AN F-SPACE WITH TRIVIAL DUAL AND NON-TRIVIAL COMPACT ENDOMORPHISMS

ΒY

N. J. KALTON AND J. H. SHAPIRO'

ABSTRACT

We give an example of an F-space which has non-trivial compact endomorphisms, but does not have any non-trivial continuous linear functionals.

1. Introduction

The object of this paper is to give an example of an F-space (complete, metrizable linear topological space) which has non-trivial compact endomorphisms but does not have non-trivial continuous linear functionals. An additional curious property of this space is that its algebra of continuous endomorphisms is not transitive; that is, there exist non-zero vectors f and g in the space such that no continuous endomorphism takes f to g.

In the opposite direction, D. Pallaschke [6] and P. Turpin [9] have recently shown that certain *F*-spaces of measurable functions already known to have trivial duals, in particular the spaces $L^{P}([0,1])$ for 0 , have no non-trivial compact endomorphisms.

Our example is constructed from the classical Hardy space H^p of analytic functions (0 , and relies heavily on the existence of certain rather explicitly determined proper, closed, weakly dense subspaces recently discovered by P. L. Duren, B. W. Romberg, and A. L. Shields [2]. The necessary background material is outlined in the next section, after which the example is constructed.

We wish to thank Professor A. Pe χ czyński for posing to us the question of whether such *F*-spaces could exist. In addition we are indebted to Professors David A. Gregory and Peter D. Taylor for a number of valuable conversations.

^{*} Research partially supported by NSF GP-33695 Received August 1, 1974

Vol: 20, 1975

2. Preliminaries on H^p

A good reference for the material in this section is Duren's book [1], especially chapters 2 and 7. In what follows, Δ denotes the open unit disc in the complex plane. For $0 the Hardy space <math>H^p$ is the collection of functions f analytic in Δ for which

$$||f||_{p} = \sup_{0 \leq r < 1} \left\{ \frac{1}{2\pi} \int_{0}^{2\pi} |f(re^{it})|^{p} dt \right\}^{1/p} < \infty.$$

 H^p is a linear space over the complex numbers, and if $1 \le p < \infty$ then $\|\cdot\|_p$ is a norm which makes it into a Banach space. For 0 , the case of interest to us, the*p* $-homogeneous functional <math>\|\cdot\|_p^p$ is subadditive and induces a translation-invariant metric

$$d(f,g) = ||f-g||_p^p$$

on H^p which makes it into an F-space [1, p. 37, corollary 2].

When $0 the functional <math>\|\cdot\|_p^p$ is not homogeneous, and the topology it induces on H^p is not locally convex [5]. We will nevertheless refer to $\|\cdot\|_p^p$ as the *norm* on H^p , and call the corresponding topology the *norm topology*. Note that the positive multiples of the unit ball

$$\{f \in H^p: \|f\|_p^p \leq 1\}$$

form a local base for the norm topology; and therefore a subset B of H^p is (topologically) bounded if and only if it is *norm bounded*:

$$\sup\{\|f\|_p^p: f\in B\}<\infty.$$

PROPOSITION 2.1. Every bounded subset of H^p is a normal family (0 .

PROOF. We have the estimate

$$|f(z)| \le 2^{1/p} ||f||_p (1-|z|)^{-1/p} \qquad (z \in \Delta)$$

for $f \in H^{\nu}$ [1, p. 36], so if B is a bounded subset of H^{ν} , then the members of B are bounded uniformly on compact subsets of Δ . It follows that B is a normal family [7, theorem 14.6, p. 272].

Let κ denote the restriction to H^p of the topology of uniform convergence on compact subsets of Δ . It is well known that κ is locally convex and metrizable.

PROPOSITION 2.2. The closed unit ball of H^p is κ -compact (0 .

PROOF. Since κ is metrizable it is enough to show that each sequence in the closed unit ball U of H^{p} has a subsequence κ -convergent to an element of U. Suppose (f_{n}) is a sequence in U. Since U is a normal family (Proposition 2.1) there is subsequence $(f_{n_{i}})$ and an analytic function f on Δ such that $f = \kappa - \lim_{n \to \infty} f_{n_{i}}$. For $0 \le r < 1$ the sequence $(f_{n_{i}})$ converges to f uniformly on the circle |z| = r, hence

$$\frac{1}{2\pi}\int_0^{2\pi} |f(re^{it})|^p dt = \lim_{j\to\infty}\frac{1}{2\pi}\int_0^{2\pi} |f_{n_j}(re^{it})|^p dt \leq 1,$$

from which it follows that $||f||_p \leq 1$. Thus $f \in U$ and the proof is complete.

One of the most important facts about H^p spaces is that for each f in H^p the radial limit

$$f^*(e^{it}) = \lim_{r \to 1^-} f(re^{it})$$

exists for almost every real t [1, theorem 2.2, p. 17], and moreover

(2.1)
$$||f||_{p}^{p} = \frac{1}{2\pi} \int_{0}^{2\pi} |f^{*}(e^{it})|^{p} dt$$

[1, theorem 2.6, p. 21]. A function q analytic in Δ is called an *inner function* if $|q| \leq 1$ on Δ , and $q^*(e^{it}) = 1$ a.e. It follows from Eq. (2.1) that for q inner the multiplication map $f \rightarrow qf$ is an isometry on H^p , so its range qH^p is a closed subspace. If, moreover, q is *non-trivial* (i.e. $q \neq 1$), then the Canonical Factorization Theorem [1, theorem 2.8, p. 24] shows that qH^p is a *proper* subspace of H^p . We can now state a result of Duren, Romberg, and Shields which provides the key to our example.

THEOREM 2.3. [2, theorem 13, p. 53]. There exists a non-trivial inner function q such that qH^p is dense in weak topology of H^p for 0 .

Vol. 20, 1975

AN F-SPACE

We remark that every non-locally convex F-space has a closed subspace that is not weakly closed. By [2, theorems 16 and 17, p. 59] an equivalent assertion is that the extension form of the Hahn-Banach theorem fails in every non-locally convex F-space; and Kalton [3, corollary 5.3] has recently proved this latter assertion. We do not know if every non-locally convex F-space must have a proper, closed, weakly dense subspace. According to Theorem 2.3, such subspaces exist in H^p (0). They have also been found in certain other $F-spaces of analytic functions, as well as in <math>l^p$ (0) [8].

3. The example

Suppose E and F are linear topological spaces. A linear transformation $T: E \rightarrow F$ is said to be *compact* (or *completely continuous*) if there is a neighborhood of 0 in E whose image under T is compact in F. It is easy to see that every compact linear transformation is continuous, and that the composition of a compact and a continuous linear transformation (in either order) is again compact.

The collection of continuous linear functionals on E is called the *dual* of E, denoted by E'. If $E' = \{0\}$ we say E has *trivial dual*. An *endomorphism* of E is a linear transformation of E into itself. We now state our main result.

THEOREM 3.1. There is an F-space with trivial dual which has non-trivial compact endomorphisms.

The proof will require some preliminaries. In particular we need a certain topology on H^p intermediate between κ (the topology of uniform convergence on compact subsets of Δ) and the norm topology. This topology, denoted by β , is the strongest topology on H^p that agrees with κ on every norm bounded subset. It is easy to see that such a topology exists: we simply declare a set to be β -open (respectively β -closed) if its intersection with every bounded set B is relatively κ -open (respectively κ -closed) in B. It is easy to see that these " β -open" sets actually satisfy the axioms for a topology. Since a subset of H^p is bounded if and only if it is norm bounded, if we wish to decide whether a set is β -open or β -closed, then we need only consider its intersection with every positive (or even positive integer) multiple of the closed unit ball.

Since β is stronger than the Hausdorff topology κ , it is itself Hausdorff. Since the closed unit ball of H^p is κ -compact (Proposition 2.1), it is also β -compact. Finally, β is weaker than the norm topology of H^p , since it is weaker on bounded sets. To summarize: **PROPOSITION 3.2.** β is a Hausdorff topology on H^p intermediate between κ and the norm topology. The closed unit ball of H^p is β -compact (0).

It will be important for us to known that β is actually a vector topology—a fact we have not assumed in advance. We give a proof modelled after that of the Banach-Dieudonné theorem [4, sec. 2.2, pp. 211–212].

PROPOSITION 3.3. β is a vector topology.

PROOF. For brevity we will refer to a κ -closed κ -neighborhood of zero as an *admissible* neighborhood. We denote the closed unit ball of H^p by U. It is easy to check that the collection of all sets of the form

(3.1)
$$\bigcap_{n=1}^{\infty} (p_n U + V_n)$$

where (p_n) is a real sequence with $0 \le p_n \to \infty$, and (V_n) is a sequence of admissible neighborhoods, is a local base for a vector topology β' on H^p (in fact, it follows from the work of Wiweger [10, sec. 2.3, p. 52], that β' is the strongest vector topology on H^p agreeing with κ on bounded sets). We are going to show that $\beta' = \beta$.

To see that $\beta' \leq \beta$, suppose B is a bounded subset of H^p , so $B \subseteq kU$ for some k > 0. Suppose N is a β' -neighborhood of zero of the form (3.1). Then whenever $p_n \geq k$ we have

$$p_n U + V_n \supseteq k U \supseteq B$$
,

so

$$B\cap N=B\cap\bigcap_{p_n\leq k}(p_nU+V_n)=B\cap W$$

where

$$W=\bigcap_{p_n\leq k}\left(p_nU+V_n\right)$$

is a κ -neighborhood of zero. Thus β' agrees with κ on bounded sets, so $\beta' \leq \beta$.

In the other direction, suppose A is a β -open set containing the origin. We claim that there exists a sequence (V_k) of admisible neighborhoods such that for each integer $n \ge 1$:

$$(3.2) nU \cap \bigcap_{k=1}^{n} [(k-1)U + V_k] \subseteq A.$$

Then the β' -neighborhood of zero

Vol. 20, 1975

$$\bigcap_{k=1}^{\infty} \left[(k-1)U + V_k \right]$$

will be contained in A, completing the proof.

We obtain the sequence (V_k) by induction. Since $\beta = \kappa$ on U we know there is an admissible neighborhood V_1 such that

$$U \cap V_1 \subseteq U \cap A \subseteq A$$
,

and this is just inequality (3.2) for n = 1. So suppose V_1, \dots, V_n are admissible neighborhoods satisfying (3.2). We want to find V_{n+1} so that V_1, \dots, V_{n+1} also satisfy (3.2). Suppose we cannot; that is, suppose

(3.3)
$$(n+1)U \cap \bigcap_{k=1}^{n} [(k-1)U+V_{k}] \cap (nU+V) \cap A^{c} \neq \phi$$

for each admissible neighborhood V (here A^c denotes the complement of A in H^p). Since A is β -open and (n + 1)U is β -compact, the set $(n + 1)U \cap A^c$ is β -compact, hence κ -compact. It follows from the κ -compactness of U that $\alpha U + V$ is κ -closed for every admissible neighborhood V. Thus the left side of (3.3) is, for each admissible V, a non-void κ -closed subset of the κ -compact space (n + 1)U. It follows easily from (3.3) that the family of all these left sides has the finite intersection property, and hence a common point: that is,

(3.4)
$$(n+1)U \cap \bigcap_{k=1}^{n} [(k-1)U + V_n] \cap \bigcap_{V} (nU+V) \cap A^c \neq \phi,$$

where V ranges over all admissible neighborhoods. Now the κ -compactness of nU guarantees that $\bigcap_{V} (nU + V) = nU$ [4; theorem 5.2 (v), p. 35], so (3.4) reduces to

$$nU \cap \bigcap_{k=1}^{n} [(k-1)U + V_k] \cap A^c \neq \phi,$$

which contradicts (3.2). This completes the proof.

We note in passing that this proof uses only the fact that H^{p} is a Hausdorff

locally bounded linear topological space, and κ is a Hausdorff vector topology for which each norm bounded set is relatively compact. That is, we have really proved:

PROPOSITION 3.3'. Suppose E is a Hausdorff locally bounded linear topological space and κ is a Hausdorff vector topology on E for which each norm bounded subset of E is relatively compact. Then the strongest topology that agrees with κ on each norm bounded set is actually a vector topology.

Finally we need to know that certain norm-closed subspaces of H^{p} are also β -closed.

PROPOSITION 3.4. For every inner function q the subspace qH^p is β -closed in H^p .

PROOF. Let U denote the closed unit ball of H^p . It is enough to show that $U \cap qH^p$ is κ -closed in H^p . So suppose (f_n) is a sequence in $U \cap qH^p$, $f \in H^p$, and $f = \kappa - \lim f_n$. Now there exists a sequence (h_n) in H^p such that $f_n = qh_n$ for each n; and since

$$||h_n||_p = ||f_n||_p \leq 1$$

we have $(h_n) \subseteq U$. Since U is κ -compact (Proposition 2.1) there is a subsequence (h_{n_i}) which is κ -convergent to some h in U. Consequently

$$qh = \kappa - \lim qh_{n_i} = \kappa - \lim f_{n_i} = f,$$

so $f \in U \cap qH^p$, and the proof is complete.

PROOF OF THEOREM 3.1. Fix 0 . By Theorem 2.3 we can choose a non-trivial inner function <math>q such that the (proper) closed subspace qH^p is weakly dense. Let E_N denote the quotient linear topological space H^p/qH^p , where H^p has its norm topology. Since qH^p is norm closed in H^p , E_N is Hausdorff: in fact it is complete and metrizable. Since qH^p is weakly dense in H^p , the quotient space E_N has trivial dual [2, corollary 1, p. 53].

Let E_{β} denote the quotient linear topological space H^{p}/qH^{p} , where H^{p} has the β -topology. E_{β} is Hausdorff since qH^{p} is β -closed (Proposition 3.4). Now E_{N} and E_{β} are the same linear space H^{p}/qH^{p} , but with different topologies. It is

AN F-SPACE

not difficult to see that the topology of E_{β} is weaker than that of E_N , since the β -topology is weaker on H^{ρ} than the norm topology. In particular the identity map $j_{N,\beta}: E_N \to E_{\beta}$ is continuous, and E_{β} also has trivial dual.

Let U denote the closed unit ball of H^{ρ} and let π denote the quotient map taking H^{ρ} onto H^{ρ}/qH^{ρ} . Then π is continuous when viewed as a map of H^{ρ} in its norm topology onto E_{N} , and also when viewed as a map of H^{ρ} in the β -topology onto E_{β} . In addition, $V = \pi(U)$ is the closed unit ball of E_{N} , and it is a compact subset of E_{β} , since U is β -compact in H^{ρ} . Thus the identity map $j_{N,\beta}$; $E_{N} \rightarrow E_{\beta}$ takes the closed unit ball of E_{N} onto a compact subset of E_{β} , and is therefore a compact linear transformation.

Now any vector topology can be represented as the least upper bound of a family of pseudo-metric topologies [4, section 6, problem C, p. 51-52]. In particular there is a pseudo-metric d on E_{β} that induces a (not necessarily Hausdorff) vector topology weaker than β , yet different from the indiscrete topology. Let E_d denote E_{β} equipped with this new topology: then the identity map $j_{\beta,d}: E_{\beta} \rightarrow E_d$ is continuous. Let F denote the closure of $\{0\}$ in E_d . Then F is a proper, closed subspace of E_d : and it is not difficult to see that the quotient space E_d/F is a non-trivial, metrizable linear topological space.

Since the quotient map $\rho: E_d \to E_d/F$ is continuous, so is its composition with $j_{\beta,d}$. Recall that the identity map $j_{N,\beta}: E_N \to E_\beta$ is compact; thus the composition $S = \rho \circ j_{\beta,d} \circ j_{N,\beta}$ is a non-trivial compact linear map taking E_N onto the (necessarily incomplete) linear metric space E_d/F . Let E_M be the completion of E_d/F . Then E_M is an F-space, and S can be regarded as a non-trivial compact linear transformation from E_N into E_M . Let $E = E_N \oplus E_M$ and define $T: E \to E$ by

$$T(x, y) = (0, Sx) \qquad (x \in E_N, y \in E_M).$$

Then E is an F-space since E_N and E_M are, and T is a non-trivial compact endomorphism of E.

It remains to show that E has non-trivial dual. We have already observed that E_N has trivial dual, as does E_{β} . Since E_d is just E_{β} in a weaker topology, it too has trivial dual, as does its quotient E_d/F . Thus E_M , which is the completion of E_d/F also has trivial dual, hence so does $E = E_N \oplus E_M$. This completes the proof.

The space E that we have constructed has a further curious property. A linear topological space is said to be *transitive* if for each pair f, g of non-zero vectors there is a continuous endomorphism of the space which takes f to g. For

example, it is easy to see that any linear topological space whose dual separates points is transitive; while the direct sum of a space with trivial dual and its scalar field is not transitive. Pełczyński has observed that a transitive linear topological space with non-trivial compact endomorphisms must also have non-trivial dual. This result is stated and proved in [6, theorem 1.2, p. 125] for real scalars. The essential feature of the proof is an application of the Riesz theory of compact operators, which holds as well for complex scalars [4, chapter 5, problems A and B, pp. 206–207). So Pełczyński's result and its proof as given in [6] hold in the complex case, and we obtain from it and Theorem 3.1 the following:

COROLLARY. There exists a non-transitive F-space with trivial dual.

We note in closing that the space E constructed in Theorem 3.1 can be chosen to be locally bounded. To see this, let us fix 0 and revert to the $notation used in the proof of Theorem 3.1. Since the topology <math>\beta$ on H^p has a local base of absolutely p-convex sets, so does the quotient space E_{β} (a subset S of a real or complex linear space is *absolutely p*-convex if $ax + by \in S$ whenever $x, y \in S$ and $|a|^p + |b| \leq 1$). The "Minkowski functional" (cf. [4, p. 15]) of such a neighborhood is subadditive and absolutely p-homogeneous, and one of these functionals can be used to induce the pseudo-metric d. It follows quickly that the metric on E_M is also induced by a subadditive, p-homogeneous functional, hence E_M is locally bounded. Now E_N is locally bounded by the definition of the quotient metric, hence so is the direct sum $E = E_M \oplus E_N$, and our assertion is proved.

Added December 2, 1974. After this paper was submitted P. Turpin pointed out to us that Proposition 3.3' is a special case of a result of L. Waelbroeck (Topological Vector Spaces and Algebras, Springer Lecture Notes in Mathematics, No 230, Proposition 6.2, p. 48).

References

1. P. L. Duren, Theory of H^p Spaces, Academic Press, New York, 1970.

2. P. L. Duren, B. W. Romberg and A. L. Shields, Linear functionals on H^{p} spaces with 0 , J. Reine Angew. Math. 38 (1969), 32-60.

3. N. J. Kalton, Basic sequences in F-spaces and their applications, Proc. Edinburgh Math. Soc. (2) 19 (1974), 151-167.

4. J. L. Kelley, I. Namioka, et al., Linear Topological Spaces, Von Nostrand, Princeton, 1963.

5. A. E. Livingston, The space H^p (0) is not normable, Pacific J. Math. 3 (1953), 613-616.

6. D. Pallaschke, The compact endomorphisms of the metric linear spaces \mathcal{L}_{\bullet} , Studia Math. 47 (1973), 123–133.

7. W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1966.

8. J. H. Shapiro, Examples of proper, closed, weakly dense subspaces in non-locally convex F-spaces, Israel J. Math. 7 (1969), 369-380.

9. P. Turpin, Opérateurs linéaires entre espaces d'Orlicz non localement convexes, Studia Math. 46 (1973), 153-165.

10. A. Wiweger, Linear spaces with mixed topology, Studia Math. 20 (1961), 47-68.

DEPARTMENT OF PURE MATHEMATICS

UNIVERSITY COLLEGE

SWANSEA SA2 8PP, ENGLAND

AND

DEPARTMENT OF MATHEMATICS

MICHIGAN STATE UNIVERSITY

EAST LANSING, MICH. 48824, U.S.A.