AN F-SPACE WITH TRIVIAL DUAL WHERE THE KREIN-MILMAN THEOREM HOLDS

BY

N. J. KALTON

ABSTRACT

We show that in certain non-locally convex Orlicz function spaces L_{\bullet} with trivial dual every compact convex set is locally convex and hence the Krein-Milman theorem holds. This complements the example constructed by Roberts of a compact convex set without extreme points in L_p (0) and answers a question raised by Shapiro.

1. Introduction

In [4] Roberts answered a long outstanding question by constructing an example of a compact convex subset of a non-locally convex F-space without extreme points; thus the Krein-Milman theorem fails in general without local convexity. Later in [3], Roberts showed that such examples can be constructed in the spaces L_p ($0) (or more generally Orlicz spaces <math>L_{\phi}$ where ϕ is sub-additive and $x^{-1}\phi(x) \rightarrow 0$ as $x \rightarrow \infty$).

The basic ingredient of Roberts's construction is the notion of a *needle point*. If E is an F-space with associated F-norm $| \cdot |$, then $x \in E$ is a needle point if given any $\varepsilon > 0$, there exist $u_1, \dots, u_n \in E$ such that $|u_i| < \varepsilon$ $(i = 1, 2, \dots, n)$ and

(i) $x = (1/n)(u_1 + \cdots + u_n),$

(ii) if $a_1 + \cdots + a_n = 1$ and $a_i \ge 0$ $(i = 1, 2, \cdots, n)$ then there exists $t, 0 \le t \le 1$ such that

$$\left| tx - \sum_{i=1}^n a_i u_i \right| < \varepsilon.$$

Roberts [3] showed that if E contains a non-zero needle point then E contains a compact convex subset which is not locally convex. Also if every element of Eis a needle point then E contains a compact convex set with no extreme points; in this case E is called a *needle-point space*.

Received January 20, 1979

N. J. KALTON

Following the work of Roberts, the question was asked (Shapiro [7]) whether every F-space with trivial dual contains a compact convex set without extreme points. We shall show that this is not the case and that there exist F-spaces with trivial dual in which every compact convex set is locally convex. In particular every compact convex set is affinely embeddable in a locally convex space [5] and obeys the Krein-Milman theorem. Our example is an Orlicz function space L_{ϕ} .

2. The construction

We start by defining an element x of an F-space E to be approachable if there is a bounded subset B of E such that whenever $\varepsilon > 0$ there exist $u_1, \dots, u_n \in E$ with $|u_i| < \varepsilon$ $(i = 1, 2, \dots, n)$ and

(i) $|x-(1/n)(u_1+\cdots+u_n)| < \varepsilon$

(ii) if $|a_1| + \cdots + |a_n| \leq 1$ then $\sum_{i=1}^n a_i u_i \in B$.

THEOREM 1. Suppose E is an F-space in which 0 is the only approachable point. Then every compact convex subset of E is affinely embeddable in a locally convex space.

PROOF. Suppose $K \subset E$ is a compact convex set and let $K_1 = \overline{co}(K \cup (-K))$. Then K_1 is also compact. We show $0 \in K_1$ has a base of convex neighborhoods in K_1 . For $\varepsilon > 0$, let $V_{\varepsilon} = \{x : |x| < \varepsilon\}$. Suppose $x \in K_1$ and $x \in \overline{co}(K_1 \cap V_{\varepsilon})$ for every $\varepsilon > 0$. Then x is approachable (take $B = K_1$ in the definition) and hence x = 0. Now by compactness for any $\delta > 0$ there exists $\varepsilon > 0$ so that

$$\overline{\operatorname{co}}(K_1\cap V_{\varepsilon})\subset V_{\delta}.$$

Now the finest vector topology on the linear span F of K_1 (i.e. $F = \bigcup(nK_1: n \in N)$), which agrees with the given topology on K_1 has a base of neighborhoods of 0 of the form

$$\bigcup_{n=1}^{\infty} \sum_{m=1}^{n} (mK_1 \cap V_{\varepsilon_m})$$

where ε_m is a sequence of positive numbers ([9] p. 51). By the above result this is locally convex, and the theorem is proved.

We remark that the second half of this proof was used in [1] in the introduction; an alternative approach would be to show that every point of K_1 has a base of convex neighborhoods (this follows easily from the same fact for 0) and then use Roberts's deeper results in [5].

LEMMA 2. Suppose E and F are F-spaces and $T: E \rightarrow F$ is a continuous linear operator. If $x \in E$ is approachable, then Tx is approachable in F.

The proof is immediate.

We now recall that an Orlicz function ϕ is an increasing function defined on $[0,\infty)$ which is continuous at 0, satisfies $\phi(0) = 0$ and $\phi(x) > 0$ for some x > 0. The function ϕ is said to satisfy the Δ_2 -condition if for some constant K, we have $\phi(2x) \leq K\phi(x)$ ($0 \leq x < \infty$). If ϕ satisfies the Δ_2 -condition then the Orlicz space $L_{\phi}(0, 1)$ is defined to be the set of measurable functions f such that

$$\int_0^1 \phi(|f(t)|) dt < \infty.$$

 L_{ϕ} is an F-space (after the usual identification of functions differing on a set of measure zero) with a base of neighborhoods $V(\varepsilon)$ where $f \in V(\varepsilon)$ if and only if

$$\int_0^1 \phi(|f(t)|) dt < \varepsilon.$$

THEOREM 3. Suppose ϕ is an Orlicz function satisfying the Δ_2 -condition and

$$\phi(x) = x, \qquad 0 \leq x \leq 1,$$

(3.2) there exist c_n $(n \in N)$ such that $c_n \ge 0$ for all $n, \sum c_n < \infty$

and if

$$G(x) = \sum_{n=1}^{\infty} c_n \frac{n}{x} \phi\left(\frac{x}{n}\right), \qquad (x > 0)$$

then $G(x) \rightarrow \infty$ as $x \rightarrow \infty$.

Then 0 is the only approachable point in $L_{\phi}(0, 1)$.

PROOF. Given any $f \in L_{\phi}$ with $f \neq 0$, there exists a continuous linear operator $T: L_{\phi} \rightarrow L_{\phi}$ with Tf = 1 (where 1 denotes the constantly one function). Hence it suffices to show that 1 is not approachable.

Suppose on the contrary 1 is approachable. In this case there is a constant M so that whenever $\delta > 0$ there exist $n = n(\delta)$ and u_1, \dots, u_{2n} , $h \in L_{\phi}$ with

(3.3)
$$1 = \frac{1}{2n} (u_1 + \cdots + u_{2n}) + h,$$

(3.4)
$$\int_0^1 \phi(|u_i(t)|) dt \leq \delta,$$

N. J. KALTON

Israel J. Math.

(3.5)
$$\int_0^1 \phi(|h(t)|) dt \leq \delta,$$

(3.6)
$$\int_0^1 \phi\left(\left|\sum_{i=1}^{2n} a_i u_i(t)\right|\right) dt \leq M,$$

whenever $|a_1| + |a_2| + \cdots + |a_{2n}| \le 1$.

Now let

$$B = \sup_{0 < x \le 2} \frac{\phi(x)}{x},$$
$$C = \sum_{n=1}^{\infty} c_n,$$

so that both **B** and **C** are finite. Now choose $\varepsilon < 1/10$ so that if $x \ge \varepsilon^{-1}$

$$G(x) \geq C(8e^2M + B).$$

Then we may choose u_1, \dots, u_{2n} , h as above with $\delta = \varepsilon^3$. Let u_1^*, \dots, u_{2n}^* be the pointwise decreasing re-arrangement of $|u_1|, \dots, |u_{2n}|$. Clearly each u_i^* is measurable and belongs to L_{ϕ} . Next let

$$w_i(t) = \min\left(u_i^*(t), \frac{2n}{i}\right), \quad 1 \leq i \leq 2n.$$

We shall show first that

(3.7)
$$\frac{1}{2n} \sum_{i=1}^{n} \int_{w_i(t) \ge e^{-1}} w_i(t) dt \ge \frac{1}{2}.$$

Let λ denote Lebesgue measure on (0, 1) and let N(t) for each t be the largest k so that $u_k^*(t) \ge 1$ (and N(t) = 0 if $u_k^*(t) < 1$ for all k). Then

$$\int_0^1 N(t)dt = \sum_{i=1}^{2n} \lambda(|u_i| \ge 1)$$
$$\le \sum_{i=1}^{2n} \int_0^1 \phi(|u_i(t)|)dt$$
$$\le 2n\varepsilon^3.$$

Hence $\lambda(t:N(t) \ge 2n\varepsilon) \le \varepsilon^2$.

Similarly

$$\lambda(t:|h(t)|\geq\varepsilon)\leq\varepsilon^2.$$

Now let $A = \{t : |h(t)| < \varepsilon, N(t) < 2n\varepsilon\}$; then $\lambda(A) \ge 1 - 2\varepsilon^2$. For $t \in A$

Vol. 36, 1980

$$\sum_{i=1}^{2n} |u_i(t)| \geq 2n(1-\varepsilon)$$

and hence

$$\sum_{i=1}^{2n} |w_i(t)| \geq 2n(1-\varepsilon).$$

Now

$$\int_{|u_i| \le \varepsilon^{-1}} |u_i| dt = \int_{|u_i| \le \varepsilon} |u_i| dt + \int_{\varepsilon < |u_i| \le \varepsilon^{-1}} |u_i| dt$$
$$\le \varepsilon + \varepsilon^{-1} \lambda (|u_i| > \varepsilon)$$
$$\le \varepsilon + \varepsilon^{-2} \int_0^1 \phi (|u_i|) dt$$
$$\le 2\varepsilon.$$

Hence

$$\frac{1}{2n}\sum_{i=1}^{2n}\int_{u_i^*\leq \varepsilon^{-1}}u_i^*(t)dt\leq 2\varepsilon.$$

If $t \in A$ and $w_i(t) \leq \varepsilon^{-1}$ then $u_i^*(t) \leq \varepsilon^{-1}$. For otherwise $2n/i \leq \varepsilon^{-1}$ so that $i \geq 2n\varepsilon > N(t)$ and hence $u_i^*(t) < 1 \leq 2n/i$. Hence

$$\frac{1}{2n}\sum_{i=1}^{2n}\int_{A\cap(w_i\leq\varepsilon^{-1})}w_i(t)dt\leq 2\varepsilon.$$

However

$$\frac{1}{2n}\sum_{i=1}^{2n}\int_{A} w_{i}(t)dt \geq (1-\varepsilon)\lambda(A) \geq 1-3\varepsilon.$$

Thus

$$\frac{1}{2n}\sum_{i=1}^{2n}\int_{A\cap(w_i>\varepsilon^{-1})}w_i(t)dt\geq 1-5\varepsilon\geq \frac{1}{2}.$$

Since for $t \in A$, $w_i(t) \le 1 \le \varepsilon^{-1}$ for $i \ge n(>N(t))$, we see that (3.7) holds.

We now fix r with $1 \le r \le n$. We define two sets of random variables $(X_i, \dots, X_{2n}), (Y_1, \dots, Y_{2n})$ on some probability space (Ω, P) where Ω is a finite set. The random variables (Y_1, \dots, Y_{2n}) are mutually independent and independent of (X_1, \dots, X_{2n}) with common distribution given by $P(Y_i = +1) = P(Y_i = -1) = \frac{1}{2}$. The random variables (X_1, \dots, X_{2n}) are not mutually independent. Their distribution may be described as follows: select an r-subset γ at random from the collection of r-subsets of $\{1, 2, \dots, 2n\}$; then let $X_i = 1$ if $i \in \gamma$ and $X_i = 0$ otherwise.

Then for every $\omega \in \Omega$, $\sum_{i=1}^{2n} |X_i(\omega)Y_i(\omega)| = r$ and hence

N. J. KALTON

Israel J. Math.

(3.8)
$$\int_0^1 \phi\left(\frac{1}{r} \left| \sum_{i=1}^{2n} X_i(\omega) Y_i(\omega) u_i(t) \right| \right) dt \leq M.$$

Let s = [2n/r], and let γ be any fixed s-subset of $\{1, 2, \dots, 2n\}$. For $j \in \gamma$, let $E_j = \{\omega : X_j(\omega) = 1, X_i(\omega) = 0 \text{ if } i \in \gamma \setminus \{j\}\}$. Then if r > 1,

$$P(E_i) = {\binom{2n-s}{r-1}} / {\binom{2n}{r}}$$

= $\frac{r}{2n} \cdot \frac{2n-s}{2n-1} \cdot \frac{2n-s-1}{2n-2} \cdots \frac{2n-r-s+2}{2n-r+1}$
$$\geq \frac{r}{2n} \exp\left[-(s-1)\left(\frac{1}{2n-s} + \frac{1}{2n-s-1} + \dots + \frac{1}{2n-r-s+2}\right)\right]$$

$$\geq \frac{r}{2n} \exp\left(-\frac{rs}{n}\right)$$

$$\geq \frac{r}{2ne^2}$$

and this also holds for r = 1.

Now by symmetry for fixed $t \in (0, 1)$

$$P\left\{E_{i}\cap\left(\omega:\left|\sum_{i=1}^{2n}X_{i}(\omega)Y_{i}(\omega)u_{i}(t)\right|>|u_{i}(t)|\right)\right\}\geq\frac{r}{4ne^{2}}.$$

Thus

$$\int_{E_i} \phi\left(\frac{1}{r} \left| \sum_{i=1}^{2n} X_i(\omega) Y_i(\omega) u_i(t) \right| \right) dP(\omega) \geq \frac{r}{4ne^2} \phi\left(\frac{|u_i(t)|}{r}\right).$$

As the events $(E_i, j \in \gamma)$ are disjoint, we conclude

$$\int_{\Omega} \phi\left(\frac{1}{r} \left| \sum_{i=1}^{2n} X_i Y_i u_i(t) \right| \right) dP(\omega) \ge \frac{r}{4ne^2} \sum_{j \in \gamma} \phi\left(\frac{|u_j(t)|}{r}\right).$$

Choosing γ to maximize the right-hand side, we have

$$\int_{\Omega} \phi\left(\frac{1}{r}\left|\sum_{i=1}^{2n} X_i Y_i u_i(t)\right|\right) dP(\omega) \geq \frac{r}{4ne^2} \sum_{j=1}^{s} \phi\left(\frac{u_j^*(t)}{r}\right).$$

Thus by (3.8) and Fubini's theorem, we have

(3.9)
$$\int_0^1 \frac{r}{2n} \sum_{j=1}^s \phi\left(\frac{u_j^*(t)}{r}\right) dt \leq 2e^2 M$$

Now summing over $r = 1, 2, \dots, n$ we have

$$\frac{1}{2n}\int_0^1\sum_{r=1}^n\sum_{j=1}^{[2n/r]}c_r r\phi\left(\frac{u_j^*(t)}{r}\right)dt \leq 2e^2 CM.$$

Interchanging the order of summation and discarding terms with $r_j > n$ we have

(3.10)
$$\frac{1}{2n} \int_0^1 \sum_{j=1}^n \sum_{r=1}^{[n/j]} c_r r \phi\left(\frac{u_j^*(t)}{r}\right) dt \leq 2e^2 C M.$$

If $x \leq 2n/j$, we have

$$\sum_{r=1}^{\lfloor n/j \rfloor} c_r r \phi\left(\frac{x}{r}\right) = x \left[G(x) - \sum_{r \geq \lfloor n/j \rfloor} c_r \frac{r}{x} \phi\left(\frac{x}{r}\right)\right]$$
$$\geq x \left[G(x) - BC\right].$$

Thus

(3.11)
$$\sum_{r=1}^{\lfloor n/j \rfloor} c_r r \phi\left(\frac{w_j(t)}{r}\right) \geq w_j(t) [G(w_j(t)) - BC].$$

From (3.10) since $w_i \leq u_i^*$ we have

$$\frac{1}{2n}\sum_{j=1}^{n}\int_{w_{j}\geq\varepsilon^{-1}}\sum_{r=1}^{\lfloor n/j\rfloor}c_{r}r\phi\left(\frac{w_{j}(t)}{r}\right)dt\leq 2e^{2}CM$$

and hence, recalling the choice of ε and (3.11),

$$\frac{1}{2n}\sum_{j=1}^n\int_{w_j\geq e^{-1}} 8e^2CMw_j(t)dt\leq 2e^2CM$$

or

$$\frac{1}{2n}\sum_{j=1}^{n}\int_{w_{j}\geq\varepsilon^{-1}}w_{j}(t)dt\leq\frac{1}{4}$$

which contradicts (3.7) and completes the proof.

We are now in a position to construct the example.

EXAMPLE 4. There exists a locally bounded Orlicz space $L_{\phi}(0,1)$ with trivial dual in which the only approachable point is $\{0\}$.

We shall construct ϕ to satisfy (3.1), (3.2), the Δ_2 -condition and

(4.1)
$$\liminf_{x\to\infty}\frac{\phi(x)}{x}=0,$$

(4.2) for some $\beta > 0$, $x^{-\beta}\phi(x)$ is non-decreasing.

Then (4.1) will imply that $L_{\phi}^* = \{0\}$ (Rolewicz [6], Turpin [8] p. 95) and (4.2) will imply that L_{ϕ} is locally bounded (Rolewicz [6], Turpin [8] p. 77).

Let $(t_n : n = 0, 1, 2, \cdots)$ be an increasing sequence of positive numbers such that $t_{n+1} > t_n + 4n + 2$ $(n \ge 0)$. Define a function $\sigma : R \to R$ by

$$\sigma(t) = 0, t \leq t_0;$$

$$\sigma(t) = (1 - \beta)(n - (t - t_n)), t_n \leq t \leq t_n + 2n;$$

$$\sigma(t) = (1 - \beta)(t - t_n - 3n), t_n + 2n \leq t \leq t_n + 4n + 1;$$

$$\sigma(t) = (1 - \beta)(n + 1), t_n + 4n + 1 \leq t \leq t_{n+1}.$$

Suppose $0 < \alpha < \frac{1}{4}(1-\beta)$ and define

$$\theta(t) = \max_{n=0,1,2,\cdots} \left(\sigma(t-n\log 2) - \alpha n\log 2 \right).$$

Then if $t_n \leq t \leq t_n + 4n + 1$, there exists m with $m \log 2 < 4n + 2$ and

$$\sigma(t-m\log 2)=n(1-\beta).$$

Hence

$$\sigma(t) \geq n(1-\beta) - \alpha(4n+2).$$

If $t_n + 4n + 1 \le t \le t_{n+1}$, $\theta(t) \ge \sigma(t) = (1 - \beta)(n + 1)$, so that $\lim_{t \to \infty} \theta(t) = \infty$. Now we define

$$\phi(x) = x \exp(\sigma(\log x)), \qquad 0 < x < \infty,$$

$$\phi(0) = 0.$$

Then $\phi(x) = x$ for $0 \le x \le 1$, and satisfies the Δ_2 -condition. Also $\log x^{-\beta}\phi(x) = \sigma(\log x) + (1 - \beta)\log x$ is non-decreasing, so that (4.2) holds. For (4.1) observe that $\log(\phi(x)/x) = \sigma(\log x)$ and $\sigma(t_n + 2n) = -n(1 - \beta)$.

Finally we show that (3.2) holds:

$$\sum_{n=0}^{\infty} 2^{-n\alpha} \frac{2^n}{x} \phi\left(\frac{x}{2^n}\right) = \sum_{n=0}^{\infty} 2^{-n\alpha} \exp(\sigma(\log x - n \log 2))$$
$$\geq \exp\theta(\log x)$$
$$\to \infty \quad \text{as } x \to \infty.$$

Of course by Theorem 1 the space L_{ϕ} we have constructed has the property that every compact convex subset is locally convex.

3. Concluding remarks

There are a number of obvious questions arising from this example. We do not know if a condition like (3.2) is necessary for the conclusion of Theorem 3. In particular if we simply have

$$\liminf_{x\to\infty} x^{-1}\phi(x) = 0 \quad \text{and} \quad \limsup_{x\to\infty} x^{-1}\phi(x) = \infty,$$

then can L_{ϕ} contain a non-zero needle point? In [7] Shapiro asks whether the Krein-Milman theorem holds in certain quotients of H_p (0). This example perhaps suggests that the failure of the Krein-Milman theorem and the existence of needle points is a rarer phenomenon than previously suspected.

In [2], the author and N. T. Peck plan to investigate further the relationship between approachable points and needle points.

REFERENCES

1. N. J. Kalton, Linear operators whose domain is locally convex, Proc. Edinburgh Math. Soc. 20 (1976), 292-299.

2. N. J. Kalton and N. T. Peck, A re-examination of the Roberts example of a compact convex set without extreme points, in preparation.

3. J. W. Roberts, Pathological compact convex sets in the spaces L_p , $0 \le p < 1$, in The Altgeld Book, University of Illinois, 1976.

4. J. W. Roberts, A compact convex set with no extreme points, Studia Math. 60 (1977), 255-266.

5. J. W. Roberts, The embedding of compact convex sets in locally convex spaces, Canad. J. Math. 30 (1978), 449-455.

6. S. Rolewicz, Some remarks on the spaces N(L) and N(l), Studia Math. 18 (1959), 1-9.

7. J. H. Shapiro, Remarks on F-spaces of analytic functions, in Banach Spaces of Analytic Functions, Proc. Kent State Conference 1976, Springer Lectures Notes 604 (1977), 107-124.

8. P. Turpin, Convexités dans les espaces vectoriels topologiques generaux, Diss. Math. 131, 1976.

9. A. Wiweger, Linear spaces with mixed topology, Studia Math. 20 (1961), 47-68.

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF MISSOURI

COLUMBIA, MISSOURI 65211 USA