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AN F-SPACE WITH TRIVIAL D U A L  WHERE THE 
KREIN-MILMAN THEOREM HOLDS 

BY 

N. J. KALTON 

ABSTRACT 

We show that in certain non-locally convex Orlicz function spaces L. with 
trivial dual every compact convex set is locally convex and hence the 
Krein-Milman theorem holds. This complements the example constructed by 
Roberts of a compact convex set without extreme points in Lp (0 < p < 1) and 
answers a question raised by Shapiro. 

1. Introduction 

In [4] Roberts answered a long outstanding question by constructing an 

example of a compact convex subset of a non-locally convex F-space without 

extreme points; thus the Krein-Milman theorem fails in general without local 

convexity. Later in [3], Roberts showed that such examples can be constructed in 

the spaces Lp ( 0 < p  < 1) (or more generally Orlicz spaces L ,  where & is 

sub-additive and x-~cb(x)~O as x-ooo). 

The basic ingredient of Roberts's construction is the notion of a needle point. If 

E is an F-space with associated F-norm I I, then x ~ E is a needle point if 

given any e >0 ,  there exist u l , " ' ,  u, ~ E such that lu, l <  e (i = 1 ,2 , . . . ,  n) and 

(i) x = (l/n)(ul+...+ u,), 
(ii) i f a l + . . . + a n = l a n d a , - > _ 0 ( i = l , 2 , . . . , n ) t h e n t h e r e e x i s t s t ,  0=<t-<_l 

such that 

I tx-~i=~ a ' u ' l <  e. 

Roberts [3] showed that if E contains a non-zero needle point then E contains 

a compact convex subset which is not locally convex. Also if every element of E 

is a needle point then E contains a compact convex set with no extreme points; 

in this case E is called a needle-point space. 
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Following the work of Roberts, the question was asked (Shapiro [7]) whether 

every F-space with trivial dual contains a compact convex set without extreme 

points. We shall show that this is not the case and that there exist F-spaces with 

trivial dual in which every compact convex set is locally convex. In particular 

every compact convex set is affinely embeddable in a locally convex space [5] and 

obeys the Krein-Milman theorem. Our example is an Orlicz function space L, .  

2. The construction 

We start by defining an element x of an F-space E to be approachable if there 

is a bounded subset B of E such that whenever e > 0  there exist u~, . . . ,  u, E E 

with lu, l < e  (i = 1 , 2 , . . . , n )  and 

(i) I x - ( 1 / n ) ( u l + " ' + u . ) l < e  

(ii) if l a ~ l + . - .  + l a, I ~ 1 then ET=~a,u, E B. 

THEOREM 1. Suppose E is an F-space in which 0 is the only approachable 

point. Then every compact convex subset of E is affinely embeddable in a locally 

convex space. 

PROOF. Suppose K C E is a compact convex set and let K~ = co(K U ( -  K)). 

Then K~ is also compact. We show 0 ~ K~ has a base of convex neighborhoods in 

K~. For e >0 ,  let V, = {x :Ix I<  e}. Suppose x ~ K~ and x E co(K~ f3 V~) for 

every e > 0. Then x is approachable (take B = K~ in the definition) and hence 

x = 0. Now by compactness for any 8 > 0 there exists e > 0 so that 

co(K, n V~)c Vs. 

Now the finest vector topology on the linear span F of K~ (i.e. F =  

l.J(nKl :n ~ N)), which agrees with the given topology on K~ has a base of 

neighborhoods of 0 of the form 

n =  I r a i l  

where e,, is a sequence of positive numbers ([9] p. 51). By the above result this is 

locally convex, and the theorem is proved. 

We remark that the second half of this proof was used in [1] in the 

introduction; an alternative approach would be to show that every point of KI 

has a base of convex neighborhoods (this follows easily from the same fact for 0) 

and then use Roberts's deeper results in [5]. 
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LEMMA 2. Suppose E and F are F-spaces and T : E --) F is a continuous linear 

operator. If  x ~ E is approachable, then Tx is approachable in F. 

The proof is immediate. 

We now recall that an Orlicz function ~b is an increasing function defined on 

[0,oo) which is continuous at 0, satisfies ~b(0)= 0 and ~b(x)>0 for some x >0 .  

The function ~b is said to satisfy the A2-condition if for some constant K, we have 

4~(2x) -- Kcb(x) (0 _-< x < oo). If ~b satisfies the A2-condition then the Orlicz space 

L,(0,  1) is defined to be the set of measurable functions f such that 

f [  6(I f( t ) l )dt  <oo. 

L,  is an F-space (after the usual identification of functions differing on a set of 

measure zero) with a base of neighborhoods V(e) where f ~ V(e ) if and only if 

fo ~ ck(If(t)[)dt < e. 

T.EOREt, I 3. Suppose qb is an Orlicz function satisfying the A2-condition and 

(3.1) qb(x) = x, 0=<x=<l, 

(3.2) there exist c. (n E N) such that c. >= 0 for all n, ~ c. < 

and if 

G ( x )  = cn x 6 , 
n = l  

(x >0 )  

then G(x)---,oo as x ---~oo. 

Then 0 is the only approachable point in L,  (0, 1). 

PROOF. Given any f E L ,  with f :  0, there exists a continuous linear operator 

T : L ,  ~ L ,  with Tf = 1 (where 1 denotes the constantly one function). Hence it 

suffices to show that 1 is not approachable. 

Suppose on the contrary 1 is approachable. In this ease there is a constant M 

so that whenever 8 > 0 there exist n = n(8) and u l , "  ", u2., h E L ,  with 

(3.3) 
1 

l=~--~n ( U l + . . . + u 2 , ) + h ,  

fo (3.4) "ok ([ u, (t)[)dt <= 8, 
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o' 4"([h(t)l)dt <= 8, 

fo' 4"(l ~ a,u,(t)l) at <- M, 

(3.5) 

(3.6) 

whenever [a , [+ la2 l+ . - .+ la2 . [_- - -1 .  

Now let 

B = sup 4'(x), 
0 < x  ~i2 X 

C = ~ On, 
n - I  

so that both B and C are finite. Now choose e < 1/10 so that if x _>-- e-t  

G (x) >= C(8e 2M + n). 

Then we may choose ul," �9 ", u2., h as above with 8 = e 3. Let u * , . . . ,  u "2. be the 

pointwise decreasing re-arrangement of l u l l , " ' , l u 2 , [ .  Clearly each u* is 

measurable and belongs to L , .  Next let 

( 2:) 
w, (t) = min u ~(t), , l~ i~2n .  

We shall show first that 

(3.7) 
,-1 , , . . .- ,  = 2 "  

fO 
I 2n 

N(t)dt = ~ X(lu, t -  > - 1) 
i - I  

< 2 h e  3. 

Hence A(t : N(t) >= 2he) <= e 2. 
Similarly 

on (0, 1) and let N(t) for each t be the largest 

if u * ( t ) <  1 for all k). Then 

~l fo' 4"(lu,(t)l)dt 

A(t:lh(t)l>-e)<-_-e 2. 

Now let A = { t : l h ( t ) l < e ,  N(t)<2ne};then A ( A ) = > I - 2 e  2.For t E A  

Let )t denote Lebesgue measure 

k so that u*k(t)_-> 1 (and N(t) = 0 
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and hence 

Now 

Hence 

2n 

l u , ( t ) l > 2 n ( 1 - e )  
t - 1  

2el 

~, Iw,(t)l>=2n(1-e). 
t - 1  

_--- e I > , )  

Io' <- e + e -2 4~(lu, I)dt 

<=2e. 

u *(t)dt <- 2e. 
i ~ I  

If t E A and w,(t) <- ~-1 then uT(t)<= e -1. For otherwise 2n/i <= e -1 so that 

i >-_ 2ne > N(t)  and hence u *(t) < 1 _-< 2n/i. Hence 

However  

� 8 4  

1 ~ fA w'(t)dt<2e" 

2n1~',.1 fA w'(t)dt>--(1-e)A(A)>- l -3e"  

L 1 2. w'( t )dt>-l -5e>=2 " 

Since for t E A, w, (t) _-< 1 _-< e-1 for i -> n( > N(t)) ,  we see that (3.7) holds. 

We now fix r with 1-< r _-< n. We define two sets of random variables 

(X~,.. ", X2~), ( Y , - - - ,  Y2.) on some probability space (fl, P )  where f l  is a finite 

set. The random variables ( Y , . . . ,  Y2,) are mutually independent and indepen- 

dent of ( X , . " , X 2 . )  with common distribution given by P(Y, = + 1 ) =  

P(Y~ = - 1)= �89 The random variables ( X , . . . ,  X2.) are not mutually indepen- 

dent. Their  distribution may be described as follows: select an r-subset y at 

random from the collection of r-subsets of {1 ,2 , . - - ,2n};  then let X, = I if i E 7 

and X, = 0 otherwise. 

Then for every ca El ' l ,  X~:~lX,(ca)Y~(ca)l = r and hence 
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(3.8) fo' I) 4, X,(to)Y~(to)u,(t) dt <-<_M. 
i = l  

Let s = [2n/r], and let y be any fixed s-subset of {1,2, . . . ,2n}.  For j E y, let 

Ej = {to :Xj( to)= 1, X,( to)= 0 if i E y\{j}}. Then if r > l ,  

�9 2 n - s  2 n - s - 1  2 n - r - s + 2  
2n 2n - 1  2 n - 2  2 n - � 9  

= 2 n e X p  - ( s - l )  2 n - s - 1  
~ - . . . - t -  1 )] 

2 n - r - s +  

> - -  exp - - -  
- -2n 

r 

= 2he ~ 

and this also holds for r = 1. 

Now by symmetry for fixed t E (0, 1) 

P E; N to: ~ X~(to)Y~(to)u,(t) > lu ; ( t ) l  =4ne2.  
i ~ l  

Thus 

4, ~ x,(o~)Y,(to)u,(t) 4, Q 

As the events (Ej, j E y) are disjoint, we conclude 

Choosing y to maximize the right-hand side, we have 

Thus by (3.8) and Fubini's theorem, we have 

(3.9) ~ 6 dt <= 2e2M. 
]ffil 

Now summing over r = 1 , 2 , . . . ,  n we have 
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- -  c,rck dt < 2e2CM. 
2n ,=1 j=l  

Interchanging the order of summation and discarding terms with rj > n 
have 

- -  c,rck dt <= 2e2CM. (3.10) 2n j=l ,=1 

w e  

If x < 2n/j,  we have 

r=l '>I'1#1 G X 

T h u s  

(3.11) 

>= x[G(x)- BCI. 

[n/jl 

From (3.10) since wj < u* = j we have 

~n ,=1 cd4~ dt <= 2e2CM 
j= l  ~ e  - t  

and hence, recalling the choice of e and (3.11), 

2nl ,=~2 f, ,~ _, 8e2CMw,(t)  dt <- 2e2CM 

o r  

which contradicts (3.7) a0d completes the proof. 
We are now in a position to construct the example. 

EXAMPLE 4. There exists a locally bounded Orlicz space L§ (0, 1) with trivial 
dual in which the only approachable point is {0}. 

We shall construct tk to satisfy (3.1), (3.2), the A2-condition and 

(4.1) lim inf tk(x) = 0, 
x ~  X 

(4.2) for some/3 > 0, x-%k(x) is non-decreasing. 

Then (4.1) will imply that L~ = {0} (Rolewicz [6], Turpin [8] p. 95) and (4.2) 

will imply that L ,  is locally bounded (Rolewicz [6], Turpin [8] p. 77). 



4 8  N .  J ,  K A L T O N  I s r a e l  J .  M a t h .  

Let (t, : n = 0, 1,2,. �9 �9 ) be an increasing sequence of positive numbers such 

that t.§ > t .  + 4n  + 2 (n  _-> 0). Define a function tr : R ~ R by 

,~(t)  = 0, 

~ ( t )  = (1 - / 3 ) ( .  - (t - t .)),  

tr(t) = (1 - / 3 ) ( t  - t .  - 3n) ,  

tr(t) = (1 - / 3 ) ( n  + 1), 

t <- to; 

t .<=t<=t .+2n;  

t. + 2n <-<_t<=t. +4n  + l; 

t. + 4 n  + 1-<t_-<t.+l. 

Suppose 0 < a < �88 - / 3 )  and define 

O(t) = max ( t r ( t -  n l o g 2 ) -  an log2). 
n -0,1,2,... 

Then if t. _<- t =< t. + 4n + 1, there exists m with m log 2 < 4n + 2 and 

tr(t - m log2) = n(1 - /3) .  

Hence 

tr(t)_- > n ( 1 - / 3 ) -  a(4n +2). 

If t. + 4 n  + 1 <= t <= t.§ O(t) >- o'(t) = (1 - / 3 ) ( n  + 1), so that l im,_. .O(t)= oo. 

Now we define 

4,(x) = x exp(tr(log x)), 0 < x  < ~ ,  

6 ( 0 )  = 0. 

Then $ ( x ) =  x for 0 =< x _--- 1, and satisfies the A2-condition. Also log x-#4~(x)= 

it(log x ) +  (1- /3) log  x is non-decreasing, so that (4.2) holds. For (4.1) observe 

that log(4~(x) /x)= tr(log x) and tr(t. + 2 n ) =  - n ( 1 - / 3 ) .  

Finally we show that (3.2) holds: 

2 - "  2" ~b = 2 - "  exp(tr(log x - n log 2)) 
, =0 X , - 0  

=> exp 0 (log x) 

.-.~ oo a s  X ....-~ o0. 

Of course by Theorem 1 the space L ,  we have constructed has the property 

that every compact convex subset is locally convex. 
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3. Concluding remarks 

There are a number of obvious questions arising from this example. We do not 

know if a condition like (3.2) is necessary for the conclusion of Theorem 3. In 

particular if we simply have 

liminf x-lob(x) = 0 and limsup x-l~b(x) = ~, 

then can L,  contain a non-zero needle point? In [7] Shapiro asks whether the 

Krein-Milman theorem holds in certain quotients of Hp ( 0 < p  < 1). This 

example perhaps suggests that the failure of the Krein-Milman theorem and the 

existence of needle points is a rarer phenomenon than previously suspected. 

In [2], the author and N. T. Peck plan to investigate further the relationship 

between approachable points and needle points. 
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