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ABSTRACT 

We prove some general results on the uniqueness of unconditional bases in quasi- 
Banach spaces. We show in particular that certain Lorentz spaces have unique un- 
conditional bases answering a question of Nawrocki and Ortynski. We then give 
applications of these results to Hardy spaces by showing the spaces Hp (T n) are 
mutually non-isomorphic for differing values of n when 0 < p < 1. 

1. Introduction 

The objective of  this paper is to give a general result on uniqueness up to per- 

mutative equivalence for unconditional bases and then apply this result to show 

that, when 0 < p < 1, the Hardy spaces Hp (T m) are mutually non-isomorphic for 

m > l .  

It is well-known result due to Lindenstrauss, Petczyrlski and Zippin ([10],[12]) 

that precisely three Banach spaces (11, 12 and Co) have normalized unconditional 

bases which are unique up to equivalence. For quasi-Banach spaces it was shown 

in [6] that a wide class of  non-locally convex Orlicz sequence spaces including lp 

for 0 < p < 1 share this property.  See also [16] and [17]. We significantly extend 

these results here and, in particular, settle a problem on the uniqueness of  uncon- 

ditional bases in Lorentz sequences spaces raised by Nawrocki and Ortynski [16]. 

Our techniques enable us to show that in certain quasi-Banach spaces an uncon- 

ditional basis is close to being unique up to a permutat ion (cf. [4]). In particular 

our results apply to the spaces Hp (T m) for p < 1 which are known to have uncon- 

ditional bases ([19]). Analysis of  these bases shows that the spaces are mutually 

non-isomorphic; the corresponding result for p = 1 is due to Bourgain ([2], [3]) by 
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quite different techniques. We might also mention the analogous problem for the 

Smirnov class has been resolved by Nawrocki [15]. Both the results of  Bourgain 

and Nawrocki depend in some sense on duality arguments, which are not available 

here since for all m, H P ( T m )  * is isomorphic to loo. 

We recall ([7]) that a quasi-Banach lattice X is said to be L-convex if there ex- 

ists E > 0 so that if u _> 0, [t u [[ -- 1 then for any xi, 1 _< i _< n with 0 _< xi -< u and 

such that 

1 
- (x~ + . . . +  x . )  >_ (1 - ~)u  
n 

we have max~<i<n II xi I1 > ~. x is said to be p-convex where 0 < p < oo if for some 

C and all x~ , . . .  ,xn E X w e  have: 

IxilP) lip <_ C [[xill p 
l : 1  

Here the element ( ~  ]xi[P) lip of X is defined via the procedure outlined in [11] 

pp. 40-41. It is shown in [7] that X is L-convex if and only if there exists p > 0 so 

that X is p-convex. A quasi-Banach space Y is called natural if it is isomorphic to 

a subspace of  an L-convex quasi-Banach lattice. Every natural quasi-Banach lat- 

tice is L-convex ([7]). 

Our results apply to natural spaces. In such spaces any unconditional basis in- 

duces an L-convex lattice structure; then ([7]) many of the standard techniques of 

Banach lattice theory can be employed in this more general setting. For most ap- 

plications it is easy to verify that the spaces of  interest are natural either by iden- 

tifying them as subspaces of L-convex lattices or by showing that some given 

unconditional basis is already p-convex for some p > 0. However it should be 

pointed out that there are non-natural spaces with unconditional bases ([7]). 

Let T denote the unit circle equipped with its standard normalized Haar mea- 

sure (2~r)-~d0. T m denotes the m-fold product with the canonical product mea- 

sure. The space Hp(T m) is defined as the closed linear subspace of  Lp(T m) 

generated by the functions zr~ . . .Zm ~m for n l , . . - , n m  >-- O. These spaces are, of 

course, natural being subspaces of  Lp. 
Some of the results of  this paper form part of  the thesis of  the second author, 

currently under preparation at the University of Missouri-Columbia [9]. 

2. Uniqueness  o f  uncondit ional  bases 

Our first result is a simple extension of a result of  Maurey [13] (Lindenstrauss- 

Tzafriri [11], p. 49). Notice, however, that the proof in [11] uses duality and there- 

fore does not extend to the non-locally convex case. 
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PROPOSITION 2.1. Let X be an L-convex quasi-Banach lattice with an uncon- 

ditional basis (xn). Then there is a constant D (depending on X and (xn)) such 

that for all scalars al . . . . .  am, 

D -1 (i=~ \ ~ / : / t  < m ,aixi, 2) i~=laixi <_~O (i=~ 1 [aixi,2) I/2 . 

PROOF. Let Y be the sequence space of all sequences (an) such that ~] a ,x ,  

converges. Then Y is a quasi-Banach lattice under the quasi-norm Ha]lr = 

sup l0il _ 1 ]] ~ Oiaixi ]Ix. Then there is an isomorphism T: Y ~ X such that Tel = xi 

where e~ is the canonical basis of Y. By Theorem 4.2 of [7], Y is L-convex, and so 

by Theorem 3.3. of  [7], there is a constant K so that for all ax . . . . .  am, 

< 
i=1 i=l  Y 

This quickly gives the result. 

7 

PROPOSITION 2.2. Let X be a p-convex quasi-Banach lattice where 0 < p < 1. 

Then there is a constant C depending only on X so that i f  (xo-)i~j=l is an X-valued 

matrix then 

7 fofo ]Xij] 2 <~ C dsdt 
i= l  j = l  i=1 j = l  

where ri denote the standard Rademacher functions on [0,1]. 

PROOF. By Bonami's extension of  Khintchine's inequality [1], there is a con- 

stant Co such that for every matrix (xo) 

i=1 j = t  i=i  j = l  

Now by p-convexity, for a suitable constant M, 

( ( 1 ( 1  p ~l/p 
~=,~ ~ r i ( s ) r j ( t ) x i j  dsdt)  

\JoJo j = l  

<_ M ri(s)rj(t)xij  dsdt  
i=1 j = l  

and the result follows. 

We now introduce the following definition which will facilitate the statement of 

our main results. We shall say that an unconditional basis (x~) in a quasi-Banach 
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space X is strongly absolute if, for every e > O, there is a constant C~ such that for 

any scalars a l , . . . ,  am we have 

[ail < C¢ sup l ail + e aix i . 
i= l  l<_i<_m .= 

If (xn) is a normalized strongly absolute basis of X then it is equivalent to the ca- 

nonical basis of 11 in the Banach envelope X. 

THEOREM 2.3. Let  X be a natural  quasi-Banach space with a normal ized 

strongly absolute uncondit ional  basis (x.).~=l. Then, i f  (un).~=l is any other nor- 

malized uncondit ional  basis o f  X ,  there exists a map  a: N ~ N and  a parti t ion 

$1 . . . . .  SN o f  N such that a is injective on each Sk and (u . ) . e sk  is equivalent to 

(x~(m)nes~for k = 1 . . . . .  N.  

PROOF. The hypotheses on (Xn) force X to be isomorphic to l~. Then since 

(u . )  must also be an unconditional basis of A', it follows from the theorem of 

Lindenstrauss and Pelczyriski [10] that it is equivalent in X to the canonical basis 

of  11. In particular there is a constant D so that if al . . . . .  am are scalars then 

D m 
lail <- ~a iu i  o 

i=1  i=1  

Let (x,~) and (u~*) be the biorthogonal functions for the bases (x,)  and (u , ) .  

Let a~ n) = x~(u,~) and let b~ n) = u*(xk) .  Since both llx*ll and Ilu~*ll are nec- 

essarily bounded there is a constant Co such that for every n, k l a~ ~) I -< Co and 

Ibk(") I -< Co. 
Now let K be the unconditional basis constant of  (x~) and suppose e < 

(2KC0) -1. Then we have: 

1 = u * ( u . ) = u  a 

oo oo 
= ~]  . (n) l . (m < ~ ]  . (~)i . (~)  

Uk Uk - -  Uk Uk I 
k = l  k = l  

< C, s u p l - ( " ) ~  (") ~ - "k ~'k I + e  a~n)b~")xk 
k 

< C, supl "( ')~ (') eKCo - "~ ~'~ I + a~ "~x~ 
k k=l 

< C~ sup i.(,,)~.(,, ) 1 
_ _  u k u k ] "F 
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~(n)/~(n) 
Thus there exists a constant 7 > 0 so that for every n, supx -k ~.k I -> 7- 

For each k let Ak be the set of  n such that .(n)~.(.) ,,k ~,k I - - 7 - T h e n ,  if ( u . ) i s  

K'-uncondit ional ,  

vIA~I < --  u k~(n) l',(n)vk [ 
n=l 

00 ~ (n )~  (rt), II 
<_ D n~=l Uk u k 

<_ z / 'c0 Un 
n=l 

= DK' Co. 

Thus IAkl <_ 7-1DK'Co for every k. It follows now that  if we define a map 

o : N ~ N  so that 1"(~) h(n) -o(.),-.(.) [ >- 7 then we can partition N into N sets Sl . . . .  SN, 

with N ~ 3 ' - t D K ' C o  and so that a is injective on each Sk. We also have that for 

all n E N, -(")  h(.)  - o ( . )  , I ~o( . )  I - > ~ = C o ' v .  
Now fix 1 < j < N and suppose an is a finitely non-zero sequence of  scalars. 

Then we observe that the unconditional basis (u . )  induces an L-convex lattice 

structure on X (since X is natural), and so by Proposit ion 2.1, for a suitable con- 

stant Cl we have 

Now we can apply Proposit ion 2.2 

<_ 1,:~-' Y', (") Otnao(n)Xo(n) 
nU_Sj 

< c ,  . 10,,,121 "< '~  - . .o l . )  I Z l x o ( . )  I z 

t(a 71 te sj 

to deduce that, for a suitable constant C2 

.~sjc~.Xo(.) <- Czfo*fo 1 

<_ KC2 fo ~ 

_ _  2 1 

< K Cz fo 

~esj ~_ a (') dsdt t .~sj ana~(t~rt(s)rn(t)x~(l) 

Y], ~,, (") t)x~{t) ~.ao{t) I". ( dt 
t~ss .es i 

~,, ~.rn(t)u.  I dt 
nESj 

< K2K'C= ~a ~nu. . 
nESj 
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We may now apply similar reasoning, interchanging the roles of the two bases, 

to deduce that there is a constant C3 so that for all such (ct,) 

n~Sj anun ~ C3 n~ESj OlnN°(n) " 

This completes the proof. 

COROLLARY 2.4. Under the hypotheses o f  the Theorem, there is also a map 

r : N ~ N and a partition R1 . . . .  ,RM o f  N so that z is injective on each Rk and 

(Xn)n~Rk is equivalent to (U~(n))nsRkfor each 1 <_ k <_ M. 

PROOF. It suffices to observe that Theorem 2.3 also implies that (un) is 

strongly absolute. 

COROLL~a~Y 2.5. l f  X is a natural quasi-Banach space with a symmetric strongly 

absolute basis then all normalized unconditional bases o f  X are equivalent. 

This is immediate. 

There are several immediate applications of Corollary 2.5. In all the applications 

the fact that X is natural follows quickly from verifying that the given uncondi- 

tional basis is p-convex for a suitable p > 0. The simplest example is the space lp 

for 0 < p < 1. The uniqueness of  the unconditional basis for these spaces was first 

established in [6]; an alternative proof  was given in [17], but this appears to be in- 

correct. In [6] the uniqueness of  the unconditional basis of  an Orlicz sequence 

space IF is considered and Corollary 2.5 above can be used to prove Theorem 7.6 

of  [6], although it does not imply the stronger Theorem 7.5. Lorentz sequence 

spaces were similarly investigated by Nawrocki and Ortynski [16] and Corollary 

2.5 allows us to answer a question raised in [16]. We recall that if w = (wn) E 

1oo\ll is a monotone decreasing nonnegative sequence, then the Lorentz sequence 

space d ( w , p )  is defined to be the space of  all sequences ~ = (~n) such that 

II lfw.p=sup lPwn < 0% 
~rEn \ n =  1 

where II is the group of all permutations of N. 

THEOREM 2.6. l f O <  p <  1 andlimn~oo(1/n)(w~ +.  • .+  wn) j/p = oo then all 

normalized unconditional bases o f  d ( w , p )  are equivalent. 

PROOF. It suffices to note that Theorem 1 and Lemma 4 of  [16] together im- 

ply that the canonical basis of d ( w , p )  is strongly absolute. 
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Our final application of this section is to spaces of the form lp(lq) where 0 < 

p, q < 1. Such a space has a canonical unconditional basis e~k such that 

n,k n = l  k = l  

THEOREM 2.7. I f  0 < p, q < 1 then any normalized unconditional basis is per- 
mutatively equivalent to the canonical basis o f  lp( lq). 

PROOF. First observe that Theorem 2.3 implies that any normalized uncondi- 

tional basis (u,)  is (permutatively) equivalent to a subset of  the canonical basis. 

It is also easy to see that it will suffice to show that (u~) contains a subset equiv- 

alent to the canonical basis. To do this we use Corollary 2.4 to partition N x N into 

finitely many sets S1 . . . . .  SN so that (e~k)t~,k~Si is equivalent to a subset of (u~) 

for each j.  By standard Ramsey arguments there is an infinite subset of A of N and 

a fixed j so that (a,b) E S i as long as a * b and a,b E A. Write A = B0 O Bl 

where Bo,BI are infinite and disjoint. Then (enk)~eB0,keB1 is equivalent to a sub- 

set of (u~) and this will complete the proof. 

The argument above can be easily extended to a large class of "matrix" spaces. 

For the Banach space analogues of this theorem see [4]. 

3. Applications to Hardy spaces 

We now use the ideas of Section 2 to show the non-isomorphism of certain 

Hardy spaces. Let X be a quasi-Banach space with an unconditional basis (x~). 

We denote by Ip(xn) the unconditional basis of lp(X) obtained by repeating (xn) 

in each co-ordinate. 

PROPOSITION 3.1. Let X be a natural quasi-Banach space with a strongly ab- 
solute normalized unconditional basis (x~) and suppose 0 < p < 1. Then i f  (Yn) 
is any other normalized unconditional basis o f  X,  the unconditional bases lp ( xn) 
and lp(y~) o f  lp (X) are permutatively equivalent. 

PROOF. Clearly Theorem 2.3 implies that (Yn) is equivalent to a subset of 

lp(xn), and hence that lp(y,) is equivalent to a subset of lp(x~). Conversely Corol- 

lary 2.4 allows us to show that lp(x~) is equivalent to a subset of lp(y~). It now 

follows from a version of the Pdczyfiski decomposition argument that lp(x~) is 

permutatively equivalent to lp(yn). Thus 

I p ( x . )  - l p ( I p ( x . ) )  - lp(ipty.) ® (A)) - ip(y.) ® lp(x.), 
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etc., where we use - for permutative equivalence and (fn) is some suitable sub- 

sequence of lp(xn). 

THEOREM 3.2. Suppose X is a p-normed natural quasi-Banach space, where 

0 < p < 1, and has a strongly absolute normalized unconditional basis (xn). Sup- 

pose (un) is any other normalized unconditional basis and define bN and b~ to be 

the greatest constants such that 

and 

nEA 
whenever IAI <_ N. Then there is a constant C so that C-lbN <- b )  <- CbN for 

all N. 

PROOF. Clearly the quantities bN and b~ are unchanged if the bases lp(x~) and 

lp(y~) are used in place of (x,) and (y,).  The result then follows from Proposi- 

tion 3.1. 

Thus the asymptotic behavior of the sequence bN = bs(X) is an isomorphic in- 

variant of X. 

We now turn to considering the space Hp(T). This space has an unconditional 

basis, described in [191, which we denote by (Jim, k), 1 <_ k <- 2 m, 1 <_ m < ~ .  

Denote by Em, k, 1 _< k -< 2 m, 1 _< m < co the dyadic interval in [0,11, Em, k = 

[(k - 1)2-m,k2 -m) and let Xm, k be the corresponding characteristic function. 

Then, there is a constant C so that for any finitely nonzero family of complex num- 

bers (Um, D 

\p/2 \1¢ 

Let us denote by (4~) an enumeration of the corresponding normalized uncondi- 

tional basis II  m,k II-l m,k" 
We remark that the q-Banach envelope of Hp is isomorphic to lq for p < q _< 1 

(see [51,[81,[191). Thus, ([61), the unconditional basis 4~ is equivalent in the 

q-Banach envelope to the canonical/q-basis. In particular in Hp we have the lower 

estimate: 

n=~ ~ndPn p > "Yq(n~=l lCtnlq) l/q 
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for  a suitable constant  "~q > 0. This implies that  (q~n) is strongly absolute.  We thus 

turn to est imating the invariants  bN for  this basis. 

PROVOSITIOr~ 3.3. For the space Hp, where 0 < p < 1, we have bN(Hp) - 

( logN)  1/2-1/p (i.e. for  a suitable constant C we have C - l ( l o g N )  1/2-1/p < bN < 

C(logN)]/2-1/p for  N > 2). 

PROOF. We first prove  that  there is a constant  (5 > 0 so that  for  any finite sub- 

set A of  N, we have: 

>-- 6 tZl l /p .  

To see this we can consider a finite subset B o f  { (m,k)  : 1 _< k < 2 m, 1 < m < oo } 

o f  cardinali ty N and estimate:  

Z 2m/Pl~m,k p > C - l ( f o l  ((m,~k)EB , 
\p/2 \l/p 

(m,k)EB -- 22m/PXm k ( t ) )  d t )  . 

Now,  for  0 < t < 1, let M ( t )  = m a x { m :  t E Em,~, (re, k) E B}. We let M ( t )  = 

- o o  if this set is empty .  Then  we have 

~ 0 1 ( ) ( p / 2 )  f01 ~_a 22m/PXm, k(t)  dt >_ 2 M(t) dt 
(m,k)EB 

>_ ~ ~_j 2mxm, k( t )  dt 
(m,k)EB 

1 

and our  first claim follows easily. 

Now suppose ctn is a sequence with at most  N = 2 r nonzero terms. Let  3n be de- 

creasing rear rangement  o f  I c~. t. Then  since Hp has cotype 2 we have the est imate 

tha t  for  suitable constants  Co, c > 0, a suitable injection o o f  [ 1,2 . . . . .  N ]  into N, 

and  some ~. with IT/. I = 1, 

p P 

N 

,'7=1 n=] 

>-- Co Y, 
n=2k-I 

/ • \1/2 

) 
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However, by Holder's inequality, we have: 

N 

n=l k=l 

<- ~ 2*3fk 
k=O 

/ ~ \p/2 
< rl-P/Z[k~= ° 2zk/P[3:) . 

Thus we deduce that for a suitable c' > 0, 

> c'(logN)l/z-1/p i .1 
rt=l = 

so that bN >-- c'(logN) l/z-lIp. 

To complete the proof we observe that 

2m ffm,k v ~a <- Krl/2 
m=l k=l 

for a suitable constant K. However, 

~] Jl~km, kt]~ >- crl/° 
m=l k=l 

for a suitable c > 0. This implies an upper estimate bN <- C(logN) l/z-~/p for some 
C < o o .  

PaovosmoN 3.4. Suppose (f .) ,  (g.) are normalized unconditional basic se- 
quences in L;[O, 1]. Then the double sequence (fro ® g.)m,, is an unconditional 
basic sequence in Lp[O, 1] z, and we have for every N E N, 

bN2(f.)bNZ(g.) <-- buz(fm ® gn) <- bN(fn)bN(gn). 

(Here fro ® g.(s,t) = fm(s)g.(t) .)  

PROOF. The fact that fm ® g. is an unconditional basic sequence is essentially 

proved in [18]. We sketch the argument. Suppose ~,~,. is finitely nonzero. Then 

I gn P fO/fol im~,n I p ~a Otm, nfm ® -- rm(S)rn(t)Otm, nfm ® gn dsdt 

-- I f  (~]  I~Xm, nl2lfm(u)12lgn(v)12) p/2dudv 
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using again Bonami's extension of the Khintchine inequality [1]. This quickly 

shows unconditionality of (fro ® g,). 
Now suppose c~n and/3,  are two sequences with at most N nonzero entries. 

Then 

m~,nOtm(Jnfm (~ gn p = ~m Otmfm p ~ngn p 

from which we deduce that 

bNZ(fm @ gn) <- bN(f.)bN(g,,). 

Conversely suppose O~m,n has at most N z nonzero terms. Then 

YolYo ' " " 
~a ~m, nfm(S)gn(t) dsdt >_ b~vz(gn) Otm,nfm(S ) (Is 

I?l ) n 

>_ bPz(fn)b~v2(gn) ~_~ I~m,nl p 
m , r l  

and the proposition follows. 

THEOREM 3.5. For each m E N the space np(T m) has a strongly absolute un- 

conditional basis for which bu = bN(Hp(Tm)) - (logN) m(l/2-1/p). 

PROOF. It follows by induction from Proposition 3.4 that if ($,)  is the ba- 

sis of H ,  considered above, then (¢i, ® "  Q $i,,) for il . . . . .  im E N is an 

unconditional basis of  Hp(Tm). Further, for this basis we clearly have bN -- 
(logN) m(I/2-1/p). But this also implies the basis is strongly absolute. In fact if 

(g,) denotes this basis, o~, is finitely nonzero, and B~ is the decreasing rearrange- 

ment of tu ,  t we quickly deduce that ll3NI -< C b ~ l N - ~ / ' l l ~ , g ,  llp for all N 

whence we get an estimate 

for some Cq > 0 whenever p < q _ l. 

THEOREM 3.6. The spaces Hp(T m) are mutually non-isomorphic when p < 1. 

PROOF. This is now immediate. 

For p = 1, the result analogous to Theorem 3.6 is due to Bourgain [2] and [3]. 

For p > 1, it is false. 
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COROLLARY 3.7. For 0 < p < 1 and m < n, the space Hp(T n) is not iso- 

morphic to a complemented subspace of  tip (Tm). 

PROOF. In fact Hp(T m) is isomorphic to a complemented subspace of 

Hp (Tn). This is well-known, and can be observed as a consequence of tensoring 

of unconditional bases. Since each space is isomorphic to its own square, it follows 

from standard Pelczyfiski decomposition arguments that if Hp(T n) is comple- 

mented in Hp(T m) then the two spaces are isomorphic. 

REMARK 1. In fact Hp(T m) is isomorphic to a subspace of Hp(T). More gen- 

erally any subspace of Lp with an unconditional basis can be embedded in Hp. 

This fact, for p = 1, is due to Maurey [14], but easily extends to p < 1. 

REMARK 2. The argument for Proposition 3.3 works for the Haar basis in 

Lp [0,1] for 1 < p < 2 and this and a duality argument show that if 1 < p < co 

then the tensored Haar bases of Lp ([0, l] n) are not permutatively equivalent for 

differing choices of n. 

REFERENCES 

1. A. Bonami, Ensembles A(p) dans le dual D °~, Ann. Inst. Fourier (Grenoble) 18 (2) (1968), 
193-204. 

2. J. Bourgain, The non-isomorphism o f  H Lspaces in one and several variables, J. Funct. Anal. 
46 (1982), 45-57. 

3. J. Bourgain, The non-isomorphism o f  lit-spaces in a different number o f  variables, Bull. Soc. 
Math. Belg. Ser. B 35 (1983), 127-136. 

4. J. Bourgain, P. G. Casazza, J. Lindenstrauss and L. Tzafriri, Banach spaces with a unique un- 
conditional basis, up to apermutation, Memoirs Am. Math. Soc. No. 322, Providence, 1985. 

5. R. R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic func- 
tions in L m Asterisque 77 (1980), 11-66. 

6. N. J. Kalton, Orlicz sequence spaces without local convexity, Math. Proc. Camb. Phil. Soc. 81 
(1977), 253-278. 

7. N. J. Kalton, Convexity conditions on non-locally convex lattices, Glasgow Math. J. 25 (1984), 
141-152. 

8. N. J. Kalton and D. A. Trautman, Remarks on subspaces o f  lip when 0 < p < 1, Michigan 
Math. J. 29 (1982), 163-170. 

9. C. Leranoz, Ph.D. thesis, University of Missouri-Columbia, in preparation. 
10. J. Lindenstrauss and A. Pelczyfiski, Absolutely summing operators in ~3p-spaces and their ap- 

plications, Studia Math. 29 (1968), 275-326. 
11. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II, Function-Spaces, Springer-Verlag, 

Berlin-Heidelberg-New York, 1979. 
12. J. Lindenstrauss and M. Zippin, Banach spaces with a unique unconditional basis, J. Funct. 

Anal. 3 (1969), 115-125. 
13. B. Maurey, Type et cotype dans les espaces munis de structures locales inconditionelles, Semi- 

naire Maurey-Schwartz 1973-74, Exposes 24-25, Ecole Polytechnique, Paris. 
14. B. Maurey, Isomorphisms entre espaces Hi ,  Acta Math. 145 (1980), 79-120. 



Vol. 72, 1990 UNCONDITIONAL BASES 311 

15. M. Nawrocki, The non-isomorphism of the Smirnov classes of  different balls and polydiscs, 
Bull. Soc. Math. Belg. Ser. B. 41 (1989), 307-315. 

16. M. Nawrocki and A. Ortynski, The Mackey topology and complemented subspaces of  Lorentz 
sequence spaces d(w,p) for 0 < p < 1, Trans. Am. Math. Soc. 287 (1985), 713-722. 

17. N. Popa, Basic sequences and subspaces in Lorentz sequence spaces without local convexity, 
Trans. Am. Math. Soc. 263 (1981), 431-456. 

18. H. P. Rosenthal and S. J. Szarek, On tensor products of  operators from Lp to Lq, tO appear. 
19. P. Wojtaszczyk, Hp-spaces, p <- 1, andspline systems, Studia Math. 77 (1984), 289-320. 


