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ON BANACH SPACES CONTAINING [, OR ¢
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ABSTRACT. We use the Gowers block Ramsey theorem to characterize Ba-
nach spaces containing isomorphs of £, (for some 1 < p < 00) or cg.

1. INTRODUCTION

A result of Zippin [Z] gives a characterization of the unit vector basis of ¢
and [,. He showed that a normalized basis of a Banach space such that all
normalized block bases are equivalent, must be equivalent to the unit vector basis
of ¢y or I, for some 1 < p < co. Let 1 < p < oo A Banach space X with a
basis (z;); is called asymptotic-l,, (asymptotic-cy if p = oo) [M-TJ] if there exists
K > 0 and an increasing function f : N — N such that, for all n, if (y;)I; is a
normalized block basis of ()72 (), then (y;)i_; is equivalent to the unit vector
basis of 7. In [F-F-K-R] Figiel, Frankiewicz, Komorowski and Ryll-Nardzewski
gave necessary and sufficient conditions for finding asymptotic-I, subspaces, for
a fixed 1 < p < 00, in an arbitrary Banach space. More precisely, they proved

Theorem (FFKR). Let p > 1 and let X be a Banach space with the following
property:

For any infinite dimensional subspace Y C X there exists a constant My such
that for any n there exist infinite dimensional subspaces U1,Us, ..., U, of Y with

2000 Mathematics Subject Classification. Primary: 46B40, Secondary: 46B03.
The second author was supported by NSF grant DMS-0555670.
The third author was supported by NSERC.

859



860 GEORGE ANDROULAKIS, NIGEL KALTON, AND ADI TCACIUC

the property that any normalized sequence (uy,us,...,u,) with u; € U; for any
i <n, is My-equivalent to the unit vector basis of l,.
Then X contains an asymptotic-l, subspace.

In [Te] we consider similar decompositions for which any two n-tuples as above
are uniformly equivalent to each other (with the equivalence constant independent
of n) and obtain the existence of asymptotic-i,, subspaces. Our current results are
in the same direction. In Theorem 2.4 we show that if a Banach space has the
property that every closed subspace contains two sequences of infinite-dimensional
closed subspaces which are comparable (see the formal definition below) then it
contains a copy of £, for some 1 < p < oo or ¢y. This may be regarded as a
characterization of spaces containing [, or cy. In Theorem 2.6 we show that if a
Banach space X is saturated with sequences of infinite dimensional subspaces E,,,
n € N, such that all normalized sequences (z,) with z,, € E,, are tail equivalent,
then X must contain a subspace isomorphic to ¢, or cy. For the proofs we make
essential use of Gowers’ block Ramsey theorem [G].

Acknowledgments. The third named author wishes to thank Professor
Nicole Tomczak-Jaegermann for many useful discussions.

2. THE MAIN RESULTS

We first recall the Gowers block Ramsey theorem. Let X be a Banach space
with a basis (e;); and let ¥ be the subset of all finite normalized block sequences
of (e;);. Given a set 0 € ¥ we consider the following two players game (the
Gowers game). S (the subspace player) chooses a block subspace X; of X and V
(the vector player) chooses a normalized vector x; € X7. Then S chooses a block
subspace X5 and V chooses z2 € X5. The play alternates S,V,S,V.... Player V
wins the game if at some point the sequence (z1, 23 ..., x,) belongs to . We say
that V has a winning strategy if no matter what sequence of subspaces S chooses,
V can win the game.

If Y is a block subspace of X we say that o is large for Y if every block subspace
of Y contains an element of . We say that o is strategically large for Y if player
V has a winning strategy for the above game when S is restricted to subspaces of
Y.

Let A = (01,d2...) be a sequence of positive numbers. The set oa, the A-
enlargement of o, will stand for the set of all sequences (z1,...,2,) € ¥ such
that there exists a sequence (y1,...,y,) € 0 with ||z; — y;|| < J;, for all i <n.
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Theorem 2.1. (Gowers’s block Ramsey Theorem) Let o € ¥ be large for X and
let A be a sequence of positive numbers. Then there exists a block subspace Y of
X such that o is strategically large for Y.

The following lemma is an application of Gowers’s block Ramsey Theorem.

Lemma 2.2. Let X be a Banach space with a basis. Then there exists 1 < p < oo
and an infinite dimensional block subspace Y of X such that for every sequence
(Y3)2, of infinite dimensional block subspaces of Y and for all n there exists a
normalized block sequence (y;)7_, in'Y with y; € Y; for 1 <i <n and (y;)I—, is
2 — equivalent to the unit vector basis of lj;.

For the proof of this lemma we need the definition of the stabilized Krivine
set of a Banach space. If X is a Banach space with a basis and W is an infinite
dimensional block subspace of X, let K (W) be the set of p’s in [1, 00] such that
I, is finitely block represented in W, (p = oo if ¢¢ is finitely block represented in
W). Then K(W) is a closed non-empty subset of [1,00] [K]. Note that if W5 is
an infinite dimensional block subspace of Wy then K (Ws) C K (W7). Moreover, if
W, has finite codimension in W; then K(W5) = K(W;). Using these properties
it is easy to show that there exists an infinite dimensional block subspace W of
X such that K(W) = K(V) for all infinite dimensional block subspaces V' of
W, (else a transfinite induction gives a contradiction). The set K (W) is called a
stabilized Krivine set for X.

PROOF. Let W be an infinite dimensional block subspace of X such that K (W)
is a stabilized Krivine set for X. Fix p € K (W) and for any n € N let o,, be the
set of all finite normalized block sequences of W of length n such that they are
2-equivalent to the unit vector basis of [j;. The conclusion of the Lemma follows
easily if we can find a block subspace Y such that, for any n, o, is strategically
large for Y.

Note that for any n, o, is large in any infinite dimensional block subspace
V of W. By applying Theorem 2.1 repeatedly, we obtain a nested sequence
VioVeodV3D--- DV, D... of block subspaces of W such that, for any n, o,
is strategically large for V,,. Note that we do not enlarge o, since we can replace
the 2 in “2-equivalent” by 1+ ¢ for any € > 0.

Let Y be a diagonal block subspace, that is a subspace generated by a block
basis v1, v, ... with v, € V,, for every n. We claim that o, is strategically large
for Y, for any value of n. Indeed fix n € N and denote by [Y],, the n-tail of Y, that
is the subspace generated by (v;);>n. Note that [Y], C V,,. Consider a typical
Gowers game in Y. For any choice of a block subspace Z of Y the subspace player
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makes, the vector player chooses a vector z € ZN[Y], as if the game was played
inside V,, and the subspace player picked Z N [Y],. Since the vector player has
a winning strategy for the game played in V,,, it follows that after finitely many
steps the finite block sequence he chooses belongs to ¢,,. Therefore the vector
player has a winning strategy for the game played in Y as well. This proves that
oy, is strategically large for Y, which finishes the proof of the lemma. O

Let & = (E;)32, be a sequence of nonzero subspaces of a Banach space X and
let 7 = (F})72; be a sequence of nonzero subspaces in a Banach space Y. We

c
will say that £ is C-dominated by F, and we write £ < F if for any n we have

n n
1>zl <Dl
j=1 j=1

whenever x; € E;, y; € F; with ||z;| = ||y;]| for 1 < j < n.

c c
The two sequences £ and F are called C-comparable if € < For F < £. € and
F are C-equivalent if there exist constants Cy and Cs with C1Cy = C such that

Cq Ca
E < Fand F <€.

Notice that the sequence £ is comparable to itself if and only if it is equivalent
to itself and this is in turn equivalent to the fact that £ = (F;)32, is an absolute
Schauder decomposition of its closed linear span [£].

Note that £ is C-dominated by the canonical one-dimensional decomposition
of £, (or ¢ when p = o0) if and only if £ satisfies an upper {,-estimate with
constant C, i.e.:

1> il <O llaylP) P, x5 € Bjyn=1,2,...
j=1 j=1
or

n
H;lelécllgjagnllell, zj € Bj, n=12,...
when p = oo. Similarly £ C-dominates the canonical one-dimensional decompo-
sition of £, if and only if £ satisfies a lower £, —estimate with constant C'.

Recall that a basic sequence (x,)%2; has a block upper (respectively, block
lower) p-estimate if there is a constant C' so that for all block basic sequences
(un )%, the sequence ([u,])52; has an upper (respectively, lower) ¢,-estimate
with constant C.
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Theorem 2.3. Let X be a separable Banach space with a basis (e;)32; and sup-
pose 1 < p < o0.

(i) Assume that every closed subspace of X contains a sequence & of infinite-
dimensional subspaces with an upper £, (or co when p = oo)-estimate. Then
(ej)]‘?‘;l has a block basic sequence with an block upper p-estimate.

(ii) Assume that every closed subspace of X contains a sequence € of infinite-

o

dimensional subspaces with a lower £, (or co when p = oo )-estimate. Then (e;)32,

has a block basic sequence with a block lower p-estimate.

PROOF. We prove only (i) as (ii) is similar. We may assume that every block
subspace contains a sequence £ of block subspaces with an upper £,—estimate.
For each block subspace W let C'(W) denote the infimum of all constants C' so
that W contains a sequence £ of block subspaces with an upper ¢, —estimate with
constant C. We claim that there exists an infinite dimensional block subspace Y of
X and a constant C' < oo such that for each infinite dimensional block subspace Z
of Y we have that C(Z) < C. Indeed, otherwise there exists a decreasing sequence
of block subspaces Z,, of X such that C(Z,,) > n. If we choose a sequence (w,)
of successive, linearly independent block vectors with w; € Z; for each j, then the
infinite dimensional block subspace W spanned by (w;)32; contains a sequence
of infinite-dimensional subspaces & = (E;)52; with an £,—upper estimate with
constant C, say. Picking n > C and considering the sequence (E; N Z,)52,,
have a contradiction. This contradiction proves the above claim.

Thus we may assume that for original basis we have the property that C(W) <
C for every block subspace. Now define the set o to consist of all normalized finite
block basic sequences (u1,...,uy,) so that for some ay,...,a, with |a1|P + -+
lan|P =1

e’}
Jj=1

we

larus + -+ + apuy|| > C + 2.

If the conclusion of the Theorem is false, this set is large. Let A = (27%)%°;.
then by Theorem 2.1 o is strategically large for some block subspace Y. Let
& = (E;)32, be a sequence of infinite-dimensional block subspaces of Y with an
upper ¢,—estimate with constant at most C. If the subspace player S uses the
strategy & then the vector player V may select normalized vectors v; € E; so that

for some n there exists (u1,...,u,) € o so that |lu;—v;|| <279 for j =1,2,...,n.
Now for an appropriate ay, ..., a, with |a1|? 4+ -+ + |a, [P = 1 we have
n n
1D ajoll = 1Y agus| —1>C+1
j=1 j=1

which gives a contradiction. This proves (i). O
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Theorem 2.4. Let X be a separable Banach space with the property that every
infinite-dimensional closed subspace contains two comparable sequences € and F
of infinite-dimensional closed subspaces. Then X contains a copy of £, for some
1 <p< oo orc.

PRrOOF. We first assume that X has a basis and then by Lemma 2.2, we may
pass to a block subspace Y so that for a suitable p, whenever £ = (E;)52, is a
sequence of infinite-dimensional subspaces of Y then for any n € N there exist
y; € Ejfor j =1,2,...,nsothat (y;)}_; is 2-equivalent to the canonical £}-basis.

By our assumption, for any closed infinite dimensional subspace Z of Y let
&€ and F be two comparable sequences of infinite dimensional subspaces of Z,
say £ = (Ej;) is dominated by F = (F};). By Lemma 2.2 for any n € N there
exists y; € B (j =1,...,n), such that (y;)7_; is 2-equivalent to the unit vector
basis of £;}. Thus F has a block lower p estimate. Similarly, £ has a block upper
p-estimate. Applying Theorem 2.3 (i) and (ii) one after another we can pass to a
block basic sequence which has both a block upper and a block lower p-estimate,
i.e. is equivalent to the canonical basis of . O

Corollary 2.5. Let X be a separable Banach space with the property that ev-
ery infinite-dimensional closed subspace contains a subspace with an absolute
Schauder decomposition of infinite-dimensional subspaces. Then X contains a
copy of £y, for some 1 < p < 00 or cp.

We remark that this Corollary could easily be deduced from the result in [Tc].

A sequence (z,), will be called C-tail equivalent if for any N € N, there
exists k > N such that (z,);2; is C-equivalent to (z,)5,. In particular, a
subsymmetric basic sequence is tail equivalent.

Theorem 2.6. Let X be a Banach space having the property that for any infi-
nite dimensional closed subspace Y of X there exist a constant Cy and infinite
dimensional subspaces € = (E;)2, of Y such that all normalized sequences (xy)n
with x,, € B, for all n are Cy-tail equivalent. Then X contains a basic sequence
equivalent to the unit vector basis of I, or co.

PrROOF. By passing to a subspace and relabeling assume that X has a basis and
M is its basis constant. According to Lemma 2.2 let Y be a block subspace of
X such that for every sequence (Y;)$2; of infinite dimensional block subspaces of
Y and for all n € N there exists a normalized sequence (y;)?_; with y; € Y; for
1 <i<nand (y;)j.; is 2-equivalent to the unit vector basis of £} .
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By our hypothesis there exists a sequence & = (Ej;) of infinite dimensional
subspaces of Y such that all normalized sequences (z,) with x,, € E, are C-
tail equivalent. Using a standard perturbation arguments we can assume that
& consists of block subspaces. Applying Lemma 2.2 for (E;)?2; and for n = 2
we obtain normalized block vectors z1 € E; and zo € FE3 such that {z1,22} is
2-equivalent to the unit vector basis of lf,. Next we apply again Lemma 2.2 for
(E;)25 and for n = 3 and obtain normalized block vectors z3 € E3, z4 € E4 and
z5 € By such that {z3, 24,25} is 2-equivalent to the unit vector basis of l:;. We
continue in this manner; thus we built inductively a normalized block sequence
(z:); with z; € E; for all ¢ such that {z1, 22} is 2-equivalent to the unit vector
basis of 112,, {#3, 24, 25 } is 2-equivalent to the unit vector basis of lg, {z6, 27,28, 29}
is 2-equivalent to the unit vector basis of I) and so on. Clearly (z;); is a block
basic sequence with basis constant at most M.

Fix n € N. From the definition of tail equivalence we can find N large enough
such that (z;)72; is C-equivalent to (2;)§<,, and {211, 2N 42, -+, ZN4n} OVer-
laps with at most two finite sequences of z’s as above. In other words, there
exists k < n such that (zl)gjjl\ﬁ +1 18 2-equivalent to the unit vector basis of I
and (zz)ivj](ﬁ k41 18 2-equivalent to the unit vector basis of l;}_k. Then it easily
follows that {zn41,2N+2,---s2N+n} 18 16(M + 1)-equivalent to the unit vector
basis of [;. Since (2;)§2; is C-equivalent to (2;){2,;, it follows that (z;)i,
is 16C(M + 1)-equivalent to the unit vector basis of I}, and this finishes the
proof. O
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