
ISRAEL JOURNAL OF MATHEMATICS 170 (2009), 317–335

DOI: 10.1007/s11856-009-0031-z

LIPSCHITZ STRUCTURE OF QUASI-BANACH SPACES

BY

F. Albiac∗

Department of Mathematics, University of Missouri

Columbia, MO 65211, USA

Current address:

Departamento de Matemticas, Universidad Publica de Navarra

31006 Pamplona, Spain

e-mail: fernando.albiac@unavarra.es

AND

N. J. Kalton

Department of Mathematics, University of Missouri

Columbia, MO 65211, USA

e-mail: nigel@math.missouri.edu

ABSTRACT

We show that the Lipschitz structure of a separable quasi-Banach space

does not determine, in general, its linear structure. Using the notion of

the Arens-Eells p-space over a metric space for 0 < p ≤ 1 we construct

examples of separable quasi-Banach spaces which are Lipschitz isomorphic

but not linearly isomorphic.

1. Introduction

Let X and Y be quasi-Banach spaces. A Lipschitz map f : X → Y is a possibly

nonlinear map satisfying an estimate

‖f(x1) − f(x2)‖ ≤ C‖x1 − x2‖, x1, x2 ∈ X,
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for some constant C > 0. X and Y are Lipschitz isomorphic if there exists

a Lipschitz bijection f : X → Y such that f−1 is also Lipschitz (i.e., f is

bi-Lipschitz). Here ‖ · ‖ denotes the quasi-norm on X or Y.

It is a well-known open problem whether two separable Lipschitz isomorphic

Banach spaces are necessarily linearly isomorphic. Counterexamples are known

for non-separable Banach spaces [5, 7, 1]. The aim of this paper is to provide

counterexamples for separable quasi-Banach spaces, based on the methods of

[7].

Let us remark that rather little is known about the nonlinear structure of

quasi-Banach spaces. In general, authors have treated uniform structure rather

than Lipschitz structure. For example, Weston [21] has shown that the spaces

Lp(0, 1) and �q are not uniformly homeomorphic if p, q < 1 and p �= q. See also

the recent paper [16]. Let us also note that it is apparently unknown whether for

0 < p < q ≤ 1 the metric spaces (Lp, dp) and (Lq, dq) are Lipschitz isomorphic,

where dp(f, g) = ‖f − g‖p
p. However, the spaces Lp and Lq are not Lipschitz

isomorphic as quasi-Banach spaces in the sense described above [2].

2. Preliminaries

For background on quasi-Banach spaces we refer the reader to [14] or [11]. Let us

recall first that a quasi-norm ‖ ·‖ on a real vector space X is a map X → [0,∞)

with the properties:

(i) ‖x‖ = 0 if and only if x = 0;

(ii) ‖αx‖ = |α|‖x‖ if α ∈ R, x ∈ X ;

(iii) there is a constant k ≥ 1 so that for any x1 and x2 ∈ X we have

(2.1) ‖x1 + x2‖ ≤ k(‖x1‖ + ‖x2‖).

The least k in equation (2.1) is often referred to as the modulus of concavity

of the quasi-norm. A very basic and important result is the Aoki-Rolewicz

theorem [4, 17] which can be interpreted as saying that if 0 < p ≤ 1 is given by

k = 21/p−1, then there is a constant C such that for any {xk}
n
k=1 in X we have

(2.2)

∥

∥

∥

∥

n
∑

j=1

xj

∥

∥

∥

∥

≤ C

( n
∑

k=1

‖xk‖
p

)1/p

.
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It is then possible to replace ‖ · ‖ by an equivalent quasi-norm ||| · ||| which is

p-subadditive, i.e.,

|||x1 + x2|||
p ≤ |||x1|||

p + |||x2|||
p, x1, x2 ∈ X.

X is said to be p-normable if (2.2) holds. X is a p-normed space if the quasi-

norm on X is p-subadditive. We will assume from now on that a quasi-normed

space is p-normed for some 0 < p ≤ 1.

A p-subadditive quasi-norm ‖ · ‖ induces a metric topology on X . In fact,

a metric can be defined by d(x, y) = ‖x − y‖p. X is called a quasi-Banach

space if X is complete for this metric. A quasi-Banach space with an associated

p-norm is also called a p-Banach space.

Let M be an arbitrary set. A quasimetric d on M is a symmetric map

d : M × M → [0,∞) such that d(x, y) = 0 if and only if x = y, and for some

constant κ ≥ 1, d satisfies

d(x, y) ≤ κ(d(x, z) + d(z, y)), x, y, z ∈ M.

The space (M, d) is then a quasimetric space (see [8, p. 109]).

If (M, d) and (M, ρ) are quasimetric spaces we shall say that a map f : M →

M is Lipschitz if there exists a constant C > 0 so that

ρ(f(x), f(y)) ≤ Cd(x, y), x, y ∈ M.

The least such constant C is denoted by Lip(f). If f is a bijection, and both f

and f−1 are Lipschitz, then we say that f is bi-Lipschitz, and M and M are

called Lipschitz isomorphic. A map f from a quasimetric space (M, d) into

a quasimetric space (M, ρ) is an isometry if

ρ(f(x), f(y)) = d(x, y), x, y ∈ M.

Let (M, d) a quasimetric space. We will say that d is a p-metric for some

0 < p ≤ 1 if dp is a metric, i.e.,

d(x, y)p ≤ d(x, z)p + d(z, y)p, x, y, z ∈ M.

We then call (M, d) a p-metric space. An analogue of the Aoki–Rolewicz the-

orem holds in this context: every quasimetric space can be endowed with an

equivalent quasimetric which is p-subadditive for some 0 < p ≤ 1; that is, every

quasimetric space is Lipschitz isomorphic to a p-metric space for some choice of

0 < p ≤ 1 ([8, Proposition 14.5]).
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We shall say that (M, d) is a pointed quasimetric space (or a pointed p-

metric space, or a pointed metric space), if it has a distinguished point that

we call the origin and denote 0. The assumption of an origin is convenient to

normalize Lipschitz functions. We can regard a p-Banach space X as a pointed

p-metric space by taking 0 as the origin and the p-metric d(x, y) = ‖x − y‖.

3. Lipschitz maps between quasi-Banach spaces

A classical theorem of Mazur and Ulam from 1932 [15] establishes that a surjec-

tive isometry between two (real!) Banach spaces that takes 0 to 0 is linear, i.e.,

the linear structure of a Banach space is completely determined by its structure

as a metric space. The generalization of this result to quasi-Banach spaces was

obtained by Rolewicz in 1968 (note that we are assuming that every quasi-norm

is a p-norm for some p):

Theorem 3.1 (Rolewicz, [18], [19, p. 397]): If U : X → Y is a bijective isometry

between the (real) quasi-Banach spaces X and Y with U(0) = 0 then U is linear.

In [7] it is shown that if X is a separable Banach space and Y is any Banach

space such that X embeds isometrically into Y , then X will also embed linearly

and isometrically. In the quasi-Banach case the corresponding result fails:

Theorem 3.2: Suppose 0 < p < 1. There exists a separable p-normed quasi-

Banach space X and a p-normed quasi-Banach space Y such that:

(i) X embeds isometrically into Y .

(ii) If T : X → Y is a bounded linear operator then T = 0.

In order to prove Theorem 3.2 first we prove:

Proposition 3.3: Suppose 0 < p < 1. Let (M, d) be a pointed p-metric

space. Let Y = �∞(M ; Lp(0,∞)) be the p-Banach space of bounded maps

from M into the real space Lp(0,∞), with the associated p-norm ‖f‖Y =

sup{‖f(x)‖ : x ∈ M}. Then M embeds isometrically into Y.

Proof. We will define a map f : M → Y with f(0) = 0 which is an isometric

embedding. For x ∈ M put

f(x)(y) = χ(0,d(x,y)p) − χ(0,d(0,y)p), y ∈ M.
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Then f(0) = 0. Then for any x1, x2 in M ,

‖f(x1)(y) − f(x2)(y)‖Lp
= |d(x1, y)p − d(x2, y)p|1/p ≤ d(x1, x2), y ∈ M,

while

‖f(x1)(x2) − f(x2)(x2)‖Lp
= d(x1, x2).

Thus ‖f(x1) − f(x2)‖Y = d(x1, x2).

Remark: Proposition 3.3 asserts that every metric space can be embedded iso-

metrically into a p-Banach space X with the metric ‖x − y‖p.

Proof of Theorem 3.2. Consider the complex space Lp(T; C) and let Hp(T) be

the usual Hardy subspace. Let X be the quotient space Lp(T)/Hp(T) regarded

as a real quasi-Banach space.

Using Proposition 3.3 with M = X , we can embed X isometrically in the

space Y = �∞(X ; Lp(0,∞)), hence (i) follows.

To see (ii), if there exists a nonzero bounded linear operator T : X → Y , then

there exists a nonzero bounded linear operator S : X → Lp(0,∞), e.g., letting

Sx = Tx(y) for some y ∈ X. We can then induce a bounded complex-linear

map S̃ : X → Lp((0,∞); C) by S̃(x) = Sx − iS(ix). But then S̃ = S = 0 (the

fact that there is no nonzero bounded complex-linear map S : Lp/Hp → Lp

follows as a consequence of the F. & M. Riesz theorem, [9]).

Remark: A quasi-Banach space X is called natural if it is linearly isomorphic

to a closed subspace of a quasi-Banach lattice which is p-convex for some p > 0

(see [10]). Proposition 3.3 shows that every p-normed space (0 < p < 1), and, in

particular, the real quasi-Banach space X = Lp/Hp, embeds isometrically into

a natural space, namely, �∞(M ; Lp(0,∞)). But X cannot be linearly embedded

into any natural space since it fails to be natural. Thus we could replace X by

any nonnatural space.

4. Arens-Eells p-spaces

If (M, d) is a pointed quasimetric space, let RM be the space of all functions

(not necessarily continuous) f : M → R so that f(0) = 0. We then define P(M)

to be linear span in the linear dual (RM )# of the evaluations δ(x), where x runs

through M , defined by

〈δ(x), f〉 = f(x), f ∈ R
M .



322 F. ALBIAC AND N. J. KALTON Isr. J. Math.

Note that δ(0) = 0.

Definition: If 0 < p ≤ 1 and d is a p-metric on M , we define the Arens-Eells

p-space over M , denoted by Æp(M), as follows. If µ =
∑N

j=1 ajδ(xj) ∈ P(M)

put

(4.3) ‖µ‖Æp(M) = sup
∥

∥

∥

N
∑

j=1

ajf(xj)
∥

∥

∥

Y
,

the supremum being taken over all p-normed spaces Y and all maps f : M → Y

with f(0) = 0, and satisfying the inequality

‖f(x) − f(y)‖Y ≤ d(x, y), x, y ∈ M.

Then ‖ · ‖Æp(M) is a p-seminorm which induces a p-norm on P(M)/Z where

Z = {µ ∈ P(M) : ‖µ‖Æp(M) = 0}. Then Æp(M) is the completion of P(M)/Z

under this p-norm.

Remarks: We do not know if ‖ · ‖Æp(M) is actually a p-norm on P(M) except

in the case when p = 1 (see below); equivalently, we do not know if Z intersects

P(M). Of course, if M is a subset of a p-Banach space, then ‖ · ‖Æp(M) is

trivially a p-norm. It will be convenient for us to regard P(M) as a subset of

Æp(M) by identifying each µ ∈ P(M) with the corresponding equivalence class

in Æp(M).

If p = 1 (so that d is a metric), then it follows from the Hahn-Banach the-

orem that Æ1(M) is the space denoted by F(M) in [12] (or [7]); however, the

terminology here dates back to Weaver [20], who denotes this space by Æ(M).

In this case Æ1(M)∗ can be identified naturally with Lip0(M), the space of all

Lipschitz functions f : M → R with f(0) = 0 and the norm

‖f‖Lip
0
(M) = sup

{

|f(x) − f(y)|

d(x, y)
: x �= y

}

.

Note that if p < r ≤ 1 and M is a pointed r-metric space, then it is also a

pointed p-metric space. From definition we then have

‖µ‖Ær(M) ≤ ‖µ‖Æp(M), µ ∈ P(M),

and from this it follows that there is a natural map Jp,r : Æp(M) → Ær(M)

with ‖Jp,r‖ ≤ 1, which is induced by the identity map on P(M). We do not

know if this map is always injective. We will need these remarks in the case

r = 1, when we consider Æp(X) for X a Banach space.
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Lemma 4.1: Suppose 0 < p ≤ 1. If (M, d) is a pointed p-metric space, then the

map δ : (M, d) → (Æp(M), ‖ · ‖Æp(M)) is an isometric embedding and Æp(M)

is the closed linear span of δ(M).

Proof. This follows directly from Proposition 3.3 since we can take f to be an

isometric embedding.

Remark: Let us highlight one difference between the cases p < 1 and p = 1. If

p = 1 and M is a pointed metric space, then if M0 is a subset of M containing

0 we have

‖µ‖Æ1(M0) = ‖µ‖Æ1(M), µ ∈ P(M0).

This follows from the fact that every f0 ∈ Lip0(M0) can be extended to some

f ∈ Lip0(M) with the same Lipschitz constant. It follows that Æ1(M0) can be

naturally identified with a subspace of Æ1(M). In the case p < 1, it is unclear

whether one has a corresponding result.

Lemma 4.2: Suppose (M, d) is a p-metric space. Suppose µ ∈ Æp(M). Then

for any ε > 0 we can write µ in the form

µ =

∞
∑

n=1

αn(δ(xn) − δ(yn)), xn, yn ∈ M,

where
∞
∑

n=1

|αn|
pd(xn, yn)p < (1 + ε)p‖µ‖p

Æp(M).

Proof. Let K be the absolutely p-convex hull of {d(x, y)−1(δ(x) − δ(y)) :

x, y ∈ M, x �= y} in P(M). Then we may define a p-seminorm on P(M)

via the Minkowski functional of K, i.e.,

‖µ‖K = inf{λ > 0 : µ ∈ λK}.

Clearly,

‖µ‖Æp(M) ≤ ‖µ‖K , µ ∈ P(M).

However,

‖δ(x) − δ(y)‖K ≤ d(x, y), x, y ∈ M.

This means δ : M → (P(M), ‖ · ‖K) is a permissible map in the definition

of ‖ · ‖Æp(M) and so ‖µ‖Æp(M) = ‖µ‖K for µ ∈ P(M). The lemma follows

immediately from this.
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Lemma 4.3: Suppose Y is a p-Banach space, M is a pointed p-metric space,

and f : M → Y is a map satisfying f(0) = 0 and

‖f(x) − f(y)‖Y ≤ Cd(x, y), x, y ∈ M.

Then f induces a bounded linear operator Tf : Æp(M) → Y with ‖Tf‖ ≤ C

and

Tf(δ(x)) = f(x), x ∈ M.

Conversely, if T : Æp(M) → Y is a bounded linear operator, then T = Tf where

f(x) = T (δ(x)) for x ∈ M.

In particular, if X is a p-Banach space, the identity map IdX : X → X

induces a linear operator βX : Æp(X) → X which is a quotient map. Thus X

is (isometrically) a quotient of Æp(X).

Proof. This is purely formal and can be proved in the same way as the corre-

sponding result in [7, Lemma 2.5].

Remarks: If X is a p-Banach space, then for µ =
∑n

j=1 ajδ(xj) ∈ P(X) we

have

βX(µ) =

n
∑

j=1

ajxj .

If X is a Banach space we should distinguish between βX = β
(p)
X : Æp(X) → X

and βX = β
(1)
X : Æ1(X) → X . These are related by β

(p)
X = β

(1)
X ◦ Jp,1, where

Jp,1 : Æp(X) → Æ1(X) is the canonical map, described above.

Definition: Suppose 0 < p ≤ 1. Let us say that a p-Banach space X has the

p-Lipschitz lifting property if whenever

0 −→ E −→ Y
q

−→ X → 0

is a short exact sequence of p-Banach spaces such that there exists a Lipschitz

map f : X → Y with q ◦ f = IdX , then the sequence splits linearly, i.e., there is

a bounded linear operator S : X → Y with qS = IdX . For Banach spaces this

concept appears implicitly in [7]; similar ideas are also studied in [6].

Lemma 4.4: Suppose 0 < p ≤ 1 and let (M, d) be a pointed p-metric space.

Then the p-Banach space Æp(M) has the p-Lipschitz lifting property.
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Proof. (Compare with [7, Lemma 2.10].) Suppose

0 −→ E −→ Y
q

−→ Æp(M) → 0

is a short exact sequence and f : Æp(M) → Y is a Lipschitz map such that

q ◦ f = IdÆp(M). We can assume f(0) = 0 by translation. Then f ◦ δ : M → Y

satisfies f ◦ δ(0) = 0 and

‖f ◦ δ(x) − f ◦ δ(y)‖ ≤ Cd(x, y), x, y ∈ M.

Let T : Æp(M) → Y be the associated linear operator such that

T (δ(x)) = f(δ(x)), x ∈ M.

Then q ◦ T = IdÆp(M).

Proposition 4.5: Let X be a p-Banach space for some 0 < p ≤ 1. Then the

following statements are equivalent:

(i) X has the p-Lipschitz lifting property;

(ii) the short exact sequence of p-Banach spaces

0 −→ kerβX −→ Æp(X)
βX
−→ X −→ 0

splits (linearly);

(iii) X is linearly isomorphic to a complemented subspace of Æp(M) for

some pointed p-metric space M.

Proof. (i) ⇒ (ii): By Lemma 4.1, the map δ : (X, ‖ · ‖X) → (Æp(X), ‖ · ‖Æp(X))

is an isometry, and βX ◦ δ = IdX .

(ii) ⇒ (iii) is trivial.

(iii) ⇒ (i): Æp(M) has the p-Lipschitz lifting property (Lemma 4.4) so any

complemented subspace of Æp(M) has the p-Lipschitz lifting property as well.

Since X is linearly isomorphic to a complemented subspace of Æp(M) we are

done.

In [7], it was shown that in the case p = 1 every separable Banach space has

the 1-Lipschitz lifting property, while for nonseparable spaces the property is

rather rare. However, for 0 < p < 1, the situation is somewhat different; in the

next section we will show that a separable Banach space which fails the Schur

property also fails the p-Lipschitz lifting property for 0 < p < 1. In fact, it seems

that, if 0 < p < 1, the set of separable p-Banach spaces with the p-Lipschitz

lifting property is probably quite small. Of course �p has this property (as it
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is projective for the category of p-Banach spaces; see [14]). If M = [0, 1] with

the p-metric d(x, y) = |x − y|1/p, then Æp(M) = Lp(0, 1). If M is the unit

circle with arc length to the power 1/p as the p-metric we obtain that Æp(M)

is isomorphic to the quotient of Lp by a one-dimensional space (which is not

isomorphic to Lp(0, 1), [13]). If one takes, say, M = [0, 1] with d(x, y) = |x−y|a

where 0 < a < 1/p one obtains some other non-classical spaces.

To conclude the section, let us also observe that Theorem 3.1 of [7] holds in

somewhat more generality with a very similar proof (which we omit):

Theorem 4.6: Let

0 −→ X −→ Y
q

−→ Z −→ 0

be a short exact sequence of quasi-Banach spaces such that Z is separable, X is a

Banach space and there exists a Lipschitz map f : Z → Y such that q◦f = IdZ .

Then the sequence splits, i.e., there exists a bounded linear operator T : Z → Y

with q ◦ T = IdX .

5. The Example

Throughout this section M will be a complete pointed metric space. If µ ∈

P(M) we define the support of µ to be the smallest subset F of M which

contains 0 and such that µ ∈ [δ(x)]x∈F (the linear span of {δ(x) : x ∈ F}).

If g : M → [0,∞) is any Lipschitz function with Lipschitz constant at most

one, we can induce a pseudo-metric

dg(x, y) = min(d(x, y), g(x) + g(y)), x, y ∈ M.

(We recall that a pseudo-metric satisfies all the conditions of a metric except

that we allow d(x, y) = 0 when x �= y.)

We recall that a type on a metric space M is a function of the form

τ(x) = lim
n∈U

d(x, an),

where (an)∞n=1 is a metrically bounded sequence in M (i.e., supn d(an, 0) < ∞)

and U is an ultrafilter on N. We refer to [3] for a discussion of types in the

context of Banach space theory. We note the following properties of types:

d(x, y) ≤ τ(x) + τ(y), x, y ∈ M,

and

(5.4) |τ(x) − τ(y)| ≤ d(x, y), x, y ∈ M.
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Let στ = infx∈M τ(x). We say that τ is principal if στ = 0. Clearly, since

M is complete, τ is principal if and only if there exists a ∈ M so that

τ(x) = d(x, a), x ∈ M.

Lemma 5.1: Suppose (µn)∞n=1 is a sequence in P(M). Let Fn be the support

of µn. Suppose that:

(i) supn ‖µn‖Æ1(M) < ∞,

(ii) ‖µm − µn‖Æ1(M) ≥ 1 whenever m �= n, and

(iii) supn |Fn| < ∞.

Assume T is a finite set of types on M and let g(x) = minτ∈T τ(x). Then for

any ε > 0 and n0 ∈ N there exist f ∈ Lip0(M) and n ∈ N with n > n0 such

that

|f(x) − f(y)| ≤ dg(x, y), x, y ∈ M,

and

〈µn, f〉 > 1
2 (1 − ε).

Proof. We pass to a subsequence to ensure that each Fn has the same cardinal-

ity, say N , and write Fn = {ank : 1 ≤ k ≤ N}. Fix a nonprincipal ultrafilter U

and let V be the subset of {1, . . . , n} such that limn∈U anj = bj exists in M for

j ∈ V . By solving an appropriate linear programming problem, for each n we

may write

µn =
∑

1≤j<k≤N

αnjk(δ(anj) − δ(ank))

with αnjk ≥ 0 in such a way that

hn =
∑

1≤j<k≤N

αnjkdg(anj , ank)

is minimized. The space (Fn, dg) is a pseudo-metric space and it is possible to

define ‖ · ‖Æ1(Fn,dg) in the same way as in the case of a metric space. Then

(cf. Lemma 4.2) hn is simply the norm of µn in the space Æ1(Fn, dg). Hence

hn ≤ ‖µn‖Æ1(Fn,d) = ‖µn‖Æ1(M), using the remark following Lemma 4.1. Thus

supn hn < ∞.

By the properties of an ultrafilter, we may select a set A in the ultrafilter U

so that for every 1 ≤ j, k ≤ N with j �= k we can find σ = σ(j, k), τ = τ(j, k)

both in T so that either:

(5.5) dg(anj , ank) = d(anj , ank), ∀n ∈ A,
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or

(5.6) dg(anj , ank) = σ(anj) + τ(ank), ∀n ∈ A.

We let

θjk = lim
m∈U

αmjkdg(amj , amk).

We show now that as long as j �= k, and either limm∈U αmjk < ∞ or (5.5)

holds, then we have

(5.7) lim
m∈U

lim
n∈U

‖αmjk(δ(amj)− δ(amk))−αnjk(δ(anj)− δ(ank))‖Æ1(M) ≤ 2θjk.

First we consider the case when (5.5) holds. Then for m �= n both in A,

‖αmjk(δ(amj) − δ(amk)) − αnjk(δ(anj) − δ(ank))‖Æ1(M)

≤ αmjkdg(amj , amk) + αnjkdg(anj , ank).

Thus (5.7) follows.

If limm∈U αmjk < ∞ and (j, k) does not satisfy (5.5), then for suitable types

σ, τ ∈ T we have dg(amj , amk) = σ(amj) + τ(amk) for all m ∈ A. Suppose first

that limm∈U dg(amj , amk) < ∞; then if m �= n ∈ A,

‖αmjk(δ(amj) − δ(amk)) − αnjk(δ(anj) − δ(ank))‖Æ1(M)

≤ |αmjk − αnjk|d(amj , amk) + αnjk(d(amj , anj) + d(amk, ank))

≤ |αmjk − αnjk|d(amj , amk) + αnjk(σ(amj) + σ(anj) + τ(amk) + τ(ank))

= |αmjk − αnjk|d(amj , amk) + αnjk(dg(amj , amk) + dg(anj , ank))

≤ 2|αmjk − αnjk|d(amj , amk) + αmjkdg(amj , amk) + αnjkdg(anj , ank).

Since limm∈U αmjk < ∞ this also implies (5.7).

On the other hand, if limm∈U dg(amj , amk) = ∞ and (5.6) holds, we have

limm∈U αmjk = 0. Note that

dg(anj , ank) ≥ d(anj , 0) + d(ank, 0) − σ(0) − τ(0) ≥ d(anj , ank) − σ(0) − τ(0),

so

lim
n∈U

αnjk(d(anj , ank) − dg(anj , ank)) = 0

and again (5.7) follows. This completes the proof of (5.7) in all the claimed

cases.



Vol. 170, 2009 LIPSCHITZ STRUCTURE OF QUASI-BANACH SPACES 329

Let us define P to be the set of all pairs (j, k) with j �= k so that we have

both that limm∈U αmjk = ∞ and (5.5) fails. In this case we claim that j, k ∈ V

and

(5.8) lim
m∈U

lim
n∈U

‖αmjk(νmj − νmk) − αnjk(νnj − νnk)‖Æ1(M) ≤ 2θjk,

where νnj = δ(anj) − δ(bj).

We can find σ, τ ∈ T such that dg(anj , ank) = σ(anj) + τ(ank) for n ∈

A. Since limm∈U αmjk = ∞ we must have limm∈U dg(amj , amk) = 0 and so

limm∈U σ(amj) = limm∈U τ(amk) = 0. Thus both types σ and τ are principal

and the sequences (anj), (ank) are both convergent, i.e., j, k ∈ V. In fact, we

must have σ(x) = d(x, bj) while τ(x) = d(x, bk). Hence, for m �= n both in A,

‖αmjk(νmj − νmk) − αnjk(νnj − νnk)‖Æ1(M)

≤ αmjk(σ(amj) + τ(amk)) + αnjk(σ(anj) + τ(ank))

= αmjkdg(amj , amk) + αnjkdg(anj , ank).

Thus (5.8) holds.

Now let

λn =
∑

(j,k)∈P

αnjk(δ(bj) − δ(bk)).

Combining (5.7) and (5.8) we get

(5.9) lim
m∈U

lim
n∈U

‖µm − µn − λm + λn‖Æ1(M) ≤ 2
∑

j �=k

θjk = 2 lim
n∈U

hn.

Together with supn ‖µn‖Æ1(M) < ∞ this implies that

lim
m∈U

‖λm‖Æ1(M) < ∞

and, since (λm)∞m=1 is contained in a finite-dimensional subspace,

lim
m∈U

lim
n∈U

‖λm − λn‖Æ1(M) = 0.

We therefore deduce from (5.9) that

(5.10) lim
m∈U

lim
n∈U

‖µm − µn‖Æ1(M) ≤ 2 lim
n∈U

hn.

Hence,

1/2 ≤ lim
n∈U

hn.

Thus we may pick n > n0 so that hn > 1
2 (1− ε). Now by a simple application of

the Hahn-Banach theorem (from the definition of hn) there is a linear functional
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ϕ on [δ(x)]x∈Fn
so that ϕ(δ(anj)−δ(ank)) ≤ dg(anj , ank) for all j, k and ϕ(µn) =

hn > 1
2 (1 − ε). If we put f0(x) = ϕ(δ(x)) for x ∈ Fn, then |f0(x) − f0(y)| ≤

dg(x, y) and, since dg is a pseudo-metric, f0 has an extension f to M satisfying

the same inequality.

Theorem 5.2: Let (µn)∞n=1 be as in Lemma 5.1. Then for any ε > 0 there

exist an infinite subset M of N and f ∈ Lip0(M) with ‖f‖Lip
0
(M) ≤ 1 such that

〈µn, f〉 > 1/4 − ε, n ∈ M.

Proof. Since Fn, the support of µn, is finite for all n, it suffices to consider the

case when M is separable. As we did before in Lemma 5.1, by passing to a

subsequence we may suppose that Fn = {an1, . . . , anN} for some fixed N . We

may pass to a further subsequence and assume that for each 1 ≤ k ≤ N either

limn→∞ d(x, ank) = ∞ for all x or limn→∞ d(x, ank) exists and is finite for all

x. In the latter case we can define a type by

τk(x) = lim
n→∞

d(x, ank).

This yields a finite set of types T with |T | ≤ N. Notice that, since 0 is assumed

to be in every Fn, T is always nonempty because the type given by d(x, 0)

belongs to T .

We will build by induction two increasing sequences of natural numbers,

M = {m1, m2, . . .} and P = {p1, p2, . . .}, and a sequence of Lipschitz functions

(fn)∞n=1 ⊂ Lip0(M) so that

(i) ‖fn‖Lip
0
(M) ≤ 1 for all n;

(ii) f1(x) = 0 for all x ∈
⋃∞

l=p1+1 Fl;

(iii) fn(x) = 0 for all x ∈
(
⋃n−1

j=1 Fmj

)

∪
(
⋃∞

l=pn+1 Fl

)

and n ≥ 2;

(iv) 〈µmn
, fn〉 > 1

2 (1 − ε) for each n ≥ 1; and

(v) mn > pn−1 if n ≥ 2, and mn ≤ pn if n ≥ 1.

Suppose m1, . . . , mn−1, p1, . . . , pn−1, f1, . . . , fn−1 have been constructed (if

n = 1 this set is vacuous). We then put

g1(x) = min
τ∈T

τ(x),

and for n ≥ 2,

gn(x) = min

(

g1(x), d

(

x,

n−1
⋃

j=1

Fmj

))

.
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Applying Lemma 5.1 we can find mn with mn > pn−1 if n ≥ 2, and a function

f̃n ∈ Lip0(M) so that

|f̃n(x) − f̃n(y)| ≤ dgn
(x, y), x, y ∈ M

and

〈µmn
, f̃n〉 >

1

2
(1 − ε).

Let f̂n = θf̃n where 0 < θ < 1 is chosen so that

〈µmn
, f̂n〉 >

1

2
(1 − ε).

For any p > mn, define

hp(x) = d

(

x,

( n−1
⋃

j=1

Fmj

)

∪

( ∞
⋃

l=p+1

Fl

))

.

We have that hp(x) ≤ gn(x) and hp(x) is increasing for p > mn. Suppose that

limp→∞ hp(x) = ξ < gn(x). Then, clearly, there is a sequence (yp) ⊂
⋃∞

l=p+1 Fl

such that d(x, yp) ≤ ξ. But this implies the existence of a sequence (anp,kp
)p>mn

so that d(x, anp,kp
) ≤ ξ and np > p, 1 ≤ kp ≤ N. Thus there exists τ ∈ T with

τ(x) ≤ ξ which gives a contradiction. Thus

gn(x) = lim
p→∞

hp(x), x ∈ M

and hence

dgn
(x, y) = lim

p→∞
dhp

(x, y), x, y ∈ M.

It follows, since Fmn
is finite, that for some pn > mn we have

|f̂n(x) − f̂n(y)| ≤ θdgn
(x, y) ≤ dhpn

(x, y), x, y ∈ Fmn
,

and so we can extend f̂n|Fmn
to a function fn ∈ Lip0(M) such that

|fn(x) − fn(y)| ≤ dhpn
(x, y), x, y ∈ M.

In particular, fn vanishes on
⋃n−1

j=1 Fmj
and on

⋃∞
l=pn+1 Fl. This completes the

inductive construction.

Now let f+
n (x) = max(fn(x), 0) and f−

n (x) = max(−fn(x), 0). Then for each

n we can find ϕn = f+
n or f−

n so that

|〈µmn
, ϕn〉| >

1

4
(1 − ε), n = 1, 2, . . .

Let

ϕ(x) = sup
n

ϕn(x), x ∈ M,
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so that ‖ϕ‖Lip
0
(M) ≤ 1 and ϕ|Fmn

= ϕn. Thus

|〈µmn
, ϕ〉| >

1

4
(1 − ε), n = 1, 2, . . . .

Taking a further subsequence and f = ±ϕ gives the conclusion.

Theorem 5.3: Let X be an infinite-dimensional separable Banach space which

is not a Schur space. Then X fails the p-Lipschitz lifting property for any

0 < p < 1.

Proof. Let us assume that X has the p-Lipschitz lifting property for some 0 <

p < 1. Then there exists a bounded linear operator S : X → Æp(X) with

βXS = IdX . Since X is not a Schur space, there is a bounded sequence (xn)∞n=1

in X such that ‖xm − xn‖X ≥ 1 for m �= n and limn→∞ xn = 0 weakly. Thus

(Sxn)∞n=1 is bounded in Æp(X). By Lemma 4.2 we can write

Sxn =

∞
∑

j=1

αnj(δ(ynj) − δ(znj)),

where for some constant K,

∞
∑

j=1

|αnj |
p‖ynj − znj‖

p
X ≤ Kp, n = 1, 2, . . . .

Further, suppose that for each n the sequence (|αnj |‖ynj − znj‖X)∞j=1 is dec-

reasing. Thus for any N ∈ N

|αnN |‖ynN − znN‖X ≤ KN−1/p, n = 1, 2, . . .

and so
∞
∑

j=N+1

|αnj |‖ynj − znj‖X ≤ (KN−1/p)1−p
∞
∑

j=N+1

|αnj |
p‖ynj − znj‖

p
X

≤ KN1−1/p, n = 1, 2, . . . .

Fix N so that KN1−1/p < 1/10 and let

µn =

N
∑

j=1

αnj(δ(ynj) − δ(znj)), n ∈ N.

Then

‖βXµn − xn‖X ≤ KN1−1/p < 1/10, n ∈ N.
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Thus

‖βXµn − βXµm‖X ≥ 4/5, m �= n.

This implies that

‖µn − µm‖Æ1(X) ≥ 4/5, m �= n,

and so, after scaling, by Theorem 5.2 there exists f ∈ Lip0(X) = Æ1(X)∗ with

‖f‖Lip
0
(X) ≤ 1 and an infinite subset M of N so that

(5.11) |〈µn, f〉| ≥ 1/6, n ∈ M.

However, the canonical map Jp,1 : Æp(X) ↪→ Æ1(X) is norm-decreasing and

therefore (Jp,1Sxn)∞n=1 is weakly null in Æ1(X),

lim
n→∞

〈Jp,1Sxn, f〉 = 0,

and also

|〈Jp,1Sxn − µn, f〉| ≤
∞
∑

j=N+1

|αnj |‖ynj − znj‖ < 1/10,

a contradiction with (5.11).

Remark: Although this is not made explicit in the argument, we are essentially

using the fact that Æ1(X) can be identified with the Banach envelope of Æp(X)

and the quotient βX : Æp(X) → X factors through Æ1(X).

Theorem 5.4: Let X be an infinite-dimensional separable Banach space which

is not a Schur space. Then for 0 < p < 1, Æp(X) is Lipschitz isomorphic but

not linearly isomorphic to the space kerβX ⊕p X equipped with the p-norm

‖ · ‖ = (‖ · ‖p
Æp(X) + ‖ · ‖p

X)1/p.

Proof. The map µ → (µ − δβX(µ), βX(µ)) is a Lipschitz isomorphism between

the p-Banach spaces Æp(X) and kerβX ⊕p X .

On the other hand, X fails the p-Lipschitz lifting property by Theorem 5.3

and so it cannot be isomorphic to a complemented subspace of Æp(X); this

would contradict (iii) of Proposition 4.5 with M = (X, ‖ · ‖X). We conclude

that Æp(X) cannot be linearly isomorphic to kerβX ⊕p X .

Remarks: If the reader prefers, this theorem may be rephrased in the following

terms: the separable complete metric linear spaces Æp(X) and kerβX ⊕p X are

Lipschitz isomorphic with the metrics induced by their respective p-norms but

not linearly isomorphic.
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It is very likely that the hypothesis that X is not a Schur space in the

theorem can be eliminated. To establish this, one needs to prove that no

infinite-dimensional Banach space can have the p-Lipschitz lifting property for

0 < p < 1. We conjecture that this is true. Indeed, it is very likely that if

p < q ≤ 1, no infinite dimensional q-Banach space has the p-Lipschitz lifting

property.
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