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ON SPACES OF MEASURABLE VECTOR-VALUED FUNCTIONS
N. J. Kalton*

1. Introduction. Let K be a Polish space and let u be a (finite) regular Borel
measure on K. If X is an F-space (complete metrizable topological vector space) then
we denote by Lu(K,u;X) the space of all Borel functions f: K =X which are
p-essentially separable. After the standard identification of functions equal almost
everywhere, LO(K,u;X) is an F-space under the topology of convergence in u-measure.

If X is F-normed by an F-norm ||-|| then Ly(K,u;X) may be F-normed by
Iflt = mein(l MHCs) D pds).

If K=1, the unit interval, and u =X, Lebesgue measure on I, then we write
Lo(K,X) = L(X). We write Lp(K,u) for Ly(K,u;R) and Ly = Lo(R).

The purpose of this paper is to prove the following theorem:

THEOREM 1.1. If X is an F-space such that L(X) is isomorphic to L, then X
is isomorphic to LO(K,p) for some Polish space K and probability measure p.

The isomorphism class of the space Ly(K,u) depends only on the nature of the
atoms of u. Hence Theorem 1.1 is equivalent to

THEOREM 1.2. Let X be an F-space. Then Ly(X) is isomorphic to Ly if and
only if X is isomorphic to one of the spaces; R" (n>1), w, Ly, Lg @ R" (n>1),
Ly @ w.

Here w is the space of all real sequences with the usual product topology.

By way of analogy we point out that for a Banach space the isomorphism of
L1(X) and L; is equivalent to the fact that X is isomorphic to a complemented
subspace of L[0,1]. It is an unresolved question in Banach space theory whether this
implies that X = LI(K,)\;R) for some K and A. However if X has the Radon-Nikodym
Property, the Lewis-Stegall theorem implies that X = Ql (see [5], [6]). Analogous
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results for Lp(X), 0 <p <1, were investigated in [2]. The approach here is similar
although the details are necessarily rather different and the final result is more
complete.

2. Preliminaries from measure theory. If uis a measure then we use “mod u” to
denote statements true up to sets of y-measure zero.

If K is a Polish space, we denote by B(K) the collection of Borel subsets of K. Let
u be a measure on K and let ¢: B(I) >B(K) be a map. We shall say ¢ is a

sub-p-homomorphism if

(1) ¢(A] U Ay =d(A]) U(Ay) (mod u),
for Al,A2 € B(K).

(2) Given e > 0 there exists § > 0 so that A(A) < 6 implies u(¢p(A)) <e.
We shall say that ¢ is a u-homomorphism if it satisfies (1) and (2) and

(3) ¢(A| NAy =0 (mod u)

for Aj,Ay €B(I) withAj NA, =0.

A standard result from measure theory, essentially given in Royden [7] Theorem
15.101is

PROPOSITION 2.1. If ¢: B(1) > B(K) is a p-homomorphism there is a Borel map
o: K—>1so that

o(A) C o l(A) (mod p) A €B().

(If ¢(1) = K we obtain (A) = o1 (A) (mod u).)

We denote by D(n,k) (1 <h <eo, 1 <k <2") the standard dyadic partition of I,
ie.,

D(n,k) = [(k-1)2 k-2 1 <k <21

D(n,2M = [1-21].

The next lemma is essentially due to Kwapien [4] and is also essentially used in [3].
LEMMA 2.2. Let ¢: B(I) >B(K) be a sub-uy-homomorphism. There is a
countable Borel partitioning (Bn: n € N) of K so that for each k, 1 <k < 2" the maps

Pn B(1) = B(X) are y-homomorphisms where

¢n,k(A) = ¢(A N D(n,k)) N B,.
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PROOF, Let g, € Lo(K,u) be defined by

211
&n = Zk=11¢(D(n,k)):
Then {gn} is monotone increasing. If for € > 0 we choose 8§ > 0 as in condition (2)

above, then a calculation as in [3] (Justification of A3)) shows that if 21 > 6'1,

gn(t)

Gué& du(t) > 1 -e.

Hence lim g (t) = g(t) <ooalmost everywhere. Let
n—>eo
By ={t: gy () =g(t)} U {t: g(t) = 0}
and
Bn ={t: gn_l(t) < gn(t) =g(t)} forn=2.

Then if D(m,i) and D(m,j) are contained in D(n,k) and disjoint

Lo(D(m,i)® + 1a(D(m j)®) <1

whenever gn(s) = g(s). Hence

Ok (D(Mi) N L (D(mj) =@ mod u
and the conclusion of the lemma follows by a continuity argument using condition
(2).

We shall say that a map o: K = I is anti-injective if whenever B € B(K) and ¢|B is
injective then u(B) = 0. The following lemma is proved in [2].

LEMMA 2.3. If a: K > 1 is anti-injective there is a compact metric space M, a
diffuse measure w on M and a Borel map 7: K > M so that

(i) There is a Borel map p: 1 X M~ K so that p(os,7s) =s (mod p).

(ii) If B Cland C C Mare Borel sets then

u(o 1 B)(C) = po’1B n 7 10).

3. Operators on LO(X). Let T: LO(X) - LO(K,p;Y) be a linear operator. We
associate to T amap ¢ = ¢1: B(I) > B(K). We define ¢(B) to be a Borel set of minimal
w-measure so that supp f C B implies supp Tf C ¢(B) (mod ) [supp f = (s: f(s) #0)].

The following lemma is due to Kwapien [4].

LEMMA 3.1. If floendy € LO(K,u), then there exist op,.0, ER such that
supp(oy fy +o=<t o, )= U?zlsupp f; (mod ).

LEMMA 3.2. If T: Lo(X) > Log(K,p) is a linear operator then o1 is a
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sub-u-homomorphism,

PROOF. For € >0 there exists 6 >0 so that |f|| <6 implies |Tf| <e. If
A(B) < & and supp f C B then |T(mf)| < e for every m € N and hence u(supp f) <e.
Now by Lemma 3.1, u(¢(B)) <e. It follows easily that prisa sub-g-homomorphism.

We shall say that T: LO(X) - LO(K,u;Y) is elementary if supp fN suppg=0
implies supp Tf N supp Tg = ¢ (mod u). In this case ¢ is a p-homomorphism and hence
there is a Borel map o: K — I is that supp Tf C a'l(supp f) for every f € LO(X).

LEMMA 3.3. Let T: LO(X) —>LO be a linear operator. Then there is a Polish
space K, a probability measure p on K and operators le LO(X) - LO(K,;z),
Vi LoK,p) = Lo so that VT =T and Ty is elementary.

PROOF. Define K to be space of triples (s,n,k) where s€1, n€EN and

1 <k <2™ Let u be the measure on K defined by

n
u(B) = 221 28-1-L Ms: (s.n,k) € B}
41’1

for B € B(K).
By Lemma 2.2 we can partition I into Borel sets (Bn) so that each Pk is a
whomomorphism, ie., Pg TPD(n k) is elementary for each n€N and 1 <k <20
n 3
Here PA is the natural projection on L(M,v;X) defined by P f = lA-f for A € B(M).
Define T by
T]f(S,n,k) = PBnTPD(n,k)f(S)
and V: Lg(K,u) > Lg by .
VI(s) = 2o fls.nk) SEB,.
The lemma then follows.
4. Diagonal operators. An operator T: LO(X) - LO(Y) is called diagonal if
supp Tf C supp f (mod A).
THEOREM 4.1. If X is separable and T: LO(X) - LO(Y) is diagonal then there is
a family of continuous linear operators Tg: X > Y (s € ) so that
Ti(s) = T((f(s)) a.e.
PROOF. Foreach § >0 let

p(8) = sup(|ITf|: |Ifll < 8).
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Select an increasing sequence F, of finite-dimensional subspaces of X with UF = X
dense in X. Denote by 1 ® x the constant function 1 ® x(s) = x foralls €I. Then it is
possible to define linear maps Tg: X ~ Y so that

T(1 ® x)(s) = Ts(x) A-a.e.

for x € X.

For each & >0 choose {x,: n €N} a sequence in X with [Ix || <8 so that the
set {x x, € Fi }is dense in Fi. 0 {x: [Ixll < 8. For each n €N there is f € L(X)
with f(s) € {xl,...,xn} for all s so that

TGN = | M IT x5l

By the fact that T is diagonal we have
Ti(s) = T((f(s)) a.e.
Hence, since ||f|| < 6,
1
. ) <
fo nnn(l,lg]aénllTslel)dk(S) p(8).
Letting n —> oo

1
[, min(1,sup|Tx;1)dA(s) < p(6).
0 ] J
Since each TS is continuous on each Fk we have

SljlpIITszll = ITgxIl = pg(8)

Iixif<s
XEXO

say. Thus
1
fo min(1,p,(8))dN(s) < p(8).

Hence (Sl%ps(S) =0, a.e. and TS is continuous on XO for almost every s € 1. We
may redefine T¢ on a set of measure zero so that (Tg: s € I) is continuous foralls€ 1.
For simple X()-valued functions
Tf(s) = T(f(s)) A-a.e.
Iffe L(X) there is a sequence f}) of Xp-valued simple functions so that 1, > f, ae

Thus (if we extend each TS to X continuously)

Ti(s) = T(f(s)) MNae.
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5. Proof of Theorem 1.2. Let T: Ly(X) = L be an isomorphism. By Lemma 3.3
we can find a Polish space K with a probability measure u and operators Ty:
Lo(X) > L(K,p), Vi Lg(K,u) = L so that T is elementary and T = VT;. Let 0: K 1
be a Borel map so that supp Tf C o'l(supp f) for f € Lp(X).

Since Lg(X) = Lo, X is isomorphic to a subspace of LO' Let W: X > LO be an
isomorphic embedding and let Ww: LX) = Lo(I X LA X A) be the induced embedding,
ie.

(Vf&\’f)(s,t) = (Wf(s))(1), stel
We consider the map Q = V?/T“IV. By Kwapien’s representation theorem [1], [4] we
can write
Qf(s,t) = Z72 2, (5,07 (s,0)) (A X N-ae.
where

(i) Each a,: I X I =R is a Borel function and the set {(S,t)an(s,t) # 0 infinitely
often} has measure zero.

(i) Each 7,:1XI1—->K is a Borel map and if BCK has u(B)=0 then
u(T;]IB Nsupp a,) = 0.

Now consider Qn: Lo(K,M) = LI X LA X A) defined by

_ w20 1

Then we have P = TIPD(n K) since T is elementary and hence

T
o D(n,k) 1
Q.T| =W, (n€N).
Now if s € D(n,k)
an(s,t) = EOTj(S,t)ED(n,k)aj(s’t)f(Tj(s’t)) a.e.
and hence as n »> o
Illi_l;anI.lf(s,t) = Earj(s,t)=saj(s’t)f(7j(s’t)) a.e.

In particular nll)rgo Q,f exists in Ly(IXI) and so there is an operator

U: Ly(K,u) = Lp(X) defined by

Uf = lim WQpf 1€ Ly(Kp).

U is continuous by the Banach-Steinhaus Theorem. Furthermore if supp f C o'l(B) for
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B € B(I) then supp Uf C B; this is easily established for sets D(n,k) and follows for all
B by continuity. We also have UTI f=fforfe LO(X).
Now by an exhaustion argument we can find disjoint compact subsets (En;
n € N) of K so that oIEn is continuous and one-one for each n and ¢|G is anti-injective
where G = K\UE .
For each n €N let Up be the induced measure on I from o: EIl -1 ie.,
v,(B) = u(o B NE).

Let dv,/dA = ¢, € Ly and define S;: Ly(K,u) > Ly by

S,f(H) =, (Of(a D) tE€o(Ey
=0 t & o(E0).
Clearly S, is continuous for each n.
For G we go back to Lemma 2.3 and find a compact metric space M with a
diffuse measure 7 and a Borel map 7: G > M so that conditions 2.3(i) and (ii) hold.
For convenience of exposition we allow the case u(G) =0 and 7= 0.

Let v be the measure on I defined by
vo(B) = u(o !B N G),
and let ¢ = dyg/dA.
Define SO: Lo(K,[J) - LO(I X M\ X 7) by
Sof(s,t) = () f(p(s,t)) s € supp ¢
=0 s € supp ®0-
To show Sp is continuous we suppose B C K is a Borel set with u(B) =0 and show

(A X 7r)(p'1 B Nsupp ¢q) = 0. In fact

I T 1 x%0(8)dNs)dn(t) < [ f ol deo(S)dW(t)

b
= u((o X 7y 1plp)
< u(B)
=0.
Now identify Lo(I X M]A X m) with Lo(LALy(M,m)); we define S: Ly(K,u) >
Lo(LALy(M,7) @ w) by
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Sf= (Sof,(snf);:‘; 1 )
For each n 2 0 we choose a Borel subset A, of I with A, C supp ¢, so that

fAnd)nd?\ = [ #ndN=vy(Ap)

(thus the singular part of (I vanishes on An).

LetC= UITL_OO'I (A,). As the measure B+ u(o'lB N (K\C)) is A-singular T maps
LO(X) into L(C,u). The map S is injective on Lg(C,u), since if Sh=0 then
Up(A, Nsupp Sh) =0 for all n>0 and this implies p(supp h) =0. In fact S maps
LO(C,u) isomorphically onto the set of g= (go,(gn)) S LO(LO ® w) where
supp g, C Ay (mod A) (0 < n <oo). Indeed g = Sh where

h(s) = ¢(0s) g (05) sEE;NC

= ¢0(os)'1 go(os,'rs) seGNC.
We define a projection P onto R(S) by
Pg=(P AOgO,P Angn).
Consider the composition US'P: Lo(Lg @ @) > Ly(X). Here S7! is the inverse of
S: Lp(C.w) = R(8). Then US'IPST1f= UTf = f for f € Ly(X) since R(T|) C Ly(C,p).

Furthermore both US™'P and ST, are diagonal. For USIP note that supp Pf C
supp f and supp S’le - o'l(supp f). The construction of U then yields the
conclusion.

In order to show that ST is diagonal it suffices to show that each SnTl is
diagonal. We shall demonstrate the case n=0. Let f& LO(X) and let supp f=A,
supp T{f=B and supp ST f= Al‘ Then A C supp dg N {s: w(t;p(s,t) €EB) > 0}.
Thus to show )\(AI\A) =0 we calculate:

i) I\Arbo(S)ﬂ(t: p(s,t) € BYdA(s) < (vg X (eI B N (1\A) X M)

= (B N lMA) NG)
=0.

Here we use the fact that (vg X m)(D) = u((0 X T)'lD) which follows from Lemma 2.3,
and the definition of vj. Let
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UsIPf(s) = I (f(s)) a.e.

ST f(s) = Hy(f(s)) a.e.,
where Ig LO(M,vr) ® w—>Xand H: X~ LO(M,1r) ® (v are continuous linear operators.
Then for all f € LO(X)
JSHSf(s) =1(s) a.e.
Since X is separable there is an s €1 so that
JHx=x xeX
Thus X is isomorphic to a complemented subspace Y of Ly © w.

Let P be a projection on Y. Then P(gh) = (Pl 12+ Plzh,Pzzh) where Pyq:
Lo =Ly, P12t w = Lgand Pyy: w ~ w are continuous operators; we use the fact that
any operator from L to w is zero.

Here Pl 1 and P22 are projections and the map (g,h) »> (PI lg’P22h) maps Y
isomorphically onto Py I(LO) ® Py5(w). The inverse map sends (g,h) to (g + P1ohh),
and Pl 1P12h = 0 since (Plzh,h) €Y. Now Pl 1(L0) = LO or {0} [1] and Pzz(w) =w
or is finite-dimensional.

We have thus proved Theorem 1.2.
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