → L1([0,1]2) by

Tf(s,x) = Tf(s) =
∞∑
n=1

an(s)f(σn(s))+
∫ 1

0
f(u)dνs(u).

If we denote

Uf(s,x) =
∫ 1

0
f(u)dµU(s,x)(u),

Tf(s,x) =
∫ 1

0
f(u)dµT(s,x)(u),

then clearly

µU(s,x) = ak(s)δσk(s)
for the unique k ≥ 1 such that (s,x) ∈ Ek, and

µT(s,x) =
∞∑
n=1

an(s)δσn(s)+νs,

for all (s,x). Hence, we have

µT−U(s,x) =
∑
n 6=k
an(s)δσn(s)+νs,

and it easily follows that

|T |− |U| = |T −U| ≥ 0.

Note that for all f ∈ L1:

∥∥ |U|(f )‖1 = ‖Uf‖1 = 1
α
‖f‖1.

On the other hand,

∥∥ |T |(f )‖1 =
∥∥ |T |(f )‖1 ≤ α‖f‖1.
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Hence, for any f ≥ 0,

∥∥ |T −U|(f )‖1 =
∥∥ |T |(f )−|U|(f )‖1 =

∥∥ |T |(f )‖1−
∥∥ |U|(f )‖1

≤ (α−α−1)‖f‖1 = (α2−1)‖Uf‖1.

Observe now that U maps disjoint functions to disjoint functions, hence if
f = f+ −f−

‖Uf‖1 = ‖Uf+‖1+‖Uf−‖1,
and thus for any g ∈ L1:

(2) ‖(T −U)g‖1 ≤ (α2−1)‖Ug‖1 = β‖Ug‖1.

Since α <
√

2, we have β = α2−1 < 1. Let Π : L1([0,1]2) → U(L1) be a
projection with ‖Π‖ = 1. It follows from (2) that Π|T(L1) is an isomorphism
from T(L1) onto U(L1).

Let S = Π−1 : U(L1) → T(L1). It is easily seen that SΠ defines a projec-
tion from L1([0,1]2) onto T(L1). Restricting SΠ to the functions which are
independent of x, gives a projection from L1 to T(L1). ❐

Our goal is now to provide a similar approach to Alspach’s result on
near isometries ([1]). We first prove:

Theorem II.4. Let T : L1 → L1 be such that

α‖f‖1 ≥ ‖Tf‖1 ≥ ‖f‖1 for all f ∈ L1.

Then for each ε > 0, there exists an operator Sε : L1 → L1 of the form

Sεf (s) =
N∑
k=1

ck(s)f
(
σk(s)

)
,

and such that
‖T −Sε‖ ≤ (α−1)+ ε.

Proof. We consider again

Ψ(f ) = (|an(s)|f(σn(s)))n≥1 ,

but this time as an operator from L1 to L1(`2). By Lemma 1, we have for all
f

‖f‖1 ≤ ‖Ψ(f )‖L1(`2).
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Since L1(`2)∗ = L∞(`2), there is (bn)n≥1 with bn ≥ 0 such that


∥∥∥(∑b2

n

)1/2∥∥∥∞ ≤ 1,∫ 1

0

∑
bn(s)|an(s)|f(σn(s))ds =

∫ 1

0
f ds,

for all f . We may and do redefine the an, bn, σn’s in such a way that
b1 ≥ b2 ≥ ··· ; hence 0 ≤ bn(s) ≤ 1/

√
n for all s and n. Then

∫ 1

0

∣∣∣ ∞∑
n=N+1

bn(s)an(s)f (σn(s))
∣∣∣ds

≤ 1√
N

∫ 1

0

∞∑
n=N+1

|an(s)| |f(σn(s))|ds ≤ 1√
N
‖T‖ · ‖f‖1,

thus

∫ 1

0

N∑
n=1

bn(s)|an(s)| |f(σn(s))|ds ≥ ‖f‖1− 1√
N
‖T‖ · ‖f‖1.

We let

SNf(s) =
N∑
n=1

an(s)bn(s)f (σn(s)).

For any s

µT−SNs =
N∑
n=1

an(s)(1−bn(s))δσn(s)+νs +
∞∑

n=N+1

an(s)δσn(s),

therefore |T −SN| = |T |− |SN|, and for any f ≥ 0, one has

∥∥ |T −SN|(f )‖1 =
∥∥ |T |(f )−|SN|(f )‖1 =

∥∥ |T |(f )‖1−
∥∥ |SN|(f )‖1.

Since

∥∥ |T |(f )‖1 ≤ α‖f‖1 and
∥∥ |SN|(f )‖1 ≥ ‖f‖1− 1√

N
‖T‖ · ‖f‖1,
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one has, for all f ≥ 0,

∥∥ |T −SN|(f )‖1 ≤ (α−1)‖f‖1+ 1√
N
‖T‖ · ‖f‖1,

and thus

‖T −SN‖ =
∥∥ |T −SN| ∥∥ ≤ (α−1)+ ‖T‖√

N
·

The conclusion follows, since N is arbitrary. ❐

Proposition II.5. Let S : L1 → L1 be an operator such that

Sf(s) =
∞∑
k=1

ak(s)f (σk(s)) and α‖f‖1 ≥ ‖Sf‖1 ≥ ‖f‖1

for every f ∈ L1. Then there exists an operator U : L1 → L1, of the form

Uf(s) = c(s)f (σ(s)),

such that

‖S −U‖ ≤ 2
(
α− 1

α

)
.

Proof. We consider, as before, Ψ(f ) = (|an(s)|f(σn(s)))n≥1 as an op-
erator into L1(c0). Since by (∗∗)

α−1‖Ψ(f )‖L1(c0) ≤ ‖f‖L1 ,

there exists (bk)k with bk ≥ 0,
∑
kbk ≤ 1, and

∫ 1

0

∞∑
k=1

|ak(s)|bk(s)f (σk(s))ds = 1
α

∫ 1

0
f(s)ds.

We may and do assume that b1 ≥ b2 ≥ ···. Therefore, for all k ≥ 2,

1−bk ≥ 1−b1 ≥ bk.
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Since α‖f‖1 ≥
∥∥ |S|(f )‖1, one has, for all f ≥ 0,

(
α− 1

α

)
‖f‖1 ≥

∫ 1

0

∞∑
k=1

|ak(s)|(1−bk(s))f (σk(s))ds

≥
∫ 1

0

∞∑
k=2

|ak(s)|bk(s)f (σk(s))ds.

Hence if we define

Vf(s) =
∞∑
k=2

ak(s)bk(s)f (σk(s))

and

Wf(s) =
∞∑
k=1

ak(s)bk(s)f (σk(s))

= a1(s)b1(s)f (σ1(s))+Vf(s),

one has, for all f ≥ 0,

∥∥ |S −W |(f )‖1 =
∥∥ |S|(f )−|W |(f )‖1 ≤

(
α− 1

α

)
‖f‖1,

and also ∥∥ |V |(f )‖1 ≤
(
α− 1

α

)
‖f‖1,

thus

‖S −W‖ ≤
(
α− 1

α

)
and ‖V‖ ≤

(
α− 1

α

)
.

We let now U = W −V . We have:

‖S −U‖ = ‖S −W +V‖ ≤ ‖S −W‖+‖V‖ ≤ 2
(
α− 1

α

)
. ❐

Proposition II.6. Let U : L1 → L1 be of the form

Uf(s) = c(s)f (σ(s)),

and assume that for some α ≥ 1 we have, for all f ∈ L1,

α‖f‖1 ≥ ‖U(f)‖1 ≥ ‖f‖1.
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Then there exists an isometry J, from L1 to L1, such that ‖U − J‖ ≤ (α−1).

Proof. By the Radon-Nikodym theorem, there exists w such that, for
all f ∈ L1, ∫ 1

0
|U|(f )(s)ds =

∫ 1

0
w(s)f(s)ds.

For all f ≥ 0, one has

α
∫ 1

0
f(s)ds ≥

∫ 1

0
w(s)f(s)ds ≥

∫ 1

0
f(s)ds.

It follows that 1 ≤ w(s) ≤ α for all s. We define

Jf(s) = c(s)
w(σ(s))

f (σ(s)),

and compute

‖Jf‖1 =
∫ 1

0
|Jf(s)|ds =

∫ 1

0

|c(s)|
w(σ(s))

|f(σ(s))|ds

=
∫ 1

0
|c(s)|

( |f |
w

)
(σ(s))ds

=
∫ 1

0
|U|

( |f |
w

)
(s)ds =

∫ 1

0
w(s)

( |f |
w

)
(s)ds = ‖f‖1.

Hence J is an isometry. Moreover, for any s, we have

µ|U−J|s = |c(s)|
(

1− 1
w(σ(s))

)
δσ(s),

and since

0 ≤ 1− 1
w(s)

≤ 1− 1
α
= α−1

α
,

we have

‖U − J‖ =
∥∥ |U − J| ∥∥ ≤ α−1

α
‖U‖ ≤ (α−1). ❐

From Theorem II.4, Proposition II.5, and Proposition II.6 we deduce
the following quantitative improvement of Alspach’s theorem ([1]).
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Theorem II.7. There is a function ϕ(α), with limα→1+ϕ(α) = 0 and such
that, if T : L1 → L1 satisfies for some α ≥ 1

α‖f‖1 ≥ ‖Tf‖1 ≥ ‖f‖1 for all f ∈ L1,

then there is an isometry J : L1 → L1 such that, for all f ∈ L1,

‖T − J‖ ≤ϕ(α).

Moreover, for 1 ≤ α ≤ 1.08 we can choose ϕ(α) = 13(α−1).

Proof. The first part clearly follows from Theorem II.4, Proposition
II.5, and Proposition II.6. For the second part, apply Theorem II.4 to find
an S so that ‖T −S‖ ≤ 17

16(α−1) = δ1 < 1. Then S′ = S/(1−δ1) verifies
‖f‖1 ≤ ‖S′f‖1 ≤ α1‖f‖1, with

α1 = δ1+α
1−δ1

≤ 1.28 and ‖T −S′‖ ≤ δ1

1−δ1
(1+α) ≤ 2.5(α−1).

Now, Proposition II.5 gives an operator U so that ‖S′ −U‖ ≤ 2(α1−α−1
1 ) =

δ2 < 1; the operator U ′ = U/(1−δ2) verifies ‖f‖1 ≤ ‖U ′f‖1 ≤ α2‖f‖1, with
α2 = (δ2+α1)/(1−δ2), and we have

‖S′ −U ′‖ ≤ δ2

1−δ2
(1+α1) ≤ 3.4(α−1).

Finally, Proposition II.6 gives a J so that ‖U ′ − J‖ ≤ α2−1 ≤ 6.8(α−1). ❐

Remark II.8. We give a proof of Theorem II.7 in the special case where
T = Cµ is the convolution by a measure µ on L1(T). Suppose that ‖µ‖ = 1
and that ‖f ∗µ‖1 ≥ (1− ε)‖f‖1. Write the atomic part of µ as

∑+∞
k=1akδxk .

We have

(3)
+∞∑
k=1

|ak| ≤ ‖µ‖ = 1.

On the other hand, Wiener’s theorem ([20], p. 42; [13], p. 415):

lim
N→+∞

1
2N +1

N∑
n=−N

|µ̂(n)|2 =
+∞∑
k=1

|ak|2
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says that

(4) (1− ε) ≤
+∞∑
k=1

|ak|2,

since
|µ̂(n)| = ‖µ∗ en‖1 ≥ (1− ε),

where en(t) = e2πint. It follows from (3) and (4) that there exists an index
K such that |aK| ≥ (1−2ε); thus the distance between Cµ and translation
by xK is less than 4ε, and this concludes the proof.

There is an interesting link between Wiener’s theorem and the equation
(1) in the proof of Lemma II.1. Indeed, let µ be a measure on the Cantor
group G = {−1,1}N, and let (Wk) and (Dk) be the Walsh functions and the
elementary open sets with index k ∈ {−1,1}[N]. With this notation one has,
by Parseval’s formula,

2−l
∑
k∈2l

(∫
Wkdµ

)2

=
∑
k∈2l

µ(Dk)2

for any l ≥ 1, and thus equation (1) appears, through the natural measure
preserving isomorphism between G and the unit interval, as the exact ana-
logue for the Cantor group of Wiener’s theorem. It would be nice to state a
generalization of Wiener’s theorem to arbitrary compact abelian groups.

III. Small subspaces of L1. In this section, we introduce and study the
notion of small subspace of L1, which will be essential in the next section. In
the sequel the notation A ⊂∼ D will be used to say that there is a real number

k > 0 such that kA ⊆ D. If X is a subspace of L1, we denote by CX = BXτm the
closure of its unit ball for the topology τm of convergence in measure. Recall
that Bukhvalov and Lozanovski ([4]) showed that P

(
BX⊥⊥

) = CX , where P is
the natural projection from L1∗∗ to L1. We also denote, for A ⊆ Ω,

L1(A) = {f ∈ L1 | 1Ω\A ·f = 0 a.e.}.

Definition III.1. A subspace X of L1(Ω,m) is said to be small if there is no
A ⊆ Ω of positive measure such that BL1(A) ⊂∼ 1A ·BX .

In other words, the projection f , f · 1A never maps X onto L1(A). It
is easy to see (by lifting finite trees for instance) that reflexive subspaces of
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L1 are small. However, smallness is not an intrinsic notion, but is related
to the position of X in L1. Indeed, let Q : `1 → L1 be a quotient map,
and J : `1 → L1 be an isometric embedding. Then the range of (J,Q) :
`1 → L1×L1 is isomorphic to `1, but is not small. On the other hand, in
L1([0,1]× [0,1]), the subspace of the functions which do not depend of the
second coordinate is small, although it is isometric to L1. We are now going
to give some examples and properties of small subspaces.

It will be useful to know that small subspaces actually satisfy a formally
stronger property.

Proposition III.2. If X is a small subspace of L1, there is no E ⊆ Ω of positive
measure such that BL1(E) ⊂∼ 1E ·CX .

Proof. Assume that BL1(E) ⊆ 1E · (kCX), and let {xn} be dense in BL1(E).
There are fn ∈ kBX , and En ⊆ E, with m(En) ≤ 4−nm(E), such that
|xn−fn|≤ 1/n on (E \En). If now A = E \

(⋃
n≥1En

)
, we have BL1(A) ⊆

1A · (kBX), and so X is not small. ❐

The following notion is closely related to smallness. It should be how-
ever noted that, except in the proof of Proposition III.9, only the property
stated in Proposition III.4 will actually be used.

Definition III.3. Let T be an operator on L1, written as

Tf(x) =
∫ 1

0
f(s)dµx(s).

T will be called a strong Enflo operator if there exists a set of positive measure
on which µs({s}) 6= 0.

In other words, T has a “diagonal part”. Such operators necessarily have
an atomic part, and so are isomorphisms on some subspace L1(A) ([18],
Theorem 5.5); this means that they are Enflo operators ([8], Theorem 4.1).
Translations are Enflo operators but not strong. The proof of Theorem 5.4
in [18] essentially shows:

Proposition III.4. If T is a strong Enflo operator, there exists a set A of
positive measure such that

BL1(A) ⊂∼ 1A ·T
(
BL1(A)

)
.
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Indeed, if T is a strong Enflo operator and Taf(s) =∑+∞n=1an(s)f((σn(s))
represents the atomic part of T , there exist an n and a set C of positive mea-
sure on which an(s) 6= 0 and σn(s) = s. It follows that, with the notation
used in the proof of Theorem 5.4 of [18], σn(Bm,i∩B) ⊆ Cm,i, and this set
A = Bm,i∩B gives the conclusion.

Lemma III.5. Let X be a subspace of L1(Ω), and T : L1(A) → L1(Ω) an
operator, where A ⊆ Ω. Then T

(
BL1(A)

)
⊂∼ 1A ·CX if and only if there exists an

operator T̃ : L1(A)→ X⊥⊥ such that T = 1APT̃ .

Proof. The sufficiency comes directly from Bukhvalov-Lozanovski’s the-
orem P

(
BX⊥⊥

) = CX . To see the other direction, write L1(A) = ⋃n≥1Ln with
Ln ⊆ Ln+1 and Ln isometric to `dimLn

1 . Since T
(
BL1(A)

)
⊂∼ 1A ·CX , there ex-

ist operators Tn : Ln → X, such that ‖Tn‖ ≤ M and dm(1ATnf ,Tf) ≤ 2−n
for f ∈ BLn , where dm is a distance generating the topology τm. Taking a
w∗-limit of the Tn’s along an ultrafilter, gives T̃ : L1(A) → X⊥⊥ such that
1APT̃ = T . Indeed, if F ∈ L1∗∗ is the w∗-limit of a bounded filter (fα)α of
functions in L1, there exists a sequence (ck)k of convex combinations of the
fα’s, such that dm(ck,P(F)) -→

k→+∞
0 (see [16], Lemma IV.3.1). ❐

We can now state the following characterization of small subspaces.

Proposition III.6. A subspace X of L1 is small if and only if no strong Enflo
operator T verifies T

(
BL1

)
⊂∼ CX .

Proof. Suppose that T is a strong Enflo operator such that T
(
BL1

)
⊂∼ CX .

Since, by Proposition III.4, we have BL1(A) ⊂∼ 1A ·T
(
BL1(A)

)
for some set A

of positive measure, we obtain BL1(A) ⊂∼ 1A ·CX , in contradiction with the
smallness of X. Suppose now that X is not small, and let A be of positive
measure and such that BL1(A) ⊂∼ 1A ·CX . By applying Lemma III.5 to the

natural injection jA : L1(A) → L1, we obtain j̃A : L1(A) → X⊥⊥, such that
jA = 1APj̃A. Defining Tf = Pj̃A(1Af) for f ∈ L1, we get a strong Enflo
operator T : L1 → L1, since, by uniqueness of the representation of T , we
have µTs = δs for almost every s ∈ A, and we have also T(BL1(A)) ⊂∼ CX . ❐

Subspaces X for which CX = BX , i.e., nicely placed subspaces (see [10],
Definition 2), are of particular interest: if X is nicely placed and no operator
from L1 to X is strongly Enflo, then X is small. Since, by Proposition III.4,
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the range of every strong Enflo operator contains an isomorphic copy of L1,
we get:

Proposition III.7. Every nicely placed subspace of L1 which contains no
subspace isomorphic to L1 is small.

Note that the above condition is not necessary. For instance, the sub-
space of L1([0,1]2) consisting of the functions which do not depend on the
second variable is isometric to L1 and nicely placed, but it is small. A special
case of Proposition III.7 is:

Proposition III.8. For every nicely placed Riesz subset Λ of Z, L1Λ(T) is small.

Recall that Λ is a Riesz set if every measure whose Fourier transform is
carried by Λ is absolutely continuous, and it is nicely placed if L1Λ is nicely
placed in L1 (see [11], Definition 1.4 or [16], Definition IV.4.2). Proposi-
tion III.8 follows from the fact that Λ is a Riesz set if and only if L1Λ(T) has
the Radon-Nikodym Property ([27]). A stronger result will be shown below
(Proposition III.10).

Proposition III.6 gives also a stability result.

Proposition III.9. Let X and Y be two small subspaces such that X∩Y = {0}
and X⊕Y is closed. Then X⊕Y is small.

Proof. Let T : L1 → L1 be such that T
(
BL1

)
⊂∼ CX⊕Y . Lemma III.5 with

A = Ω gives T̃ : L1 → (X ⊕Y)⊥⊥ = X⊥⊥ ⊕Y⊥⊥ such that T = PT̃ . Let
π : X⊥⊥ ⊕Y⊥⊥ → X⊥⊥ be the projection. Writing U = πT̃ and V = (1−π)T̃ ,
we have T = PU +PV , and PU

(
BL1

)
⊂∼ CX and PV

(
BL1

)
⊂∼ CY . By Proposi-

tion III.6, PU and PV cannot be strong Enflo operators, so µPUs ({s}) =
µPVs ({s}) = 0 for almost all s. Hence µTs ({s}) = 0 for almost all s, and T
is not a strong Enflo operator. By Proposition III.6 again, we can conclude
that X⊕Y is small. ❐

We now examine the translation invariant case. A subset Λ of Z is said
to be semi-Riesz ([37]) if every measure σ whose Fourier transform is carried
by Λ has no atomic part. Every Riesz set is semi-Riesz, and Wiener’s theorem
([20], p. 42; [13], p. 415):

lim
N→+∞

1
2N +1

N∑
n=−N

|σ̂ (n)|2 =
∑
t∈T
|σ({t}|2
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shows that every set Λ with density zero, that is

d(Λ) = lim
N→+∞

](Λ∩{−N,.. . ,N})
2N +1

= 0,

is semi-Riesz. The set Λ = {∑nk=1εk4k | εk = −1,0,1, n ≥ 1
}

is therefore
semi-Riesz and not Riesz ([37], p. 126). We have:

Proposition III.10. Let Λ be a nicely placed subset of Z. Then L1Λ(T) is small
if and only if Λ is a semi-Riesz set.

Proof. Suppose that L1Λ(T) is not small, and let T : L1(T)→ L1(T) be the
operator constructed in the proof of Proposition III.6. We have readily

µ
T
s ({s}) = 0 if s 6∈ A,

µTs ({s}) = 1 if s ∈ A.

Let τt : L1(T)→ L1(T) be the translation given by

τtf (u) = f(t+u).

Since for every operator U we have

µτ
−1
t Uτt
s ({s}) = µUs−t({s− t}),

if we define T̃ : L1(T)→ L1(T) by

T̃ =
∫
T
τ−1
t Tτt dm(t),

we have, for all s,

µT̃s ({s}) =
∫
T
µTs−t({s− t})dm(t),

and so µT̃s ({s}) = m(A)−1. Since τtT̃ = T̃τt for every t ∈ T, there exists a
measure σ such that T̃ (f ) = σ ∗f . We have then σ({0}) =m(A)−1, so the
atomic part of σ is non zero, although σ ∈ MΛ. Conversely, suppose that
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L1Λ is small. Let σ be a measure with spectrum in Λ, and with atomic part

σa =
+∞∑
n=1

anδxn.

The convolution operator defined by Tf = σ ∗f maps L1(T) into L1Λ, so
that T

(
BL1(T)

)
⊂∼ BL1Λ . On the other hand, its representing measure has the

atomic part

µTas =
+∞∑
n=1

anδs−xn.

Since L1Λ is small and nicely placed, T cannot be a strong Enflo operator, so
µTs ({s}) = 0 almost everywhere. This is possible only if xn 6= 0 or an = 0.
Considering now, for each p ≥ 1, the translated measure σ ∗δ−xp (which
still have its spectrum in Λ) instead of σ , gives that ap = 0, since its atomic
part is

∑+∞
n=1anδxn−xp . Hence σa = 0, and we are done. ❐

Example. Y. Meyer ([28], Theorem 6) showed that, if (nk)k≥1 grows
fastly enough:

nk+1 > 6(n1+···+nk) and
+∞∑
k=1

nk
nk+1

< +∞,

then the set

Λ = { K∑
k=1

εknk
∣∣ εk = −1,0,1, K ≥ 1

}
is closed for the Bohr topology; hence it is nicely placed. Since it has density
zero, L1Λ(T) is small, but Λ is not a Riesz set, as the spectrum of a Riesz
product. F. Parreau pointed out to us that the same conclusion holds for

Λ = { K∑
k=1

εk4k
∣∣ εk = −1,0,1, K ≥ 1

}
.

We do not know whether L1Λ contains a subspace isomorphic to L1 wheneverΛ is the spectrum of a Riesz product.

For every subset Λ of Z, denote by [Λ] the smallest nicely placed subset
of Z containing Λ (see [11], p. 306). [Λ] is contained in the Bohr-closure ofΛ ([11], Corollary 2.6).
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Corollary III.11. If L1Λ(T) is not small, [Λ] contains a translate of the
spectrum of a Riesz product.

Proof. If L1Λ(T) is not small, L1
[Λ](T) is a fortiori not small. Hence there

is a measure σ with spectrum in [Λ] which has an atomic part, and Wiener’s
theorem shows that σ̂ (n)−−−→/

|n|→+∞
0. Host-Parreau’s theorem ([17]) ends the

proof. ❐

IV. Lifting of operators between quotients by small subspaces of
L1. In this section, we show that operators between quotients of L1 by small
subspaces lift to operators on L1. We begin with a special case, which is
much easier than the general one. The following notion will be used:

Definition IV.1. The operator T : L1 → L1 is said to be a Daugavet operator
if the Daugavet equation ‖I+λT‖ = 1+‖T‖ is fulfilled for every λ with
|λ| = 1.

A. Plichko and M. Popov showed ([30], Section 9, Theorem 8) that
every non-Enflo operator is Daugavet. In fact, more is true: T is a Daugavet
operator whenever it is not strongly Enflo. Indeed, denoting the represent-
ing measures of T by µs , s ∈ [0,1], we have

‖T‖ = sup
E

1
m(E)

∫ 1

0
|µs|(E)dm(s),

and

‖I+λT‖ = sup
E

1
m(E)

∫ 1

0
|δs +λµs|(E)dm(s).

Since T is not strongly Enflo, we have µs({s}) = 0 for almost all s, and the
measures δs and µs are disjoint for these values. Hence, if for every ε > 0 we
choose a measurable set E such that

‖T‖ ≤ 1
m(E)

∫ 1

0
|µs|(E)dm(s)+ ε,

we get, since we may assume that s ∈ E,

1+‖T‖ ≤ 1
m(E)

∫ 1

0
|δs +λµs|(E)dm(s)+ ε ≤ ‖I+λT‖+ ε,

which gives the result. D. Werner used a similar argument in ([36]).
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Proposition IV.2. Let X and Y be nicely placed subspaces of L1. Assume that
X and Y are small, and that

dist
(
L1/X , L1/Y

)
< 2.

Then there exists an invertible operator V : L1 → L1 such that V(X) = Y .
Moreover, for 0 ≤ α < 1, if

dist
(
L1/X , L1/Y

) = 1+α,

there is such a V satisfying ‖V‖ · ‖V−1‖ ≤ (1+α)/(1−α).

Proof. Let S be an isomorphism from L1/X onto L1/Y such that ‖S‖ ·
‖S−1‖ < 2. By the lifting property of nicely placed subspaces (see [23],
Theorem 1, [16], Proposition IV.2.12, or [19], Proposition 2.1), there exist
U and V such that QXU = S

−1QY ,

QYV = SQX,
and such that ‖U‖ = ‖S−1‖ and ‖V‖ = ‖S‖. Hence the following diagram is
commutative:

L1
V−−−−−−−−−−−−→←−−−−−−−−−−−−
U

L1

QX

y
yQY

L1/X
S−−−−−−−−−−−−→←−−−−−−−−−−−−
S−1

L1/Y

For every f ∈ L1, we have

QYVUf = SQXUf = SS−1QYf = QYf ,

hence
(I−VU)(L1) ⊆ Y ,

and similarly (I−UV)(L1) ⊆ X. Since X and Y are nicely placed and small,
the operators I−UV and I−VU are not strongly Enflo, and so are Daugavet
operators. Therefore, we have

‖I−UV‖ = ‖UV‖−1 and ‖I−VU‖ = ‖VU‖−1.
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Since ‖UV‖ ≤ ‖U‖ · ‖V‖ = ‖S‖ · ‖S−1‖ < 2, it follows that U and V are
invertible. Consequently V(X) = Y since, for f , g ∈ L1 such that V(f) = g,
we have

g ∈ Y ⇐⇒ QY(g) = 0 ⇐⇒ QYV(f) = 0
⇐⇒ SQX(f) = 0 ⇐⇒ QX(f) = 0 ⇐⇒ f ∈ X.

To conclude the proof, we observe that ‖V‖ = ‖S‖ and

V−1 =
[ +∞∑
k=0

(I−UV)k
]
U.

Hence

‖V−1‖ ≤ ‖S−1‖
2−‖S‖ · ‖S−1‖ ,

since ‖U‖ = ‖S−1‖ and ‖I−UV‖ ≤ ‖S‖ · ‖S−1‖, and so V works. ❐

Remark. Note that Proposition IV.2 applies in particular to nicely placed
subspaces which do not contain L1 (by Proposition III.7). If L1/X and L1/Y
are isometric, we have α = 0 and, by the above, V is actually an invertible
isometry of L1.

We now give the general statement.

Theorem IV.3. Let X and Y be small subspaces of L1, and suppose that there
is an isomorphism S : L1/X → L1/Y such that ‖S‖ and ‖S−1‖ are less than
1+δ, with δ < 1

25 . Then, there exists an invertible operator U : L1 → L1 such
that ‖U‖ · ‖U−1‖ ≤ (1+δ)/(1−25δ), and dH

(
U(BX),BY

) ≤ 71δ/(1−25δ),
where dH denotes the Hausdorff distance.

Proof . Denote by QX and QY the projections onto the respective quo-
tient spaces. We first construct a bidual diagram

L1∗∗
W1−−−−−−−−−−−−→←−−−−−−−−−−−−
W2

L1∗∗

Q∗∗X

y
yQ∗∗Y

L1∗∗/X⊥⊥
S∗∗−−−−−−−−−−−−→←−−−−−−−−−−−−
S−1∗∗ L1∗∗/Y⊥⊥
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Write L1 = ⋃n≥1Ln, where (Ln) is an increasing sequence of finite-dimensional
spaces isometric to `dim(Ln)

1 . For all n ≥ 1, there exists Tn : Ln → L1 such that

QYTn = SQX |Ln,

and ‖Tn‖ ≤ (1+1/n)‖S‖.

Lemma IV.4. Let U be a free ultrafilter on the integers. There exists a
(w∗-w∗)-continuous operator W1 : L1∗∗ → L1∗∗ such that


‖W1‖ ≤ ‖S‖,
Q∗∗Y W1 = S∗∗Q∗∗X ,
W1(f ) = F,

for any f ∈ ⋃n≥1Ln and F = w∗-limUTn(f).

Proof. Define w1 :
⋃
nLn → L1∗∗ by

w1(f ) = w∗-lim
U
Tn(f).

Clearly ‖w1‖ ≤ ‖S‖, and w1 can be extended to an operator w1 : L1 →
L1∗∗. If now Π : (L1)(4) → L1∗∗ denotes the canonical (w∗-w∗)-continuous
projection (“restriction to L1∗”), then W1 = Πw∗∗1 works. Indeed, for any
g ∈ L1, one has

Q∗∗Y w1(g) = SQX(g),
and the equation Q∗∗Y W1 = S∗∗Q∗∗X follows by w∗-continuity of all relevant
operators. ❐

We get of course, by the same token, an operator W2 with Q∗∗X W2 =
S−1∗∗Q∗∗Y and similar properties.

Lemma IV.5. Let P : L1∗∗ → L1 be the natural projection. Then

[
P(I−W1W2)

](
BL1∗∗

) ⊆ ‖I−W1W2‖BY τm.

Proof. For any h ∈ L1∗∗, we have

Q∗∗Y W1W2h = S∗∗Q∗∗X W2h = S∗∗S−1∗∗Q∗∗Y h = Q∗∗Y h.
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Hence Q∗∗Y (I−W1W2) = 0 and

(I−W1W2)
(
BL1∗∗

) ⊆ ‖I−W1W2‖BY⊥⊥ .

The result follows by Bukhvalov-Lozanovski’s theorem P
(
BY⊥⊥

) = BY τm . ❐

Then, writing T = P(I−W1W2)|L1 , it follows from Lemma IV.5, the
smallness of Y , and Proposition III.6 that T is not a strong Enflo operator;
hence −T satisfies the Daugavet equation, and we have

1+‖P(I−W1W2)|L1‖ = 1+‖T‖ = ‖I−T‖ = ‖(PW1W2)|L1‖
≤ ‖S‖ · ‖S−1‖ ≤ 1+δ.

Therefore

(1) ‖P(I−W1W2)|L1‖ ≤ δ,

and hence, for any f ∈ L1, one has

‖P(I−W1W2)(f )‖1 ≥ (1−δ)‖f‖1.

On the other hand, one also has

‖W1W2f‖1 ≤ ‖S‖ · ‖S−1‖ ‖f‖1 ≤ (1+δ)‖f‖1.

Since P is an L-projection, we have then

‖W1W2f −PW1W2f‖1 = ‖W1W2f‖1−‖PW1W2f‖1 ≤ 2δ‖f‖1.

It follows from this and (1) that

‖(I−W1W2)|L1‖ ≤ 3δ.

Since W1 and W2 are w∗-continuous, this gives

(2) ‖I−W1W2‖ ≤ 3δ.

An identical argument shows that

(3) ‖I−W2W1‖ ≤ 3δ.
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Since δ < 1
3 , (2) and (3) show thatW1W2 andW2W1 are invertible. Hence

W1 and W2 are themselves invertible.

Lemma IV.6. In the notation of Lemma IV.4, one has

‖ ‖-diam(Lf ) ≤ 6δ‖W−1
2 ‖‖f‖1,

where Lf is the set of all w∗-cluster points of the Tnf ’s.

Proof. Since ‖f −W2W1f‖1 ≤ 3δ‖f‖1 by (2), one has

‖W−1
2 f −W1f‖1 ≤ 3δ‖W−1

2 ‖ ‖f‖1.

By Lemma IV.4, any F ∈ Lf can be written F = W1(f ) for an appropriate
W1, and the conclusion follows. ❐

Note that it follows, from (2) and (3), that

‖W−1
2 ‖ ≤ ψ(δ) =

1+δ
1−3δ

·

Lemma IV.7. Let Z be a Banach space such that Z∗∗ = Z ⊕1 Zs . Let (zn)n
be a sequence in Z and L be the set of all its w∗-cluster points. If

‖ ‖-diam(L) = ε,

we have dist(l,Z) ≤ ε for all l ∈ L.

Proof. Let l ∈ L. By translating if necessary, we may and do assume that
l ∈ Zs . Let K = (BZ∗ ,w∗). By ([6], Lemma III.2.4), we have

‖l‖ = dist(l,Z) = l̂ = −l,

where l̂ and l are respectively the u.s.c. and the l.s.c. hulls of l. Thus

w∗ -Osc(l|K)(y) = 2‖l‖.

Pick α > 0. For any n ≥ 1, let

Fn = {y ∈ K : |zk(y)−zj(y)| ≤ ε+α for all k,j ≥ n}.
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It follows from the assumption, that

K =
⋃
n≥1

Fn.

Hence, by Baire’s lemma, there is a non-void w∗-open set U ⊆ K and an
N ≥ 1 such that U ⊆ FN . It follows that, for all y ∈ U , we have

|l(y)−zN(y)| ≤ ε+α,

and since zN is w∗-continuous, this implies that for all y ∈ U we have

Osc(l|K)(y) ≤ 2(ε+α).

Hence dist(l,Z) ≤ ε+α, which concludes the proof, since α > 0 was
arbitrary. p

By Lemmas IV.6 and IV.7, we have

‖PF −F‖ = dist(F,L1) ≤ 6δψ(δ)‖f‖1

for every F ∈ Lf . Once we know this, it follows that one has

(4) ‖(PWi−Wi)|L1‖ ≤ 6δψ(δ), i = 1,2.

We define now U , V : L1 → L1 by

U = (PW1)|L1 , V = (PW2)|L1 .

It follows from (1), (2), (3), and (4) that

‖I−UV‖ ≤ 22δ
1−3δ

and ‖I−VU‖ ≤ 22δ
1−3δ

,

so UV and VU , and thus U and V as well, are invertible for δ < 1
25 . Moreover,

‖U−1‖ and ‖V−1‖ are less than 1/(1−25δ). We now observe that, since

SQXf = Q∗∗Y W1f for all f ∈ L1,

one has W1(X) ⊆ Y⊥⊥. It follows that dist(Uf ,Y⊥⊥) ≤ ‖(PW1−W1)|L1‖, so
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by (4)

dist(Uf ,Y) ≤ 2dist(Uf ,Y⊥⊥) < 13δ
1−3δ

,

for any f ∈ BX . It follows that

U(BX) ⊆ BY + 27δ
1−3δ

BL1 .

Since the same inclusion holds when we exchange X and Y and replace U
by V , we can find, for every g ∈ BY , an f ∈ X such that ‖Vg−f‖1 ≤
13/(1−3δ). Letting h = f/‖f‖1, we obtain

‖g−Uh‖1 ≤ ‖g−V−1f‖1+‖V−1‖ ‖I−UV‖ ‖f‖1+‖U‖(‖f‖1−1),

so

BY ⊆ U
(
BX
)+ 71δ

1−25δ
BL1 ,

and this finishes the proof of Theorem IV.3. ❐

Let us say that Y ⊆ L1 has the λ-lifting property if for any T : L1 → L1/Y ,
there exists T̃ : L1 → L1 such that T = QY T̃ and ‖T̃‖ ≤ λ‖T‖. If Y is
complemented in Y∗∗, it has the lifting property (see [19], Lemma 2.1).

Corollary IV.8. Let X and Y be small subspaces of L1 such that there is an
isomorphism S : L1/X → L1/Y , such that ‖S‖ · ‖S−1‖ ≤ 1+δ, and assume that
Y has the λ-lifting property. Then for δ ≤ δ(λ), there is T : L1 → L1, invertible,
such that T(X) = Y , and

‖T‖ · ‖T−1‖ ≤ 1+K(λ)δ,

where K(λ) only depends on λ.

Proof. Since SQX = Q∗∗Y W1|L1 , by (4) one has, for δ ≤ δ0,

‖SQX −QYU‖L1→L1/Y ≤ Cδ.

By assumption, there is E : L1 → L1 with

‖E‖ ≤ Cλδ,QYE = SQX −QYU.
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Now, if T = U +E, one has SQX = QYT , and the conclusion follows, since
this implies, when T is invertible, that T(X) = Y . ❐

Remark IV.9. There exist subspaces X and Y of infinite codimension in
c0 whose duals are isometric, but for which there is no invertible isometry
of `1 which maps X⊥ onto Y⊥. Indeed, every isometry from `1 onto itself
is w∗-continuous; hence there should exist an isometry of c0 mapping X
onto Y . Therefore, it suffices to construct infinite codimensional isometric
subspaces X and Y of c0, in such a way that X contains an element supported
by a single integer, and that the elements of Y are all supported by an even
number of integers. Since invertible isometries of c0 leave the size of the
supports invariant, such X and Y cannot be mapped into each other by an
isometry of all c0. So Proposition IV.2 with `1 instead of L1 is false in full
generality. That shows that it is essential that the measure space be purely
non-atomic, at least for defining a proper notion of “small” subspace.

Remark IV.10. It is asked in [19] whether, for two infinite Sidon sets
S1 and S2, the spaces L1

S̃1
and L1

S̃2
are isomorphic. It would be true if one

could lift isomorphisms from L1/L1
S̃1

onto L1/L1
S̃2

. But L1
S̃1

and L1
S̃2

are “large”
subspaces of L1, and the present techniques are apparently not applicable to
this question.

V. Construction of a peculiar subspace of L1. In Part II, we have seen
a unified approach for Alspach’s and Dor’s theorems. In this section, we
will see that the results of Part II have limitations. More precisely, we will
construct a subspace X of L1 which will show that the nearness to isome-
tries of the small into-isomorphisms from L1 into L1 (and of the small into-
isomorphisms from finite dimensional subspaces of L1 to L1 ([21])) does not
keep on to take place for general subspaces of L1. Moreover, the same space
will show that extension of isometries from a subspace of L1 to the whole
space L1 (see [15], [26], [31]) is no longer true if we replace isometries by
almost isometries. It shows also that Dor’s Theorem B ([7]), which says
that sequences of functions fn in L1 which are equivalent to the canonical
basis of `1 are essentially supported by disjoint measurable sets, cannot be
improved by replacing the fn’s by finite dimensional subspaces: our space
X is, for every ε > 0, (1+ ε)-isomorphic to a `1-sum of finite dimensional
spaces, but ‖ES−Id‖L(X,L1) ≥ 1 for every σ -algebra S generated by a measur-
able partition. Note also that in our terminology, the space X we construct
is small and nicely placed. We work in this section with real Banach spaces.

Theorem V.1. There exists a subspace X of L1 = L1(Ω,Σ,P) such that
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(a) For every isometry T : X → L1 there is a unique isometry T̃ : L1 → L1 with
T̃|X = T ;

(b) For every ε > 0, there exists an isomorphism Tε : X → L1, with ‖Tε‖ ‖T−1
ε ‖ ≤

1+ ε, but for which ‖Tε− J‖ ≥ 1
2 for every isometry J : X → L1.

Before producing the proof, we note that (b) and Alspach’s theorem
(Theorem II.7) show that the operators Tε do not extend to L1 with a proper
control on the norm of the extension.

Proof. The subspace X is constructed in a very similar way as the one
given in [12], Example 4.1.1, but we work with the stable variables them-
selves instead of working with their absolute value.

The following lemma will be used.

Lemma V.2. Let p ≥ 1, ε > 0, and k, l ≥ 1. There exists an N ≥ 1 such
that, for every subspace F of X = `Np with dimF ≥ N −k, there exist l norm
one vectors y1, . . ., yl of `Np , with disjoint support, such that dist(yj,F) ≤ ε
(1 ≤ j ≤ l).

Proof. Take H bigger than (1+2/ε)k and N = Hl. Since dim(X/Z) =
k, indices ij (Hh < i2h+1 < i2h+2 ≤ H(h+1), 0 ≤ h ≤ l) can be found
such that dist(e2h+2− e2h+1,F) ≤ ε, where (en)1≤n≤N is the canonical basis
of `Np . ❐

Recall first some probabilistic facts (see [3], pp. 60–61). A random
variable Z is called p-stable if its characteristic function is Ẑ(t) def= E(eitZ) =
e−cp|t|p , where cp is the normalization constant (‖Z‖1 = 1). Now, if (Zn)n≥1

is a sequence of independent p-stable variables, its linear spanXp is isometric
to `p, and Z1, . . ., Zn, . . . correspond to the usual vector basis of `p. Since
cp -→
p→1

0, for every ε > 0, there is an α > 0 such that, if 1 < p ≤ α:

dP (f ,0) ≤ ε for all f ∈ BXp ,

where dP defines the convergence in probability. By the strong law of large
numbers, we also have liml→+∞(1/l)

∑l
j=1 |Zj| = 1 almost surely.

Now the space X will be the closed linear span of the constant function
1 and a sequence of independent pk-stable variables with pk -→

k→+∞
1. More

precisely, we choose inductively:
(1) a sequence (pk)k≥1 converging to 1 and a sequence (εk)k≥1 converging

to 0 such that
dP (f ,0) ≤ εk for all f ∈ BXpk ,
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where Xpk is the linear span of independent pk-stable variables; these se-
quences are chosen so that the subspaces X1, X2, . . . constructed in the third
step nearly create a `1 sum. More explicitly, εk+1 is chosen so that the con-
dition

dP (f ,0) ≤ εk+1 for all f ∈ BXpk+1

implies that, for g ∈ Xk+1 and f ∈ X1+···+Xk, we have

‖f +g‖1 ≥
(

1− 1
2k+2

)
(‖f‖1+‖g‖1);

(2) a sequence of integers (lk)k≥1 such that
∣∣(1/lk)∑lkj=1 |Yj|− 1

∣∣ ≤ 1/k al-
most surely for every independent pk-stable variables Y1, . . ., Ylk ;

(3) a sequence of integers (Nk)k≥1 such that, if Xk is the linear span of
the independent pk-stable variables Zj, j ∈ Ik (Ik ⊆ N, |Ik| = Nk),
we can find, by Lemma V.2, for every finite dimensional subspace F
of Xk, lk independent pk-stable variables Y1, . . ., Ylk in Xk such that
‖ ‖1−dist(Yj,F) ≤ 1/2k for 1 ≤ j ≤ lk.

The sets I1, I2, . . . are chosen as successive intervals of N, so we have N =⋃
k≥1 Ik. All the pk-stable variables for the different values of k are indepen-

dently chosen. Finally, we may and do suppose that the σ -algebra σ(X) gen-
erated by X is all Σ, since if not we replace L1(Ω,Σ,P) by L1(Ω,σ(X),Pσ(X)).
Since 1 ∈ X, Hardin’s theorem ([15], Corollary 4.3) now gives part (a) of
the Theorem.

For the part (b), we state two facts. The first one follows directly from
the construction and the almost isometric embedding of finite dimensional
subspaces of L1 into `1.

Fact 1. The Banach-Mazur distance from X to the set of subspaces of `1

is 1.

It follows that for every ε > 0, there exist an operator Tε : X → L1 such
that ‖Tε‖ · ‖T−1

ε ‖ ≤ 1+ ε and a σ -algebra Sε generated by disjoint measur-
able parts of Ω such that ESε Tε = Tε.

Fact 2. For every sub-σ -algebra S of Σ generated by disjoint measurable
sets of Ω, one has

sup
f∈BX

‖ESf −f‖1 ≥ 1.
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Proof. Denote by S1, S2, . . . a measurable partition of Ω generating S,
with P(Si) > 0 for all i. For every k ≥ 1, let

Fk =
{
f ∈ Xk

∣∣ ∫
Si
f dP = 0 for all i ≤ k

}
.

Let ε > 0. By the third step of the construction, since dim(Xk/Fk) ≤ k, and
since infi≤kP(Si) > 0, there is an integer k0 such that we can find, for every
k ≥ k0, lk independent pk-stable variables Y1, . . ., Ylk in Xk so that

(∗)
∣∣∣∣∣ 1
P(Si)

∫
Si
Yj dP

∣∣∣∣∣ ≤ ε for all j ≤ lk, all i ≤ k.

Let Uk = S1∪···∪Sk. By (∗), one has

‖ES(Yj)1Uk‖1 ≤ ε for all j ≤ lk.

But, by the step 2) of the construction, there is an integer k1 such that

∥∥∥∥ 1
lk

lk∑
j=1

|Yj|1Uk
∥∥∥∥

1
≥ 1− ε

for k ≥ k1, and then there is a jk ≤ lk such that

∥∥ |Yjk|1Uk∥∥1 ≥ 1− ε.

Hence
‖Yjk −ESYjk‖1 ≥ ‖Yjk1Uk − (ESYjk)1Uk‖1 ≥ 1−2ε,

and this proves the Fact 2. ❐

More generally, one has the following result:

Lemma V.3. For every isometry J : X → L1 and every σ -algebra generated
by a measurable partition, one has

sup
f∈BX

‖ES Jf − Jf‖1 ≥ 1.

Proof. From (a), one has an isometry J̃ : L1 → L1 which extends J.
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There are measurable functions a, σ on Ω (see Section II) such that

J̃f (s) = a(s)f(σ(s)).

Since ‖a‖1 = ‖J̃1‖1 = 1, the measure

dQ = |a|dP

is a probability measure. Moreover,

∫
Ω |1+f(t)|dP(t) =

∫
Ω |1+f(σ(s))|dQ(s);

hence f and f(σ) have the same distribution ([15], Theorem 1.1); so f(σ)
is p-stable in L1(Q) whenever f is p-stable in L1(P). Let S be the σ -algebra
generated by a measurable partition (Si) of Ω, and let S′ be a refinement of
this partition, so that the sign of a is constant on each S′i (> 0, < 0, or = 0).
In particular, supp(a) = ⋃{S′i | a 6≡ 0 onS′i}.

Let ε′ > 0. Reproducing the proof of the above Fact 2 in L1(Q), we
obtain that, if S′i (i ≤ k) is disjoint from supp(a), there exist, for every
k ≥ k0, Y1, . . ., Ylk ∈ Xk such that

∣∣∣∣∣ 1
Q(S′i)

∫
S′i
Yj(σ)dQ

∣∣∣∣∣ ≤ ε′ for all i, all j ≤ lk,

that is ∣∣∣∣∣ 1
Q(S′i)

∫
S′i
Yj(σ)|a|dP

∣∣∣∣∣ ≤ ε′ for all i, all j ≤ lk.

But a has a constant sign on S′i , so this writes∣∣∣∣∣ 1
Q(S′i)

∫
S′i
Yj(σ)adP

∣∣∣∣∣ ≤ ε′ for all i, all j ≤ lk.

Therefore ∣∣∣∣∣ 1
P(S′i)

∫
S′i
Yj(σ)adP

∣∣∣∣∣ ≤ Q(S′i)P(S′i)
ε′ for all i, all j ≤ lk.

Consequently, for every ε > 0, there is k′0 such that, for k ≥ k′0, there exist
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Y1, . . ., Ylk ∈ Xk such that

∣∣∣∣∣ 1
P(S′i)

∫
S′i
Yj(σ)adP

∣∣∣∣∣ ≤ ε for all i, all j ≤ lk.

Now, since indices i ≤ k for which S′i is disjoint from supp(a) do not matter,
one has, as in the proof of Fact 2, for k with Uk = S′1∪···∪S′k ∈ S:

‖ES J(Yj)1Uk‖1 ≤ ‖ES′ J(Yj)1Uk‖1 ≤ ε for all j ≤ lk.

On the other hand,

1
lk

lk∑
j=1

|Yj(σ)| -→
k→+∞

1 P−a.s.,

hence 1
lk

lk∑
j=1

|J(Yj)| -→
k→+∞

|a| Q−a.s..

Since ‖a‖L1(P) = 1, it follows that

lim
k→+∞

∥∥∥ 1
lk

lk∑
j=1

|J(Yj)|1Uk
∥∥∥

1
≥ 1.

There is therefore a k1 such that, for every k ≥ k1, there is a jk ≤ lk such that

‖J(Yjk)1Uk‖1 ≥ 1− ε,

and so

‖J(Yjk)−ES J(Yjk)‖1 ≥ ‖J(Yjk)1Uk −ES J(Yjk)1Uk‖1 ≥ 1−2ε,

and this ends the proof of the lemma. ❐

We can now finish the proof of Theorem V.1.
Let ε > 0, Tε : X → L1 with ‖Tε‖ · ‖T−1

ε ‖ ≤ 1+ ε, and Sε such that
ESε Tε = Tε, as previously defined. For every isometry J : X → L1, we have

‖ESε J−Tε‖ = ‖ESε J−ESε Tε‖ ≤ ‖J−Tε‖,so
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‖ESε J− J‖ ≤ ‖ESε J−Tε‖+‖Tε− J‖ ≤ 2‖Tε − J‖.

But from Lemma V.3, ‖ESε J− J‖ ≥ 1, and so ‖Tε− J‖ ≥ 1/2. ❐

Remarks.

(1) There is a gap in the proof of the implication (iii)⇒(iv) of Corollary 3.5
in [12], and we do not know whether one has (i)⇒(iv) in that Corollary
3.5. Anyway, Theorem V.1 shows that one cannot replace the distance
dm in [12], Corollary 3.5 (iv), by the ‖ ‖1 distance.

(2) We mention here that it follows from L. Schwartz’s thesis ([34]; see [2],
Theorem 4.2.5), that Müntz spaces M1({tnk}) (with

∑
n−1
k < +∞) are

examples of subspaces of L1 almost isometric to subspaces of `1. The
case p > 1 has been noticed in [5] (see comments after Corollary 1.8).

The derivation of Lemma V.3 from Lemma V.2 can actually be put in
a more general frame. This is the content of the next proposition.

Proposition V.4. Let X1 and X2 be isometric subspaces of L1(Ω1,Σ1,µ1) and
L1(Ω2,Σ2,µ2) respectively. Suppose that X1 contains the constant functions, and
that, for some ε > 0, there is a σ -algebraA, generated by a measurable partition
of Ω1, for which

‖f −EAf‖1 ≤ ε‖f‖1 for all f ∈ X1.

Then, for ε′ > ε, there is a (Σ2⊗Bor)−measurable partition of Ω2× [0,1],
generating a σ -algebra B, for which one has

‖g−EBg‖1 ≤ ε′‖g‖1 for all g ∈ X2.

In this statement, we identify L1(Ω2,Σ2,µ2) to a subspace of

L1(Ω2× [0,1],Σ2⊗Bor,µ2⊗dt) = L1(Ω̃2, Σ̃2, µ̃2),

by letting g̃(ω,t) = g(ω) for ω ∈ Ω2, t ∈ [0,1], and g ∈ L1(Ω2,Σ2,µ2).

Proof. Denote by A1, A2, . . . the partition generating A, and by σ1 and
σ2 the sub-σ -algebras of Σ1 and Σ2 generated by X1 and X2 respectively. Let
U be an isometry from X1 onto X2. Since 1 ∈ X1, Hardin’s theorem ([15],
Corollary 4.3) ensures the existence of an into-isometry

T = Ũ : L1(σ1)→ L1(Σ2)
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which extends U , and whose range is L1(σ2). T can be written as Tf = a(f ◦
τ), with τ an isomorphism between (Ω2,σ2) and (Ω1,σ1). Write Jf = f ◦τ.
J is positive, and so, since ϕn = Eσ1(1An) verifies

ϕn ≥ 0 and
∑
n≥1

ϕn = 1,

we have ψn = Jϕn ≥ 0 and
∑
n≥1ψn = 1. Note that ν = |a|µ2 is a proba-

bility measure and J is an isometry from L1(Ω1,σ1,µ1) to L1(Ω2,σ2,ν). We
have:

Lemma V.5. If ψn are positive σ2-measurable functions with
∑
n≥1ψn = 1,

there is a measurable partition in sets B1, B2, . . . ∈ σ2⊗Bor, such that ψ̃n =
Eσ2(1Bn), for n ≥ 1.

Proof. Set

Bn =
{
(ω,t)

∣∣ n−1∑
k=1

ψk(ω) ≤ t <
n∑
k=1

ψk(ω)
}
.

We have for every B ∈ σ2:∫
B̃
Eσ2 1Bn =

∫
B̃

1Bn = (ν ⊗dt)(Bn∩ B̃)

=
∫
B
m
[
Bn(ω)

]
dν(ω) =

∫
B
ψn(ω)dν(ω),

so ψ̃n = Eσ2 1Bn . ❐

We may suppose now that ã has a constant sign on each Bn. In-
deed, since ã is σ2-measurable and τ is an isomorphism from (Ω2,σ2) onto
(Ω1,σ1), we have, if B+n = Bn∩{ã ≥ 0} and B−n = Bn∩{ã < 0},

Eσ2(1B+n ) = 1{ã≥0}Eσ2(1Bn) = 1{ã≥0}ψ̃n

= 1{ã≥0}(ϕ̃n ◦τ) = Ẽ
σ1(1{a◦τ−1≥0}1An)◦τ,

so we may cut each An with the sets {a ◦τ−1 ≥ 0} and {a ◦τ−1 < 0}, and
the B+n ’s and the B−n ’s will correspond to the A+n’s and the A−n’s. Now, letting

an(f) = 1
µ1(An)

∫
An
f dµ1,
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one has

µ1(An) =
∫
Ω1

1An dµ1 =
∫
Ω1

ϕndµ1 = ‖ϕn‖1 = ‖ψn‖L1(ν)(i)

=
∫
Ω2

ψndν =
∫
Ω̃2

1Bn dν̃ = ν̃(Bn),

and

∫
An
f dµ1 =

∫
Ω1

f1An dµ1 =
∫
Ω1

fϕndµ1 =
∫
Ω2

J(fϕn)dν(ii)

since Jf = f ◦τ, and µ1 = τ∗(ν),

=
∫
Ω2

(Jf)ψndν =
∫
Bn
J̃f dν̃.

Hence

an(f) = 1
ν̃(Bn)

∫
Bn
J̃f dν̃,

and then, denoting by B the σ -algebra generated by B1, B2, . . .,

‖J̃f −EB(J̃f )‖L1(ν̃) =
∑
n≥1

∫
Bn
|J̃f −an(f)1|dν̃ =

∑
n≥1

∫
Bn
|f̃ ◦τ −an(f)1)|dν̃

=
∑
n≥1

∫
Ω2

|f ◦τ −an(f)1|ψndν

=
∑
n≥1

∫
Ω2

|f ◦τ −an(f)1|(ϕn ◦τ)dν

=
∑
n≥1

∫
Ω1

|f −an(f)1|ϕndµ1 =
∑
n≥1

∫
An
|f −an(f)1|dµ1

= ‖f −EAf‖1 ≤ ε‖f‖1.

Now, going back to T , we refine B in such a way that ‖ã−EB ã‖L1(µ̃2) ≤
α = ε′ − ε. We keep the inequality ‖J̃f −EB(J̃f )‖L1(ν̃) ≤ ε‖f‖1. Moreover,
this refinement can be made by taking the intersection with σ2-measurable
sets, so, as above, the new Bn’s will correspond to an appropriate refinement
of the An’s. Set εn = 1 if a ≥ 0 on Bn, and εn = −1 if a < 0 on Bn. One has

∫
Bn
ãdµ̃2 = εn

∫
Ω2

|a|ψndµ2 = εn
∫
|a|(ϕn ◦τ)dµ2 = εn

∫
Ω2

|Tϕn|dµ2
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= εn‖Tϕn‖L1(µ2) = εn‖ϕn‖L1(µ1) = εnµ1(An),

and so

EB ã =
∑
n≥1

εn
µ1(An)
µ̃2(Bn)

1Bn.

Now

‖T̃ f −EB T̃ f‖L1(µ̃2)

=
∫
Ω̃2

∣∣∣∣ã(f̃ ◦τ)− ∑
n≥1

( 1
µ̃2(Bn)

∫
Bn
ã(f̃ ◦τ)

)
1Bn

∣∣∣∣dµ̃2

≤
∫
Ω̃2

∣∣∣∣ã(f̃ ◦τ)− ∑
n≥1

(
ã

µ1(An)

∫
Bn
|ã|(f̃ ◦τ)dµ̃2

)
1Bn

∣∣∣∣dµ̃2

+
∫
Ω̃2

∣∣∣∣ ∑
n≥1

(
ã

µ1(An)

∫
Bn
|ã|(f̃ ◦τ)dµ̃2

)
1Bn

−
∑
n≥1

( 1
µ̃2(Bn)

∫
Bn
ã(f̃ ◦τ)dµ̃2

)
1Bn

∣∣∣∣dµ̃2

≤
∫
Ω̃2

∣∣∣∣f̃ ◦τ − ∑
n≥1

( 1
ν̃(Bn)

∫
Bn
(f̃ ◦τ)dν̃

)
1Bn

∣∣∣dν̃
+
∫
Ω̃2

∑
n≥1

( 1
µ1(An)

∫
Bn
|ã|(f̃ ◦τ)dµ̃2

)(
ã− εnµ1(An)

µ̃2(Bn)

)
1Bn dµ̃2

≤ ‖J̃f −EB J̃f‖L1(ν̃)+
∫
Ω̃2

∑
n≥1

‖f‖1

∣∣∣∣ã− εnµ1(An)
µ̃2(Bn)

∣∣∣∣1Bn dµ̃2

≤ ε‖f‖1+‖f‖1

∑
n≥1

∫
Bn

∣∣∣∣ã− εnµ1(An)
µ̃2(Bn)

∣∣∣∣dµ̃2

≤ ε‖f‖1+‖f‖1‖ã−EB ã‖L1(µ̃2) ≤ (ε+α)‖f‖1 = ε′‖f‖1. ❐

Remarks.

(1) A slight variation in Proposition V.4 is: set Cn = τ−1(An). The Cn’s
are in general not in Σ2, but if C is the σ -algebra generated by them,
the map τ : Ω2 → Ω1 is (σ2∨C-σ1∨A)-bi-measurable (see in [14] a
description of these σ -algebras), and µ̃2(B) = µ1[τ(B)] defines a mea-
sure on (Ω2,σ2∨C), whose restriction to σ2 is equal to the restric-
tion of µ2 to σ2. One has then an isometry J̃ : L1(Ω1,σ1∨A,µ1) →
L1(Ω2,σ2∨C, µ̃2), defined by J̃(f ) = f ◦τ, such that J̃X1 = JX1. It
follows that ‖Jf −EC Jf‖1 ≤ ε‖f‖1. It would be interesting to find an
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intrinsic characterization of these spaces. This problem may be con-
nected to the fact that, though there are sufficient conditions to have
uniform convergence of martingales (see [29]), it seems there is at the
present time no available necessary condition.

(2) Since the space X and Tε(X) are small nicely placed subspaces (by Propo-
sition III.7), it follows from Theorem V.1 and Proposition IV.2 that
there is α > 0 such that the quotient spaces L1/X and L1/Tε(X) have
Banach-Mazur distance greater than (1+α) for all ε > 0. This implies
of course that the operators Tε do not extend to isomorphisms U of L1

such that the norms of U and its inverse are small.
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