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1. Introduction. First we recall that a (real) quasi-Banach space X is a complete
metrizable real vector space whose topology is given by a quasi-norm x —* ||x|| satisfying

||x||>0 (xeX,x^0) (1.1)

||ax|| = |a|||x|| ( a e R . x e X ) (1.2)

(xux2eX), (1.3)

where C is some constant independent of x, and x2. X is *said to be p-normable (or
topologically p-convex), where 0 < p s l , if for some constant B we have

for any x 1 ( . . . , x,, GX. A theorem of Aolci and Rolewicz (see [18]) asserts that if in (1.3)
C = 21/p~\ then X is p-normable. We can then equivalently re-norm X so that in (1.4)
JB = 1.

If in addition X is a vector lattice and ||x||<||y|| whenever |x|<|y| we say that X is a
quasi-Banach lattice. As in the case of Banach lattices [13] we may make the following
definitions.

We shall say that X satisfies an upper p-estimate if for some constant C and any
x, x , e X w e have

. (1.5)

We shall say that X is (lattice) p-convex if for some C and any i b . . . , x , , e X

Here the element (|x1|
p + . . • + |xIl|

p)1/p (0<p<°°) of X can be defined unambiguously
exactly as for the case of Banach lattices (cf. [13, pp 40-41] and Popa [17]).

For 0 < p < l it is trivial to see that lattice p-convexity implies p-normability and
p-normability implies the existence of an upper p-estimate. In the case p = 1, lattice
1-c mvexity is equivalent to normability (i.e. X is a Banach lattice). However Popa [17]
oh erves that for 0 < p < l , the space "weak Lp" L(p,<») of measurable functions on (0,1)
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such that
11/11= sup tm(|/|>r)1/p<oo

0<t<°=

is p-normable but not lattice p-convex.
In this note we introduce the class of L-convex quasi-Banach lattices. We say that X

is L-convex if there exists 0 < e < l so that if ueX+ with ||u|| = 1 and 0<X; <u ( l < i < n )
satisfy

- ( x ] + . . . + x n )>( l -e )u ,
then <

max ||xj||>e.

Roughly speaking, X is L-convex if its order-intervals are uniformly locally convex.
It turns out that most naturally arising function spaces are L-convex lattices (e.g. the

Lp-spaces, Orlicz spaces, Lorentz spaces including the spaces L(p,c°) introduced above).
However we shall give examples of non L-convex lattices. We shall show that X is
L-convex if and only if X is lattice p-convex for some p>0 . If £«, is not lattice finitely
representable in X then X is necessarily L-convex. We also show that if X is a
quasi-Banach lattice linearly homeomorphic to a subspace of an L-convex lattice then X
is again L-convex.

L-convex lattices behave similarly to Banach lattices in many respects. For example if
X is L-convex and satisfies an upper p-estimate, then X is lattice r-convex for any r<p
(compare [13], p. 85] and results of Maurey and Pisier [14], [16]). Also for 0 < p < l , if X
is L-convex and satisfies an upper p-estimate, then X is p-normable. This is false for
p = 1; L(l, oo) is a counter-example. However an analoguous result for 1<p <2 involving
type due to Figiel and Johnson is given in [13, p. 88]. By contrast, in general if a
quasi-Banach lattice satisfies an upper p-estimate, then it is q-normable, where q"1 =
p"1 +1 and this result is best possible.

2. L-convexity. Before proving our basic lemma, it will be convenient to introduce
some terminology. Suppose X is a quasi-Banach lattice and u eX+ with u^O. Then if we

set Y = U [-nu, nu] Y is a sublattice of X; if we select [-u, u] as the unit ball of Y then
n=i

Y is an abstract M-space, and by a well-known theorem of Kakutani ([13, p. 16], [19, p.
104]) there is a compact Hausdorff space A so that Y is isometrically lattice isomorphic to
C(A). Thus we can induce a lattice homomorphism J:C(A) —>X so that / maps the unit
ball of C(A) onto the order interval [-u, u]. We call J the Kakutani map associated to u.

LEMMA 2.1. Let X be an L-convex quasi-Banach lattice satisfying an upper p-
estimate. Then

(a) if 0 < p < r, there is a constant M so that if xu ..., xn e X we have
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(b) // 0 < r < p there is a constant M so that if x 1 ( . . . , xn e X we have

l /r

Proof. We shall suppose C<oo and 0 < e < 1 are chosen as in (1.5) and (1.7). Without
loss of generality in both parts (a) and (b) we may assume X;>0 ( l < i < n ) and that
||u||=l, where u = (Yd\xi\

r)Ur. Let J:C(A)—>X be the Kakutani map associated to u. Let
Jfi =Xi where 0 < / ; < l . Choose T > 0 so that

Let (O, P) be some probability space and let (|f: 1 < i < n) be independent positive
random variables on H so that for each i

If s e A and if max ft (s) ̂  r then

P(max fi/i(s) > T) = 1 - f[ P(fi < xf,(s)"1)

= l-exp(-T-r)

sl-ie. (2.1)

Here we use the fact that J((I /7)1/r) = ( I |Xi|r)1/r = u = J\, so that I /j(s)r = 1 for s € A.
Now (2.1) holds trivially if we suppose max/j(s)>T. Thus we conclude

f max(minte(4(s), (2.2)

For each keH we define | ik ( l < i < n ) by

kV/72kV/r / 2k \1/r

) ( ) ( )ml \m/ \m —

for m = 1,2,... , 2 \ Then lim|ifc = § a.e. and for each keN the random variables

(£ik : 1 < i < n) are independent and generate a finite algebra sdn in fl with 2k" atoms each
of probability 2~kn. Set

gk(s)= max(min(|ifc(o))/j(s), T))dP(<o).



144 N. J. KALTON

Then gk e C(A) and the sequence gfc is monotone increasing. From (2.2) we deduce that

lim gk(s)s:T(l —je).

Now, by Dini's theorem, there exists keN so that gk(s)>r(l—^e) for every seA.
Suppose Aes4k and P(A)<^e; then

This implies that (l-e)w is dominated by an average of the finitely many distinct

values of IT" 1 max ^ik(o))Xi I A U. Thus

max Umaxfifc(w)Xi >re
»efl\A II i sn II

from the definition of L-convexity (equation (1.7)). Hence

Since X satisfies an upper p-estimate,

Now we consider two cases. In case (a) if 0 < p < r then

dP(o) > |C-prpep

|fi|
and

Hence

i l

so that (a) follows.
In case (b) pick a > 1 so that ra > p. Let Tjj = £p/<* so that P(TJ( > t) = r~ra/p for t > 1. By

Lemma l.f.8 of [13, p. 86] there is a constant B so that
l/a / \ p/ra

for au . . . , On ^ 0 . Now, for 8 depending only on C and e,

f ( Z k-(w)|°'(||xi||
p/0T) dP>8

Jn \ = 1 /
and so / \P/ra

Bilikir) ^8.
Thus (b) follows. x ;
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The next theorem should be compared with the Banach lattice case (Theorem l.f.7 of
[13, p. 85]).

THEOREM 2.2. Let X be a quasi-Banach lattice satisfying an upper p-estimate. Then
the following conditions on X are equivalent:

(i) X is L-convex
(ii) X is lattice r-convex for some r>0 .
(iii) X is lattice r-convex for every r, 0 < r < p.

(i) ̂  (iii): This is simply Lemma 2.1 (b).
(iii) :̂ > (ii): This is immediate.
(ii)=>(i): We assume r<\. Suppose 0<X;<u where ||u||=l and that

-(xi + ... + xn)^u.
Then n

(x, +.. . + xn)^ul-'(x[ +.. . + xr
n),

where the right-hand side is well-defined in X, cf. [12, pp. 41-43]. Hence

and so

Thus , Xi / r

dn^rsdiiwr)
so that

If r > 1 the argument is simpler, since

THEOREM 2.3. Let X be a quasi Banach lattice satisfying an upper p-estimate where
0<p<oo. Then

(i) X is q-normable where 1/q = 1/p + l;
(ii) if 0 < p < l and X is L-convex, then X is p-normable;

(iii) if K p <<» and X is L-convex, then X is a Banach lattice.

Proof, (i) We suppose (1.5) holds. Suppose x 1 , . . . , x n e X + and u = xl +... + xn. Let
a = (Hjdll" + . . . + ||xn||q)1/q and observe that

||u|| < Lax
II i=Sn

l a x i

y/p

= Ccrq( £ lk||qY/P = Ccrq+q/p = Co:\ i-i I *i /
\=1 /
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(ii) This is simply Lemma 2.1 (a) with r = 1
(iii) By Theorem 2.2 X is lattice l-convex i.e. a Banach lattice.

EXAMPLE 2.4. Let si be an algebra of subsets of some set fi and let <£: si —> U be a
normalized submeasure, i.e. cf> is a set-function satisfying <f>(0) = O, 4>(A) s 4>(A U B) £
<t>(A) + <f>(B) for A, Be si and 4>(H) = 1. From <p we can construct a quasi-Banach lattice
Lp(<t>) satisfying an upper p-estimate for 0<p<°°. If f:Cl—*U is a simple ^-measurable
function we define

liyiip = (J[^(l/l^t1 /p)dt)1/P.

Then || • ||p is a quasi-norm; indeed

<Hlg| air1 /p) df

so that

=* f

The completion of the simple functions S(si) with this quasi-norm is a quasi-Banach
lattice Lp(<t>) satisfying an upper p-estimate.

Suppose now <$> is pathological ([3], [4]), that is so that whenever 0< A <</> and A is
additive then A = 0. Then for any e >0 there exist Eu ... ,Enesi so that <£(£;)<£ but
1/" I IE, - ( l ~ e ) l n ([3]). It follows quickly that Lp(<£) is not L-convex.

Furthermore (Talagrand [20]) <f> can be chosen so that for every n there exist
Ex,... ,Enes4 with ^>(JBj)<n"1 and 1/n X IE, —sin- Suppose Lp (<£) is q-normable. Then

C
i < - l V in _ Hi I =r\,i/«-«p-i (neM).

Hence 1/q > 1/p +1 so that Theorem 2.3 (a) is best possible.
By way of contrast we observe that the space L(p, °°) is L-convex for 0 < p < 1. In fact

if 0<r<p,L(p,<») = {/:|/|reL(pr~\°°)} and L(pr~1,°o) is a Banach lattice, i.e. is locally
convex (see [5]). Hence L(p,°°) is lattice r-convex for 0 < r < p . As L(p,°°) satisfies an
upper p-estimate, it is p-normable (see [8]).

3. Some applications of a theorem of Bennett and Maurey. In this section we show
how a deep factorization theorem of Bennett and Maurey ([1], [2], [15]) can be used to
extend a result of Krivine [12] on operators between Banach lattices (cf. [13, p. 93]). This
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latter result is of considerable importance in studying operators between function spaces
(see [10]).

We start by stating that Bennett-Maurey theorem (see [1] or [2] for this statement).

THEOREM 3.1. Let 0 < p < l be fixed. Then there is a constant C = C(p) so that
whenever m,neN and T:£™—*€p is a linear operator then there is a positive D:€p—>€"
given by D(|,) = (d,§) so that ||DT||=s||T|| and I dj-p /1-p)<C

COROLLARY 3.2. Suppose 0 < p < l . Then there is a constant B — B(p) so that if A, K
are compact Hausdorff spaces, /x is a probability measure on K and T : C(A) —> Lp(K, /J.) is a
bounded linear operator, then for fu...,fne C(A), we have

Proof. Exactly as step 2 of Theorem l.f.14 of [1, p. 92] this can be reduced to
consideration of a map T:t™-+ £n

p. Now by Theorem 3.1 we can find D : (n
v -»€\ so that

||DT||s||T|| and D(§) = (d&) where £ d*-"'1-^<C Then

)1/21| P

by Theorem l.f.14 of [13]. Let B =

THEOREM 3.3. Let Y be an L-convex quasi-Banach lattice. Then there is a constant A
depending only on Y so that whenever X is a quasi-Banach lattice and T:X-*Y is a
bounded linear operator then for any xu ... ,xn&X

Proof. First we observe that Y is lattice p-convex for some p>0 and hence satisfies
(1.6) for some C.

If xu ..., j ^ eX let v = (I iTXfl2)1'2 and u = (£ |Xi|2)1/2. We may suppose u, v + 0. Let
Ju : C(AU) —» X and Jv : C(AJ —* Y be associated Kakutani maps.

If / „ . . . , / m € C ( A J ,
I/P

A s / „ i s p o s i t i v e t h i s i m p l i e s t h a t f o r s o m e s e K

l/p fm \ l / p



148 N. J. KALTON

Now by a standard Hahn-Banach separation argument there is a probability measure
(x on Av so that for fe

f
For xeX + define SxeLp(Av, ft) by

Sx = sup J~l(x A nv)
n

and extend S linearly. Then S is a lattice-homomorphism and HSH^CM"1.
Now consider STJU :C(AU)-»LP(AU, /*)• By Theorem 3.2, if fu . . . , / „ eC(Au) are

chosen so that JJi = X;,

>i = l

where B depends only on p.
Now, since S is a lattice-homomorphism,

1/211

On the other hand (I|/j|2)1/2= 1 and so

so that

where A = BC.
Applying Theorem 3.3 in the case X = €Z we obtain the following result.

COROLLARY 3.4. Suppose Y is an L-convex quasi-Banach lattice. Then there is a
constant A so that if y l 5 . . . , yn s Y then

Proof. Apply the theorem to the map T:€Z-^Y given by Tej = yi; where {ef} are the
basis vectors in €Z-

EXAMPLE 3.5. We do not know whether the conclusions of Theorem 3.3 or Corollary
3.4 characterize L-convex lattices. However we can give an example to show that both are
false without the L-convexity assumption.

Our example will be of the form of an ^-product of spaces of the type Li((f>n), where
each 4>n is a submeasure. We then need only produce <f>n to show that there is no uniform
constant A valid for each n.



NON-LOCALLY CONVEX LATTICES 149

Let S""1 be the unit sphere in W i.e.

S-Mfo,.. . ,£.):£?+•.. + £=!}•
Let si be the algebra of all subsets of S"~\

If aeR" and a^O let Baes4 be defined by Ba = {£:a. | ^ 0 } . For any set
a(1),. . . ,a ( n -°el j r \{0} there exists ^ e S " ' 1 so that a(1). £ = .. . = a'""1'. £ = 0 so that

"U Ba(j)j=Sn-\ Define 0 n : ^ ^ I R by

J = l

Then <j>n is a normalized submeasure.
Let /;(£) = £,. Then if | O J | < 1 , \aJi + .. . + an/n|<VnlBfa). Hence

However (/? + .. , + ^ ) 1 B = l and ||1|| = 1.

4. Further conditions for L-convexity. Our first result in this section shows that a
wide class of quasi-Banach lattices are automatically L-convex. We say that €„ is lattice
finitely representable in X if given e > 0 and neN there exist Xj>0 ( l < j < n ) so that
X; AX,- = 0 (i£j), ||XJ|| = 1 ( l ^ i ^ n ) and whenever alt... ,aneR

||a1x1 + . . . + anxn||<(l + e) max |Oj|.
Isisn

If £° is not lattice finitely representable in X, then there exists c > l and neN so that for
any sequence (xt, . . . ,*„) of disjoint elements we have

||x1 + . . . + xn||>c min ||XJ||.

It then follows quickly by induction that for every d > 1 there exists N e N so that for
disjoint x 1 ; . . . , xN,

||xi + . . . + xN||>d min

We remark that if F is an Orlicz function satisfying the A2-condition then €„ is not
lattice finitely representable in the Orlicz space LF(0,1); equally €„ is not lattice finitely
representable in the Lorentz space L(p,q) if 0<q<°° (cf. [5]).

THEOREM 4.1. Let X be a quasi-Banach lattice such that €x is not lattice finitely
representable in X. Then X is L-convex.

Proof. We can and do suppose X is p-normed; that is for suitable 0 < p < l

for x , , . . . , x n e X .
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Fix NeN so that for any sequence of disjoint elements (x l s . . . , xN) we have

\\x1 + ... + xN\\>6Upmm\\xi\\.

Then fix e, 0 < e < l so that e<3(3)1/p and e<(l/32)e~2Ar\ Suppose that ueX+, with
0<Xf<u and (l/m)(x1 + .. . + xm)>(l-5e)u.

Let J: C(A) —»X be the Kakutani map associated to u. We claim first that J is
exhaustive; that is if {/jiteW} is a uniformly bounded disjoint sequence in C(A) then
Jfi —» 0. This follows easily from the hypothesis on X. Now by a theorem of Thomas [29]
(cf. also [7], [9]), there is a regular X-valued measure /x defined on the Borel sets /3 of A so
that

We remark that co /J,(/3) is bounded and so there is no difficulty in defining the integral of
any bounded Borel function. It is easy to see that /x(A) = u and /x is monotone; that is
Os/L/,(A)<fi,(JB) whenever A c R

Let <f>:B—»R be defined by <£>(A) = |||A(A)||P. Then <$> is a submeasure. We shall show
that <$> satisfies the hypotheses of [11, Lemma 3.1]. If Au ..., AN are disjoint sets, then
/x(Aj),..., /x(AN) are disjoint in X and so

1U . . . UAN)||p>6mh4i(Ai)||p,

so that min <HAf)<g.
Hence if A , , . . . , An are disjoint, then, as required,

I <MA)sN+K (3.1)
i = l

Choose gf ( l < i < m ) so that J& =Xj. Let B( ={gf > |} . Then

From Lemma 3.1 and Proposition 2.3 of [11] we deduce (taking r = 3 in the
statement of the lemma)

so that
max </>(Bj)-i

UisM

Hence

so that X is L-convex.
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THEOREM 4.2. Let Y be an L-convex quasi-Banach lattice and let X be a quasi-
Banach lattice linearly homeomorphic to a subspace of Y. Then X is L-convex.

Proof. We shall suppose Y is lattice p-convex for some p, 0 < p £ l satisfying
equation (1.6), i.e.

for y! , . . . , yn e Y. We also suppose that the conclusion of Theorem 3.3 holds with
constant A <°o. Let T : X - » Y bea linear operator so that

B-'\\x\\^\\Tx\\^B\\x\\ (xeX),

for some constant B<°°.
If X is not L-convex, then given 8 > 0 we can find ueX+ with ||u|| = 1 and 0 =£ xf < u

( l < i < n ) so that (1/n) (x, + .. . + x n )>( l -8 )u and ||XJ||<S ( l < i < n ) .
Let yf = Tx;. Then

On the other hand

Let u1 = S-'n-l/p(i;|yi|
p)1/p and v2 = n-y2(l |yf|

2)1/2. Let 0 = p(2-p)-\ Then

[This is easily seen by using a Kakutani map to represent the elements of Y as functions.]
Hence

and so if C" is the constant occurring in equation (1.3) for quasi-norms,

Now

Hence

For small enough 8 this is a contradiction and so X is L-convex.

Conjecture. If Y is lattice p-convex where 0 < p < l , then X is lattice p-convex.
We remark that the conjecture is true for p = 1 trivially and for 0 < p < 2, if we

assume £„ is not lattice finitely representable in X. The proof of this latter statement is the
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same as of Theorem l.d.7 of [12, p. 51] (see also Johnson, Maurey, Schechtman and
Tzafriri [6]).

REFERENCES

1. G. Bennett, An extension of the Riesz-Thorin theorem in Banach spaces of analytic
functions. Lecture Notes in Mathematics No 604 (Springer-Verlag, 1977).

2. G. Bennett, Lectures on matrix transformations of €" spaces, in Notes in Banach spaces (H.
E. Lacey, ed.) (University of Texas Press, Austin, Texas, 1980).

3. J. P. R. Christensen, Some results with relation to the control measure problem, in Vector
space measures and applications II. Lecture Notes in Mathematics No 645 (Springer-Verlag, 1978).

4. J. P. R. Christensen and W. Herer, On the existence of pathological submeasures and the
construction of exotic topological groups, Math. Ann. 213 (1975), 203-210.

5. R. A. Hunt, On L(p,q) spaces, Enseignement Math. 12 (1966), 249-274.
6. W. B. Johnson, B. Maurey, G. Schechtman and L. Tzafriri, Symmetric structures in Banach

spaces, Mem. Amer. Math. Soc. No. 217 (Providence, 1979).
7. N. J. Kalton, Topologies on Riesz groups with applications to measure theory, Proc.

London Math. Soc. (3) 28 (1974), 253-273.
8. N. J. Kalton, Linear operators on Lp for 0 < p < l , Trans. Amer. Math. Soc. 259 (1980),

319-355.
9. N. J. Kalton, Isomorphisms between spaces of vector-valued continuous functions, Proc.

Edinburgh Math. Soc. 26 (1983), 29-48.
10. N. J. Kalton, Representations of operators between function spaces, Indiana Univ. Math.

J. to appear.
11. N. J. Kalton and J. W. Roberts, Uniformly exhaustive submeasures and nearly additive set

functions, Trans. Amer. Math. Soc. 278 (1983), 803-816.
12. J. L. Krivine, Theoremes de factorisation dans les espaces reticules, Seminaire Maurey-

Schwartz 1973-4, Exposes 22-23, Ecole Polytechnique (Paris).
13. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces II, Function spaces (Springer-

Verlag, 1979).
14. B. Maurey, Type et cotype dans les espaces munis de structure locales incontitiononelles,

Seminaire Maurey-Schwartz 1973-4, Exposes 24-25 Ecole Polytechnique (Paris).
15. B. Maurey Theoremes de factorisation pour les operateurs lineaires a valeurs dans un espace

Lp (Asterisque No 11, 1974).
16. B. Maurey and G. Pisier, Series de variables aleatoires vectorielles independantes et

proprietes geometriques des espaces de Banach, Studia Math. 58 (1976), 45-90.
17. N. Popa, Uniqueness of symmetric structures in Lp(p,) for 0 < p < 1, Rev. Roumaine. Math.

Pures. Appl. to appear.
18. S. Rolewicz, Metric linear spaces (PWN, Warsaw 1972).
19. H. H. Schaefer, Banach lattices and positive operators, (Springer-Verlag, 1974).
20. M. Talagrand, A simple example of a pathological submeasure, Math. Ann. 252 (1980),

97-102.
21. G. E. F. Thomas, On Radon maps with values in arbitrary topological vector spaces and

their integral extension (unpublished paper, 1972).

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF MISSOURI

COLUMBIA, MISSOURI 65211


