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ON BANACH SPACES CONTAINING lp OR c0
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Abstract. We use the Gowers block Ramsey theorem to characterize Ba-

nach spaces containing isomorphs of `p (for some 1 ≤ p <∞) or c0.

1. Introduction

A result of Zippin [Z] gives a characterization of the unit vector basis of c0
and lp. He showed that a normalized basis of a Banach space such that all
normalized block bases are equivalent, must be equivalent to the unit vector basis
of c0 or lp for some 1 ≤ p < ∞. Let 1 ≤ p ≤ ∞ A Banach space X with a
basis (xi)i is called asymptotic-lp (asymptotic-c0 if p =∞) [M-TJ] if there exists
K > 0 and an increasing function f : N → N such that, for all n, if (yi)n

i=1 is a
normalized block basis of (xi)∞i=f(n), then (yi)n

i=1 is equivalent to the unit vector
basis of lnp . In [F-F-K-R] Figiel, Frankiewicz, Komorowski and Ryll-Nardzewski
gave necessary and sufficient conditions for finding asymptotic-lp subspaces, for
a fixed 1 ≤ p ≤ ∞, in an arbitrary Banach space. More precisely, they proved

Theorem (FFKR). Let p ≥ 1 and let X be a Banach space with the following
property:

For any infinite dimensional subspace Y ⊆ X there exists a constant MY such
that for any n there exist infinite dimensional subspaces U1, U2, . . . , Un of Y with
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the property that any normalized sequence (u1, u2, . . . , un) with ui ∈ Ui for any
i ≤ n, is MY -equivalent to the unit vector basis of lnp .

Then X contains an asymptotic-lp subspace.

In [Tc] we consider similar decompositions for which any two n-tuples as above
are uniformly equivalent to each other (with the equivalence constant independent
of n) and obtain the existence of asymptotic-lp subspaces. Our current results are
in the same direction. In Theorem 2.4 we show that if a Banach space has the
property that every closed subspace contains two sequences of infinite-dimensional
closed subspaces which are comparable (see the formal definition below) then it
contains a copy of `p for some 1 ≤ p < ∞ or c0. This may be regarded as a
characterization of spaces containing lp or c0. In Theorem 2.6 we show that if a
Banach space X is saturated with sequences of infinite dimensional subspaces En,
n ∈ N, such that all normalized sequences (xn) with xn ∈ En are tail equivalent,
then X must contain a subspace isomorphic to `p or c0. For the proofs we make
essential use of Gowers’ block Ramsey theorem [G].

Acknowledgments. The third named author wishes to thank Professor
Nicole Tomczak-Jaegermann for many useful discussions.

2. The main results

We first recall the Gowers block Ramsey theorem. Let X be a Banach space
with a basis (ei)i and let Σ be the subset of all finite normalized block sequences
of (ei)i. Given a set σ ∈ Σ we consider the following two players game (the
Gowers game). S (the subspace player) chooses a block subspace X1 of X and V
(the vector player) chooses a normalized vector x1 ∈ X1. Then S chooses a block
subspace X2 and V chooses x2 ∈ X2. The play alternates S,V,S,V.... Player V
wins the game if at some point the sequence (x1, x2 . . . , xn) belongs to σ. We say
that V has a winning strategy if no matter what sequence of subspaces S chooses,
V can win the game.

If Y is a block subspace of X we say that σ is large for Y if every block subspace
of Y contains an element of σ. We say that σ is strategically large for Y if player
V has a winning strategy for the above game when S is restricted to subspaces of
Y .

Let ∆ = (δ1, δ2...) be a sequence of positive numbers. The set σ∆, the ∆-
enlargement of σ, will stand for the set of all sequences (x1, . . . , xn) ∈ Σ such
that there exists a sequence (y1, . . . , yn) ∈ σ with ‖xi − yi‖ < δi, for all i ≤ n.
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Theorem 2.1. (Gowers’s block Ramsey Theorem) Let σ ∈ Σ be large for X and
let ∆ be a sequence of positive numbers. Then there exists a block subspace Y of
X such that σ∆ is strategically large for Y .

The following lemma is an application of Gowers’s block Ramsey Theorem.

Lemma 2.2. Let X be a Banach space with a basis. Then there exists 1 ≤ p ≤ ∞
and an infinite dimensional block subspace Y of X such that for every sequence
(Yi)∞i=1 of infinite dimensional block subspaces of Y and for all n there exists a
normalized block sequence (yi)n

i=1 in Y with yi ∈ Yi for 1 ≤ i ≤ n and (yi)n
i=1 is

2− equivalent to the unit vector basis of lnp .

For the proof of this lemma we need the definition of the stabilized Krivine
set of a Banach space. If X is a Banach space with a basis and W is an infinite
dimensional block subspace of X, let K(W ) be the set of p’s in [1,∞] such that
lp is finitely block represented in W , (p =∞ if c0 is finitely block represented in
W ). Then K(W ) is a closed non-empty subset of [1,∞] [K]. Note that if W2 is
an infinite dimensional block subspace of W1 then K(W2) ⊆ K(W1). Moreover, if
W2 has finite codimension in W1 then K(W2) = K(W1). Using these properties
it is easy to show that there exists an infinite dimensional block subspace W of
X such that K(W ) = K(V ) for all infinite dimensional block subspaces V of
W , (else a transfinite induction gives a contradiction). The set K(W ) is called a
stabilized Krivine set for X.

Proof. Let W be an infinite dimensional block subspace of X such that K(W )
is a stabilized Krivine set for X. Fix p ∈ K(W ) and for any n ∈ N let σn be the
set of all finite normalized block sequences of W of length n such that they are
2-equivalent to the unit vector basis of lnp . The conclusion of the Lemma follows
easily if we can find a block subspace Y such that, for any n, σn is strategically
large for Y .

Note that for any n, σn is large in any infinite dimensional block subspace
V of W . By applying Theorem 2.1 repeatedly, we obtain a nested sequence
V1 ⊃ V2 ⊃ V3 ⊃ · · · ⊃ Vn ⊃ . . . of block subspaces of W such that, for any n, σn

is strategically large for Vn. Note that we do not enlarge σn since we can replace
the 2 in “2-equivalent” by 1 + ε for any ε > 0.

Let Y be a diagonal block subspace, that is a subspace generated by a block
basis v1, v2, . . . with vn ∈ Vn for every n. We claim that σn is strategically large
for Y , for any value of n. Indeed fix n ∈ N and denote by [Y ]n the n-tail of Y , that
is the subspace generated by (vj)j≥n. Note that [Y ]n ⊆ Vn. Consider a typical
Gowers game in Y . For any choice of a block subspace Z of Y the subspace player
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makes, the vector player chooses a vector z ∈ Z ∩ [Y ]n as if the game was played
inside Vn and the subspace player picked Z ∩ [Y ]n. Since the vector player has
a winning strategy for the game played in Vn, it follows that after finitely many
steps the finite block sequence he chooses belongs to σn. Therefore the vector
player has a winning strategy for the game played in Y as well. This proves that
σn is strategically large for Y , which finishes the proof of the lemma. �

Let E = (Ej)∞j=1 be a sequence of nonzero subspaces of a Banach space X and
let F = (Fj)∞j=1 be a sequence of nonzero subspaces in a Banach space Y . We

will say that E is C-dominated by F , and we write E
C
≺ F if for any n we have

‖
n∑

j=1

xj‖ ≤ C‖
n∑

j=1

yj‖

whenever xj ∈ Ej , yj ∈ Fj with ‖xj‖ = ‖yj‖ for 1 ≤ j ≤ n.
The two sequences E and F are called C-comparable if E

C
≺ F or F

C
≺ E . E and

F are C-equivalent if there exist constants C1 and C2 with C1C2 = C such that

E
C1≺ F and F

C2≺ E .

Notice that the sequence E is comparable to itself if and only if it is equivalent
to itself and this is in turn equivalent to the fact that E = (Ej)∞j=1 is an absolute
Schauder decomposition of its closed linear span [E ].

Note that E is C-dominated by the canonical one-dimensional decomposition
of `p (or c0 when p = ∞) if and only if E satisfies an upper `p-estimate with
constant C, i.e.:

‖
n∑

j=1

xj‖ ≤ C(
n∑

j=1

‖xj‖p)1/p, xj ∈ Ej , n = 1, 2, . . .

or

‖
n∑

j=1

xj‖ ≤ C max
1≤j≤n

‖xj‖, xj ∈ Ej , n = 1, 2, . . .

when p = ∞. Similarly E C-dominates the canonical one-dimensional decompo-
sition of `p if and only if E satisfies a lower `p−estimate with constant C.

Recall that a basic sequence (xn)∞n=1 has a block upper (respectively, block
lower) p-estimate if there is a constant C so that for all block basic sequences
(un)∞n=1 the sequence ([un])∞n=1 has an upper (respectively, lower) `p-estimate
with constant C.
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Theorem 2.3. Let X be a separable Banach space with a basis (ej)∞j=1 and sup-
pose 1 ≤ p ≤ ∞.
(i) Assume that every closed subspace of X contains a sequence E of infinite-
dimensional subspaces with an upper `p (or c0 when p = ∞)-estimate. Then
(ej)∞j=1 has a block basic sequence with an block upper p-estimate.
(ii) Assume that every closed subspace of X contains a sequence E of infinite-
dimensional subspaces with a lower `p (or c0 when p =∞)-estimate. Then (ej)∞j=1

has a block basic sequence with a block lower p-estimate.

Proof. We prove only (i) as (ii) is similar. We may assume that every block
subspace contains a sequence E of block subspaces with an upper `p−estimate.
For each block subspace W let C(W ) denote the infimum of all constants C so
that W contains a sequence E of block subspaces with an upper `p−estimate with
constant C. We claim that there exists an infinite dimensional block subspace Y of
X and a constant C <∞ such that for each infinite dimensional block subspace Z
of Y we have that C(Z) < C. Indeed, otherwise there exists a decreasing sequence
of block subspaces Zn of X such that C(Zn) > n. If we choose a sequence (wj)∞j=1

of successive, linearly independent block vectors with wj ∈ Zj for each j, then the
infinite dimensional block subspace W spanned by (wj)∞j=1 contains a sequence
of infinite-dimensional subspaces E = (Ej)∞j=1 with an `p−upper estimate with
constant C, say. Picking n > C and considering the sequence (Ej ∩ Zn)∞j=1, we
have a contradiction. This contradiction proves the above claim.

Thus we may assume that for original basis we have the property that C(W ) <
C for every block subspace. Now define the set σ to consist of all normalized finite
block basic sequences (u1, . . . , un) so that for some a1, . . . , an with |a1|p + · · · +
|an|p = 1

‖a1u1 + · · ·+ anun‖ > C + 2.

If the conclusion of the Theorem is false, this set is large. Let ∆ = (2−i)∞i=1.

then by Theorem 2.1 σ∆ is strategically large for some block subspace Y . Let
E = (Ej)∞j=1 be a sequence of infinite-dimensional block subspaces of Y with an
upper `p−estimate with constant at most C. If the subspace player S uses the
strategy E then the vector player V may select normalized vectors vj ∈ Ej so that
for some n there exists (u1, . . . , un) ∈ σ so that ‖uj−vj‖ < 2−j for j = 1, 2, . . . , n.
Now for an appropriate a1, . . . , an with |a1|p + · · ·+ |an|p = 1 we have

‖
n∑

j=1

ajvj‖ ≥ ‖
n∑

j=1

ajuj‖ − 1 ≥ C + 1

which gives a contradiction. This proves (i). �
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Theorem 2.4. Let X be a separable Banach space with the property that every
infinite-dimensional closed subspace contains two comparable sequences E and F
of infinite-dimensional closed subspaces. Then X contains a copy of `p for some
1 ≤ p <∞ or c0.

Proof. We first assume that X has a basis and then by Lemma 2.2, we may
pass to a block subspace Y so that for a suitable p, whenever E = (Ej)∞j=1 is a
sequence of infinite-dimensional subspaces of Y then for any n ∈ N there exist
yj ∈ Ej for j = 1, 2, . . . , n so that (yj)n

j=1 is 2-equivalent to the canonical `np -basis.
By our assumption, for any closed infinite dimensional subspace Z of Y let

E and F be two comparable sequences of infinite dimensional subspaces of Z,
say E = (Ej) is dominated by F = (Fj). By Lemma 2.2 for any n ∈ N there
exists yj ∈ Ej (j = 1, . . . , n), such that (yj)n

j=1 is 2-equivalent to the unit vector
basis of `np . Thus F has a block lower p estimate. Similarly, E has a block upper
p-estimate. Applying Theorem 2.3 (i) and (ii) one after another we can pass to a
block basic sequence which has both a block upper and a block lower p-estimate,
i.e. is equivalent to the canonical basis of `p. �

Corollary 2.5. Let X be a separable Banach space with the property that ev-
ery infinite-dimensional closed subspace contains a subspace with an absolute
Schauder decomposition of infinite-dimensional subspaces. Then X contains a
copy of `p for some 1 ≤ p <∞ or c0.

We remark that this Corollary could easily be deduced from the result in [Tc].
A sequence (xn)n will be called C-tail equivalent if for any N ∈ N, there

exists k > N such that (xn)∞n=1 is C-equivalent to (xn)∞n=k. In particular, a
subsymmetric basic sequence is tail equivalent.

Theorem 2.6. Let X be a Banach space having the property that for any infi-
nite dimensional closed subspace Y of X there exist a constant CY and infinite
dimensional subspaces E = (Ei)∞i=1 of Y such that all normalized sequences (xn)n

with xn ∈ En for all n are CY -tail equivalent. Then X contains a basic sequence
equivalent to the unit vector basis of lp or c0.

Proof. By passing to a subspace and relabeling assume that X has a basis and
M is its basis constant. According to Lemma 2.2 let Y be a block subspace of
X such that for every sequence (Yi)∞i=1 of infinite dimensional block subspaces of
Y and for all n ∈ N there exists a normalized sequence (yi)n

i=1 with yi ∈ Yi for
1 ≤ i ≤ n and (yi)n

i=1 is 2-equivalent to the unit vector basis of `np .
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By our hypothesis there exists a sequence E = (Ej) of infinite dimensional
subspaces of Y such that all normalized sequences (xn) with xn ∈ En are C-
tail equivalent. Using a standard perturbation arguments we can assume that
E consists of block subspaces. Applying Lemma 2.2 for (Ei)∞i=1 and for n = 2
we obtain normalized block vectors z1 ∈ E1 and z2 ∈ E2 such that {z1, z2} is
2-equivalent to the unit vector basis of l2p. Next we apply again Lemma 2.2 for
(Ei)∞i=3 and for n = 3 and obtain normalized block vectors z3 ∈ E3, z4 ∈ E4 and
z5 ∈ E5 such that {z3, z4, z5} is 2-equivalent to the unit vector basis of l3p. We
continue in this manner; thus we built inductively a normalized block sequence
(zi)i with zi ∈ Ei for all i such that {z1, z2} is 2-equivalent to the unit vector
basis of l2p, {z3, z4, z5} is 2-equivalent to the unit vector basis of l3p, {z6, z7, z8, z9}
is 2-equivalent to the unit vector basis of l4p and so on. Clearly (zi)i is a block
basic sequence with basis constant at most M .

Fix n ∈ N. From the definition of tail equivalence we can find N large enough
such that (zi)∞i=1 is C-equivalent to (zi)∞i=N+1 and {zN+1, zN+2, . . . , zN+n} over-
laps with at most two finite sequences of z’s as above. In other words, there
exists k ≤ n such that (zi)N+k

y=N+1 is 2-equivalent to the unit vector basis of lkp
and (zi)N+n

y=N+k+1 is 2-equivalent to the unit vector basis of ln−k
p . Then it easily

follows that {zN+1, zN+2, . . . , zN+n} is 16(M + 1)-equivalent to the unit vector
basis of lnp . Since (zi)∞i=1 is C-equivalent to (zi)∞i=N+1, it follows that (zi)n

i=1

is 16C(M + 1)-equivalent to the unit vector basis of lnp , and this finishes the
proof. �
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