TYPE AND ORDER CONVEXITY OF MARCINKIEWICZ AND LORENTZ SPACES AND APPLICATIONS

NIGEL J. KALTON

Mathematics Department, University of Missouri, Columbia MO, 65211, USA e-mail: nigel@math.missouri.edu

and ANNA KAMIŃSKA

Department of Mathematical Sciences, The University of Memphis, Memphis, TN 38152, USA e-mail: kaminska@memphis.edu

(Received 3 March, 2004; accepted 9 July, 2004)

Abstract. We consider order and type properties of Marcinkiewicz and Lorentz function spaces. We show that if 0 , a*p*-normable quasi-Banach space is natural (i.e. embeds into a*q*-convex quasi-Banach lattice for some <math>q > 0) if and only if it is finitely representable in the space $L_{p,\infty}$. We also show in particular that the weak Lorentz space $L_{1,\infty}$ do not have type 1, while a non-normable Lorentz space $L_{1,p}$ has type 1. We present also criteria for upper *r*-estimate and *r*-convexity of Marcinkiewicz spaces.

2000 Mathematics Subject Classification. 46A16, 46B03, 46B20, 46E30.

1. Introduction. In this note we study the order convexity and type of Marcinkiewicz and Lorentz function spaces. The space weak L_p or $L_{p,\infty}$ is well-known to be *p*-normable if 0 , but is*q*-convex as a lattice when <math>0 < q < p (see [4] and [5]). We prove that a *p*-normable quasi-Banach space X embeds into a *p*-normable quasi-Banach lattice which is *r*-convex for some r > 0 (i.e. X is natural) if and only if X is finitely representable in $L_{p,\infty}(0, 1)$.

We then consider more general Lorentz and Marcinkiewicz spaces. In [6] it was proved that if a quasi-Banach space $(X, \|\cdot\|)$ has type $0 , then <math>\|\cdot\|$ is a *p*-norm, and if X has type p > 1 then X is normable. It was also shown that there exist quasi-Banach spaces that have type 1, but they are not normable. In this note we show that Marcinkiewicz spaces have type 1 if and only if they are 1-convex (that is normable), while the class of Lorentz spaces with type 1 coincides to the class of those spaces satisfying an upper 1-estimate. In consequence, there exist Lorentz spaces with type 1 that are not normable.

Let us start with basic definitions and notation. Let \mathbb{R} , \mathbb{R}_+ and \mathbb{N} denote the sets of all real, nonnegative real and natural numbers, respectively. Let $r_n : [0, 1] \to \mathbb{R}$, $n \in \mathbb{N}$, be Rademacher functions, that is $r_n(t) = \text{sign}(\sin 2^n \pi t)$. A quasi-Banach space X has type 0 if there is a constant <math>K > 0 such that, for any choice of finitely many

The first author acknowledges support from NSF grant 0244515.

vectors x_1, \ldots, x_n from X,

$$\int_0^1 \left\| \sum_{k=1}^n r_k(t) x_k \right\| dt \le K \left(\sum_{k=1}^n \|x_k\|^p \right)^{1/p},$$

and it has cotype $q \ge 2$ if there is a constant K > 0 such that for any finite collection of elements x_1, \ldots, x_n from X,

$$\left(\sum_{k=1}^{n} \|x_k\|^q\right)^{1/q} \le K \int_0^1 \left\|\sum_{k=1}^{n} r_k(t) x_k\right\| dt.$$

Recall also that a quasi-norm $\|\cdot\|$ in X is a *p*-norm, 0 , if there exists <math>C > 0 such that for any $x_i \in X$, i = 1, ..., n

$$||x_1 + \dots + x_n|| \le C(||x_1||^p + \dots + ||x_n||^p)^{1/p}.$$

By the Aoki-Rolewicz theorem [9], for any quasi-norm $\|\cdot\|$ there exists $0 such that <math>\|\cdot\|$ is a *p*-norm. We say that a quasi-Banach space $(X, \|\cdot\|)$ is *normable* whenever there exists a norm $\|\|\cdot\|$ in X such that $C^{-1}\|x\| \le \|\|x\|\| \le C\|x\|$ for all $x \in X$ and some C > 0.

A quasi-Banach lattice $X = (X, \|\cdot\|)$ is said to be *p*-convex, 0 , respectively*p* $-concave, <math>0 , if there are positive constants <math>C^{(p)}$ and $C_{(p)}$ such that

$$\left\| \left(\sum_{i=1}^{n} |x_i|^p \right)^{1/p} \right\| \le C^{(p)} \left(\sum_{i=1}^{n} ||x_i||^p \right)^{1/p}$$

respectively,

$$\left(\sum_{i=1}^{n} \|x_i\|^p\right)^{1/p} \le C_{(p)} \left\| \left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p} \right\|,$$

for every choice of vectors $x_1, \ldots, x_n \in X$. We also say that X satisfies an *upper p*estimate, 0 , respectively a*lower p*-estimate, <math>0 , if the definition of*p*-convexity, respectively*p*-concavity, holds true for any choice of disjointly supported $elements <math>x_1, \ldots, x_n$ in X ([6, 14]). We notice here that a quasi-Banach lattice is normable if and only if it is 1-convex. However, while a *p*-normable quasi-Banach lattice necessarily has an upper *p*-estimate, it may fail to be *q*-convex for any choice of q > 0. Motivated by this, the first author [8] defined a quasi-Banach space X to be *natural* if it is isomorphic to a subspace of a quasi-Banach lattice which is *q*-convex for some q > 0.

Let us recall that a quasi-Banach space X is said to be (crudely) finitely representable in a quasi-Banach space Y if there is a constant C so that for every $\epsilon > 0$ and every finite-dimensional subspace F of X there is a finite-dimensional subspace G of Y and an isomorphism $T: F \to G$ such that $||T|| ||T^{-1}|| < C + \epsilon$. If C = 1 we say that X is finitely representable in Y.

A function $U: I \to \mathbb{R}_+$, where I = [0, 1] or $I = [0, \infty)$, is said to be *pseudo-increasing* (resp. *pseudo-decreasing*) whenever there exists C > 0 such that $U(s) \le CU(t)$ (resp. $U(s) \ge CU(t)$) for all $0 \le s < t$. We say that the expressions A and B are

equivalent, whenever A/B is bounded above and below by positive constants. Given a function $U: I \to \mathbb{R}_+$, we define the *lower* and *upper Matuszewska-Orlicz indices* [13, 14] as follows:

$$\alpha(U) = \sup\{p \in \mathbb{R} : U(as) \le C a^p U(s) \text{ for some } C > 0 \text{ and all } s \in I, 0 < a \le 1\},\$$

$$\beta(U) = \inf\{p \in \mathbb{R} : U(as) \le C a^p U(s) \text{ for some } C > 0 \text{ and all } as \in I, a \ge 1\}.$$

If U and V are equivalent, then their corresponding indices coincide.

If *f* is a real-valued measurable function on *I*, then we define the *distribution* function of *f* by $d_f(\theta) = \lambda\{|f| > \theta\}$ for each $\theta \ge 0$, where λ denotes the Lebesgue measure on *I*. The *non-increasing rearrangement* of *f* is defined by

$$f^*(t) = \inf\{s > 0 : d_f(s) \le t\}, \quad t \in I.$$

A positive, Lebesgue measurable function $w: I \to (0, \infty)$ is called a *weight function* whenever

$$W(t) := \int_0^t w(s) \, ds = \int_0^t w < \infty,$$

for all $t \in I$. We shall always assume here that W satisfies condition Δ_2 , that is for some K > 0 and all $t \in I$,

$$W(t) \le KW(t/2).$$

Given a weight w, the Marcinkiewicz space $M_{p,w}$, $0 , also called the weak Lorentz space, is the set of all Lebesgue measurable functions <math>f: I \to \mathbb{R}$ such that

$$||f||_M := \sup_t W^{1/p}(t)f^*(t) = \sup_t W^{1/p}(d_f(t)) t < \infty.$$

The functional $\|\cdot\|_M$ is a quasi-norm and $(M_{p,w}, \|\cdot\|_M)$ is a quasi-Banach space. In the case when W(t) = t, we will denote it by $L_{p,\infty}$. As usual $L_{p,\infty}(0, 1)$ or $L_{p,\infty}(0, \infty)$ will denote the spaces on [0, 1] or $[0, \infty)$, respectively. Recall also that the Marcinkiewicz sequence space $\ell_{p,\infty}$, $0 , consists of all sequences <math>x = (\alpha_n) \subset c_0$ such that $\|x\|_{p,\infty} = \sup_n \{n^{1/p} \alpha_n^*\} < \infty$, where $\{\alpha_n^*\}$ is a decreasing permutation of $\{\alpha_n\}$. It is well-known that $L_{p,\infty}$ or $\ell_{p,\infty}$ is *q*-convex whenever 0 < q < p [4], but is not *p*-convex.

Given a weight function w with $\int_0^\infty w = \infty$ if $I = [0, \infty)$, recall that the Lorentz space $\Lambda_{p,w}$, 0 , consists of all real-valued Lebesgue measurable functions <math>f on I such that

$$\|f\|_{\Lambda} := \left(\int_{I} f^{*p} w\right)^{1/p} < \infty.$$

It is well known that $(\Lambda_{p,w}, \|\cdot\|_{\Lambda})$ is a quasi-Banach space [3, 11].

Observe that the condition Δ_2 imposed on W is necessary in the context of this paper. In fact for W positive on $(0, \infty)$, the spaces $M_{p,w}$ or $\Lambda_{p,w}$ are linear if and only if W satisfies condition Δ_2 ([2]). It is also not difficult to verify that the Δ_2 -condition of W is necessary and sufficient for $\|\cdot\|_M$ or $\|\cdot\|_\Lambda$ to be a quasi-norm (cf. [11, 18]).

2. Finite representability in $L_{n,\infty}$.

PROPOSITION 2.1. Suppose that 0 and that*F*is a finite-dimensional subspaceof $L_{p,\infty}(0,\infty)$. Then, given $\epsilon > 0$, there exists a measurable subset B of $(0,\infty)$ of finite measure so that:

$$||f\chi_B||_{p,\infty} > (1-\epsilon)||f||_{p,\infty}, \qquad f \in F$$

and so for a suitable constant $K = K(F, \epsilon)$ we have

$$\|f\chi_B\|_{\infty} \le K \|f\|_{p,\infty}, \qquad f \in F.$$

Proof. Fix $\delta > 0$ so small that $(1 - 2\delta)(1 - 2\delta^p)^{1/p} > 1 - \epsilon$. Let $\{f_1, \ldots, f_n\}$ be a δ^2 -net for the set $\{f \in F : ||f||_{p,\infty} = 1\}$. For each $1 \le k \le n$ there exists t_k so that

$$f_k^*(t_k) \ge (1-\delta)t_k^{-1/p}.$$

Let $h = \max_{1 \le k \le n} |f_k|$ so that

$$\|h\|_{p,\infty} \le \sup_{t} t^{1/p} \left(\sum_{k=1}^{n} |f_k|(t) \right)^* \le \sup_{t} t^{1/p} \sum_{k=1}^{n} f_k^*(t/n) \le n^{1/p}$$

Choose M so large that $M > n^{1/p} \delta^{-1} t_k^{-1/p}$ for $1 \le k \le n$ and $\frac{1}{M} < (1-\delta) t_k^{-1/p}$ for $1 \le k \le n$. Now let $B = \{s : M^{-1} \le h(s) \le M\}$. B is clearly of finite measure. Furthermore if $f \in F$ with $||f||_{p,\infty} = 1$ then f can be expressed as a series $\sum_{k=0}^{\infty} \alpha_k f_{j(k)}$

where $|\alpha_k| \leq \delta^{2k}$. Hence $||f\chi_B||_{\infty} \leq (1-\delta^2)^{-1}M$. Thus the second condition is fulfilled. Now if $||f||_{p,\infty} = 1$ choose f_k so that $||f - f_k||_{p,\infty} \leq \delta^2$. Then the set $D = \{s : D_k \in S_k\}$. $|f_k(s)| \ge (1-\delta)t_k^{-1/p}$ has measure at least t_k . Clearly $h(t) \ge |f_k(t)| \ge (1-\delta)t_k^{-1/p} \ge \frac{1}{M}$ for $t \in D$. Hence if $t \in D \setminus B$ then h(t) > M and so $n^{1/p} \ge ||h||_{p,\infty} \ge \lambda \{|h| > M\}^{1/p}M \ge \lambda$ $\lambda(D \setminus B)^{1/p} M$, which yields that $\lambda(D \setminus B) \leq M^{-p} n \leq \delta^p t_k$. Thus $\lambda(D \cap B) \geq (1 - \delta^p) t_k$. In view of the choice of f_k we have $\lambda\{|f - f_k| > \delta t_k^{-1/p}\} < \delta^{2p} \delta^{-p} t_k = \delta^p t_k$. Now, if $|f(t) - f_k(t)| \le \delta t_k^{-1/p}$ and $|f_k(t)| \ge (1 - \delta) t_k^{-1/p}$ then $|f(t)| \ge (1 - 2\delta) t_k^{-1/p}$ and so

$$\lambda\left\{|f\chi_B| \ge (1-2\delta)t_k^{-1/p}\right\} \ge \lambda\left\{|f-f_k| \le \delta t_k^{-1/p}\right\} \cap B \cap D \ge (1-2\delta^p)t_k.$$

Thus

$$||f\chi_B||_{p,\infty} \ge (1-2\delta)(1-2\delta^p)^{1/p}.$$

PROPOSITION 2.2. Suppose that $0 . The space <math>\ell_{\infty}(L_{p,\infty}(0,\infty))$ is finitely *representable in* $L_{p,\infty}(0, 1)$ *.*

Proof. It is enough to prove that if F is a finite-dimensional subspace of $L_{p,\infty}(0,\infty)$ and $n \in \mathbb{N}$ then for any $\epsilon > 0$, $\ell_{\infty}^{n}(F)(1 + \epsilon)$ -embeds into $L_{p,\infty}(0, 1)$. By Proposition 2.1 we can find a constant K and an embedding $T: F \to L_{p,\infty}(0, 1)$ such that

- $||T|| \le 1$,
- $||Tf||_{p,\infty} \ge (1-\epsilon)||f||_{p,\infty}$ $f \in F$ and

• $\|Tf\|_{\infty} \leq K \|f\|_{p,\infty}$ $f \in F$. Pick $\delta > 0$ so that $(1 - \delta)^{-1} < (1 + \epsilon)^p$. Let $a_1 > a_2 > \cdots > a_n > 0$ be chosen so that $\sum_{j=1}^{n} a_j < 1$ and $a_{j+1} < K^{-p} \delta a_j$ for j = 1, 2, ..., n - 1. Now for j = 1, 2, ..., n let

 B_j be disjoint Borel subsets of (0, 1) of measure a_j . For each *j* there is an embedding $T_j: F \to L_{p,\infty}(B_j) = \{f \chi_{B_j}: f \in L_{p,\infty}(0, \infty)\}$ with

•
$$||T_j|| \leq 1$$
,

- $\| T_j f \|_{p,\infty} \ge (1-\epsilon) \| f \|_{p,\infty}$ $f \in F$ and
- $||T_j f||_{\infty} \le K a_j^{-1/p} ||f||_{p,\infty}$ $f \in F$.

Here $(T_1, ..., T_n)$ are obtained by dilating and translating the embedding T. Now if $f_1, ..., f_n \in F$ with $\max_j ||f_j||_{p,\infty} = 1$ we have

$$\lambda\left(\left|\sum_{j=1}^{n} T_j f_j\right| > r\right) = \sum_{j=1}^{n} \lambda(|T_j f_j| > r)$$
$$= \sum_{a_j \le K^p r^{-p}} \lambda(|T_j f_j| > r)$$
$$\le \sum_{a_j \le K^p r^{-p}} \min(a_j, r^{-p}).$$

Assuming this sum is nonempty let k be the first index such that $a_k \leq K^p r^{-p}$. Then we may estimate it by

$$r^{-p} + \sum_{k < j \le n} a_j \le r^{-p} + K^p r^{-p} \sum_{j=1}^{\infty} (K^{-p} \delta)^j < (1+\epsilon)^p r^{-p}.$$

It follows that the map $(f_1, \ldots, f_n) \to \sum_{j=1}^n T_j f_j$ defines the required $(1 + \epsilon)$ -embedding of $\ell_{\infty}^n(F)$ into $L_{p,\infty}(0, 1)$.

PROPOSITION 2.3. The spaces $\ell_{1,\infty}$ and $L_{1,\infty}(0,1)$ are not of type 1.

Proof. It suffices to show that $L_{1,\infty}(0, 1)$ is not of type 1. It is well-known that $L_{1,\infty}(0, 1)$ is not normable and indeed that for some constant c > 0, there exist (see e.g. [17]) non-negative functions $f_1, \ldots, f_n \in L_{1,\infty}(0, 1)$ with $||f_j||_{1,\infty} = 1$ and

$$||f_1 + \dots + f_n||_{1,\infty} \ge cn \log n.$$

Let *F* be a subspace spanned by $\{f_1, \ldots, f_n\}$ and let $N = 2^n$. We consider the space $\ell_{\infty}^N(F)$ with co-ordinates indexed by all *n*-tuples (η_1, \ldots, η_n) where $\eta_j = \pm 1$. Define $\phi_j \in \ell_{\infty}^N(F)$ by the coordinates $\phi_j(\eta_1, \ldots, \eta_n) = \eta_j f_j$ for $j = 1, \ldots, n$. Then for every choice of sign $\epsilon_j = \pm 1$ we have

$$\|\epsilon_1\phi_1+\cdots+\epsilon_n\phi_n\|=\|f_1+\cdots+f_n\|_{1,\infty}.$$

Since $\ell_{\infty}^{N}(F)$ embeds almost isometrically into $L_{1,\infty}(0, 1)$ this space fails to have type 1.

We conclude this section with a characterization of natural spaces. The technique is rather similar to that of [10], Theorem 4.2. Recall that the weak Lorentz space $L_{p,\infty}(\Omega, \mu)$ over arbitrary measure space (Ω, μ) consists of all μ -measurable real valued functions f such that $||f||_{p,\infty} = \sup_{t>0} \mu\{|f| > t\}^{1/p} t < \infty$.

THEOREM 2.4. Suppose that 0 and that X is a p-normable quasi-Banach space. The following conditions on X are equivalent:

- (1) X is natural.
- (2) X is (crudely) finitely representable in $L_{p,\infty}(0, 1)$.

(3) There exists a constant C with the property that given $x \in X$ there exists a compact Hausdorff space Ω , a probability measure μ on Ω and an operator $T: X \to L_{p,\infty}(\Omega, \mu)$ such that $||T|| \leq 1$ and $||x|| \leq C||Tx||$.

(4) For some (respectively, every) $0 < \delta < 1$ there is a constant $C = C(\delta)$ so that $x_1, \ldots, x_n \in X$ and $y \in X$ is such that $y \in co\{\pm x_k : k \in A\}$ whenever $A \subset \{1, 2, \ldots, n\}$ and $|A| > n\delta$ then $||y|| \le C \max_{1 \le k \le n} ||x_k||$.

Proof. (1) \Longrightarrow (4): It is enough to show that if X is a quasi-Banach lattice which is *r*-convex for some r > 0 then (4) holds for X for every choice of δ . Let us therefore fix $\delta > 0$. Thus we may assume an estimate

$$\left\| \left(\sum_{j=1}^{m} |v_j|^r \right)^{1/r} \right\| \le M \left(\sum_{j=1}^{m} \|v_j\|^r \right)^{1/r} \qquad v_1, \dots, v_m \in X.$$

Now assume x_1, \ldots, x_n, y given as in the statement of (4). Then we may represent the ideal Z generated by the order-interval [-|y|, |y|] as an abstract M-space in the sense of Kakutani if we take [-|y|, |y|] as the unit ball. It thus may be identified with a space $C(\Omega)$ in such a way that |y(s)| = 1 for all $s \in \Omega$. Let $u_k = |x_k| \land |y|$ so that u_k can be identified with a continuous function on Ω . Fix any $s \in \Omega$ and let $A = \{k : u_k(s) < 1\}$. Then it is clear that $y \notin co \{\pm x_k : k \in A\}$ and so by hypothesis (4), we have $|A| \le n\delta$. Thus $|\{k : u_k(s) \ge 1\}| \ge n(1 - \delta)$.

Thus

$$\left(\sum_{j=1}^{n} |u_j|^r\right)^{1/r} \ge n^{1/r} (1-\delta)^{1/r} |y|,$$

and so

$$n^{1/r}(1-\delta)^{1/r}||y|| \le Mn^{1/r} \max_{1\le k\le n} ||x_k||$$

i.e.

$$||y|| \le M(1-\delta)^{-1/r} \max_{1\le k\le n} ||x_k||.$$

This establishes (4) with $C(\delta) = M(1 - \delta)^{-1/r}$.

(4) \Longrightarrow (3): This is an argument based on Nikishin's theorem [16]. We assume (4) holds for constants C and $0 < \delta < 1$. Let $(g_n)_{n=1}^{\infty}$ be a sequence of independent normalized Gaussians defined on a probability space (Ω', \mathbb{P}) . Let $c_p = \mathbb{E}|g_1|^p$ and choose $\theta > 0$ so that $(2C)^p c_p \theta^p < \frac{1}{4}$. Then pick M so that

$$\mathbb{P}\{|g_1| > \sigma \theta^{-1} M^{-1}\} > \frac{1 + \frac{1}{4}\delta}{1 + \frac{1}{2}\delta},$$

where $\sigma = 1 + \frac{1}{2}\delta$.

Fix $u \in X$ with ||u|| = 1 and then let Ω_0 be the subset of the algebraic dual $X^{\#}$ of all $x^{\#}$ such that $x^{\#}(u) = 1$. Let Ω be the Stone-Cech compactification of Ω_0 endowed with the weak* topology induced by X. Let $\hat{C}(\Omega)$ be the continuous functions on Ω with values in the two-point compactification $[-\infty, \infty]$ of \mathbb{R} . We then define a map $S: X \to \hat{C}(\Omega)$ by letting Sx be the extension of the continuous map $\hat{x}: \Omega_0 \to \mathbb{R}$ given

by $\hat{x}(x^{\#}) = x^{\#}(x)$. Note that *S* has the following linearity property:

$$S\left(\sum_{k=1}^{n} \alpha_k x_k\right)(\omega) = \sum_{k=1}^{n} \alpha_k S x_k(\omega) \quad \text{if } \max_{1 \le k \le n} |S x_k(\omega)| < \infty, \quad \omega \in \Omega.$$

Now consider in $C(\Omega)$ (the space of continuous real-valued functions on Ω) the convex hull K of the set of functions $1 - \min(\sigma, |Sx|)$ for $||x|| \le \frac{1}{2}C^{-1}$. We claim that K does not meet the open negative cone of all $f \in C(\Omega)$ such that f < 0 everywhere. Indeed if it does there exist x_1, \ldots, x_n with $||x_k|| < \frac{1}{2}C^{-1}$ such that

$$\frac{1}{n}\sum_{k=1}^{n}(1-\min(\sigma,|Sx_{k}(\omega)|))<0\qquad\omega\in\Omega$$

However by assumption there exists $A \subset \{1, 2, ..., n\}$ with $|A| > n\delta$ such that $u \notin A$ co { $\pm 2x_k$: $k \in A$ }. In particular there exists $x^{\#} \in \Omega_0$ with $|x^{\#}(2x_k)| < 1$ for $k \in A$. Thus

$$\sum_{k=1}^{n} (1 - \min(\sigma, |Sx_k(x^{\#})|)) \ge \frac{1}{2} |A| + (1 - \sigma)(n - |A|)$$
$$= \left(\sigma - \frac{1}{2}\right) |A| - n(\sigma - 1)$$
$$\ge \frac{1}{2} \delta^2 n.$$

This gives a contradiction. Thus K does not meet the open negative cone and by the Hahn-Banach theorem, we can find a probability measure μ on Ω such that

$$\int (1 - \min(\sigma, |Sx(\omega)|)d\mu \ge 0, \qquad ||x|| \le \frac{1}{2}C^{-1}$$

Next we inductively construct a sequence $(E_n)_{n=1}^{\infty}$ of disjoint Borel subsets of Ω and a sequence $x_n \in X$ with $||x_n|| \le 1$. Let $F_0 = \emptyset$ and $F_n = E_1 \cup \cdots \cup E_n$. Then if $(E_k)_{k < n}$ have been selected let b_n be the supremum of all t such that there exists a Borel set A with $\mu(A) = t$ disjoint from F_{n-1} and $x \in X$ with $||x|| \le 1$ such that $|Sx| \ge M\mu(A)^{-1/p}$ on A. If no such t exists we set $b_n = 0$. Then select E_k with $\mu(E_n) = a_n > \frac{1}{2}b_n$ and x_n with $||x_n|| \le 1$ such that $|Sx_k| \ge Ma_n^{-1/p}$ on E_n . If $b_n = 0$ we put $E_n = \emptyset$ and $x_n = 0$. For fixed *n* we consider $\xi(\omega') = \theta \sum_{k=1}^n g_k(\omega') a_k^{1/p} x_k$. Then by *p*-normability of *X*

$$\|\xi(\omega')\|^p \le \theta^p \sum_{k=1}^n a_k |g_k(\omega')|^p,$$

and so

$$\mathbb{E}\|\xi\|^p \le c_p \theta^p.$$

It follows that

$$\mathbb{P}\{\|\xi\| \ge (2C)^{-1}\} \le (2C)^p c_p \theta^p < \frac{1}{4}$$

and hence

$$\mathbb{E}\int\min(\sigma,|S\xi|)d\mu<1+\frac{1}{4}(\sigma-1)=1+\frac{1}{8}\delta.$$

Now fix $\omega \in \Omega$. If $\max_{1 \le k \le n} |Sx_k(\omega)| = \infty$ then $\theta \sum_{k=1}^n g_k Sx_k(\omega)$ is finite only on a set of probability zero (when (g_1, g_2, \dots, g_n) belongs to a certain proper linear subspace of \mathbb{R}^n). If $\omega \in F_n$ and $\max |Sx_k(\omega)| < \infty$ then $S\xi(\omega)$ is gaussian with variance $\theta^2 \sum_{k=1}^n a_k^{2/p} |Sx_k(\omega)|^2 \ge M^2 \theta^2$. Hence

$$\mathbb{P}\{|S\xi(\omega)| > \sigma\} \ge \mathbb{P}\{|g_1| > \sigma\theta^{-1}M^{-1}\}.$$

Thus if $\omega \in F_n$, in view of the choice of M, θ and σ

$$\mathbb{E}\min(\sigma, |S\xi(\omega)|) \ge 1 + \frac{1}{4}\delta.$$

Hence

$$\left(1+\frac{1}{4}\delta\right)\mu(F_n)\leq 1+\frac{1}{8}\delta.$$

We conclude that $\mu(F_n) \leq 1 - \frac{\delta}{16}$.

Let $B = \Omega \setminus \bigcup_{k=1}^{\infty} E_k$. Then $\mu(B) \ge \delta/16$. It is clear that for any $x \in X$, $|Sx(\omega)| < \infty \ \mu$ -a.e. on B and further if ||x|| = 1 then $||Sx\chi_B||_{p,\infty} \le M$. Hence the linear map $T_0: X \to L_{p,\infty}(\Omega, \mu)$ defined as $T_0x = Sx\chi_B$ is bounded with norm M and $||T_0u||_{p,\infty} \ge (\delta/16)^{1/p}$. Letting $T = M^{-1}T_0$ we obtain the implication (4) implies (3) for an appropriate constant.

(3) \Longrightarrow (2): Clearly (3) implies that X is isomorphic to a subspace of an ℓ_{∞} -product of spaces of the type $L_{p,\infty}(\mu)$ and this means it is crudely finitely representable in $\ell_{\infty}(L_{p,\infty}(0,\infty))$ and so Proposition 2.2 gives the conclusion.

 $(2) \Longrightarrow (1)$: From (2) we conclude that X embeds into an ultraproduct of spaces $L_{p,\infty}(0,\infty)$ and this is easily seen to be a q-convex quasi-Banach lattice for any 0 < q < p. (Ultraproducts of quasi-Banach spaces were apparently first considered in [19]; the theory is very similar to that of ultraproducts of Banach spaces).

3. Marcinkiewicz and Lorentz spaces. In the next theorem we characterize an upper-estimate of $M_{p,w}$.

THEOREM 3.1. For any $0 < p, r < \infty$, $M_{p,w}$ satisfies an upper r-estimate if and only if $W^{r/p}(t)/t$ is pseudo-decreasing.

Proof. Since $M_{p,w}$, $0 < r < \infty$, is the *r*-convexification of $M_{p,w}$, it is enough to conduct the proof only for r = 1. Suppose that $W^{1/p}(t)/t$ is pseudo-decreasing. Then there exists a concave function equivalent to $W^{1/p}$ (cf. Proposition 5.10 in [1]), so without loss of generality we assume that $W^{1/p}$ is concave. Consequently, for any disjoint $f_i \in M_{p,w}$, i = 1, ..., n,

$$\left\|\sum_{i=1}^{n} f_{i}\right\|_{M} = \sup_{t} W^{1/p}(d_{\sum_{i=1}^{n} f_{i}}(t))t = \sup_{t} W^{1/p}\left(\sum_{i=1}^{n} d_{f_{i}}(t)\right)t$$
$$\leq \sum_{i=1}^{n} \sup_{t} W^{1/p}(d_{f_{i}}(t))t = \sum_{i=1}^{n} \|f_{i}\|_{M},$$

which shows that $M_{p,w}$ has an upper 1-estimate. Conversely, assume $M_{p,w}$ has an upper 1-estimate, and take for 0 < s < t, n = [t/s],

$$f_i = \chi_{(\frac{(i-1)t}{2n}, \frac{it}{2n}]}, \quad i = 1, \dots, 2n.$$

Then $f_i^* = \chi_{(0,t/2n]}$ and $||f_i||_M = W^{1/p}(t/2n)$. Consequently

$$\left\|\sum_{i=1}^{2n} f_i\right\|_M = W^{1/p}(t) \le C \sum_{i=1}^{2n} \|f_i\|_M = C \sum_{i=1}^{2n} W^{1/p}(t/2n)$$
$$= C2n W^{1/p}(t/2n) \le C2(t/s) W^{1/p}(s),$$

whence $W^{1/p}(t)/t \le 2CW^{1/p}(s)/s$.

REMARK 3.2. The space $M_{p,w}$ is not order continuous, and so it contains an order copy of ℓ_{∞} [12]. Hence it does not have any finite lower estimate neither a type r for r > 1.

Recall that the *lower* and *upper Boyd* indices of a rearrangement invariant quasi-Banach space X on I are defined as follows:

 $p(E) = \sup\{p > 0 : \text{there exists } C > 0, \|D_s\| \le Cs^{1/p} \text{ for all } s > 1\},\ q(E) = \inf\{q > 0 : \text{there exists } C > 0, \|D_s\| \le Cs^{1/q} \text{ for all } 0 < s < 1\},$

where $D_s : X \to X$, s > 0, is the dilation operator defined as $D_s f(t) = f(t/s)$ if $t \in [0, \infty)$ and if I = [0, 1] then $D_s f(t) = f(t/s)$ for $t \le \min(1, s)$ and $D_s f(t) = 0$ for $s < t \le 1$ [13, 14, 15].

THEOREM 3.3. For any $0 , the Boyd indices of <math>M_{p,w}$ are the following

$$p(M_{p,w}) = p/\beta(W), \quad q(M_{p,w}) = p/\alpha(W).$$

Proof. Let $I = [0, \infty)$. For s > 1,

$$\|D_s f\|_M = \sup_{t} W(t)^{1/p} f^*(t/s) = \sup_{u} W(su)^{1/p} f^*(u),$$

and for $r > \beta(W)$, $W(su) \leq Cs^r W(u)$. Hence

$$\|D_s f\|_M \le C \sup_u s^{r/p} W(u)^{1/p} f^*(u) = C s^{r/p} \|f\|_M,$$

which yields that $p(M_{p,w}) = p/\beta(W)$. Analogously we obtain a formula for the upper index as well as for I = [0, 1].

The next result is well known [17], but we provide the proof here for the sake of completeness.

LEMMA 3.4. Let $V : \mathbb{R}_+ \to \mathbb{R}_+$, V(0) = 0 and let V be concave. If $\beta(V) = 1$, then there exists a sequence (t_n) of positive numbers such that for every $0 \le a \le 1$

$$\lim_{n \to \infty} \frac{V(at_n)}{V(t_n)} = a$$

Proof. Since $\beta(V) = 1$, for all q < 1

$$\inf_{t>0,\ 0< a<1} \frac{V(at)}{a^q V(t)} = 0$$

Then, setting $U(t) = \frac{V(t)}{t}$, U is decreasing and for all $0 < \varepsilon < 1$

$$\inf_{t>0,\ 0<|t|<1} \frac{a^{\varepsilon} U(at)}{U(t)} = 0$$

It follows that for every $\delta > 0$

$$\inf_{t>0}\frac{U(\delta t)}{U(t)} \le 1.$$

Indeed, if the above condition does not hold then there exists $\delta > 0$ such that

$$\theta := \inf_{t>0} \frac{U(\delta t)}{U(t)} > 1.$$

Hence $\delta < 1$ and setting $\varepsilon = -\log \theta / \log \delta$, $\delta^{n\varepsilon} = \theta^{-n}$ for every $n \in \mathbb{N}$. For any 0 < a < 1 there exists $n \in \mathbb{N} \cup \{0\}$ such that $\delta^{n+1} \le a < \delta^n$. Thus for any t > 0 it holds

$$\frac{a^{\varepsilon}U(at)}{U(t)} \ge \frac{(\delta^{n+1})^{\varepsilon}U(\delta^n t)}{U(t)} = \theta^{-n}\delta \frac{U(\delta^n t)}{U(\delta^{n-1}t)} \cdot \dots \cdot \frac{U(\delta t)}{U(t)} \ge \theta^{-n}\delta\theta^n = \delta > 0,$$

which is a contradiction. Therefore for every $\delta = 1/n$, $n \in \mathbb{N}$, there exists t_n such that

$$1 \le \frac{U\left(\frac{1}{n}t_n\right)}{U(t_n)} < 1 + \frac{1}{n},$$

which implies that

$$1 \le \frac{U(at_n)}{U(t_n)} \le 1 + \frac{1}{n}$$

for 0 < a < 1 and sufficiently large $n \in \mathbb{N}$. Therefore $\frac{U(at_n)}{U(t_n)} \to 1$, and hence for all 0 < a < 1, $\frac{V(at_n)}{V(t_n)} \to a$ as $n \to \infty$.

THEOREM 3.5. If $M_{p,w}$, $0 , satisfies an upper 1-estimate and <math>\beta(W) \ge p$, then $L_{1,\infty}(0, 1)$ is finitely representable in $M_{p,w}$ (i.e. $M_{p,w}$ contains uniformly copies of $\ell_{1,\infty}^n$). In particular, $M_{p,w}$ does not have type 1.

Proof. We give the proof only for $I = [0, \infty)$. By Theorem 3.1, $W^{1/p}(t)/t$ is pseudodecreasing. Then $W^{1/p}$ is equivalent to a concave function V (cf. Proposition 5.10 in [1]), that is

$$C^{-1}V(t) \le W^{1/p}(t) \le CV(t)$$

for some C > 0 and all t > 0. Since $\beta(W) \ge p$, so $\beta(W^{1/p}) = \beta(V) \ge 1$. Then by Lemma 3.4, there exists a sequence $(b_j) \subset (0, \infty)$ such that

$$\lim_{j \to \infty} \frac{V(tb_j)}{V(b_j)} = t, \quad t \in [0, 1].$$

Letting

$$f_{i,j}^{(n)} = \frac{n}{W^{1/p}(b_j)} D_{b_j} \chi_{[\frac{i-1}{n}, \frac{i}{n}]}, \quad i = 1..., n, \ j \in \mathbb{N},$$

for any $x = (\alpha_i)_{i=1}^n$ in *n*-dimensional vector space define a linear operator T_j as

$$T_j x = \sum_{i=1}^n \alpha_i f_{i,j}^{(n)}.$$

Then setting

$$f(t) = \sum_{i=1}^{n} n \alpha_i \chi_{[\frac{i-1}{n}, \frac{i}{n}]}(t), \quad t > 0,$$

we have for $(\alpha_i^*)_{i=1}^n$, a decreasing permutation of $(\alpha_i)_{i=1}^n$, and for all $j \in \mathbb{N}$,

$$\|T_{j}x\|_{M} = \sup_{t} W^{1/p}(t) \left(\sum_{i=1}^{n} \alpha_{i} f_{i,j}^{(n)}(t)\right)^{*} = \sup_{t} W^{1/p}(t) (W^{-1/p}(b_{j}) D_{b,j}f(t))^{*}$$
$$= \sup_{t} \frac{W^{1/p}(b_{j}t)}{W^{1/p}(b_{j})} f^{*}(t) = \max_{i=1,\dots,n} \left\{ n\alpha_{i}^{*} \frac{W^{1/p}(b_{j}i/n)}{W^{1/p}(b_{j})} \right\}.$$

Hence for every $x = (\alpha_i)_{i=1}^n$ we have

$$C^{-1} \|x\|_{1,\infty} \le \liminf_{j} \|T_{j}x\|_{M} \le \limsup_{j} \|T_{j}x\|_{M}$$

$$\le C \limsup_{j} \max_{i=1,\dots,n} \left\{ n\alpha_{i}^{*} \frac{V(b_{j}i/n)}{V(b_{j})} \right\} = C \|x\|_{1,\infty}.$$

Notice also that for all $x \in \ell_{1,\infty}^n$, $j \in \mathbb{N}$,

$$||T_j x||_M \le nC^2 \max_{i=1,\dots,n} \{i\alpha_i^*\} = nC^2 ||x||_{1,\infty}.$$

Recall now that since $\|\cdot\|_M$ is a quasi-norm, by the Aoki-Rolewicz theorem [9], there exists 0 < r < 1 such that $\|\cdot\|_M$ is *r*-norm. Letting

$$|||g|||_{M}^{r} = \inf \left\{ \sum_{i=1}^{m} ||g_{i}||_{M}^{r} : g = \sum_{i=1}^{m} g_{i} \right\},$$

we get for some D > 0 and all $g \in M_{p,w}$

$$|||g|||_{M}^{r} \leq ||g||_{M}^{r} \leq D |||g|||_{M}^{r}$$

and $|||g_1 + g_2|||_M^r \le |||g_1||_M^r + |||g_2||_M^r$ for all $g_1, g_2 \in M_{p,w}$. Clearly, $||||g_1||_M^r - |||g_2||_M^r| \le ||g_1 - g_2||_M^r$. Therefore for every $x \in \ell_{1,\infty}^n$,

$$|||T_j x|||_M^r \le ||T_j x||_M^r \le C^{2r} n^r ||x||_{1,\infty}^r,$$

and for every $x, y \in \ell_{1,\infty}^n$,

$$||||T_{j}x|||_{M}^{r} - |||T_{j}y|||_{M}^{r}| \le |||T_{j}x - T_{j}y|||_{M}^{r} \le C^{2r}n^{r}||x - y||_{1,\infty}^{r}.$$

Thus the family $(|||T_j x|||_M^r)$ is equi-continuous and uniformly bounded on the unit ball $B_{\ell_{1,\infty}^n}$, and so by the Arzeli-Ascoli theorem it is compact in the space $C(B_{\ell_{1,\infty}^n})$. Thus there exists a subsequence $(j_k) \subset \mathbb{N}$ such that $\lim_k |||T_{j_k} x|||_M^r \in C(B_{\ell_{1,\infty}^n})$. Hence for arbitrary small $\epsilon > 0$ and every $n \in \mathbb{N}$ there exists $j(n) \in \mathbb{N}$ such that for all $x \in \ell_{1,\infty}^n$,

$$\lim_{k} \left\| \left\| T_{j_{k}} x \right\| \right\|_{M}^{r} - \epsilon \leq \left\| \left\| T_{j(n)} x \right\| \right\|_{M}^{r} \leq \lim_{k} \left\| \left\| T_{j_{k}} x \right\| \right\|_{M}^{r} + \epsilon.$$

Thus for any $x \in B_{\ell_{1,\infty}^n}$,

$$\begin{aligned} \left\| T_{j(n)} x \right\|_{M}^{r} &\leq D \left\| T_{j(n)} x \right\|_{M}^{r} \leq D \lim_{k} \left\| T_{j_{k}} x \right\|_{M}^{r} + D\epsilon \\ &\leq D \limsup_{j} \left\| T_{j} x \right\|_{M}^{r} + D\epsilon \leq DC^{r} \left\| x \right\|_{1,\infty}^{r} + D\epsilon, \end{aligned}$$

and

$$\|T_{j(n)}x\|_{M}^{r} \geq \||T_{j(n)}x\||_{M}^{r} \geq \lim_{k} ||T_{jk}x||_{M}^{r} - \epsilon$$

$$\geq D^{-1}\liminf_{i} ||T_{j}x||_{M}^{r} - \epsilon \geq D^{-1}C^{-r}||x||_{1,\infty}^{r} - \epsilon.$$

It is clear now that there exists A > 0 such that for all $n \in \mathbb{N}$ and $x \in \ell_{1,\infty}^n$ it holds

$$A^{-1} \|x\|_{1,\infty} \le \|T_{j(n)}x\|_M \le A \|x\|_{1,\infty}.$$

 \square

This shows that $M_{p,w}$ contains uniformly copies of $\ell_{1,\infty}^n$.

THEOREM 3.6. Let 0 . The following conditions are equivalent.

(1) The Hardy operator

$$H^{(1)}f(t) = \frac{1}{t} \int_0^t f^*(s) ds \qquad 0 < t \in I,$$

is bounded in $M_{p,w}$.

(2) $\beta(W) < p$.

(3) There exists C > 0 such that

$$\int_0^t W^{-1/p} \le Ct / W^{1/p}(t) \qquad 0 < t \in I.$$

Proof. Theorem 2 in [15] states that $H^{(1)}$ is bounded in r.i. quasi-Banach space X if and only if p(X) > 1. Hence in view of Theorem 3.3 we immediately obtain the equivalence of (1) and (2). In order to show that (1) is equivalent to (3), notice that $f \in M_{p,w}$ if and only if for every $s \in I$, $f^*(s) \leq CW^{-1/p}(s)$. Hence $H^{(1)}f \in M_{p,w}$

is equivalent to inequality $H^{(1)}f(t) \leq CW^{-1/p}(t)$, that is to $\int_0^t W^{-1/p} \leq Ct/W^{1/p}(t)$ for all $0 < t \in I$.

In the next theorem we characterize the Marcinkiewicz spaces that have type 1.

THEOREM 3.7. Let 0 . The following conditions are equivalent.

- (1) $M_{p,w}$ is 1-convex, that is the space is normable.
- (2) $M_{p,w}$ has type 1.
- (3) $\beta(W) < p$.

Proof. It is obvious that condition (1) implies (2). Now, if we assume that $M_{p,w}$ has type 1 and $\beta(W) \ge p$ then $M_{p,w}$ satisfies an upper 1-estimate and so by Theorem 3.5 it contains copies of $\ell_{1,\infty}^n$ uniformly. Thus $M_{p,w}$ can not have type 1, and this contradiction proves the implication from (2) to (3). If (3) is satisfied, that is $\beta(W) < p$, then by Theorem 3.6, the Hardy operator $H^{(1)}$ is bounded in $M_{p,w}$. Then $||H^{(1)}f||_M$ is equivalent to the original quasi-norm in $M_{p,w}$. Moreover, $||H^{(1)}f||_M$ is a norm on $M_{p,w}$ since it satisfies the triangle inequality in view of the subadditivity of the operator $H^{(1)}$. Thus we showed that (1) holds, and the proof is completed.

REMARK 3.8. By Theorem 3.6 we see that the condition $\beta(W) < p$ is equivalent to the integral inequality (3). It is well known (cf. Theorem A in [11] and references there) that " $\beta(W) < p$ " is also equivalent to another integral inequality, namely the B_p -condition [18], that is for all $t \in I \setminus \{0\}$ and some C > 0

$$\int_t^\infty s^{-p} w(s) \, ds \le C t^{-p} \int_0^t w.$$

Soria (Theorem 3.1 in [20]) proved that $M_{p,w}$ is normable if and only if w satisfies the B_p -condition.

For any $0 < r < \infty$, the *r*-convexification of $M_{p,w}$ is $M_{pr,w}$. Hence we get the following corollary.

COROLLARY 3.9. For any $0 < p, r < \infty$, the space $M_{p,w}$ is r-convex if and only if $\beta(W) < p/r$.

REMARK 3.10. As a simple conclusion we also have that $M_{p,w}$ is *L*-convex (for definition of *L*-convexity see [7]).

COROLLARY 3.11. Let 0 and <math>0 < r < 1. Then the following conditions are equivalent.

- (1) $M_{p,w}$ has type r.
- (2) The quasi-norm $\|\cdot\|_M$ in $M_{p,w}$ is equivalent to an r-norm.
- (3) $W^{r/p}(t)/t$ is pseudo-decreasing.

Proof. The equivalence of (1) and (2) is a result of Theorem 4.2 in [6]. By the Kalton's result (Theorem 2.3 (ii) in [7]) it follows also that for 0 < r < 1, if a quasinormed space $(X, \|\cdot\|)$ is *L*-convex, then $\|\cdot\|$ is an *r*-norm if X satisfies an upper *r*-estimate. This and Theorem 3.1 provide the equivalence of the last two conditions. \Box

We end the paper with conditions on when type 1 and upper 1-estimate are equivalent in quasi-Banach lattices. We then illustrate the obtained result in Lorentz spaces, providing examples of Lorentz spaces with type 1 that are not normable. THEOREM 3.12. Let X be a quasi-Banach lattice that is r-convex and q-concave for some $0 < r < q < \infty$. Then X has type 1 if and only if it satisfies an upper 1-estimate.

Proof. By the Khintchine's inequality for scalars [14], for any $0 < s < \infty$, and $x_i \in X$, i = 1, ..., n, we have for some A_s , $B_s > 0$,

$$A_{s}\left(\sum_{i=1}^{n}|x_{i}|^{2}\right)^{1/2} \leq \left(\int_{0}^{1}\left|\sum_{i=1}^{n}r_{i}(t)x_{i}\right|^{s}dt\right)^{1/s} \leq B_{s}\left(\sum_{i=1}^{n}|x_{i}|^{2}\right)^{1/2}$$

Then by the monotonicity of the quasi-norm and its *r*-convexity and *q*-concavity, we get the following generalized Khintchine's inequality in X

$$\begin{split} A_r \left\| \left(\sum_{i=1}^n |x_i|^2 \right)^{1/2} \right\| &\leq \left\| \left(\int_0^1 \left| \sum_{i=1}^n r_i(t) x_i \right|^r dt \right)^{1/r} \right\| \leq C^{(r)} \left(\int_0^1 \left\| \sum_{i=1}^n r_i(t) x_i \right\|^r dt \right)^{1/r} \\ &\leq C^{(r)} \left(\int_0^1 \left\| \sum_{i=1}^n r_i(t) x_i \right\|^q dt \right)^{1/q} \leq C^{(r)} C_{(q)} \left\| \left(\int_0^1 \left| \sum_{i=1}^n r_i(t) x_i \right|^q dt \right)^{1/q} \right\| \\ &\leq C^{(r)} C_{(q)} B_q \left\| \left(\sum_{i=1}^n |x_i|^2 \right)^{1/2} \right\|. \end{split}$$

Assuming now that X satisfies an upper 1-estimate, we get by Lemma 2.1 in [7] that for some C > 0 and any $x_i \in X$, i = 1, ..., n,

$$\left\| \left(\sum_{i=1}^{n} |x_i|^2 \right)^{1/2} \right\| \le C \sum_{i=1}^{n} \|x_i\|.$$

Hence by the generalized Khintchine's inequality and the Kahane's inequality [6],

$$\int_0^1 \left\| \sum_{i=1}^n r_i(t) x_i \right\| dt \le B_1 \left\| \left(\sum_{i=1}^n |x_i|^2 \right)^{1/2} \right\| \le B_1 C \sum_{i=1}^n \|x_i\|,$$

which finishes the proof.

Applying now Theorem 3.12 and well known characterizations of convexity and concavity of $\Lambda_{p,w}$ [11] we get the following description of $\Lambda_{p,w}$ with type 1.

THEOREM 3.13. Let w be a weight function such that $0 < \alpha(W) \le \beta(W) < \infty$. Then the following conditions are equivalent.

- (1) $\Lambda_{p,w}$ has type 1.
- (2) $\Lambda_{p,w}$ satisfies an upper 1-estimate.
- (3) $W(t)/t^p$ is pseudo-decreasing and $p \ge 1$.

Proof. By the assumption $0 < \alpha(W) \le \beta(W) < \infty$ it follows by Theorems 2 and 6 in [11] that $\Lambda_{p,w}$ is *r*-convex and *q*-concave for some $0 < r < q < \infty$. Applying now Theorem 3.12, the conditions (1) and (2) are equivalent. The equivalence of (2) and (3) is a direct consequence of a characterization of upper 1-estimate of $\Lambda_{p,w}$ (Theorem 3 in [11]).

REMARK 3.14. The characterization of the Lorentz spaces $\Lambda_{p,w}$ with type 1 differs substantially from that of $M_{p,w}$. There are Lorentz spaces with type 1 that are not normable. By Theorem A in [11], $\Lambda_{p,w}$, $1 , is normable if and only if <math>\beta(W) < p$. Now, letting $w(t) = t^{p-1}$, $1 , we have <math>W(t) = t^p/p$, and so $\beta(W) = p$ and $W(t)/t^p$ is pseudo-decreasing. Thus the space $L_{1,p} := \Lambda_{p,w}$ is not normable (see also [3]), but it has type 1 by Theorem 3.13.

REFERENCES

1. C. Bennett and R Sharpley, Inerpolation of operators (Academic Press, 1988).

2. M. Ćwikel, A. Kamińska, L. Maligranda and L. Pick, Are generalized Lorentz "spaces" really spaces?, Proc. Amer. Math. Soc., to appear.

3. A. Haaker, On the conjugate space of Lorentz space, Technical Report (Lund, 1970).

4. R. A. Hunt, On *L*(*p*, *q*) spaces, *Enseignement Math.* **12** (1966), 249–276.

5. N. J. Kalton, Linear operators on L_p , 0 ,*Trans. Amer. Math. Soc.***259**(1980), 319–355.

6. N. J. Kalton, Convexity, type and the three space problem, *Studia Math.* 69 1980, 247–287.

7. N. J. Kalton, Convexity conditions for non-locally convex lattices, *Glasgow Math. J.* 25 (1984),141–152.

8. N. J. Kalton, Banach envelopes of non-locally convex spaces, *Canadian J. Math.* 38 (1986), 65–86.

9. N. J. Kalton, N. T. Peck and J. W. Roberts, *An F-space sampler* Cambridge University Press, Lect. Notes Series, Vol. 89, 1984.

10. N. J. Kalton and J. W. Roberts, Pathological linear space and submeasures, *Math. Ann.* 262 (1983), 125–132.

11. A. Kamińska and L. Maligranda, Order convexity and concavity of Lorentz spaces $\Lambda_{p,w}$, 0 ,*Studia Math.***160**(2004), 267–286.

12. L. V. Kantorovich and G. P. Akilov Functional analysis (Pergamon Press, 1982).

13. S. G. Krein, Yu. I. Petunin and E. M. Semenov, *Interpolation of linear operators*, AMS Translations of Math. Monog. No 54 (1982).

14. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces II (Springer-Verlag, 1979).

15. S. J. Montgomery-Smith, The Hardy operator and Boyd indices, in *Interaction between functional analysis, harmonic analysis and probability*, Lecture Notes in Pure and Applied Mathematics, No 175 (Marcel Dekker, New York, 1996), 359–364.

16. E. M. Nikishin, A resonance theorem and series in eigenfunctions of the Laplace operator, (Russian) *Izv. Akad. Nauk SSSR Ser. Mat.* 36 (1972), 795–813.

17. Y. Raynaud, On Lorentz-Sharpley spaces, Israel Math. Conference Proc. 5 (1992), 207–228.

18. E. Sawyer, Boundedness of classical operators on classical Lorentz spaces, *Studia Math.* **96** (1990), 145–158.

19. M. Schreiber, Quelques remarques sur les caractérisations des espaces L^p , $0 \le p < 1$, *Ann. Inst. H. Poincaré Sect.* B 8 (1972), 83–92.

20. J. Soria, Lorentz spaces of weak-type, Quart. J. Math. Oxford Ser. (2) 49 (1998), 93-103.