ON SPACES OF MEASURABLE VECTOR-VALUED FUNCTIONS N. J. Kalton*

1. Introduction. Let K be a Polish space and let μ be a (finite) regular Borel measure on K. If X is an F-space (complete metrizable topological vector space) then we denote by $L_0(K,\mu;X)$ the space of all Borel functions $f: K \to X$ which are μ -essentially separable. After the standard identification of functions equal almost everywhere, $L_0(K,\mu;X)$ is an F-space under the topology of convergence in μ -measure. If X is F-normed by an F-norm $\|\cdot\|$ then $L_0(K,\mu;X)$ may be F-normed by

$$\|f\| = \int_{K} \min(1, \|f(s)\|) d\mu(s).$$

If K = I, the unit interval, and $\mu = \lambda$, Lebesgue measure on I, then we write $L_0(K,\lambda;X) = L_0(X)$. We write $L_0(K,\mu)$ for $L_0(K,\mu;\mathbf{R})$ and $L_0 = L_0(\mathbf{R})$.

The purpose of this paper is to prove the following theorem:

THEOREM 1.1. If X is an F-space such that $L_0(X)$ is isomorphic to L_0 , then X is isomorphic to $L_0(K,\mu)$ for some Polish space K and probability measure μ .

The isomorphism class of the space $L_0(K,\mu)$ depends only on the nature of the atoms of μ . Hence Theorem 1.1 is equivalent to

THEOREM 1.2. Let X be an F-space. Then $L_0(X)$ is isomorphic to L_0 if and only if X is isomorphic to one of the spaces; \mathbf{R}^n $(n \ge 1)$, ω , $L_0 \oplus \mathbf{R}^n$ $(n \ge 1)$, $L_0 \oplus \omega$.

Here ω is the space of all real sequences with the usual product topology.

By way of analogy we point out that for a Banach space the isomorphism of $L_1(X)$ and L_1 is equivalent to the fact that X is isomorphic to a complemented subspace of $L_1[0,1]$. It is an unresolved question in Banach space theory whether this implies that $X \cong L_1(K,\lambda;\mathbf{R})$ for some K and λ . However if X has the Radon-Nikodym Property, the Lewis-Stegall theorem implies that $X \cong \ell_1$ (see [5], [6]). Analogous

^{*}Research supported in part by NSF grant MCS-8001852.

results for $L_p(X)$, 0 , were investigated in [2]. The approach here is similar although the details are necessarily rather different and the final result is more complete.

2. Preliminaries from measure theory. If μ is a measure then we use "mod μ " to denote statements true up to sets of μ -measure zero.

If K is a Polish space, we denote by B(K) the collection of Borel subsets of K. Let μ be a measure on K and let $\phi: B(I) \rightarrow B(K)$ be a map. We shall say ϕ is a sub- μ -homomorphism if

(1) $\phi(A_1 \cup A_2) = \phi(A_1) \cup \phi(A_2) \pmod{\mu}$,

for $A_1, A_2 \in \boldsymbol{B}(K)$.

(2) Given
$$\epsilon > 0$$
 there exists $\delta > 0$ so that $\lambda(A) < \delta$ implies $\mu(\phi(A)) < \epsilon$.

We shall say that ϕ is a μ -homomorphism if it satisfies (1) and (2) and

(3) $\phi(A_1 \cap A_2) = \emptyset \pmod{\mu}$

for $A_1, A_2 \in B(I)$ with $A_1 \cap A_2 = \emptyset$.

A standard result from measure theory, essentially given in Royden [7] Theorem 15.10 is

PROPOSITION 2.1. If $\phi: B(I) \to B(K)$ is a μ -homomorphism there is a Borel map $\sigma: K \to I$ so that

$$\phi(\mathbf{A}) \subset \sigma^{-1}(\mathbf{A}) \pmod{\mu} \quad \mathbf{A} \in \boldsymbol{B}(\mathbf{I}).$$

(If $\phi(I) = K$ we obtain $\phi(A) = \sigma^{-1}(A) \pmod{\mu}$.)

We denote by D(n,k) (1 \leqslant h < ∞, 1 \leqslant k \leqslant 2ⁿ) the standard dyadic partition of I, i.e.,

$$D(n,k) = [(k-1)2^{-n}, k \cdot 2^{-n}) \quad 1 \le k \le 2^{n} - 1$$

$$D(n,2^n) = [1-2^{-n},1].$$

The next lemma is essentially due to Kwapien [4] and is also essentially used in [3].

LEMMA 2.2. Let $\phi: B(I) \to B(K)$ be a sub- μ -homomorphism. There is a countable Borel partitioning $(B_n: n \in N)$ of K so that for each k, $1 \le k \le 2^n$ the maps $\phi_{n,k}: B(I) \to B(K)$ are μ -homomorphisms where

$$\phi_{n,k}(A) = \phi(A \cap D(n,k)) \cap B_n.$$

PROOF. Let $g_n \in L_0(K,\mu)$ be defined by

$$g_n = \sum_{k=1}^{2^n} 1_{\phi(D(n,k))}.$$

Then $\{g_n\}$ is monotone increasing. If for $\epsilon > 0$ we choose $\delta > 0$ as in condition (2) above, then a calculation as in [3] (Justification of A3)) shows that if $2^n > \delta^{-1}$,

$$\int_0^1 (1 - \frac{1}{2}\delta)^{\mathbf{g}_n(t)} d\mu(t) \ge 1 - \epsilon.$$

Hence $\lim_{n\to\infty} g_n(t) = g(t) < \infty$ almost everywhere. Let

$$B_1 = \{t: g_1(t) = g(t)\} \cup \{t: g(t) = \infty\}$$

and

$$B_n = \{ t: g_{n-1}(t) < g_n(t) = g(t) \} \text{ for } n \ge 2.$$

Then if D(m,i) and D(m,j) are contained in D(n,k) and disjoint

$$1_{\phi(D(m,i))}(s) + 1_{\phi(D(m,j))}(s) \le 1$$

whenever $g_n(s) = g(s)$. Hence

$$\phi_{n,k}(D(m,i)) \cap \phi_{n,k}(D(m,j)) = \emptyset \mod \mu$$

and the conclusion of the lemma follows by a continuity argument using condition (2).

We shall say that a map $\sigma: K \to I$ is *anti-injective* if whenever $B \in B(K)$ and $\sigma|B$ is injective then $\mu(B) = 0$. The following lemma is proved in [2].

LEMMA 2.3. If $\sigma: K \to I$ is anti-injective there is a compact metric space M, a diffuse measure π on M and a Borel map $\tau: K \to M$ so that

- (i) There is a Borel map $\rho: I \times M \to K$ so that $\rho(\sigma s, \tau s) = s \pmod{\mu}$.
- (ii) If $B \subset I$ and $C \subset M$ are Borel sets then

$$\mu(\sigma^{-1}\mathbf{B})\pi(\mathbf{C}) = \mu(\sigma^{-1}\mathbf{B} \cap \tau^{-1}\mathbf{C}).$$

3. Operators on $L_0(X)$. Let T: $L_0(X) \to L_0(K,\mu;Y)$ be a linear operator. We associate to T amap $\phi = \phi_T : B(I) \to B(K)$. We define $\phi(B)$ to be a Borel set of minimal μ -measure so that supp $f \subseteq B$ implies supp $Tf \subseteq \phi(B) \pmod{\mu}$ [supp $f = (s: f(s) \neq 0)$].

The following lemma is due to Kwapien [4].

LEMMA 3.1. If $f_1,...,f_n \in L_0(K,\mu)$, then there exist $\alpha_1,...,\alpha_n \in \mathbf{R}$ such that $\operatorname{supp}(\alpha_1 f_1 + \cdots + \alpha_n f_n) = \bigcup_{i=1}^n \operatorname{supp} f_i \pmod{\mu}$.

LEMMA 3.2. If T: $L_0(X) \rightarrow L_0(K,\mu)$ is a linear operator then ϕ_T is a

sub-µ-homomorphism.

PROOF. For $\epsilon > 0$ there exists $\delta > 0$ so that $||f|| \leq \delta$ implies $||Tf|| \leq \epsilon$. If $\lambda(B) < \delta$ and supp $f \subset B$ then $||T(mf)|| \leq \epsilon$ for every $m \in \mathbb{N}$ and hence $\mu(\text{supp } f) \leq \epsilon$. Now by Lemma 3.1, $\mu(\phi(B)) \leq \epsilon$. It follows easily that ϕ_T is a sub- μ -homomorphism.

We shall say that T: $L_0(X) \to L_0(K,\mu;Y)$ is *elementary* if supp $f \cap \text{supp } g = 0$ implies supp Tf \cap supp Tg = $\phi \pmod{\mu}$. In this case ϕ is a μ -homomorphism and hence there is a Borel map σ : $K \to I$ is that supp Tf $\subset \sigma^{-1}(\text{supp } f)$ for every $f \in L_0(X)$.

LEMMA 3.3. Let $T: L_0(X) \to L_0$ be a linear operator. Then there is a Polish space K, a probability measure μ on K and operators $T_1: L_0(X) \to L_0(K,\mu)$, $V: L_0(K,\mu) \to L_0$ so that $VT_1 = T$ and T_1 is elementary.

PROOF. Define K to be space of triples (s,n,k) where $s \in I$, $n \in N$ and $1 \le k \le 2^n$. Let μ be the measure on K defined by

$$\mu(B) = \sum_{n=1}^{\infty} \sum_{k=1}^{2^{n}} \frac{1}{4^{n}} \lambda\{s: (s,n,k) \in B\}$$

for $\mathbf{B} \in \boldsymbol{B}(\mathbf{K})$.

By Lemma 2.2 we can partition I into Borel sets (B_n) so that each $\phi_{n,k}$ is a μ -homomorphism, i.e., $P_{B_n}TP_{D(n,k)}$ is elementary for each $n \in N$ and $1 \le k \le 2^n$. Here P_A is the natural projection on $L_0(M,\nu;X)$ defined by $P_A f = 1_A \cdot f$ for $A \in B(M)$.

Define T₁ by

$$T_1 f(s,n,k) = P_{B_n} TP_{D(n,k)} f(s)$$

and V: $L_0(K,\mu) \rightarrow L_0$ by

$$Vf(s) = \sum_{k=1}^{2^n} f(s,n,k) \quad s \in B_n.$$

The lemma then follows.

4. Diagonal operators. An operator T: $L_0(X) \rightarrow L_0(Y)$ is called *diagonal* if supp Tf \subset supp f (mod λ).

THEOREM 4.1. If X is separable and T: $L_0(X) \rightarrow L_0(Y)$ is diagonal then there is a family of continuous linear operators $T_s: X \rightarrow Y$ ($s \in I$) so that

$$\Gamma f(s) = T_s(f(s))$$
 a.e.

PROOF. For each $\delta > 0$ let

$$\rho(\delta) = \sup(\|Tf\|: \|f\| \le \delta).$$

Select an increasing sequence F_n of finite-dimensional subspaces of X with $\cup F_n = X_0$ dense in X. Denote by $1 \otimes x$ the constant function $1 \otimes x(s) = x$ for all $s \in I$. Then it is possible to define linear maps $T_s: X_0 \to Y$ so that

$$T(1 \otimes x)(s) = T_s(x) \quad \lambda \text{-a.e.}$$

for $x \in X_0$.

For each $\delta > 0$ choose $\{x_n : n \in N\}$ a sequence in X_0 with $||x_n|| \leq \delta$ so that the set $\{x_n : x_n \in F_k\}$ is dense in $F_k \cap \{x : ||x|| \leq \delta\}$. For each $n \in N$ there is $f \in L_0(X)$ with $f(s) \in \{x_1, ..., x_n\}$ for all s so that

$$\|T_{s}(f(s))\| = \max_{1 \leq j \leq n} \|T_{s}x_{j}\|.$$

By the fact that T is diagonal we have

$$Tf(s) = T_s(f(s))$$
 a.e.

Hence, since $||f|| \leq \delta$,

$$\int_{0}^{1} \min(1, \max_{1 \leq j \leq n} \|\mathbf{T}_{s} \mathbf{x}_{j}\|) d\lambda(s) \leq \rho(\delta).$$

Letting $n \rightarrow \infty$

$$\int_{0}^{1} \min(1, \sup_{j} ||T_{s}x_{j}||) d\lambda(s) \leq \rho(\delta).$$

Since each T_s is continuous on each F_k we have

$$\sup_{j} \|T_{s}x_{j}\| = \sup_{\substack{\|x\| \leq \delta \\ x \in X_{0}}} \|T_{s}x\| = \rho_{s}(\delta)$$

say. Thus

$$\int_0^1 \min(1, \rho_{\mathbf{s}}(\delta)) d\lambda(\mathbf{s}) \leq \rho(\delta).$$

Hence $\lim_{\delta \to 0} \rho_s(\delta) = 0$, a.e. and T_s is continuous on X_0 for almost every $s \in I$. We may redefine T_s on a set of measure zero so that $(T_s: s \in I)$ is continuous for all $s \in I$. For simple X_0 -valued functions

$$Tf(s) = T_s(f(s)) \lambda$$
-a.e.

If $f \in L_0(X)$ there is a sequence f_n of X_0 -valued simple functions so that $f_n \to f$, a.e. Thus (if we extend each T_s to X continuously)

$$Tf(s) = T_s(f(s)) \quad \lambda$$
-a.e.

N. J. KALTON

5. Proof of Theorem 1.2. Let $T: L_0(X) \to L_0$ be an isomorphism. By Lemma 3.3 we can find a Polish space K with a probability measure μ and operators $T_1: L_0(X) \to L(K,\mu)$, V: $L_0(K,\mu) \to L_0$ so that T_1 is elementary and $T = VT_1$. Let $\sigma: K \to I$ be a Borel map so that supp $Tf \subset \sigma^{-1}(\text{supp } f)$ for $f \in L_0(X)$.

Since $L_0(X) \cong L_0$, X is isomorphic to a subspace of L_0 . Let $W: X \to L_0$ be an isomorphic embedding and let $\hat{W}: L_0(X) \to L_0(I \times I, \lambda \times \lambda)$ be the induced embedding, i.e.

$$(\mathbf{W}\mathbf{f})(\mathbf{s},\mathbf{t}) = (\mathbf{W}\mathbf{f}(\mathbf{s}))(\mathbf{t}), \quad \mathbf{s},\mathbf{t} \in \mathbf{I}.$$

We consider the map $Q = \hat{W}T^{-1}V$. By Kwapien's representation theorem [1], [4] we can write

$$Qf(s,t) = \sum_{n=1}^{\infty} a_n(s,t) f(\tau_n(s,t)) \quad (\lambda \times \lambda)-a.e.$$

where

(i) Each $a_n: I \times I \to \mathbf{R}$ is a Borel function and the set $\{(s,t)a_n(s,t) \neq 0 \text{ infinitely often}\}$ has measure zero.

(ii) Each $\tau_n: I \times I \to K$ is a Borel map and if $B \subseteq K$ has $\mu(B) = 0$ then $\mu(\tau_n^{-1}B \cap \text{supp } a_n) = 0$.

Now consider Q_n : $L_0(K,\mu) \rightarrow L_0(I \times I,\lambda \times \lambda)$ defined by

$$Q_n = \hat{W} \Sigma_{k=1}^{2^n} P_{D(n,k)} T^{-1} V P_{\sigma^{-1} D(n,k)}$$

Then we have $P_{\sigma^{-1}D(n,k)}T_1 = T_1P_{D(n,k)}$ since T_1 is elementary and hence $O_nT_1 = \hat{W}$, $(n \in N)$.

$$\nabla_{n}$$
 , $($

Now if $s \in D(n,k)$

$$Q_n f(s,t) = \Sigma_{\sigma \tau_j(s,t) \in D(n,k)} a_j(s,t) f(\tau_j(s,t))$$
 a.e.

and hence as $n \rightarrow \infty$

$$\lim_{n\to\infty} Q_n f(s,t) = \Sigma_{\sigma\tau_j(s,t)=s} a_j(s,t) f(\tau_j(s,t)) \quad \text{a.e.}$$

In particular $\lim_{n\to\infty} Q_n f$ exists in $L_0(I \times I)$ and so there is an operator U: $L_0(K,\mu) \to L_0(X)$ defined by

$$Uf = \lim_{n \to \infty} \hat{W}^{-1} Q_n f \quad f \in L_0(K,\mu).$$

U is continuous by the Banach-Steinhaus Theorem. Furthermore if supp $f \subseteq \sigma^{-1}(B)$ for

 $B \in B(I)$ then supp Uf $\subset B$; this is easily established for sets D(n,k) and follows for all B by continuity. We also have UT₁f = f for $f \in L_0(X)$.

Now by an exhaustion argument we can find disjoint compact subsets $(E_n; n \in N)$ of K so that $\sigma | E_n$ is continuous and one-one for each n and $\sigma | G$ is anti-injective where $G = K \setminus \cup E_n$.

For each $n \in \mathbb{N}$ let v_n be the induced measure on I from $\sigma: E_n \to I$, i.e.,

$$v_{n}(B) = \mu(\sigma^{-1}B \cap E_{n}).$$

Let $dv_n/d\lambda = \phi_n \in L_0$ and define $S_n: L_0(K,\mu) \to L_0$ by

$$S_n f(t) = \phi_n(t) f(\sigma^{-1}t) \quad t \in \sigma(E_n)$$
$$= 0 \qquad t \notin \sigma(E_n 0).$$

Clearly S_n is continuous for each n.

For G we go back to Lemma 2.3 and find a compact metric space M with a diffuse measure π and a Borel map $\tau: G \rightarrow M$ so that conditions 2.3(i) and (ii) hold. For convenience of exposition we allow the case $\mu(G) = 0$ and $\pi = 0$.

Let v_0 be the measure on I defined by

$$v_0(\mathbf{B}) = \mu(\sigma^{-1}\mathbf{B} \cap \mathbf{G}),$$

and let $\phi_0 = dv_0/d\lambda$.

Define S₀: $L_0(K,\mu) \rightarrow L_0(I \times M, \lambda \times \pi)$ by $S_0f(s,t) = \phi_0(s)f(\rho(s,t)) \quad s \in \text{supp } \phi_0$ $= 0 \qquad s \notin \text{supp } \phi_0$.

To show S₀ is continuous we suppose $B \subseteq K$ is a Borel set with $\mu(B) = 0$ and show $(\lambda \times \pi)(\rho^{-1}B \cap \text{supp } \phi_0) = 0$. In fact

$$\int \int_{\rho^{-1}B} \phi_0(s) d\lambda(s) d\pi(t) \leq \int \int_{\rho^{-1}B} d\nu_0(s) d\pi(t)$$
$$= \mu((\sigma \times \tau)^{-1} \rho^{-1}B)$$
$$\leq \mu(B)$$
$$= 0.$$

Now identify $L_0(I \times M, \lambda \times \pi)$ with $L_0(I, \lambda, L_0(M, \pi))$; we define S: $L_0(K, \mu) \rightarrow L_0(I, \lambda, L_0(M, \pi) \oplus \omega)$ by

$$Sf = (S_0f, (S_nf)_{n=1}^{\infty}).$$

For each $n \ge 0$ we choose a Borel subset A_n of I with $A_n \subseteq \text{supp } \phi_n$ so that

$$\int_{\mathbf{A}_{n}} \phi_{n} d\lambda = \int_{\mathbf{I}} \phi_{n} d\lambda = v_{n} (\mathbf{A}_{n})$$

(thus the singular part of v_n vanishes on A_n).

Let $C = \bigcup_{n=0}^{\infty} \sigma^{-1}(A_n)$. As the measure $B \mapsto \mu(\sigma^{-1}B \cap (K \setminus C))$ is λ -singular T_1 maps $L_0(X)$ into $L_0(C,\mu)$. The map S is injective on $L_0(C,\mu)$, since if Sh = 0 then $v_n(A_n \cap \text{supp } Sh) = 0$ for all $n \ge 0$ and this implies $\mu(\text{supp } h) = 0$. In fact S maps $L_0(C,\mu)$ isomorphically onto the set of $g = (g_0,(g_n)) \in L_0(L_0 \oplus \omega)$ where supp $g_n \subset A_n \pmod{\lambda}$ $(0 \le n <\infty)$. Indeed g = Sh where

$$\begin{split} \mathbf{h}(\mathbf{s}) &= \phi_{\mathbf{n}}(\sigma \mathbf{s})^{-1} \mathbf{g}_{\mathbf{n}}(\sigma \mathbf{s}) \quad \mathbf{s} \in \mathbf{E}_{\mathbf{n}} \cap \mathbf{C} \\ &= \phi_{\mathbf{0}}(\sigma \mathbf{s})^{-1} \mathbf{g}_{\mathbf{0}}(\sigma \mathbf{s}, \tau \mathbf{s}) \quad \mathbf{s} \in \mathbf{G} \cap \mathbf{C}. \end{split}$$

We define a projection P onto R(S) by

$$Pg = (P_{A_0}g_0, P_{A_n}g_n).$$

Consider the composition US⁻¹P: $L_0(L_0 \oplus \omega) \rightarrow L_0(X)$. Here S⁻¹ is the inverse of S: $L_0(C,\mu) \rightarrow R(S)$. Then US⁻¹PST₁f = UT₁f = f for $f \in L_0(X)$ since $R(T_1) \subset L_0(C,\mu)$.

Furthermore both US⁻¹P and ST₁ are diagonal. For US⁻¹P note that supp Pf \subset supp f and supp S⁻¹Pf $\subset \sigma^{-1}$ (supp f). The construction of U then yields the conclusion.

In order to show that ST_1 is diagonal it suffices to show that each S_nT_1 is diagonal. We shall demonstrate the case n = 0. Let $f \in L_0(X)$ and let supp f = A, $supp T_1 f = B$ and $supp ST_1 f = A_1$. Then $A_1 \subset supp \phi_0 \cap \{ s: \pi(t; \rho(s, t) \in B) > 0 \}$. Thus to show $\lambda(A_1 \setminus A) = 0$ we calculate:

$$\int_{I\setminus A} \phi_0(s) \pi(t; \ \rho(s,t) \in B) d\lambda(s) \leq (v_0 \times \pi)(\rho^{-1}B \cap ((I\setminus A) \times M))$$
$$= \mu((B \cap \sigma^{-1}(I\setminus A)) \cap G)$$
$$= 0$$

Here we use the fact that $(v_0 \times \pi)(D) = \mu((\sigma \times \tau)^{-1}D)$ which follows from Lemma 2.3, and the definition of v_0 . Let

404

$$US^{-1}Pf(s) = J_{s}(f(s)) \quad a.e.$$
$$ST_{1}f(s) = H_{s}(f(s)) \quad a.e.,$$

where J_s : $L_0(M,\pi) \oplus \omega \to X$ and H_s : $X \to L_0(M,\pi) \oplus \omega$ are continuous linear operators. Then for all $f \in L_0(X)$

$$J_sH_sf(s) = f(s)$$
 a.e.

Since X is separable there is an $s \in I$ so that

$$J_{s}H_{s}x = x \quad x \in X.$$

Thus X is isomorphic to a complemented subspace Y of $L_0 \oplus \omega$.

Let P be a projection on Y. Then $P(g,h) = (P_{11}g + P_{12}h, P_{22}h)$ where P_{11} : $L_0 \rightarrow L_0$, P_{12} : $\omega \rightarrow L_0$ and P_{22} : $\omega \rightarrow \omega$ are continuous operators; we use the fact that any operator from L_0 to ω is zero.

Here P_{11} and P_{22} are projections and the map $(g,h) \rightarrow (P_{11}g,P_{22}h)$ maps Y isomorphically onto $P_{11}(L_0) \oplus P_{22}(\omega)$. The inverse map sends (g,h) to $(g + P_{12}h,h)$, and $P_{11}P_{12}h = 0$ since $(P_{12}h,h) \in Y$. Now $P_{11}(L_0) \cong L_0$ or $\{0\}$ [1] and $P_{22}(\omega) \cong \omega$ or is finite-dimensional.

We have thus proved Theorem 1.2.

REFERENCES

- 1. N. J. Kalton, The endomorphisms of L_p ($0 \le p \le 1$), Indiana Univ. Math. J., 27(1978), 353-381.
- 2. _____, Isomorphisms between L_p -function spaces when p < 1, J. Func. Anal., 42(1981), 299-337.
- N. J. Kalton, N. T. Peck and J. W. Roberts, L₀-valued measures are bounded, Proc. Amer. Math. Soc., 85(1982), 575-582.
- 4. S. Kwapien, On the form of a linear operator in the space of all measurable functions, Bull. Acad. Polon. Sci., 21(1973), 951-954.
- 5. D. R. Lewis and C. Stegall, Banach spaces whose duals are isomorphic to $\ell_{I}(\Gamma)$, J. Func. Anal., 12(1973), 177-187.
- 6. H. P. Rosenthal, The Banach spaces C(K) and $L_p(\mu)$, Bull. Amer. Math. Soc., 81(1975), 763-781.
- 7. H. L. Royden, Real Analysis, 2nd Edition, MacMillan, New York, 1968.

University of Missouri-Columbia Columbia, Missouri 65211

Received March 15, 1982