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ON SPACES OF MEASURABLE VECTOR-VALUED FUNCTIONS 

N.J. Kalton* 

1. Introduction. Let K be a Polish space and let # be a (finite) regular Borel 

measure on K. If X is an F-space (complete metrizable topological vector space) then 

we denote by L0(K,#;X) the space of all Borel functions f: K-•X which are 

#-essentially separable. After the standard identification of functions equal almost 

everywhere, L0(K,#;X) is an F-space under the topology of convergence in #-measure. 

If X is F-normed by an F-norm I[' II then E0(K,/a;X) may be F-normed by 

[Ifil -- fKmin( 1 ,lift s)[I)d/•(s). 
If K = I, the unit interval, and #= X, Lebesgue measure on I, then we write 

L0(K,X;X) = L0(X). We write L0(K,#) for L0(K,#;R) and L 0 = L0(R ). 
The purpose of this paper is to prove the following theorem: 

THEOREM 1.1. /f X is an F-space such that L0(X ) is isomorphic to L 0, then X 

is isomorphic to L0(K,#) for some Polish space K and probability measure #. 

The isomorphism class of the space L0(K,/• ) depends only on the nature of the 
atoms of/•. Hence Theorem 1.1 is equivalent to 

THEOREM 1.2. Let X be an F-space. Then L0(X) is isomorphic to L 0 if and 

only if X is isomorphic to one of the spaces; R n (n >• 1), co, L0, L 0 ß R n (n >• 1), 
L0o co. 

Here co is the space of all real sequences with the usual product topology. 

By way of analogy we point out that for a Banach space the isomorphism of 

Li(X) and L 1 is equivalent to the fact that X is isomorphic to a complemented 

subspace of L 1 [0,1 ]. It is an unresolved question in Banach space theory whether this 

implies that X-• Li(K,X;R) for some K and X. However if X has the Radon-Nikodym 

Property, the Lewis-Stegall theorem implies that X• œ1 (see [5], [6]). Analogous 
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results for Lp(X), 0 < p < 1, were investigated in [2]. The approach here is similar 
although the details are necessarily rather different and the final result is more 

complete. 

2. Preliminaries from measure theory. If/a is a measure then we use "mod/a" to 

denote statements true up to sets of/a-measure zero. 

If K is a Polish space, we denote by B(K) the collection of Borel subsets of K. Let 

/a be a measure on K and let ½:B(I)->B(K) be a map. We shall say ½ is a 

sub-#-homomorphism if 

(1) ½(A 1 UA 2)=½(A 1) 

for A1,A 2 GB(K). 

(2) Given c > 0 there exists 

We shall say that ½ is a/a-homomorphism if it satisfies (1) and (2) and 

(3) ½(A 1 (h A2) = 

for A1,A 2 GB(I) witha 1 
A standard result from measure theory, essentially given in Royden [7] Theorem 

15.10 is 

PROPOSITION 2.1. If ½: B(I) ->B(K) is a/a-homomorphism there is a Borel map 

o: K --> I so that 

½(A) C o-l(A) (mod/a) AGB(I). 

(If ½(I) = K we obtain ½(A) = o-l(A) (mod 
We denote by D(n,k) (1 •< h < oo, 1 •< k •< 2 n) the standard dyadic partition of I, 

i.e., 

D(n,k) = [(k-1)2-n,k-2 -n) 1 •<k•<2n-1 

D(n,2 n) = [ 1-2 'n, 11. 

The next lemma is essentially due to Kwapien [4] and is also essentially used in [3]. 

LEMMA 2.2. Let ½:B(I)->B(K) be a sub-/a-homomorphism. There is a 

countable Borel partitioning (Bn: n G N) of K so that for each k, 1 •< k •< 2 n the maps 

½n,k: B(I) -> B(K) are/a-homomorphisms where 

½n,k(A) = ½(A D D(n,k)) (h B n. 
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PROOF. Let gn G L0(K'#) be defined by 
2 n 

gn = 2:k=l lq•(D(n,k))' 

Then {gn } is monotone increasing. If for e :> 0 we choose 8 :> 0 as in condition (2) 
above, then a calculation as in [3 ] (Justification of A3)) shows that if 2 n :> 5 -1, 

1 «•)gn(,t) f0 (1 - d#(t) • 1 - e. 
Hence lira g,(t) = g(t) < oo almost everywhere. Let 

B 1 = (t: gl(t) = g(t)) U (t: g(t) = 
and 

B n = ( t: gn_l (t) < gn(t) = g(t)) for n • 2. 

Then if D(m,i) and D(m,j) are contained in D(n,k) and disjoint 

l•(D(m,i))(s) + l•(D(m•j))(s) • 1 

whenever gn(S) = g(s). Hence 

•n,k(D(m,i)) f• •n,k(D(m•J)) = 0 mod # 
and the conclusion of the lemma follows by a continuity argument using condition 

(2). 

We shall say that a map a: K -> I is anti-injective if whenever B G B(K) and alB is 

injectlye then #(B) = 0. The following lemma is proved in [2]. 

LEMMA 2.3. If a: K -> I is anti-injective there is a compact metric space M, a 

diffuse measure tr on M and a Borel map r: K -• M so that 

(i) There is a Borel map p: I X M -> K so that p(as,rs) = s (mod #). 

(ii) If B C I and C C M are Borel sets then 

#(a'l B)tr(C) = #(a-lB f3 r-lC). 

3. Operators on L0(X ). Let T: L0(X ) • L0(K,#;Y ) be a linear operator. We 

associate to T amap qb = qbT: B(I) ->B(K). We define qb(B) to be a Borel set of minimal 

g-measure so that supp f C B implies supp Tf C •(B) (mod #) [supp f = (s: f(s) :/= 0)]. 

The following lemma is due to Kwapien [4]. 

LEMMA 3.1. If fl ..... fn G L0(K,#), then there exist o• 1 ,...,a n • R such that 
n 

supp(c•l fl +' "+ ø•nfn) = Ui=l supp fi (mod #). 

LEMMA3.2. If T: L0(X)->L0(K,#) is a linear operator then ½T is a 
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sub-IJ-ho mo morphism. 

PROOF. For 6 >0 there exists b 3>0 so that Ilfl146 implies IFFfll •6. If 

X(B) < b and supp f C B then [ff(mf)[I •< 6 for every m C N and hence gt(supp f) •< 6. 

Now by Lemma 3.1, g(½(B)) •< 6. It follows easily that ½T is a sub-g-homomorphism. 

We shall say that T: L0(X) --> L0(K,/a;Y) is elementary if supp f Ch supp g = 0 
implies supp Tf (h supp Tg = ½ (mod g). In this case ½ is a g-homomorphism and hence 

there is a Borel map o: K --> I is that supp Tf C o -1 (supp f) for every f C L0(X ). 
LEMMA 3.3. Let T: L0(X) --> L 0 be a linear operator. Then there is a Polish 

space K, a probability measure IJ on K and operators Ti: L0(X)--> L0(K,g), 

V: L0(K,g) --> L 0 so that VT 1 = T and T 1 is elementary. 
PROOF. Define K to be space of triples (s,n,k) where s GI, nGN and 

1 •< k < 2 n. Let/a be the measure on K defined by 

oo 2nl-L1 X{ s: (s,n,k) G B} g(B) = Zn= 1 Zk= 4 n 
for B G B(K). 

By Lemma 2.2 we can partition I into Borel sets (B n) so that each ½n,k is a 

g-homomorphism, i.e., PBnTPD(n,k) is elementary for each n G N and 1 •< k •< 2 n. 
Here PA is the natural projection on L0(M,v;X) defined by PA f= 1A-f for A GB(M). 

Define T 1 by 

T 1 f(s,n,k) = PBnTPD(n,k)f(s) 

and V: L0(K,g) --> L 0 by 
2 n 

Vf(s) = Z;k= 1 f(s,n,k) s G B n- 

The lemma then follows. 

4. Diagonal operators. An operator T: L0(X)-> L0(Y) is called diagonal if 
supp Tf C supp f (mod 3,). 

THEOREM 4.1. If X is separable and T: L0(X) -• L0(Y) is diagonal then there is 

a family of continuous linear operators Ts: X --> Y (s G I) so that 

Tf(s) = Ts(f(s)) a.e. 

PROOF. For each b > 0 let 

p(6) = sup(llTfll: Ilfll • 



ON SPACES OF MEASURABLE VECTOR-VALUED FUNCTIONS 401 

Select an increasing sequence F n of finite-dimensional subspaces of X with tOF n = X 0 
dense in X. Denote by 1 © x the constant function 1 © x(s) = x for all s C I. Then it is 

possible to define linear maps Ts: X 0 -• Y so that 

T(1 © x)(s) = Ts(x) X-a.e. 

for x C X 0. 

For each b > 0 choose (Xn: n • N) a sequence in X 0 with [IXnll •< b so that the 

set ( Xn: x n • F k } is dense in F k Cq (x: Ilxll •< b}. For each n • N there is f• L0(X) 
with ifs) C (Xl .... ,Xn• for all s so that 

IITs(f(s))ll = l•.•j•.•x I[Tsxjll. 
By the fact that T is diagonal we have 

Tf(s) = Ts(f(s)) a.e. 

Hence, since IIfll •</5, 

Letting n -> oo 

1 

f0 min(1, l•r•aj •.•lITsxjll)dX(s) •< p(b). 

1 

f0 min(1,su. pllTsX j II)dX(s) •</>(6). J 

Since each T s is continuous on each F k we have 

say. Thus 

s•plITsxjll = 1•</slITsxll = ps(/5 ) 
x•X 0 

1 

f0 min(1 ,ps(/5))dX(s) •< p(b). 
ß 

Hence •)ps (/5) = 0, a.e. and T s is continuous on X 0 for almost every s C I. We 
may redefine T s on a set of measure zero so that (Ts: s G I) is continuous for all s G I. 

For simple X0-valued functions 

Tf(s) = Ts(f(s)) X-a.e. 

If f C L0(X) there is a sequence fn of X0-valued simple functions so that-fn -> f, a.e. 

Thus (if we extend each T s to X continuously) 

Tf(s) = Ts(f(s)) X-a.e. 
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5. Proof of Theorem 1.2. Let T: L0(X) • L 0 be an isomorphism. By Lemma 3.3 

we can find a Polish space K with a probability measure /.t and operators T 1' 

L0(X) -> L(K,/.0, V: L0(K,/. 0 -> L 0 so that T 1 is elementary and T = VT 1. Let o: K -• I 

be a Borel map so that supp Tf C o- 1 (supp f) for f G L0(X). 
Since L0(X ) m L0, X is isomorphic to a subspace of L 0. Let W: X -• L 0 be an 

isomorphic embedding and let L0(X) -• L0(I X I,X X X) be the induced embedding, 
i.e. 

(Wf)(s,t) = (Wf(s))(t), s,t • I. 

We consider the map Q = WT-1V. By Kwapien's representation theorem [1], [4] we 
can write 

Qf(s,t) = En=lan(s,t)f(rn(s,t)) (X X X)-a.e. 
where 

(i) Each an: I X I -• R is a Borel function and the set { (s,t)an(S,t) 4= 0 infinitely 
often} has measure zero. 

(ii) Each rn: I X I-•K is a Borel map and if B C K has /.t(B)=0 then 

/.t(rh 1B Ch supp an) = 0. 
Now consider Qn: L0(K'/'0 -> L0(I X I,X X X) defined by 

,- 2 n 
Qn = W Ek=lPD(n,k) T-1VP 1 ß o- D(n,k) 

Then we have P 1 T = since T 1 is elementary and hence o- D(n,k) 1 T1PD(n,k) 
QnT1 = W, (n G N). 

Now if s G D(n,k) 

Qnf(S,t) = Eorj(s,t)GD(n,k)aj(s,t)f(rj(s,t)) a.e. 
and hence as n • oo 

nlim_•ooQnf(s,t) = Eorj(s,t)=saj(s,t)f(rj(s,t)) a.e. 
In particular nli_•omQn f exists in L0(I X I) and so there is an operator 

U: L0(K,/. 0 • L0(X) defined by 

Uf= lim w'lQn f fG L0(K,/. 0. 
n->• 

U is continuous by the Banach-Steinhaus Theorem. Furthermore if supp f C o-l(B) for 
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B GB(I) then supp Uf C B; this is easily established for sets D(n,k) and follows for all 

B by continuity. We also have UT 1 f = f for f G L0(X). 

Now by an exhaustion argument we can find disjoint compact subsets (En; 

n • N) of K so that olE n is continuous and one-one for each n and oIG is anti-injective 

where G = KXOE n. 

For each n G N let v n be the induced measure on I from o: E n -• I, i.e., 

Vn0t ) = #(o'lB Ch En). 

Let dvn/dX = ½n G L 0 and define Sn: L0(K,# ) • L 0 by 

Snfft) = ½n(t)ffo-lt) t G o(E n) 
= 0 t • o(En0). 

Clearly S n is continuous for each n. 
For G we go back to Lemma 2.3 and find a compact metric space M with a 

diffuse measure rr and a Borel map r: G-• M so that conditions 2.3(i) and 0i) hold. 

For convenience of exposition we allow the case #(G) = 0 and rr = 0. 

Let v 0 be the measure on I defined by 

vo(B) = #(o-lB (3 G), 
and let ½0 = dvo/dX' 

Define SO: Lo(K,#) -> LO(I X M,X X rr) by 

Softs,t) = ½o(s)f(p(s,t)) s G supp ½0 

= 0 s •] supp ½0' 

To show S O is continuous we suppose B C K is a Borel set with #(B) = 0 and show 

(X X rr)(p-1B Ch supp ½0 ) = 0. In fact 

f f -1Be0 (s)dx(s)drr(t) •< f f 1BdO0(s)drr(t) p p- 

= #fro X r)-lp-lB) 

•< #(B) 

=0. 

Now identify L0(I X M,X X rr) with L0(I,X,L0(M,rr)); we define S: L0(K,#) -• 

L0(I,X, L0(M,rr ) * co) by 
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Sf = (S0f,(Snf)nøø= 1)' 

For each n >• 0 we choose a Borel subset A n of I with A n C supp O n so that 

fAnqbn dx= flqbn dx = Vn(An) 
(thus the singular part of v n vanishes on An)- 

Let C = U•ø=0o'l(An ). As the measure B •/•(o-lB (3 (K\C)) is X-singular T 1 maps 
L0(X) into L0(C,/• ). The map S is injective on L0(C,/• ), since if Sh= 0 then 

Vn(A n (3 supp Sh)= 0 for all n >• 0 and this implies /•(supp h)= 0. In fact S maps 

L0(C,/• ) isomorphically onto the set of g= (g0,(gn)) G L0(L 0 ß co) where 

supp gn C A n (mod X) (0 • n <oo). Indeed g = Sh where 

h(s) = On(OS) -1 gn(OS) s G E n (3 C 

= CkO(Os)-lgo(os, rs) s • G (3 C. 
We define a projection P onto R(S) by 

Pg = (PA0g0,PAngn). 
Consider the composition US-1p: L0(L 0* co)• L0(X). Here S -1 is the inverse of 
S: L0(C,/•) •R(S). Then US-1pST1 f= UTlf= f for fG L0(X) since R(T1) C L0(C,/• ). 

Furthermore both US-1p and ST 1 are diagonal. For US'Ip note that supp PfC 
suppf and supp S-1pf C o-l(suppf). The construction of U then yields the 
conclusion. 

In order to show that ST 1 is diagonal it suffices to show that each SnT 1 is 

diagonal. We shall demonstrate the case n = 0. Let f G L0(X) and let supp f= A, 

suppTlf=B and suppSTlf=A 1. Then A 1 C suppqb 0(3 {s: rr(t;p(s,t) GB)>0}. 

Thus to show I(Ai\A) = 0 we calculate' 

fi•Aqb0(s)rr(t: p(s,t) C B)dX(s) •< (v 0 X rr)(p-lB (3 ((I'vk) X m)) 
=/•((B (3 o-l(IsA)) (3 G) 

=0. 

Here we use the fact that (o 0 X rr)(D) =/•((o X r) -1 D) which follows from Lemma 2.3, 
and the definition of o 0. Let 
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US -IPf(s) = Js(f(s)) a.e. 

ST 1 ifs) = Hs(f(s)) a.e., 

where Js: Lo(M'rr) * co -> X and Hs: X -> Lo(M,rr) * co are continuous linear operators. 

Then for all f G Lo(X ) 

gsHsf(S) = f(s) a.e. 

Since X is separable there is an s G 1 so that 

JsHs x=x xGX. 

Thus X is isomorphic to a complemented subspace Y of L 0 ß co. 

Let P be a projection on Y. Then P(g,h) = (Pllg+P12h, P22h) where PlI: 

L0 • L0, P12: co -> L 0 and P22: co -> co are continuous operators; we use the fact that 

any operator from L 0 to co is zero. 

Here Pll and P22 are projections and the map (g,h)-> (P1 lg'P22h) maps Y 

isomorphically onto P11(L0 ) * P22 (cø)' The inverse map sends (g,h) to (g+ P12h,h), 

and PI 1P12 h = 0 since (P12h, h) G Y. Now PI I(L0 ) -• L0 or {0} [1 ] and P22(co) • co 
or is finite-dimensional. 

We have thus proved Theorem 1.2. 
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