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QUOTIENTS OF FINITE-DIMENSIONAL QUASI-NORMED
SPACES

N.J. KALTON AND A.E. LITVAK

Communicated by Gilles Pisier

Abstract. We study the existence of cubic quotients of finite-dimensional

quasi-normed spaces, that is, quotients well isomorphic to `k∞ for some k.

We give two results of this nature. The first guarantees a proportional

dimensional cubic quotient when the envelope is cubic; the second gives

an estimate for the size of a cubic quotient in terms of a measure of non-

convexity of the quasi-norm.

1. Introduction

It is by now well-established that many of the core results in the local theory
of Banach spaces extend to quasi-normed spaces (cf. [2], [3], [4], [7], [8], [9],
[10], [13], [15], [16], [17] for example). In this note we give two results on the
local theory of quasi-normed spaces which are of interest only in the non-convex
situation.

Let us introduce some notation. Let X be a real finite-dimensional vector
space. Then a p-norm ‖ · ‖ on X, p ∈ (0, 1], is a map x 7→ ‖x‖ (X 7→ R) so that:
(i) ‖x‖ > 0 if and only if x 6= 0.
(ii) ‖αx‖ = |α|‖x‖ for α ∈ R and x ∈ X.
(iii) ‖x1 + x2‖p ≤ ‖x1‖p + ‖x2‖p for x1, x2 ∈ X.
Then (X, ‖ · ‖) is called a p-normed space. For the purposes of this paper a
quasi-normed space is always assumed to be a p-normed space for some p ∈ (0, 1]
(note that by Aoki-Rolewicz theorem on quasi-normed space one can introduce an
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equivalent p-norm ([12], [14], [21])). The set BX = {x : ‖x‖ ≤ 1} is the unit ball
of X. The closed convex hull of BX , denoted by B̂X , is the unit ball of a norm
‖ · ‖X̂ on X; the corresponding normed space, X̂, is called the Banach envelope
of X.

The set B is called p-convex if for every x, y ∈ B and every positive λ, µ
satisfying λp + µp = 1 one has λx + µy ∈ B. Clearly, the unit ball of p-normed
space is a p-convex set and, vice versa, a closed centrally-symmetric p-convex set
is the unit ball of some p-norm provided that it is bounded and 0 belongs to its
interior.

If X and Y are p-normed spaces (for some p) then the Banach-Mazur distance
d(X,Y ) is defined as inf{‖T‖‖T−1‖}, where the infimum is taken over all linear
isomorphisms T : X → Y . We let dBX = dX = d(X, `dimX

2 ) and δBX = δX =
d(X, X̂). It is clear that δX is measure of non-convexity; in fact δX = inf{d(X,Y ) :
Y is a Banach space}.

We now describe our main results. In Section 3 we investigate quasi-normed
spacesX such that X̂ satisfies an estimate d(X̂, `dimX

∞ ) ≤ C. It has been known for
some time that non-trivial examples of this phenomenon exist [11]. In geometrical
terms this means that the convex hull of the unit ball of X is close to a cube.
We show using combinatorial results of Alesker, Szarek and Talagrand [1], [20]
based on the Sauer-Shelah Theorem [18], [19] that X then has a proportional
dimensional quotient E satisfying an estimate d(E, `dimE

∞ ) ≤ C ′. A much more
precise statement is given in Theorem 3.4. We then use this result in Section 4 to
prove that a p-normed space X has a quotient E with dimE ≥ cp ln δX/(ln ln δX)
and d(E, `dimE

∞ ) ≤ Cp where 0 < cp, Cp < ∞ are constants depending on p only.
Again a more precise statement is given in Theorem 4.2.

In developing these results, we found it helpful to use the notion of a geo-
metric hull of a subset of Rn. Thus instead of considering a p-convex set BX
we consider an arbitrary compact spanning set S and then compare the abso-
lutely convex hull ∆S with certain subsets ΓθS which can be obtained from S

by geometrically converging series. Precisely x ∈ ΓθS, θ ∈ (0, 1), if and only if
x = (1− θ)

∑∞
n=0 θ

nλnsn where sn ∈ S and |λn| ≤ 1. Note that Γα ⊂ 1−α
1−θ Γθ for

every 0 < α < θ < 1. Our results can be stated in terms of estimates for the
speed of convergence of ΓθS to ∆S as θ → 1. In this way we can derive results
which are independent of 0 < p < 1 and then obtain results about p-normed
spaces as simple Corollaries. We develop the idea of the geometric hull in Section
2 and illustrate it by restating the quotient form of Dvoretzky’s theorem in this
language.



QUOTIENTS OF FINITE-DIMENSIONAL QUASI-NORMED SPACES 587

2. Approximation of convex sets

Let S be a subset of Rn. Denote by ∆S the absolutely convex hull of S and by
S̃ the star-shaped hull of S, i.e. S̃ = {λx : |λ| ≤ 1, x ∈ S}. For each m ∈ N we
define ∆mS to be the set of all vectors of the form 1

m (λ1x1 + · · ·+ λmxm) where
|λk| ≤ 1 and xk ∈ S for 1 ≤ k ≤ m. If 0 < θ < 1 we define the θ-geometric hull of
S, ΓθS to be the set of all vectors of the form (1− θ)

∑∞
k=0 λkxk where |λk| ≤ θk

and xk ∈ S for k = 0, 1, · · · .

Lemma 2.1. Let S be a p-convex closed set where 0 < p < 1. Then for 0 < θ < 1
we have

ΓθS ⊂
(

p−1/p(1− θ)1−1/p
)

S.

Proof. This follows easily from:

1− θ
(1− θp)1/p

≤ p−1/p(1− θ)1−1/p

which in turns from the estimate

θp ≤ 1− p(1− θ).

�

Lemma 2.2. If 1
3 < θ < 1 and m ∈ N then

Γθ∆mS ⊂
2θ

3θ − 1
Γ
θ

1
m
S.

Proof. Note that

∆mS ⊂
1
m
θ

1
m−1

m−1
∑

k=0

θ
k
m S̃.

Hence

Γθ∆mS ⊂
1− θ

m(1− θ 1
m )
θ

1
m−1Γ

θ
1
m
S.

Now observe
1− θ

m(1− θ 1
m )
θ

1
m−1 =

θ−1 − 1
m(θ−

1
m − 1)

≤ θ−1 − 1
| ln θ|

≤ 2
3− θ−1

.

This completes the proof. �
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In this section, we make a few simple observations on the geometric hulls ΓθS.
Let us suppose that S is compact and spanning so that ∆S coincides with the
unit ball BX of a Banach space X, ‖ · ‖X . Given q ∈ [1, 2] let Tq = Tq(X) denote
the equal-norm type q constant, i.e. the smallest constant satisfying

Ave
εk=±1

∥

∥

∥

∥

∥

N
∑

k=1

εkxk

∥

∥

∥

∥

∥

X

≤ TqN1/q max
1≤k≤N

‖xk‖

for every N . Given an integer N let bN denote the least constant so that

inf
εk=±1

∥

∥

∥

∥

∥

N
∑

k=1

εkxk

∥

∥

∥

∥

∥

X

≤ bNN max
1≤k≤N

‖xk‖.

Given a set A by |A| we denote the cardinality of A.
The following Lemma abstracts the idea of [7], Lemma 2.

Lemma 2.3. Suppose 1
3 < θ < 1, and let m = m(S) be an integer such that

∑∞
k=1 b2km ≤ θ. Then

∆S ⊂ 2θ
(3θ − 1)(1− θ)

Γ
θ

1
m
S.

Proof. Suppose N ∈ N and suppose u ∈ ∆2NS. Then u = 1
2N (x1 + · · · + x2N )

where xk ∈ S̃. Hence there is a choice of signs εk = ±1 with |{εk = −1}| ≤ N and
∥

∥

∥

∥

∥

2N
∑

k=1

εkxk

∥

∥

∥

∥

∥

X

≤ 2Nb2N .

Let v = 1
N (
∑

εk=1 xk). Then ‖u − v‖X ≤ b2N . Hence ∆2NS ⊂ ∆NS + b2N∆S.
Iterating we get

∆2kmS ⊂ ∆mS +
k
∑

j=1

b2jm∆S

which leads to

∆S ⊂ ∆mS + θ∆S

which implies

∆S ⊂ (1− θ)−1Γθ∆mS ⊂
2θ

(3θ − 1)(1− θ)
Γ
θ

1
m
S.

�
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Proposition 2.4. (i) Suppose 1 < q ≤ 2 and q′ be such that 1/q + 1/q′ = 1.
Then for

θ = 1− 1
4

(

21/q′ − 1
2Tq

)q′

we have ∆S ⊂ 12ΓθS.
(ii) There exists constant C < ∞ so that if m is the largest integer such that X
has a subspace Y of dimension m with d(Y, `m1 ) ≤ 2 then ∆S ⊂ 8ΓθS for

θ = 1− 1
2

(Cm)−C log log(Cm)
.

Remark. We conjecture that the sharp estimate in (ii) is θ = 1− c/m.

Proof. (i) Observe that bN ≤ TqN
1
q−1. Hence

∞
∑

k=1

b2kN ≤ TqN
− 1
q′ (2

1
q′ − 1)−1.

Let N be the largest integer so that the right-hand side is at most 1
2 . Applying

Lemma 2.3 with θ0 = 1/2 we obtain

∆S ⊂ 4Γ2−1/NS.

The result follows, since

1
N
≤

(

21/q′ − 1
2Tq

)q′

≤ 1
N − 1

and Γα ⊂
1− α
1− θ

Γθ

for α < θ.
In (ii) we note first by a result of Elton [5] (see also [22] for a sharper version)

there exist universal constants 1/2 ≤ c0 < 1 and C ≥ 1 so that bN0 < c0 for some
N0 ≤ Cm.

Recall simple properties of the numbers bk. Clearly, for every k, l one has bkl ≤
bkbl and (k+ l)bk+l ≤ kbk + lbl. Thus if bk ≤ c0 < 1 then bl ≤ c = (1 + c0)/2 < 1
for every k ≤ l ≤ 2k. Therefore we may suppose that N0 is a power of two, say
N0 = 2q, q ≥ 1, and bN0 ≤ c < 1. Since bl ≤ 1 for every l, we get bNs0 l ≤ cs for
every integers s ≥ 1, l ≥ 0. Then, taking N = Nr

0 for some r ≥ 1 we have
∞
∑

k=1

b2kN =
∞
∑

j=0

rq
∑

l=1

b2rq+jrq+l ≤ rq
∞
∑

j=1

cjr ≤ 2rqcr ≤ 1/2

provided r ≥ c1 ln q with appropriate absolute constant c1.
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Now take r to be smallest integer larger than c1 ln q = c1 ln log2N0. Then by
Lemma 2.3 we obtain

∆S ⊂ 4Γ2−1/NS

for N ∼ (C ′m)C
′ log log(C′m) and the result follows. �

Corollary 2.5. There are absolute constants c, C > 0 so that if X is a p-normed
space then there exists a subspace Y in the envelope X̂ such that dimension of Y
is

m ≥ cp exp
{

lnA
ln lnA

}

,

where A = C(δX)p/(1−p), and

d (Y, `m1 ) ≤ 2.

Proof. Let S = BX and let m be as in Proposition 2.4. Then by the proposition
we have ∆BX ⊂ 8ΓθBX with

θ = 1− 1
2

(Cm)−C log log(Cm)
.

Thus by Lemma 2.1 we obtain

∆BX ⊂ 8p−1/p2−1+1/p (Cm)−(1−1/p)C log log(Cm)
BX ,

i.e.
δX ≤ (C ′m/p)−(1−1/p)C log log(Cm)

.

That implies the result. �

Let us conclude this section with a very simple form of Dvoretzky’s theorem
recast in this language:

Theorem 2.6. Let η < 1/3. There is an absolute constant c > 0 so that if S
is a compact spanning subset of Rn then there is a projection P of rank at least
cη2 log n such that

dΓθPS ≤
1 + η

1− θ
for every

√
3η ≤ θ < 1.

Remark 1. Let ε ≤ 6/7. Setting θ =
√

3η = ε/2 we observe that there is an
absolute constant c > 0 so that if S is a compact spanning subset of Rn then
there is a projection P of rank at least cε4 log n such that

dΓε/2PS ≤ 1 + ε.
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Remark 2. The “quotient form” of Dvoretzky’s theorem for quasi-normed spaces
is essentially known and follows very easily from results in [7] (see e.g. [8] for the
details).

Proof. By the sharp form of Dvoretzky’s Theorem (Theorem 2.9 in [6]) there
is a projection P of rank at least cη2 log n so that d∆(PS) ≤ 1 + η. Let Y = PRn
and introduce an inner-product norm ‖ · ‖ on Y so that E ⊂ ∆(PS) ⊂ (1 + η)E
where E = {y : (y, y) ≤ 1}. If y ∈ E with ‖y‖ = 1 there exists u ∈ PS ∪ (−PS)
with (y, u) ≥ 1. Since ‖u‖ ≤ 1+η we obtain ‖y−u‖ ≤ (2η+η2)1/2 ≤

√
3η. Hence

E ⊂ PS ∪ (−PS) +
√

3η E

which implies, for any θ ≥
√

3η,

(1− θ)E ⊂ ΓθPS ⊂ (1 + η)E .

Hence
dΓθPS ≤

1 + η

1− θ
,

which proves the theorem. �

3. Approximating the cube

Let n be an integer. By [n] we denote the set {1, ..., n}. The n-dimensional
cube we denote by B∞ = B∞n . Dn denotes the extreme points of the cube, i.e.
the set {1,−1}n. Given a set σ ⊂ [n] by Pσ we denote the coordinate projection
of Rn onto Rσ, and we denote B∞σ := PσB

∞
n , Dσ := PσDn. As above |A| denotes

the cardinality of a set A. As usual ‖ · ‖2 and ‖ · ‖∞ denote the norm in `2 and
`∞ correspondingly.

Theorem 3.1. There are constants c > 0 and 0 < C <∞ so that for every ε > 0,
if S ⊂ Dn with |S| ≥ 2n(1−cε) then there is a subset σ of [n] with |σ| ≥ (1 − ε)n
so that

Dσ ⊂ Cε−1Pσ(∆NS)

for some N ≤ Cε−2.

Proof. We will follow Alesker’s argument in [1], which is itself a refinement of
Szarek-Talagrand [20]. Alesker shows that for a suitable choice of c, if ε = 2−s

then one can find an increasing sequence of subsets (σk)sk=0 so that Pσ0(S) = Dσ0 ,

|σs| ≥ (1− 2ε)n and if τk = σk \ σk−1 for k = 1, 2, . . . , s then there exists α ∈ Dn

so that
Pτk(S ∩ P−1

σk−1
(Pσk−1α)) = Dτk .

It follows that if a ∈ Dτk there exists x ∈ ∆2S with Pσk−1(x) = 0 and Pτk(x) = a.
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We now argue by induction that Dσk ⊂ akPσk∆bkS where ak = 2k+1 − 1
and bk = 2kak = 2 · 4k − 2k. This clearly holds if k = 0. Assume it is true for
k = j − 1, where 1 ≤ j ≤ s. Then if a ∈ Dσj we can observe that there exists
x1 ∈ aj−1∆bj−1S with Pσj−1x1 = Pσj−1a. Clearly,

Pτjx1 ∈ aj−1∆bj−1Dτj .

Hence there exists x2 ∈ aj−1∆2bj−1S with Pσj−1x2 = 0 and Pτjx2 = −Pτjx1.

Finally pick x3 ∈ ∆2S so that Pσj−1(x3) = 0 and Pτj (x3) = Pτja. Then Pσj (x1 +
x2 + x3) = a and

x1 + x2 + x3 ∈ aj−1∆bj−1S + aj−1∆2bj−1S + ∆2S

⊂ aj−1

2bj−1

(

4bj−1 + 2j
)

∆4bj−1+2jS = aj∆bjS.

This establishes the induction.
We finally conclude that Dσs ⊂ 2(2s+1−1)Pσs∆2·4sS and this gives the result,

as the case of general ε follows easily. �

Remark. Slightly changing the proof one can show that Dσ ⊂ Cε−αPσ(∆NS)
for N ≤ Cε−α, where α = log2 3.

Lemma 3.2. There exist absolute constants c, C > 0 with the following property.
Suppose 0 < ε < 1 and 0 < k < n are natural numbers with k/n ≥ 1 − cε(1 −
ln ε)−1. Let S be a subset of Rn so that if a ∈ Dn there exists x ∈ S with
|{i : xi = ai}| ≥ k. Then there is a subset σ of [n] with |σ| ≥ (1 − ε)n and
Dσ ⊂ Cε−1∆NPσS for some N ≤ Cε−2.

Proof. Suppose 0 < k < n and 1 − k/n = tε(1 − ln ε)−1. We shall show that
if t is small enough we obtain the conclusion of the lemma. First pick a map
a → σ(a) from Dn → 2[n] so that for each a, |σ(a)| = k and there exists x ∈ S
with xi = ai for i ∈ σ(a). Then, by a simple counting argument we have the
existence of τ ∈ 2[n] so that |τ | = k and if

T = {α ∈ Dτ : ∃a ∈ Dn, σ(a) = τ, Pτa = α}

then

|T | ≥ 2n

2n−k
(

n
k

) .

We can estimate
(

n

k

)

≤
(n

k

)k
(

n

n− k

)n−k

≤
(

ne

n− k

)n−k

.
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Hence for t ≤ 1/2 we have

log2

(

n

k

)

≤ ntε

ln 2 (1− ln ε)
ln
(

e ln(e/ε)
tε

)

≤ 3ktε (2− ln t) .

It follows that
|T | ≥ 2k(1−Ctε),

where Ct = 3t (2− ln t). Choosing t such that Ct ≤ c/2, where c is the constant
from Theorem 3.1, and applying this theorem, we obtain the existence of σ ⊂ τ ,
|σ| ≥ (1− ε/2)k ≥ (1− ε)n, with desired property. �

Theorem 3.3. There are absolute constants c, C > 0 such that if ε > 0 and S

is a subset of Rn with B∞ ⊂ ∆S ⊂ dB∞ then there is a subset σ of [n] with
|σ| ≥ n(1− ε) such that

B∞σ ⊂ (C/ε) ΓθPσS

for θ = 1− cd−2ε5(1− ln ε)−1.

Proof. Let δ = c1ε and m be the smallest integer greater than c2d2ε−3(1− ln ε),
where c1, c2 will be chosen later.

Suppose first that a ∈ Dn. Then we can find N ∈ N, N ≥ m, and x1, . . . , xN ∈
S ∪ (−S) so that

∥

∥

∥

∥

a− 1
N

(x1 + · · ·+ xN )
∥

∥

∥

∥

2

2

≤ nd2

m
.

Let Ω be the space of all m-subsets of [N ] and let µ be normalized counting
(probability) measure on Ω. If (ξi)Ni=1 denote the indicator functions ξ(ω) = 1 if
i ∈ ω and 0 otherwise then

E(ξi) = E(ξ2
i ) =

m

N
, E(ξiξj) =

m(m− 1)
N(N − 1)

if i 6= j. Thus

E(ξi −E(ξi))2 =
m

N
− m2

N2

and

E((ξi −E(ξi))(ξj −E(ξj)) =
m(m− 1)
N(N − 1)

− m2

N2

if i 6= j.

Let y = 1
N (x1 + · · · + xN ) so that y = E( 1

m

∑N
i=1 ξixi). Then working in the

`2-norm we have

E





∥

∥

∥

∥

∥

1
m

N
∑

i=1

ξixi − y

∥

∥

∥

∥

∥

2

2



 =
N −m

mN(N − 1)

N
∑

i=1

‖xi‖22 −
N −m

mN2(N − 1)

∥

∥

∥

∥

∥

N
∑

i=1

xi

∥

∥

∥

∥

∥

2

2

.
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Hence

E





∥

∥

∥

∥

∥

1
m

N
∑

i=1

ξixi − y

∥

∥

∥

∥

∥

2

2



 ≤ nd2

m
.

Since ‖y − a‖22 ≤ nd2

m we have

E





∥

∥

∥

∥

∥

1
m

N
∑

i=1

ξixi − a

∥

∥

∥

∥

∥

2

2



 ≤ 4
nd2

m
.

We now suppose that for each ω ∈ Ω we have |{j : | 1
m

∑N
i=1 ξixi(j)− a(j)| >

δ}| > 4d2n/(mδ2). Then we get an immediate contradiction. We conclude that
for each a ∈ Dn there exists xa ∈ ∆mS such that |xa(j) − a(j)| ≤ δ for at least
n(1 − 2c−2

1 c−1
2 ε(1 − log ε)−1) choices of j. Let ya(j) = a(j) if |xa(j) − a(j)| ≤ δ

and ya(j) = xa(j) otherwise so that ‖ya − xa‖∞ ≤ δ.
Now suppose c2 is chosen as a function of c1 so that we can apply Lemma 3.2

to obtain the existence of a set σ ⊂ [n] with |σ| ≥ n(1− ε) and so that

Dσ ⊂ Cε−1Pσ∆N{ya : a ∈ Dn}

where C is an absolute constant, and N ≤ Cε−2. Then

Dσ ⊂ Cε−1Pσ∆NmS + Cε−1δB∞σ .

Recall that Cε−1δ = Cc1 so that if we choose c1 such that Cc1 = 1
4 we have

Dσ ⊂ K +
1
4
B∞σ

where K := Cε−1Pσ∆NmS. Now suppose x ∈ B∞σ . Let a1, a2 ∈ Dσ be defined by
a1(j) = 1 if x(j) ≥ 1

2 and a1(j) = −1 otherwise, while a2(j) = 1 if x(j) ≥ − 1
2

and a2(j) = −1 otherwise. Then
∥

∥

∥

∥

x− 1
2

(a1 + a2)
∥

∥

∥

∥

∞
≤ 1

2
.

Thus
B∞σ ⊂ ∆2K +

3
4
B∞σ = Cε−1Pσ∆2NmS +

3
4
B∞σ .

This implies for θ = 3
4 ,

B∞σ ⊂ 4Cε−1ΓθPσ∆2NmS

Letting ϕ = θ1/(2Nm) and applying Lemma 2.2 we obtain

Γθ∆2NmS ⊂
6
5

ΓϕS.



QUOTIENTS OF FINITE-DIMENSIONAL QUASI-NORMED SPACES 595

Note that ( 3
4 )1/(2Nm) ∼ 1 − (2Nm)−1 ln(4/3) ≤ 1 − cd−2ε5(1 − ln ε)−1 for some

c > 0 so that the result follows. �

Theorem 3.4. There is an absolute C > 0 such that if ε > 0 and X is a p-normed
quasi-Banach space with dimX = n and d(X̂, `n∞) ≤ d then X has a quotient Y
with dimY ≥ n(1− ε) and

d(Y, `dimY
∞ ) ≤ Cp−

1
p ε4−

5
p (1− ln ε)

1
p−1d

2
p−1.

Remark. In [11] examples are constructed of finite-dimensional p-normed spaces
Xn (with 0 < p < 1 fixed) so that d(X̂n, `

dimXn
∞ ) is uniformly bounded but

limn→∞ δXn =∞.

Proof. We can assume B∞ ⊂ BX̂ ⊂ dB∞. Then by Theorem 3.3 we can find σ
with |σ| ≥ n(1− ε) so that

cεB∞σ ⊂ ΓθPσBX
where θ = 1− cd−2ε5(1− ln ε)−1. Let Y be the space of dimension |σ| with unit
ball BY = PσBX . Since BY is p-convex we have (Lemma 2.1)

ΓθBY ⊂ p−
1
p (cd−2ε5(1− log ε)−1)1− 1

pBY .

Finally observe that for a suitable c > 0:

cp
1
p d2− 2

p ε
5
p−4(1− log ε)1− 1

pB∞σ ⊂ BY ⊂ dB∞σ .

The result then follows. �

4. Cubic quotients

We start this section with the following lemma, which is in fact a corollary of
Theorem 3.3.

Lemma 4.1. Let S be a compact spanning subset of Rn and X be the Banach
space with unit ball BX = ∆S. Let m be the largest integer such that X has a
subspace Y of dimension m with d(Y, `m1 ) ≤ 2. Then for every integer k satisfying
22k−1 ≤ m there exists a rank k projection π, so that for some cube Q one has
Q ⊂ ΓbπS ⊂ CQ, where 0 < b < 1 is an absolute constant.

Proof. Let Y be a subspace of X of dimension m so that d(Y, `m1 ) ≤ 2. Then
if 22k−1 ≤ m there is a linear operator T : Y → `2k∞ with ‖T‖ ≤ 1 and T (BY ) ⊃
1
2B
∞
2k. T can then be extended to a norm-one operator on X and so X has a

quotient Z of dimension 2k so that d(Z, `2k∞) ≤ 2. It follows immediately from
Theorem 3.3 with ε = 1

2 that there is a further quotient W of Z with dimW ≥ k
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and for some cube Q0 in W , and fixed constants 0 < b < 1 and 1 < C < ∞, we
have Q0 ⊂ ΓbπWS ⊂ CQ0 where πW is the quotient map onto W. �

Theorem 4.2. There is an absolute constant c > 0 so that if X is a finite-
dimensional p-normed space, then X has a quotient E with d(E, `dimE

∞ ) ≤ (cp)−1/p

and dimE ≥ c lnA/(ln lnA), where A = (p1/pδX/4)p/(1−p) (assuming that δX is
large enough).

Remark. Take X = `np so that δX = n−1+1/p. Then if X has a quotient E of
dimension k with d(E, `k∞) ≤ Cp then X̂ = `n1 also has such a quotient which

implies k ≤ cCp lnn = cCp ln
(

δ
p/(1−p)
X

)

. We conjecture that this estimate is
optimal up to an absolute constant, i.e. that every p-normed space has a cubical
quotient of such dimension. As one can see from the proof below we could obtain
such an estimate (up to constant depending on p only) if we were able to prove
the inclusion with θ = 1− c(m lnm)−1 in Proposition 2.4.

Proof. Let S = BX and m be the largest integer such that X has a subspace Y
of dimension m with d(Y, `m1 ) ≤ 2.

Assume first m ≤ 22k. By Proposition 2.4 (and its proof) we have ∆BX ⊂
4ΓθBX for θ = 2−1/Nk , where Nk = (Ck)C ln ln(Ck). Then, by Lemma 2.1, we
obtain

∆BX ⊂ 4p−1/p(2Nk)−1+1/p

which implies
δX ≤ 4p−1/p(2Nk)−1+1/p.

Therefore 2Nk ≥ A := (p1/pδX/4)p/(1−p). Finally we obtain k ≥ C ′ lnA/(ln lnA)
(of course we may assume that A > e2).

Suppose now k ≤ C ′ lnA/(ln lnA). By above we have m ≥ 22k. So Lemma 4.1
implies the existence of absolute constants b, C1 and a rank k projection π such
that Q ⊂ ΓbπBX ⊂ C1Q for some cube Q. By Lemma 2.1 we obtain

ΓbπBX ⊂ p−1/p (1− b)1−1/p
πBX

so that we have (if E = X/π−1(0)),

d(E, `k∞) ≤ C1p
−1/p (1− b)1−1/p

.

This implies the theorem. �
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