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Abstract. We consider order and type properties of Marcinkiewicz and Lorentz
function spaces. We show that if 0 < p < 1, a p-normable quasi-Banach space is natural
(i.e. embeds into a q-convex quasi-Banach lattice for some q > 0) if and only if it is
finitely representable in the space Lp,∞. We also show in particular that the weak
Lorentz space L1,∞ do not have type 1, while a non-normable Lorentz space L1,p has
type 1. We present also criteria for upper r-estimate and r-convexity of Marcinkiewicz
spaces.
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1. Introduction. In this note we study the order convexity and type of
Marcinkiewicz and Lorentz function spaces. The space weak Lp or Lp,∞ is well-known
to be p-normable if 0 < p < 1, but is q-convex as a lattice when 0 < q < p (see [4] and
[5]). We prove that a p-normable quasi-Banach space X embeds into a p-normable
quasi-Banach lattice which is r-convex for some r > 0 (i.e. X is natural) if and only if
X is finitely representable in Lp,∞(0, 1).

We then consider more general Lorentz and Marcinkiewicz spaces. In [6] it was
proved that if a quasi-Banach space (X, ‖·‖) has type 0 < p < 1, then ‖·‖ is a p-norm,
and if X has type p > 1 then X is normable. It was also shown that there exist quasi-
Banach spaces that have type 1, but they are not normable. In this note we show that
Marcinkiewicz spaces have type 1 if and only if they are 1-convex (that is normable),
while the class of Lorentz spaces with type 1 coincides to the class of those spaces
satisfying an upper 1-estimate. In consequence, there exist Lorentz spaces with type 1
that are not normable.

Let us start with basic definitions and notation. Let �, �+ and � denote the sets of
all real, nonnegative real and natural numbers, respectively. Let rn : [0, 1] → �, n ∈ �,
be Rademacher functions, that is rn(t) = sign (sin 2nπ t). A quasi-Banach space X has
type 0 < p ≤ 2 if there is a constant K > 0 such that, for any choice of finitely many
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vectors x1, . . . , xn from X ,

∫ 1

0

∥∥∥∥∥
n∑

k=1

rk(t)xk

∥∥∥∥∥dt ≤ K

(
n∑

k=1

‖xk‖p

)1/p

,

and it has cotype q ≥ 2 if there is a constant K > 0 such that for any finite collection
of elements x1, . . . , xn from X ,

(
n∑

k=1

‖xk‖q

)1/q

≤ K
∫ 1

0

∥∥∥∥∥
n∑

k=1

rk(t)xk

∥∥∥∥∥dt.

Recall also that a quasi-norm ‖·‖ in X is a p-norm, 0 < p < 1, if there exists C > 0
such that for any xi ∈ X, i = 1, . . . , n

‖x1 + · · · + xn‖ ≤ C(‖x1‖p + · · · + ‖xn‖p)1/p.

By the Aoki-Rolewicz theorem [9], for any quasi-norm ‖·‖ there exists 0 < p < 1 such
that ‖·‖ is a p-norm. We say that a quasi-Banach space (X, ‖·‖) is normable whenever
there exists a norm |||·||| in X such that C−1‖x‖ ≤ |||x||| ≤ C‖x‖ for all x ∈ X and some
C > 0.

A quasi-Banach lattice X = (X, ‖·‖) is said to be p-convex, 0 < p < ∞, respectively
p-concave, 0 < p < ∞, if there are positive constants C(p) and C(p) such that

∥∥∥∥∥
(

n∑
i=1

|xi|p
)1/p∥∥∥∥∥ ≤ C(p)

(
n∑

i=1

‖xi‖p

)1/p

,

respectively,

(
n∑

i=1

‖xi‖p

)1/p

≤ C(p)

∥∥∥∥∥
(

n∑
i=1

|xi|p
)1/p∥∥∥∥∥,

for every choice of vectors x1, . . . , xn ∈ X. We also say that X satisfies an upper p-
estimate, 0 < p < ∞, respectively a lower p-estimate, 0 < p < ∞, if the definition of
p-convexity, respectively p-concavity, holds true for any choice of disjointly supported
elements x1, . . . , xn in X ([6, 14]). We notice here that a quasi-Banach lattice is
normable if and only if it is 1-convex. However, while a p-normable quasi-Banach
lattice necessarily has an upper p-estimate, it may fail to be q-convex for any choice
of q > 0. Motivated by this, the first author [8] defined a quasi-Banach space X to be
natural if it is isomorphic to a subspace of a quasi-Banach lattice which is q-convex for
some q > 0.

Let us recall that a quasi-Banach space X is said to be (crudely) finitely representable
in a quasi-Banach space Y if there is a constant C so that for every ε > 0 and every
finite-dimensional subspace F of X there is a finite-dimensional subspace G of Y and
an isomorphism T : F → G such that ‖T‖‖T−1‖ < C + ε. If C = 1 we say that X is
finitely representable in Y .

A function U : I → �+, where I = [0, 1] or I = [0,∞), is said to be pseudo-
increasing (resp. pseudo-decreasing) whenever there exists C > 0 such that U(s) ≤
CU(t) (resp. U(s) ≥ CU(t)) for all 0 ≤ s < t. We say that the expressions A and B are
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equivalent, whenever A/B is bounded above and below by positive constants. Given a
function U : I → �+, we define the lower and upper Matuszewska-Orlicz indices [13, 14]
as follows:

α(U) = sup{p ∈ � : U(as) ≤ C apU(s) for some C > 0 and all s ∈ I , 0 < a ≤ 1},
β(U) = inf{p ∈ � : U(as) ≤ C apU(s) for some C > 0 and all as ∈ I, a ≥ 1}.

If U and V are equivalent, then their corresponding indices coincide.
If f is a real-valued measurable function on I , then we define the distribution

function of f by df (θ ) = λ{| f | > θ} for each θ ≥ 0, where λ denotes the Lebesgue
measure on I . The non-increasing rearrangement of f is defined by

f ∗(t) = inf{s > 0 : df (s) ≤ t}, t ∈ I.

A positive, Lebesgue measurable function w : I → (0,∞) is called a weight function
whenever

W (t) :=
∫ t

0
w(s) ds =

∫ t

0
w < ∞,

for all t ∈ I . We shall always assume here that W satisfies condition �2, that is for some
K > 0 and all t ∈ I ,

W (t) ≤ KW (t/2).

Given a weight w, the Marcinkiewicz space Mp,w, 0 < p < ∞, also called the weak
Lorentz space, is the set of all Lebesgue measurable functions f : I → � such that

‖ f ‖M := sup
t

W 1/p(t) f ∗(t) = sup
t

W 1/p(df (t)) t < ∞.

The functional ‖·‖M is a quasi-norm and (Mp,w, ‖·‖M) is a quasi-Banach space. In the
case when W (t) = t, we will denote it by Lp,∞. As usual Lp,∞(0, 1) or Lp,∞(0,∞) will
denote the spaces on [0, 1] or [0,∞), respectively. Recall also that the Marcinkiewicz
sequence space �p,∞, 0 < p < ∞, consists of all sequences x = (αn) ⊂ c0 such that
‖x‖p,∞ = supn{n1/pα∗

n} < ∞, where {α∗
n} is a decreasing permutation of {αn}. It is well-

known that Lp,∞ or �p,∞ is q-convex whenever 0 < q < p [4], but is not p-convex.
Given a weight function w with

∫ ∞
0 w = ∞ if I = [0,∞), recall that the Lorentz

space 	p,w, 0 < p < ∞, consists of all real-valued Lebesgue measurable functions f
on I such that

‖ f ‖	 :=
(∫

I
f ∗pw

)1/p

< ∞.

It is well known that (	p,w, ‖·‖	) is a quasi-Banach space [3, 11].
Observe that the condition �2 imposed on W is necessary in the context of this

paper. In fact for W positive on (0,∞), the spaces Mp,w or 	p,w are linear if and only
if W satisfies condition �2 ([2]). It is also not difficult to verify that the �2-condition
of W is necessary and sufficient for ‖·‖M or ‖·‖	 to be a quasi-norm (cf. [11, 18]).
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2. Finite representability in Lp,∞.

PROPOSITION 2.1. Suppose that 0 < p ≤ 1 and that F is a finite-dimensional subspace
of Lp,∞(0,∞). Then, given ε > 0, there exists a measurable subset B of (0,∞) of finite
measure so that:

‖ f χB‖p,∞ > (1 − ε)‖ f ‖p,∞, f ∈ F

and so for a suitable constant K = K(F, ε) we have

‖ f χB‖∞ ≤ K‖ f ‖p,∞, f ∈ F.

Proof. Fix δ > 0 so small that (1 − 2δ)(1 − 2δp)1/p > 1 − ε. Let { f1, . . . , fn} be a
δ2–net for the set { f ∈ F : ‖ f ‖p,∞ = 1}. For each 1 ≤ k ≤ n there exists tk so that

f ∗
k (tk) ≥ (1 − δ)t−1/p

k .

Let h = max1≤k≤n | fk| so that

‖h‖p,∞ ≤ sup
t

t1/p

(
n∑

k=1

| fk|(t)
)∗

≤ sup
t

t1/p
n∑

k=1

f ∗
k (t/n) ≤ n1/p.

Choose M so large that M > n1/pδ−1t−1/p
k for 1 ≤ k ≤ n and 1

M < (1 − δ)t−1/p
k

for 1 ≤ k ≤ n. Now let B = {s : M−1 ≤ h(s) ≤ M}. B is clearly of finite measure.
Furthermore if f ∈ F with ‖ f ‖p,∞ = 1 then f can be expressed as a series

∑∞
k=0 αkfj(k)

where |αk| ≤ δ2k. Hence ‖ f χB‖∞ ≤ (1 − δ2)−1M. Thus the second condition is fulfilled.
Now if ‖ f ‖p,∞ = 1 choose fk so that ‖ f − fk‖p,∞ ≤ δ2. Then the set D = {s :

| fk(s)| ≥ (1 − δ)t−1/p
k } has measure at least tk. Clearly h(t) ≥ | fk(t)| ≥ (1 − δ)t−1/p

k ≥ 1
M

for t ∈ D. Hence if t ∈ D\B then h(t) > M and so n1/p ≥ ‖h‖p,∞ ≥ λ{|h| > M}1/pM ≥
λ(D\B)1/pM, which yields that λ(D\B) ≤ M−pn ≤ δptk. Thus λ(D ∩ B) ≥ (1 − δp)tk.

In view of the choice of fk we have λ{| f − fk| > δt−1/p
k } < δ2pδ−ptk = δptk. Now, if

| f (t) − fk(t)| ≤ δt−1/p
k and | fk(t)| ≥ (1 − δ)t−1/p

k then | f (t)| ≥ (1 − 2δ)t−1/p
k and so

λ
{| f χB| ≥ (1 − 2δ)t−1/p

k

} ≥ λ
{| f − fk| ≤ δt−1/p

k

} ∩ B ∩ D ≥ (1 − 2δp)tk.

Thus

‖ f χB‖p,∞ ≥ (1 − 2δ)(1 − 2δp)1/p. �
PROPOSITION 2.2. Suppose that 0 < p ≤ 1. The space �∞(Lp,∞(0,∞)) is finitely

representable in Lp,∞(0, 1).

Proof. It is enough to prove that if F is a finite-dimensional subspace of Lp,∞(0,∞)
and n ∈ � then for any ε > 0, �n

∞(F) (1 + ε)-embeds into Lp,∞(0, 1). By Proposition
2.1 we can find a constant K and an embedding T : F → Lp,∞(0, 1) such that

� ‖T‖ ≤ 1,
� ‖Tf ‖p,∞ ≥ (1 − ε)‖ f ‖p,∞ f ∈ F and
� ‖Tf ‖∞ ≤ K‖ f ‖p,∞ f ∈ F.

Pick δ > 0 so that (1 − δ)−1 < (1 + ε)p. Let a1 > a2 > · · · > an > 0 be chosen so
that

∑n
j=1 aj < 1 and aj+1 < K−pδaj for j = 1, 2, . . . , n − 1. Now for j = 1, 2, . . . , n let
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Bj be disjoint Borel subsets of (0, 1) of measure aj. For each j there is an embedding
Tj : F → Lp,∞(Bj) = {f χBj : f ∈ Lp,∞(0,∞)} with

� ‖Tj‖ ≤ 1,
� ‖Tj f ‖p,∞ ≥ (1 − ε)‖ f ‖p,∞ f ∈ F and
� ‖Tj f ‖∞ ≤ Ka−1/p

j ‖ f ‖p,∞ f ∈ F.

Here (T1, . . . , Tn) are obtained by dilating and translating the embedding T. Now if
f1, . . . , fn ∈ F with maxj ‖ fj‖p,∞ = 1 we have

λ

(∣∣∣∣∣
n∑

j=1

Tj fj

∣∣∣∣∣ > r

)
=

n∑
j=1

λ(|Tj fj| > r)

=
∑

aj≤Kpr−p

λ(|Tj fj| > r)

≤
∑

aj≤Kpr−p

min(aj, r−p).

Assuming this sum is nonempty let k be the first index such that ak ≤ Kpr−p. Then we
may estimate it by

r−p +
∑

k<j≤n

aj ≤ r−p + Kpr−p
∞∑

j=1

(K−pδ)j < (1 + ε)pr−p.

It follows that the map ( f1, . . . , fn) → ∑n
j=1 Tj fj defines the required (1 + ε)-embedding

of �n
∞(F) into Lp,∞(0, 1). �
PROPOSITION 2.3. The spaces �1,∞ and L1,∞(0, 1) are not of type 1.

Proof. It suffices to show that L1,∞(0, 1) is not of type 1. It is well-known that
L1,∞(0, 1) is not normable and indeed that for some constant c > 0, there exist (see
e.g. [17]) non-negative functions f1, . . . , fn ∈ L1,∞(0, 1) with ‖ fj‖1,∞ = 1 and

‖ f1 + · · · + fn‖1,∞ ≥ cn log n.

Let F be a subspace spanned by { f1, . . . , fn} and let N = 2n. We consider the space
�N

∞(F) with co-ordinates indexed by all n-tuples (η1, . . . , ηn) where ηj = ±1. Define
φj ∈ �N

∞(F) by the coordinates φj(η1, . . . , ηn) = ηj fj for j = 1, . . . , n. Then for every
choice of sign εj = ±1 we have

‖ε1φ1 + · · · + εnφn‖ = ‖ f1 + · · · + fn‖1,∞.

Since �N
∞(F) embeds almost isometrically into L1,∞(0, 1) this space fails to have

type 1. �
We conclude this section with a characterization of natural spaces. The technique

is rather similar to that of [10], Theorem 4.2. Recall that the weak Lorentz space
Lp,∞(�,µ) over arbitrary measure space (�,µ) consists of all µ-measurable real valued
functions f such that ‖ f ‖p,∞ = supt≥0 µ{| f | > t}1/pt < ∞.

THEOREM 2.4. Suppose that 0 < p < 1 and that X is a p-normable quasi-Banach
space. The following conditions on X are equivalent:

(1) X is natural.
(2) X is (crudely) finitely representable in Lp,∞(0, 1).
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(3) There exists a constant C with the property that given x ∈ X there exists a compact
Hausdorff space �, a probability measure µ on � and an operator T : X → Lp,∞(�,µ)
such that ‖T‖ ≤ 1 and ‖x‖ ≤ C‖Tx‖.

(4) For some (respectively, every) 0 < δ < 1 there is a constant C = C(δ) so that
x1, . . . , xn ∈ X and y ∈ X is such that y ∈ co{±xk : k ∈ A} whenever A ⊂ {1, 2, . . . , n}
and |A| > nδ then ‖y‖ ≤ C max1≤k≤n ‖xk‖.

Proof. (1) =⇒ (4): It is enough to show that if X is a quasi-Banach lattice which is
r-convex for some r > 0 then (4) holds for X for every choice of δ. Let us therefore fix
δ > 0. Thus we may assume an estimate∥∥∥∥∥

(
m∑

j=1

|vj|r
)1/r∥∥∥∥∥ ≤ M

(
m∑

j=1

‖vj‖r

)1/r

v1, . . . , vm ∈ X.

Now assume x1, . . . , xn, y given as in the statement of (4). Then we may represent the
ideal Z generated by the order-interval [−|y|, |y|] as an abstract M-space in the sense
of Kakutani if we take [−|y|, |y|] as the unit ball. It thus may be identified with a space
C(�) in such a way that |y(s)| = 1 for all s ∈ �. Let uk = |xk| ∧ |y| so that uk can be
identified with a continuous function on �. Fix any s ∈ � and let A = {k : uk(s) < 1}.
Then it is clear that y /∈ co {±xk : k ∈ A} and so by hypothesis (4), we have |A| ≤ nδ.

Thus |{k : uk(s) ≥ 1}| ≥ n(1 − δ).
Thus (

n∑
j=1

|uj|r
)1/r

≥ n1/r(1 − δ)1/r|y|,

and so

n1/r(1 − δ)1/r‖y‖ ≤ Mn1/r max
1≤k≤n

‖xk‖,

i.e.

‖y‖ ≤ M(1 − δ)−1/r max
1≤k≤n

‖xk‖.

This establishes (4) with C(δ) = M(1 − δ)−1/r.

(4) =⇒ (3): This is an argument based on Nikishin’s theorem [16]. We assume
(4) holds for constants C and 0 < δ < 1. Let (gn)∞n=1 be a sequence of independent
normalized Gaussians defined on a probability space (�′, �). Let cp = �|g1|p and
choose θ > 0 so that (2C)pcpθ

p < 1
4 . Then pick M so that

�{|g1| > σθ−1M−1} >
1 + 1

4δ

1 + 1
2δ

,

where σ = 1 + 1
2δ.

Fix u ∈ X with ‖u‖ = 1 and then let �0 be the subset of the algebraic dual X# of
all x# such that x#(u) = 1. Let � be the Stone-Cech compactification of �0 endowed
with the weak∗ topology induced by X. Let Ĉ(�) be the continuous functions on �

with values in the two-point compactification [−∞,∞] of �. We then define a map
S : X → Ĉ(�) by letting Sx be the extension of the continuous map x̂ : �0 → � given
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by x̂(x#) = x#(x). Note that S has the following linearity property:

S

(
n∑

k=1

αkxk

)
(ω) =

n∑
k=1

αkSxk(ω) if max
1≤k≤n

|Sxk(ω)| < ∞, ω ∈ �.

Now consider in C(�) (the space of continuous real-valued functions on �) the
convex hull K of the set of functions 1 − min(σ, |Sx|) for ‖x‖ ≤ 1

2 C−1. We claim that
K does not meet the open negative cone of all f ∈ C(�) such that f < 0 everywhere.
Indeed if it does there exist x1, . . . , xn with ‖xk‖ < 1

2 C−1 such that

1
n

n∑
k=1

(1 − min(σ, |Sxk(ω)|)) < 0 ω ∈ �.

However by assumption there exists A ⊂ {1, 2, . . . , n} with |A| > nδ such that u /∈
co {±2xk : k ∈ A}. In particular there exists x# ∈ �0 with |x#(2xk)| < 1 for k ∈ A.

Thus

n∑
k=1

(1 − min(σ, |Sxk(x#)|)) ≥ 1
2
|A| + (1 − σ )(n − |A|)

=
(

σ − 1
2

)
|A| − n(σ − 1)

≥ 1
2
δ2n.

This gives a contradiction. Thus K does not meet the open negative cone and by the
Hahn-Banach theorem, we can find a probability measure µ on � such that∫

(1 − min(σ, |Sx(ω)|)dµ ≥ 0, ‖x‖ ≤ 1
2

C−1.

Next we inductively construct a sequence (En)∞n=1 of disjoint Borel subsets of � and
a sequence xn ∈ X with ‖xn‖ ≤ 1. Let F0 = ∅ and Fn = E1 ∪ · · · ∪ En. Then if (Ek)k<n

have been selected let bn be the supremum of all t such that there exists a Borel set A
with µ(A) = t disjoint from Fn−1 and x ∈ X with ‖x‖ ≤ 1 such that |Sx| ≥ Mµ(A)−1/p

on A. If no such t exists we set bn = 0. Then select Ek with µ(En) = an > 1
2 bn and xn

with ‖xn‖ ≤ 1 such that |Sxk| ≥ Ma−1/p
n on En. If bn = 0 we put En = ∅ and xn = 0.

For fixed n we consider ξ (ω′) = θ
∑n

k=1 gk(ω′)a1/p
k xk. Then by p-normability of X

‖ξ (ω′)‖p ≤ θp
n∑

k=1

ak|gk(ω′)|p,

and so

�‖ξ‖p ≤ cpθ
p.

It follows that

�{‖ξ‖ ≥ (2C)−1} ≤ (2C)pcpθ
p <

1
4
,

and hence

�

∫
min(σ, |Sξ |)dµ < 1 + 1

4
(σ − 1) = 1 + 1

8
δ.
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Now fix ω ∈ �. If max1≤k≤n |Sxk(ω)| = ∞ then θ
∑n

k=1 gkSxk(ω) is finite only
on a set of probability zero (when (g1, g2, . . . , gn) belongs to a certain proper linear
subspace of �n). If ω ∈ Fn and max |Sxk(ω)| < ∞ then Sξ (ω) is gaussian with variance
θ2 ∑n

k=1 a2/p
k |Sxk(ω)|2 ≥ M2θ2. Hence

�{|Sξ (ω)| > σ } ≥ �{|g1| > σθ−1M−1}.

Thus if ω ∈ Fn, in view of the choice of M, θ and σ

� min(σ, |Sξ (ω)|) ≥ 1 + 1
4
δ.

Hence (
1 + 1

4
δ

)
µ(Fn) ≤ 1 + 1

8
δ.

We conclude that µ(Fn) ≤ 1 − δ
16 .

Let B = �\ ∪∞
k=1 Ek. Then µ(B) ≥ δ/16. It is clear that for any x ∈ X , |Sx(ω)| <

∞ µ−a.e. on B and further if ‖x‖ = 1 then ‖SxχB‖p,∞ ≤ M. Hence the linear
map T0 : X → Lp,∞(�,µ) defined as T0x = SxχB is bounded with norm M and
‖T0u‖p,∞ ≥ (δ/16)1/p. Letting T = M−1T0 we obtain the implication (4) implies (3)
for an appropriate constant.

(3) =⇒ (2): Clearly (3) implies that X is isomorphic to a subspace of an �∞–
product of spaces of the type Lp,∞(µ) and this means it is crudely finitely representable
in �∞(Lp,∞(0,∞)) and so Proposition 2.2 gives the conclusion.

(2) =⇒ (1): From (2) we conclude that X embeds into an ultraproduct of spaces
Lp,∞(0,∞) and this is easily seen to be a q-convex quasi-Banach lattice for any 0 <

q < p. (Ultraproducts of quasi-Banach spaces were apparently first considered in [19];
the theory is very similar to that of ultraproducts of Banach spaces). �

3. Marcinkiewicz and Lorentz spaces. In the next theorem we characterize an
upper-estimate of Mp,w.

THEOREM 3.1. For any 0 < p, r < ∞, Mp,w satisfies an upper r-estimate if and only
if W r/p(t)/t is pseudo-decreasing.

Proof. Since Mpr,w, 0 < r < ∞, is the r-convexification of Mp,w, it is enough to
conduct the proof only for r = 1. Suppose that W 1/p(t)/t is pseudo-decreasing. Then
there exists a concave function equivalent to W 1/p (cf. Proposition 5.10 in [1]), so
without loss of generality we assume that W 1/p is concave. Consequently, for any
disjoint fi ∈ Mp,w, i = 1, . . . , n,

∥∥∥∥∥
n∑

i=1

fi

∥∥∥∥∥
M

= sup
t

W 1/p(d∑n
i=1 fi (t))t = sup

t
W 1/p

(
n∑

i=1

dfi (t)

)
t

≤
n∑

i=1

sup
t

W 1/p(dfi (t))t =
n∑

i=1

‖ fi‖M,
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which shows that Mp,w has an upper 1-estimate. Conversely, assume Mp,w has an upper
1-estimate, and take for 0 < s < t, n = [t/s],

fi = χ( (i−1)t
2n , it

2n ], i = 1, . . . , 2n.

Then f ∗
i = χ(0,t/2n] and ‖ fi‖M = W 1/p(t/2n). Consequently

∥∥∥∥∥
2n∑

i=1

fi

∥∥∥∥∥
M

= W 1/p(t) ≤ C
2n∑

i=1

‖ fi‖M = C
2n∑

i=1

W 1/p(t/2n)

= C2nW 1/p(t/2n) ≤ C2(t/s)W 1/p(s),

whence W 1/p(t)/t ≤ 2CW 1/p(s)/s. �
REMARK 3.2. The space Mp,w is not order continuous, and so it contains an order

copy of �∞ [12]. Hence it does not have any finite lower estimate neither a type r for
r > 1.

Recall that the lower and upper Boyd indices of a rearrangement invariant quasi-
Banach space X on I are defined as follows:

p(E) = sup{p > 0 : there exists C > 0, ‖Ds‖ ≤ Cs1/p for all s > 1},
q(E) = inf{q > 0 : there exists C > 0, ‖Ds‖ ≤ Cs1/q for all 0 < s < 1},

where Ds : X → X, s > 0, is the dilation operator defined as Ds f (t) = f (t/s) if t ∈
[0,∞) and if I = [0, 1] then Ds f (t) = f (t/s) for t ≤ min(1, s) and Ds f (t) = 0 for s <

t ≤ 1 [13, 14, 15].

THEOREM 3.3. For any 0 < p < ∞, the Boyd indices of Mp,w are the following

p(Mp,w) = p/β(W ), q(Mp,w) = p/α(W ).

Proof. Let I = [0,∞). For s > 1,

‖Ds f ‖M = sup
t

W (t)1/pf ∗(t/s) = sup
u

W (su)1/pf ∗(u),

and for r > β(W ), W (su) ≤ CsrW (u). Hence

‖Ds f ‖M ≤ C sup
u

sr/pW (u)1/pf ∗(u) = Csr/p‖ f ‖M,

which yields that p(Mp,w) = p/β(W ). Analogously we obtain a formula for the upper
index as well as for I = [0, 1]. �

The next result is well known [17], but we provide the proof here for the sake of
completeness.

LEMMA 3.4. Let V : �+ → �+, V (0) = 0 and let V be concave. If β(V ) = 1, then
there exists a sequence (tn) of positive numbers such that for every 0 ≤ a ≤ 1

lim
n→∞

V (atn)
V (tn)

= a.
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Proof. Since β(V ) = 1, for all q < 1

inf
t>0,

0<a<1

V (at)
aqV (t)

= 0.

Then, setting U(t) = V (t)
t , U is decreasing and for all 0 < ε < 1

inf
t>0,

0<a<1

aεU(at)
U(t)

= 0.

It follows that for every δ > 0

inf
t>0

U(δt)
U(t)

≤ 1.

Indeed, if the above condition does not hold then there exists δ > 0 such that

θ := inf
t>0

U(δt)
U(t)

> 1.

Hence δ < 1 and setting ε = − log θ/ log δ, δnε = θ−n for every n ∈ �. For any 0 < a <

1 there exists n ∈ � ∪ {0} such that δn+1 ≤ a < δn. Thus for any t > 0 it holds

aεU(at)
U(t)

≥ (δn+1)εU(δnt)
U(t)

= θ−nδ
U(δnt)

U(δn−1t)
· · · · · U(δt)

U(t)
≥ θ−nδθn = δ > 0,

which is a contradiction. Therefore for every δ = 1/n, n ∈ �, there exists tn such that

1 ≤ U
( 1

n tn
)

U(tn)
< 1 + 1

n
,

which implies that

1 ≤ U(atn)
U(tn)

≤ 1 + 1
n

for 0 < a < 1 and sufficiently large n ∈ �. Therefore U(atn)
U(tn) → 1, and hence for all

0 < a < 1, V (atn)
V (tn) → a as n → ∞. �

THEOREM 3.5. If Mp,w, 0 < p < ∞, satisfies an upper 1-estimate and β(W ) ≥ p,
then L1,∞(0, 1) is finitely representable in Mp,w (i.e. Mp,w contains uniformly copies of
�n

1,∞). In particular, Mp,w does not have type 1.

Proof. We give the proof only for I = [0,∞). By Theorem 3.1, W 1/p(t)/t is pseudo-
decreasing. Then W 1/p is equivalent to a concave function V (cf. Proposition 5.10 in
[1]), that is

C−1V (t) ≤ W 1/p(t) ≤ CV (t)
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for some C > 0 and all t > 0. Since β(W ) ≥ p, so β(W 1/p) = β(V ) ≥ 1. Then by
Lemma 3.4, there exists a sequence (bj) ⊂ (0,∞) such that

lim
j→∞

V (tbj)
V (bj)

= t, t ∈ [0, 1].

Letting

f (n)
i,j = n

W 1/p(bj)
Dbj χ[ i−1

n , i
n ), i = 1 . . . , n, j ∈ �,

for any x = (αi)n
i=1 in n-dimensional vector space define a linear operator Tj as

Tjx =
n∑

i=1

αif
(n)
i,j .

Then setting

f (t) =
n∑

i=1

nαiχ[ i−1
n , i

n )(t), t > 0,

we have for (α∗
i )n

i=1, a decreasing permutation of (αi)n
i=1, and for all j ∈ �,

‖Tjx‖M = sup
t

W 1/p(t)

(
n∑

i=1

αif
(n)
i,j (t)

)∗
= sup

t
W 1/p(t)(W−1/p(bj)Dbj f (t))∗

= sup
t

W 1/p(bjt)
W 1/p(bj)

f ∗(t) = max
i=1,...,n

{
nα∗

i
W 1/p(bji/n)

W 1/p(bj)

}
.

Hence for every x = (αi)n
i=1 we have

C−1‖x‖1,∞ ≤ lim inf
j

‖Tjx‖M ≤ lim sup
j

‖Tjx‖M

≤ C lim sup
j

max
i=1,...,n

{
nα∗

i
V (bji/n)

V (bj)

}
= C‖x‖1,∞.

Notice also that for all x ∈ �n
1,∞, j ∈ �,

‖Tjx‖M ≤ nC2 max
i=1,...,n

{iα∗
i } = nC2‖x‖1,∞.

Recall now that since ‖·‖M is a quasi-norm, by the Aoki-Rolewicz theorem [9], there
exists 0 < r < 1 such that ‖·‖M is r-norm. Letting

|||g|||rM = inf

{
m∑

i=1

‖gi‖r
M : g =

m∑
i=1

gi

}
,

we get for some D > 0 and all g ∈ Mp,w

|||g|||rM ≤ ‖g‖r
M ≤ D |||g|||rM ,
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and |||g1 + g2|||rM ≤ |||g1|||rM + |||g2|||rM for all g1, g2 ∈ Mp,w. Clearly, | |||g1|||rM − |||g2|||rM| ≤
|||g1 − g2|||rM . Therefore for every x ∈ �n

1,∞,

|||Tjx|||rM ≤ ‖Tjx‖r
M ≤ C2rnr‖x‖r

1,∞,

and for every x, y ∈ �n
1,∞,

| |||Tjx|||rM − |||Tjy|||rM| ≤ |||Tjx − Tjy|||rM ≤ C2rnr‖x − y‖r
1,∞.

Thus the family (|||Tjx|||rM) is equi-continuous and uniformly bounded on the unit
ball B�n

1,∞ , and so by the Arzeli-Ascoli theorem it is compact in the space C(B�n
1,∞).

Thus there exists a subsequence (jk) ⊂ � such that limk |||Tjk x|||rM ∈ C(B�n
1,∞). Hence for

arbitrary small ε > 0 and every n ∈ � there exists j(n) ∈ � such that for all x ∈ �n
1,∞,

lim
k

∣∣∣∣∣∣Tjk x
∣∣∣∣∣∣r

M − ε ≤ ∣∣∣∣∣∣Tj(n)x
∣∣∣∣∣∣r

M ≤ lim
k

∣∣∣∣∣∣Tjk x
∣∣∣∣∣∣r

M + ε.

Thus for any x ∈ B�n
1,∞ ,

∥∥Tj(n)x
∥∥r

M ≤ D
∣∣∣∣∣∣Tj(n)x

∣∣∣∣∣∣r
M ≤ D lim

k

∣∣∣∣∣∣Tjk x
∣∣∣∣∣∣r

M + Dε

≤ D lim sup
j

‖Tjx‖r
M + Dε ≤ DCr‖x‖r

1,∞ + Dε,

and ∥∥Tj(n)x
∥∥r

M ≥ ∣∣∣∣∣∣Tj(n)x
∣∣∣∣∣∣r

M ≥ lim
k

∣∣∣∣∣∣Tjk x
∣∣∣∣∣∣r

M − ε

≥ D−1 lim inf
j

‖Tjx‖r
M − ε ≥ D−1C−r‖x‖r

1,∞ − ε.

It is clear now that there exists A > 0 such that for all n ∈ � and x ∈ �n
1,∞ it holds

A−1‖x‖1,∞ ≤ ∥∥Tj(n)x
∥∥

M ≤ A‖x‖1,∞.

This shows that Mp,w contains uniformly copies of �n
1,∞. �

THEOREM 3.6. Let 0 < p < ∞. The following conditions are equivalent.
(1) The Hardy operator

H(1)f (t) = 1
t

∫ t

0
f ∗(s)ds 0 < t ∈ I,

is bounded in Mp,w.
(2) β(W ) < p.

(3) There exists C > 0 such that∫ t

0
W−1/p ≤ Ct/W 1/p(t) 0 < t ∈ I.

Proof. Theorem 2 in [15] states that H(1) is bounded in r.i. quasi-Banach space
X if and only if p(X) > 1. Hence in view of Theorem 3.3 we immediately obtain
the equivalence of (1) and (2). In order to show that (1) is equivalent to (3), notice
that f ∈ Mp,w if and only if for every s ∈ I, f ∗(s) ≤ CW−1/p(s). Hence H(1)f ∈ Mp,w
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is equivalent to inequality H(1)f (t) ≤ CW−1/p(t), that is to
∫ t

0 W−1/p ≤ Ct/W 1/p(t) for
all 0 < t ∈ I . �

In the next theorem we characterize the Marcinkiewicz spaces that have type 1.

THEOREM 3.7. Let 0 < p < ∞. The following conditions are equivalent.
(1) Mp,w is 1-convex, that is the space is normable.
(2) Mp,w has type 1.
(3) β(W ) < p.

Proof. It is obvious that condition (1) implies (2). Now, if we assume that Mp,w has
type 1 and β(W ) ≥ p then Mp,w satisfies an upper 1-estimate and so by Theorem 3.5 it
contains copies of �n

1,∞ uniformly. Thus Mp,w can not have type 1, and this contradiction
proves the implication from (2) to (3). If (3) is satisfied, that is β(W ) < p, then by
Theorem 3.6, the Hardy operator H(1) is bounded in Mp,w. Then ‖H(1)f ‖M is equivalent
to the original quasi-norm in Mp,w. Moreover, ‖H(1)f ‖M is a norm on Mp,w since it
satisfies the triangle inequality in view of the subadditivity of the operator H(1). Thus
we showed that (1) holds, and the proof is completed. �

REMARK 3.8. By Theorem 3.6 we see that the condition β(W ) < p is equivalent
to the integral inequality (3). It is well known (cf. Theorem A in [11] and references
there) that “β(W ) < p” is also equivalent to another integral inequality, namely the
Bp-condition [18], that is for all t ∈ I\{0} and some C > 0∫ ∞

t
s−pw(s) ds ≤ Ct−p

∫ t

0
w.

Soria (Theorem 3.1 in [20]) proved that Mp,w is normable if and only if w satisfies the
Bp-condition.

For any 0 < r < ∞, the r-convexification of Mp,w is Mpr,w. Hence we get the
following corollary.

COROLLARY 3.9. For any 0 < p, r < ∞, the space Mp,w is r-convex if and only if
β(W ) < p/r.

REMARK 3.10. As a simple conclusion we also have that Mp,w is L-convex (for
definition of L-convexity see [7]).

COROLLARY 3.11. Let 0 < p < ∞ and 0 < r < 1. Then the following conditions are
equivalent.

(1) Mp,w has type r.
(2) The quasi-norm ‖·‖M in Mp,w is equivalent to an r-norm.
(3) W r/p(t)/t is pseudo-decreasing.

Proof. The equivalence of (1) and (2) is a result of Theorem 4.2 in [6]. By the
Kalton’s result (Theorem 2.3 (ii) in [7]) it follows also that for 0 < r < 1, if a quasi-
normed space (X, ‖·‖) is L-convex, then ‖·‖ is an r-norm if X satisfies an upper r-
estimate. This and Theorem 3.1 provide the equivalence of the last two conditions. �

We end the paper with conditions on when type 1 and upper 1-estimate are
equivalent in quasi-Banach lattices. We then illustrate the obtained result in Lorentz
spaces, providing examples of Lorentz spaces with type 1 that are not normable.



136 NIGEL J. KALTON AND ANNA KAMIŃSKA

THEOREM 3.12. Let X be a quasi-Banach lattice that is r-convex and q-concave for
some 0 < r < q < ∞. Then X has type 1 if and only if it satisfies an upper 1-estimate.

Proof. By the Khintchine’s inequality for scalars [14], for any 0 < s < ∞, and
xi ∈ X, i = 1, . . . , n, we have for some As, Bs > 0,

As

(
n∑

i=1

|xi|2
)1/2

≤
(∫ 1

0

∣∣∣∣∣
n∑

i=1

ri(t)xi

∣∣∣∣∣
s

dt

)1/s

≤ Bs

(
n∑

i=1

|xi|2
)1/2

.

Then by the monotonicity of the quasi-norm and its r-convexity and q-concavity, we
get the following generalized Khintchine’s inequality in X

Ar

∥∥∥∥∥
(

n∑
i=1

|xi|2
)1/2∥∥∥∥∥ ≤

∥∥∥∥∥
(∫ 1

0

∣∣∣∣∣
n∑

i=1

ri(t)xi

∣∣∣∣∣
r

dt

)1/r∥∥∥∥∥≤ C(r)

(∫ 1

0

∥∥∥∥∥
n∑

i=1

ri(t)xi

∥∥∥∥∥
r

dt

)1/r

≤ C(r)

(∫ 1

0

∥∥∥∥∥
n∑

i=1

ri(t)xi

∥∥∥∥∥
q

dt

)1/q

≤ C(r)C(q)

∥∥∥∥∥
(∫ 1

0

∣∣∣∣∣
n∑

i=1

ri(t)xi

∣∣∣∣∣
q

dt

)1/q∥∥∥∥∥
≤ C(r)C(q)Bq

∥∥∥∥∥
(

n∑
i=1

|xi|2
)1/2∥∥∥∥∥.

Assuming now that X satisfies an upper 1-estimate, we get by Lemma 2.1 in [7] that
for some C > 0 and any xi ∈ X, i = 1, . . . , n,

∥∥∥∥∥
(

n∑
i=1

|xi|2
)1/2∥∥∥∥∥ ≤ C

n∑
i=1

‖xi‖.

Hence by the generalized Khintchine’s inequality and the Kahane’s inequality [6],

∫ 1

0

∥∥∥∥∥
n∑

i=1

ri(t)xi

∥∥∥∥∥dt ≤ B1

∥∥∥∥∥
(

n∑
i=1

|xi|2
)1/2∥∥∥∥∥ ≤ B1C

n∑
i=1

‖xi‖,

which finishes the proof. �
Applying now Theorem 3.12 and well known characterizations of convexity and

concavity of 	p,w [11] we get the following description of 	p,w with type 1.

THEOREM 3.13. Let w be a weight function such that 0 < α(W ) ≤ β(W ) < ∞. Then
the following conditions are equivalent.

(1) 	p,w has type 1.
(2) 	p,w satisfies an upper 1-estimate.
(3) W (t)/tp is pseudo-decreasing and p ≥ 1.

Proof. By the assumption 0 < α(W ) ≤ β(W ) < ∞ it follows by Theorems 2
and 6 in [11] that 	p,w is r-convex and q-concave for some 0 < r < q < ∞. Applying
now Theorem 3.12, the conditions (1) and (2) are equivalent. The equivalence of (2)
and (3) is a direct consequence of a characterization of upper 1-estimate of 	p,w

(Theorem 3 in [11]). �
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REMARK 3.14. The characterization of the Lorentz spaces 	p,w with type 1 differs
substantially from that of Mp,w. There are Lorentz spaces with type 1 that are not nor-
mable. By Theorem A in [11], 	p,w, 1 < p < ∞, is normable if and only if β(W ) < p.
Now, letting w(t) = tp−1, 1 < p < ∞, we have W (t) = tp/p, and so β(W ) = p and
W (t)/tp is pseudo-decreasing. Thus the space L1,p := 	p,w is not normable (see also
[3]), but it has type 1 by Theorem 3.13.
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