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FACTORIZATION THEOREMS 

FOR QUASI-NORMED SPACES 

N.J. I•ALTON AND SIK-CHUNG TAM* 

ABSTRACT. We extend Pisier's abstract version of Grothendieck's theorem 

to general non-locally convex quasi-Banach spaces. We also prove a related 
result on factoring operators through a Banach space and apply our results 
to the study of vector-valued inequalities for Sidon sets. We also develop 
the local theory of (non-locally convex) spaces with duals of weak cotype2. 

1. Introduction. 

In [16] (see also [18]) Pisier showed that if X and Y are Banach spaces 
so that X* and Y have cotype 2 then any approximable operator u: X -• Y 
factors through a Hilbert space. This result (referred to as the abstract 
version of Grothendieck's theorem in [18]) implies the usual Grothendieck 
theorem by taking the special case X = C(fl) and Y = L• as explained in 

Our main result is that the abstract form of Grothendieck's theorem 

is valid for quasi-Banach spaces. To make this precise let us say that an 
operator u: X -• Y between two quasi-Banach spaces is strongly approx- 
irnabl½ if it is in the smallest subspace A(X, Y) of the space œ(X, Y) of all 
bounded operators which contains the finite-rank operators and is closed 
for pointwise convergence of bounded nets. We define the dual X* of a 
quasi-Banach space as the space under all bounded linear functionals; this 
is always a Banach space. Then suppose X, Y are quasi-Banach spaces so 
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that X* and Y have cotype 2; we prove that if u ß X -• Y is strongly 
approximable then u factors through a Hilbert space. 

Some approximability assumption is necessary even for Banach spaces 
(cf. [17]). However, in our situation, such an assumption is transparently 
required because X* could have cotype 2 for the trivial reason that X* = 
•0•; then the only strongly approximable operator on X is identically zero. 
We remark that there are many known examples of nonlocally convex spaces 
X with cotype 2 (e.g. Lp, Lp/Zp and the Schatten ideals $p when p • 1 
([20],[23]). Examples of nonlocally convex spaces whose dual have cotype 2 
are less visible in nature, but in [7] there is an example of such a space X 
with an unconditional basis so that X* • œ•. 

We also give a similar result for factorization through a Banach space; 
in this case we require that X* embeds into an L•-space and that Y has 
nontrivial cotype. These results are then applied to the study of Sidon sets. 
We say a quasi-Banach space X is Sidon-regular if for every compact abelian 
group G and every Sidon subset E = •%•n•__• of the dual group F and for 
every 0 < p _• oo we have [[ •=1XkTk[[L•(G,X) •'• [[ •"•=1 ekXk[[L•(x) where 
(e•) are the Rademacher functions on [0, 1]. It is a well-known result of 
Pisier [15] that Banach spaces are Sidon-regular but in [9] it is shown that 
not every quasi-Banach space is Sidon-regular. We show as a consequence 
of the above factorization theorems that any space with nontrivial cotype 
is Sidon-regular; this includes such spaces as the Schatten ideals Sp and the 
quotient spaces Lp/Hp when 0 < p < 1. 

Our final section is motivated by the fact that the main factorization 
theorem suggests that quasi-Banach spaces whose duals have cotype 2 have 
special properties. On an intuitive level there is no reason to suspect that 
properties of the dual space will influence the original space very strongly in 
the absence of local convexity. However we show that quasi-Banach spaces 
whose duals have weak cotype 2 can be characterized internally by condi- 
tions dual to the standard characterizations of weak cotype 2 spaces. We 
show that, for example, that X has a dual of weak cotype 2 if and only if its 
finite-dimensional quotients have uniformly bounded outer-volume ratios. 

We refer to [11] for the essentiM background on quasi-Banach spaces. 
We will need the fact that every quasi-normed space can be equivalently 
normed with an r-norm where 0 < r _• 1 (the Aoki-Rolewicz theorem) i.e. 
a quasi-norm satisfying 

^ 

Let us recall that the Banach envelope X of a quasi-Banach space X 
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is defined to be the closure of j(X) where j ß X -• X** is the canonical 
map (which is not necessarily injective). If j is injective (i.e. X has a 
separating dual) we regard .• as the completion of X with respect to the 
norm induced by the convex huh of the closed unit ball Bx. If X is locally 
convex then d(X,•) = IlIx œ--•x is equal to the minimal Banach-Mazur 
distance between X and a Banach space. 

2. The main factorization theorems. 

Let us suppose that X and Y are r-Banach spaces where 0 < r _< 1. 
Suppose u ß X -• Y is a bounded linear operator. We will define 72(u) to 
be the infimum of IIvllllwll over all factorizations u = vw where w' X -• H 
and v ß H -• Y for some Hilbert space H. We define 5(u) to be the infimum 
of II,1111wll where u = vw and w ' X -• B and v ' B -• Y for some Banach 
space B. In the special case when u = Ix is the identity operator then 
72(Zx) = dx is the Euclidean distance of X and 5(Ix) = 5x = d(X, 2) (cf. 
[51, [•4]) is the distance of X to its Banach envelope. 

Let D• = {-1, +1} • be equipped with normalized counting measure 
,• and define the Rademacher functions ei(t) - ti on D• for 1 < i < N. We 
define T• (•) (u) to be the least constant such that 

II • •u(x•)ll •d• -• T•(•)(u) Ilx, ll • 
i--1 i=1 

for x•,... ,x•v • X. We define c?V)(u) to be the least constant so that 

Ilu(,) II 
i=1 i=1 

for x•,... ,x•v • X. We let T•(u) = sup• T•(•V)(u) be the type 2 constant of 
u and C•(u) = sup• v c?V)(u) be the cotype two constant of u. In the case 
when u = Ix we let T2(!x) = T•(X) •nd C•(!x) - ½•(X) the type two 
and cotype two constants of X. 

Pinally we let K(•V)(u) be the least constant so that if f • L•(D•v,X) 
then 

N 
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We then let K(u) = sup/v K(/V)(u). If u = Ix then K(Ix) = K(X) is the 
K-convexity constant of X. 

We will need the following estimate. 

Lemma 1. If 0 < r < 1 then there is a constant C = C(r) so that for 
•y r-normea space X, we have E(X) < Cd•x(• + logdx), where • = 
(•- - •)/(•- •). 

Proof. It is clear that K(X) <_ 6xK(•). Now we have 6x <_ CdOx where 
C = C(r) by Lemma 3 of IS]. We also have, by a result of Pisier ([16], 
[18]) that K(•) < C(1 + log dœ). It remains to observe that dœ < dx since 
any operator u ß X • H where H is a Hilbert space factorizes through the 
Banach envelope of X with preservation of norm.. 

We next discuss some aspects of Lions-Peetre interpolation (see [1] or 
[2] ). We will only need to interpolate between pairs of equivalent quasi- 
norms on a fixed quasi-Banach space. Let us suppose that X is an r-Banach 
space for quasi-norm II II0 and that II • is an equivalent r-norm on X; we 
write X 5 = (X, Ill J) for y - 0,1. Let 

K,(t,x) = inf{(llx0llg + t* ½•llf) 1/*. x = ½0 + ½•} 
where r _< s < oo. Then K, is an r-norm on X. We define 

(/0)l,,. oo K2(t,a:)2dt II•ll0,,. - (0(1 - 0)) 1/2 tlq. 2o 
for 0 < 0 < 1. We write Xo,2 = (X, II II0,=)- (xo,X•)o,,.. 

We will need some well-known observations. 

Lemma 2. Where exists a C = C(r) so that iœ II 10 - I1• then œor ant 
x • X we have ½-•11•110 < •110,= < ½11•10. 

Proof. This follows from the simple observation that K•(t, •) = rain(l, t)llxl10 
and that 2•/2-•/•K• _< K2 _< K•.. 

Lemma a. There ex/sts½ = ½(r) sothatiœN 6 N then (œ2/V(Xo),œ•(Xi))o,2 
is isometrically isomorphic to œ2/v (X0,2). 
Proof. This follows from the routine estimate 

N 

K,(t, = K,(t, 
i=1 
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The following lemma is standard. 

Lemma 4. Suppose (X0, X,) are as above and that (Y0, Y•) is a similar 
pair ofr-normings ofa quasi-Banach space Y. Let u ß X • Y be a bounded 
linear operator. Then 

U 1--0 Ilullx0,-v., < II IIx0-Y011ullc,-v,. 

We now combine these results to give a criterion for convexity of the 
interpolated space. For convenience we will drop the subscript 2 and write 
Xo. We also recall the definition of equal norms type p for p _< 2. We let 
•"v(X) be the least constant so that for any N and any xl,... ,x:v E X we 
have 

N 

Y•,eiXiIIL•(DN,X) _< •Pp(X)N '/p max x,11. i<i<N 
i=1 - - 

Lemma 5. Suppose (X0,X1) are as above. Suppose 1 _< a < cx> and 
0 < 0 < r/(2- r). There is a constant C = C(a,O,r) so that iœT2(Xo) <_ a, 
then 6xo _< C. 

Proof. Consider the map u' g2N(x) • L2(•N,X) defined by u((xi)•V=x) = 
•-•iN=• eixi. Then Ilul Xo -< a. Since II1 is an r-norm it follows from $older's 
inequality that Ilullx• _< N1]r-1] 2. Hence Ilullx. _• al-øNø(1]r-1]2). Now 
O(1/r - 1/2) = 1/2 - •b where •b > 0. Assume xx,... ,x N e X. Then 

f N ) 1/2 II 6iXi •dX _• a'-øN '-• max Ixgll0. 
i=1 l _< i_< N 

This means that •p(Xo) _< a •-ø where p - (1 _•)--1 > 1. Applying Lemma 
2 of [5] we get the lemma.. 

We are now in position to prove the generalization of Pisier's abstract 
Grothendieck theorem. 

Theorem 6. Let X, Y be quasi-Banach spaces so that X* and Y have 
cotype 2. Then there is a constant C so that if u: X -• Y is a strongly 
approximable operator, then ')'2(u) _• Cllull. 
Proof. We may suppose that both X and Y are r-normed. Consider first 
an operator u: X • Y such that Ilull- I and 72(u) < cx>. Then there 
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is a Hilbert space Z and a factorization u = vw where w: X -• Z and 
v: Z --+ Y satisfy Ilvll < 272(u) and Ilwll < 1. 

We will let Z = Zo and define Z• by the quasi-norm Ilzl[•: ma•(llzllo, 
11v(z)llv). Then T2(Zo) - 1; so we pick 0 < •9 < r/(2- r) depending on r 
and deduce an estimate 6z• _< C = C(r). 

Now consider the map tbN' L2(Dtq,X) -* œ•(Z) defined by 

•N(I) -- w o feidX 
i=1 

Clearly for the Erichdean norm II IIo we have II•Nllo _< 1. 
We now consider II I1•. it is routine to see that C2(Z•) < 1 + C2(Y) < 

2C2(Y). We also clearly have the estimate Ilzl10 < Ilzll• < 272(u)llzl10 
so that d& < 272. From this and Lemma 1 we can obtain an estimate 
K(&) < ½(Ta(u))•(1 +log 7a(u))where ½ = ½(r)and •b = 2(1-0/(2- 0. 
To simphfy our estimate we replace this by K(Z•) < ½(Ta(u)) ' where r 
depends only on r and •b < r < 1. These estimates combine to give 

Interpolation now yields 

I1•11o _< c(,•(•)'øca(r)ø. 

Now consider w*: Z; -• X*. By taking adjoints of t• and observing 
that L2(D•v,X)* can be identified with L2(D•v,X*) in the standard way 
we see that we have an estimate 

y•(w*: z; -• x*) _( c(7a(u))'øc2(r)ø. 

It follows immediately from Maurey's extension of Kwapien's theorem [12], 
[18] Theorem 3.4 that 

7a(w*: z; -• x*) 5 c(72(u))'øca(r)øca(x*). 

By duality this gives the same estimate for 72(w: 2 -• ,•0). Our previous 
estimate on 6z• gives that the norm of the identity map I: ,•0 -• Zo is 
bounded by some C = C(r). Since Ix: X -• 2 has norm one, we have: 

7•(w: x -• Zo) < c(72(u))'øca(r)øca(x*). 
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Now Ilvl10 • 2•2(u) and Ilvll• • I by construction. By interpolation 
we have [[vl[0 _< (772(u) •-•. Now by factoring through Z• we obtain 

?•(u) _< C(?•(u))•-ø+•øC•,(Y)øC•(X*) 

and so 

,•,(u) i c(c•(v))•/(•-•)(c2(x*))•/( •-"ø. 

Thus we conclude that if ?•(u) < oo then ?•(u) _< Cllull where (7 
is a constant depending only on X, Y. The remainder of the argument is 
standard. Let •7 be the subspace of œ(X, Y) of all operators for which 
?•, (u) < oe. Then •7 contains all finite-rank operators. We show it is closed 
under pointwise convergence of bounded nets. Let (u•) be a bounded net 
in ff converging pointwise to u. Then sup?•,(u•) - B < oe. For each a 
there is a Euclidean seminorm (i.e. a seminorm obeying the parallelogram 
law) II II•, on x satisfying Ilu•(x)ll <_ Ilxll _< Bllxll for x • X. By a 
straightforward compactness argument there is a Euclidean seminorm [[ [[ • 
on X satisfying [[u(•)[[ _< [[•[[• _< B[[•[[ for ß • X, i.e. u • •7.• 

We will next prove a similar result for factorization through a Banach 
space. We recall that a quasi-Banach space has cotype q where q >_ 2 if 
there is a constant C so that for every N and all x•,..., x/v • X we have: 

N N 

(• IIx, 11") '/" _< ell • 
i=l i=1 

Lemma 7. Let X be a Banach space so that X* is isomorphic to a subspace 
of an L•-space, and suppose Y is a quasi-Banach space of cotype q < 
Then there is a constant (7 = (7(X, Y) so that if u: X • Y is a bounded 
operator then there is a Banach space Z with T2 (Z) _< (7 and a factorization 
u - • where w: X -• Z and • Z -• Y satisfy II"111wll < Cllull, 

Proof. By assumption, there is a compact Hausdorff space f2 and 'an open 
mapping q: C(fl) • X**. It follows that there is a constant (7o so that 
if E is a finite-dimensional subspace of X there is a finite rank operator 
te: C(fl) -• X** with litell < (70 and if x e E with Ilxll- 1 there exists 
f e C(fl) with IIfll < 2 and t•f = x. It fonows f•om the Principle of Local 
Refiexivity (cf. [22] p.76) that we can suppose that te has range in X. 
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We now form an ultraproduct of X and Y. Let I be the the collection 
of all finite-dimensional subspaces E of X and let/g be an ultrafilter on 
I containing all sets of the form {E: E D F• where F is a fixed finite- 
dimensional subspace. Consider the space Xu defined to be the quotient of 
œ•(I; X) by the subspace cu,0(I; X) of all (xr) such that lim• xr -- 0; X• 
is thus the space of (equivalence classes of) (xr) normed by lim• Ilxrll. We 
regard X as a subspace of X• by identifying x with the constant function 
xz - x for all E. We similarly introduce Y• and note that Y• has cotype 
q with the same constant as Y. We extend u: X -• Y to u•: Xu -• Y• 
by setting u•((xr)ret) - (u(xr)ret). Let us also introduce the operator 
t: C(•) -• X• by putting t(f) - (tr(f))re•. Consider u•t : C(•) -• Y•. 
By Theorem 4.1 of [10] there is a regular probability measure •u on •] so 
that if p - q + 1 then Ilu•t(f)11 _• Cllull(f IflPd•) TM. Here C depends on 
X, Y but not on u. This implies that u•t -- v•j where j: C(•) -• Lp(•) 
is the canonical injection and IIv•11 _• Cllull. Let N - v•-•(0) and form the 
quotient Z• -- Lp/N; let • be the quotient map. For each x • X there 
exists f • C(•]) with t(f) = x; this follows from the choice of ultrafilter. 
Then w(x) -- •j(f) is uniquely determined independent of f. Furthermore 
f can be chosen so that Ilfll -• 211xll so that Ilwll _• 2. Let Z be the closure 
of the range of w. Then clearly v•(•-•(Z)) C Y so that we can define 
v: Z -• Y with Ilvll c vw -- u. Finally T2(Z) _• T2(Z•) _• T2(Lp) is 
bounded by a constant depending only on q.m 

Theorem 8. Suppose X is a quasi-Banacb space such that X* is isomor- 
pbic to a subspace oœ an L•-space, and Y is a quasi-Banacb space oœ cotype 
q • c•. There is a constant C so that if u: X -• Y is a strongly approx- 
iraable operator then 5(u) _• Cllull. 

Proof. Let us assume that X, Y are both r-normed. Suppose first that 
u: X -• Y satisfies Ilull- 1 and 5(u) • c•. We show that 5(u) _• C where 
C depends only on X, Y. Since 5(u) • c• we can factor u through • and 
apply Lemma 7 to the induced operator ff -• Y. Thus u can be factored 
through a Banach space Z satisfying T2(Z) _• C where C - C(X, Y) so that 
u - vw where w: X -• Z with Ilwll-- 1 and v: Z -• Y with Ilvll C•(u). 
Let Z = Z0 and introduce Z• by setting Ilzll - max(llzll, IIv(z)11). If we 
pick 0 ( r/(2 - r) then 5z• _• C where again C depends only on X,Y. 
Hence 

_( Cllvllzo-vllwllx-zo. 
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By interpolation this yields 

5(.) _< 

and hence 5(u) _• C. The remainder of the proof is similar to that of Theo- 
rem 6.. 

3. Applications to Banach envelopes and Sidon sets. 
It is proved in [7] that if X is a natural quasi-Banach space (i.e. a 

space isomorphic to a subspace of a space œ•(I; Lp(Pi))) with the strong 
approximation property (i.e. the identity on X is strongly approximable) 
and if Y is any subspace of X such that Y* has cotype q • •x• then Y is 
locally convex. We present now two variations on this theme. 

Let us say that a quasi-Banach space X is (isometrically) subordinate 
to a quasi-Banach space Y if X is (isometrically) isomorphic to a closed 
subspace of a space œ•(I; Y) for some index set I. Thus a separable space 
X is natural if it is subordinate to Lp[0, 1] for some 0 • p • 1. 

Theorem 9. Let Z be a quasi-Banach space and let X be subordinate to 
Z. Assume that either X or Z has the strong approximation property. Let 
Y be any subspace of X. Then 
(1) I[ Z has cotype 2 and if Y* has cotype 2 then Y is locally convex. 
(2) If Z has cotype q • •x• and Y* is isomorphic to a subspace of an 
L•-space, then Y is locally convex. 

Proof. The proofs are essentially identical. We therefore prove only (2). 
Let j: Y -• œ• (Z) be the inclusion map. Then since j factors through X 
it is strongly approximable, under either hypothesis. Let 7ri: œ•(Z) -• Z 
be the co-ordinate map. Then by Theorem 8, we have 5(7rij) _• C for some 
constant C depending only on Y. Thus for y • Y, [[y[[ - sup/[[•ijy[[ _• 

Let us now give an application. Suppose G is a compact abelJan group 
with normalized Haar measure Pc, and suppose P is the dual group. We 
recall that a subset E C P is a Sidon set if for every e v = +1 there exists 
• e J•/(G) whose Fourier transform satisfies •(7) = 

In [9] the first author introduced the property ½p(X) for a subset E 
of P where 0 • p _• •. We say that E has ½p(X) if there is a constant M 
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so that for any 7x,.-., 7n • E and any xx,..., xn • X we have 

•-•11 • •11•(•,x) •_ II • •11•(•,x) • •11 • •11•(•,x) 

where •x,..., • •e the •demacher •ctions on D•. Let us say that a 
qu•i-B•ach space X is Sidon-regular if every Sidon set E h• property 
Cp(X) for every 0 ( p • •. It is a weU-known reset of Pisier [15] that 
every B•ach space is Sidon-regular. By way of controt, in [9] an exmple 
of a qu•i-B•ach space which is not Sidon-re•l• is constructed. However, 
every natural space is Sidon-re•l•. The above results enable us to extend 
this to a wider cl•s of spaces. 

Theorem 10. Let X be a quasi-Banach space oœ cotype q • c•. Then 
every quasi-Banach space which is subordinate to X, (and, in particular, X 
itseft) is Sidon-regular. 

Proof. This is very similar to the proof of Theorem 4 in [9]. Suppose G is 
a compact Abelian group and E is a Sidon subset of F. Let s - min(p, 2). 
Let Z - L•(G, X). Then Z also has cotype q. To see this we need first to 
observe that the Kahane-Khintchine inequality holds in an arbitrary quasi- 
Banach space (Theorem 2.1 of [6]) so that there is a constaut C depending 
only on X so that if xx,..., x• • X then 

II •x•11 •d• < c II •x•ll •d• 
k= 1 k= 1 

Now if f•,..., f• 6 g then, for constants C•, C•, C• depending only on X, 

dp•(t)) •l• 
•/s 
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Now let E, be any sequence of finite subsets of E. Let Pt.(Y) be 
the space of Y-valued polynomials •']-rCE. Y-r7 equipped with the Lp(G, Y) 
quasi-norm. Then PE. (Y) is isometrically subordinate to Z. Next equip 
the finite-dimensional space œ•(E,) of all bounded functions h: E, --• C 
with the quasi-norm of the operator Ta: P•. --• P•. given by Ta (•'] Y-r7) = 
• h(f)Y-r7. Let us denote this space .AA,. Then .AAn is isometrically subor- 
dinate to Z. Thus the product co (Adn) is isometrically subordinate to Z and 
has the strong approximation property. However, as in Theorem 4 of [9] the 
assumption that E is a Sidon set shows that we have a constant C depend- 
ing only the Sidon constant of E so that the envelope norm on •, satisfies 
Ilhlloo _• IIhlIx4• •_ Cllhlloo. Thus the envelope of c0(AAu) is isomorphic to 
co and Theorem 9(ii) applies to give that this space is locally convex so that 
for some uniform constant C t we have for every n, Ilhll•4. _• Ctllhll•. As 
in [9] Theorem 4 this implies that E has property 
Remarks. The above theorem applies to Lp/Hp when p ( I and to the 
Schatten ideals $p when p < 1, since these spaces have cotype 2 by recent 
results of Pisier [20] and Xu [23]. These spaces are known not to be natural; 
Sp is A-convex (i.e. has an equivalent plurisubharmonic quasi-norm) while 
Lp/Hp is not A-convex (see [8]). 

Let us also remark that if 0 < p < 1 and E is a symmetric p-convex 
sequence space with the Fatou property then we can define an associated 
Schatten class Sr (see Gohberg-Krein [4] for the Banach space versions). 
Precisely if H is a separable Hilbert space and A is a compact operator with 
singular values (sn(A)) we say A e S• if (sn(A)) e E and we set 
II(s,•(A))11z. It can then be shown that $• is subordinate to Sp. In fact we 
define a sequence space F by II(t,)llr = sup(ll(s,t•)llp: II(s,)11r _< 1} and 
it can then be shown that IIAIIE -- sup(llABII p: liBliE _• 1}. This result 
follows quickly from an inequality of Horn (cf. [4] pp. 48-9) that 

k k 

_< 
j--1 j--1 

for every k. 

4. Quasi-Banach spaces with duals of weak cotype 2. 
Let X be a finite-dimensional continuously quasi-normed quasi-Banach 

space with unit ball Bx. We recall that the volume-ratio of X is de- 
fined by vr(X) = (Vol Bx/Vol œ)1/, where œ is an ellipsoid of maximal 
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volume contained in Bx and n = dim X. We define the outer volume- 
ratio of X by vr*(X) = (Vol •/Vol Bx) •/n where • is an ellipsoid of 
minimal volume containing Bx. The Santalo inequality ([19], [21]) shows 
that vr*(X) •_ (Vol Bx./Vol •0)•/n _ vr(X*). The reverse Santalo in- 
equality of Boutgain and Milman ([3],[19]) shows that, if X is norreed, 
vr*(X) _• Cvr(X*) so that vr*(X) is then equivalent to vr(X*). For gen- 
eral quasi-normed spaces the reverse Santalo inequality is not available. 

We recall that a Banach space X is of weak cotype 2 if there exists C so 
that whenever H is a finite-dimensional Hilbert space with orthonormal ba- 
sis (e•,..., en) and u: H -• X is a linear operator then a•(u) _• Ck-•/2œ(u) 
for I < k < n. Here 

œ(u) ---- (E(]] • g•u(e•) •))•/• 
k-1 

(for g• ,... , g• a sequence of independent normalized Gaussian random vari- 
ables) and a•(u) - inf{llu- vii: v: H -• X, rank v ( k}. The least such 
constant C is denoted by wC•(X). It is known that X is of weak cotype 2 
if and only if there exists C so that vr(E) •_ C for every finite-dimensional 
subspace of X. See Pisier [19] for details. It follows quickly that X* is of 
weak cotype 2 if and only if vr*(E) is bounded for all finite-dimensional 
quotients of X. We prove in this section that the same characterization 
extends to quasi-Banach spaces. 

We will require a preparatory lemma: 

Lemma 11. Let E be an N-dimensional Euclidean space and suppose B 
is the unit ball of an r-norm on E. Let S be a subspace of E of dimension 
k. Suppose 1/r -- fi E N. Then 

Vol (B N S) Vol Psz (B) < Vol B - 

where Psz is the orthogonal projection of E onto S ñ. 

Proof. We duplicate the argument of Lemma 8.8 of [19] (p. 132). One finds 
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that Vol B _> aVol (B VI S)Vol Ps•B where 
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Lemma 12. There is a constant C depending only r so that if E is a 

Proof. By Lemma 3 of [5] we have dE •_ 5Ed• •_ Cd•Ed• where •b -- (1/r - 
1)/(1/r- 1/2). This proves the first part and the second part follows on 
reapplying Lemma 3 of [5]. ß 

Theorem 13. Let X be a quasi-Banach space and suppose 0 < • • 1. 
Then X* has weak cotype 2 if and only iœ there is a constant C so that 
whenever F is a finite-dimensional quotient of X, there exists a quotient E 
of F with dim E _> •rdim F and d• _< C. 

Proof. Suppose X* has weak cotype 2. Then if F is a finite-dimensional 
quotient, wC•(F*) _< wC•(X*) and so F* has a subspace G with dim G _> 
c•dim F and dG •_ C (where C depends only on X and c•). Let E = FIG ñ. 
Then d E -dG and so the preceding Lemma gives an estimate dr _• C • 
where C • -- C'(er, X). 

For the converse note that if F is a finite-dimensional subspace of X* 
then J•/F ñ can be identified with the Banach envelope of X/(X N Fñ). 
From this it follows that if X has the given property then so must ff and 
this leads quickly to the fact that X* has weak cotype 2 by the results of 

Proposition 14. Suppose 0 • r • I and a _• 1; then there is a con- 
stunt C - C(a, r) so that if E is an N-dimensional r-normed space and 
wC• (E*) _< a then vr* (E) _< C. 

Proof. In the argument which follows we use C for a constant which depends 
only a, r but may vary from line to line. It suffices to establish the result 
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when 1/r = fi E N. Let œ be the ellipsoid of minimal volume containing BE. 
Using this ellipsoid to introduce an inner-product we can define IIxllE . = 
sup0EB r I(x, b)l. Then œ is the ellipsoid of minimal volume containing B E = 
co BE and the ellipsoid of maximal volume contained in 

Now, by imitating the argument of Theorem 8 of [5] we can construct 
an increasing sequence of subspaces (Wk)•=• of E with dim 
(1 - 2-•)N and Br* fl W• C C23kœ for k •_ 1. We let zk = tr• - O-k+ 1. 

It follows from the Hahn-Banach theorem that œ D Pwk BE D C -• 2-3•œVI 
W•. Now, identifying H• = E/W• with Wk under the quasinorm with 
unit ball Pwk(BE) this implies that d//• •_ C2 3•. Now from Lemma 12 
5• _• C2 8• for suitable s > 0 depending on r. We conclude that œ fl W• C 
C2•UPw• (BE), where t depends only on r, and C = C(a, r). 

Let Zk is the orthogonal complement of W• in W•+•. Notice that 
dim Z• = r•. Now by Lemma 11, if we set Ak = Pw•+• (BE) N Z•, 

Vol Pw•,(BE)Vol A• < ((N-a•+•)fihVol Pw•,+•(BE). 
Let I be the first index for which Wt = E and so at = 0. We first 

estimate 

Now œ f• Zk C C2•(&+I)Ak and so log 2 Vol Pz•(BE) >_ -Ckrk + 
log 2 Vol œ•Z•. (If r• = 0 we interpret the relative volume as one). Summing 
we obtain since rk _• 2-•N, 

1--1 1--1 

Z 1øg2 Vol A• >_ -CN + Z 1øg2 Vol œ Cl Z•. 
k=l k=l 
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Thus 

log• Vol BE = log• Vol Pw,(BE) 
l-1 

>_ log 2 Vol Pw, (BE) - CN + • Vol œ n Z• 
k=l 

>_ -CN + log2 Vol œ Cl W• + log2 Vol œ Cl W• 
>_ -CN + log 2 Vol œ. 

This completes the proof of the Proposition. 

Remark. This Proposition can be interpreted as follows. Suppose X is a 
finite-dimensional nonned space so that wC2(X*) _< a. Consider the set 
OBx of extreme points of Bx and form the r-convex hull Ar = corOBx. 
Then although A• is smaller than Bx it is not too much smaller, for 
Vol Bx/Vol A• < C dim E 

Theorem 15. Let X be a quasi-Banach space. Then X* has weak cotype 
2 if and only if there is a constant C so that vr* (E) _< C for every finite- 
dimensional quotient E of X. 

Proof. First suppose vr* (E) _< C for every finite-dimensional quotient E of 
X. Let F be a finite-dimensional subspace of X* and consider E = X/F J'. 
It is easy to see that the envelope norm on E is the quotient norm from the 
envelope norm on X. Clearly from the definition, vr* (•) _< vr* (E) _< C. 
Hence by the Santalo inequality vr(F) < C. This shows that X* has weak 
cotype 2. 

The converse is immediate from Proposition 14.- 
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