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1. Introduction. Let X be an F-space (complete metric linear space) and suppose
g:[0, 1] -» X is a continuous map. Suppose that g has zero derivative on [0, 1], i.e.

for 0 s r< 1 (we take the left and right derivatives at the end points). Then, if X is locally
convex or even if it merely possesses a separating family of continuous linear functionals,
we can conclude that g is constant by using the Mean Value Theorem. If however
X* = {0} then it may happen that g is not constant; for example, let X = Lp(0, 1)
( 0 < p < 1) and g(t) = l[0(] (0< t< 1) (the characteristic function of [0, r]). This example is
due to Rolewicz [6], [7; p. 116].

The aim of this note is to substantiate a conjecture of Rolewicz [7, p. 116] that every
F-space X with trivial dual admits a non-constant curve g: [0, 1] —» X with zero deriva-
tive. In fact we shall show, given any two points x0, xx e X, there exists a map g :[0,1] —*•
X with g(0) = xo, g(l) = Xi and

lim g ( f ) ~ g ( 5 ) = 0 uniformly for 0<s, f< l .
|,_s|_0 t-S

To establish this result we shall need to study X-valued martingales. Let 58 be
the <r-algebra of Borel subsets of [0,1) and let &n (n s 0) be an increasing family of
finite sub-algebras of 28. Then a sequence of functions un:[0,l)—*X is an X-valued
Fn-martingale if each i^ is Fn-measurable and for n^m we have %(un\9'm) = um. Here
the definition of conditional expectation is the standard one with respect to Lebesgue
measure A and there are no integration problems since each i^ is finitely-valued.

It is easy to show that every F-space X with trivial dual contains a non-constant
martingale {i^, ^n} which converges to zero uniformly. However we shall need to consider
dyadic martingales. Let Dnk = [(k-1)/2", k/2") ( l < k < 2 n , 0<n<«>). Then, for n>0 , let
S8n be the sub-algebra of 38 generated by the sets {Dnk: 1 < k <2"}. A dyadic martingale is
simply a S8n-martingale. The main point of the argument will be to show that we can find
non-zero dyadic martingales which converge uniformly to zero.

We note here a connection with the recent work of Roberts [4], [5] on the existence of
compact convex sets without extreme points. Indeed, in a needlepoint space (see [5]) it
would be easy to show that there are non-zero dyadic martingales which converge
uniformly to zero. However there are F-spaces with trivial dual which contain no
needlepoints [2].
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As usual an F-norm on a (real) vector space X is a map x —* \\x\\ such that

||x||>0 if x^O, (1.0.1)

ll* + yNIWI+lly|| teyex), (1.0.2)
H|<| |x | | (|r|=£l), (1.0.3)

lim||tx|| = 0 (xeX). (1.0.4)

The F-norm is said to be strictly concave if, for each x e X with x^ 0, the map t —> ||tx|| is
strictly concave on [0, °°), i.e.

if 0 < s < r < ° ° and 0<a, b<\ with a + b = 1 then, if x^0 ,

\\(as + bt)x\\>a\\sx\\ + b\\tx\\. (1-0.5)

Every F-space can be equipped with an (equivalent) F-norm which is strictly
concave. This follows from the results of Bessaga, Petczynski and Rolewicz [1], We may
give X an F-norm ||-||0 so that the map t -* \\tx\\0 is concave and strictly increasing for each
x^0 . Now define ||x|| = ||x||J/2.

2. Preliminary finite-dimensional results. Suppose N is a positive integer. We
consider the space IRN with the natural co-ordinatewise partial ordering (i.e. x > y if and
only if X; > y; for 1 < i < N). We shall denote by (ek : 1 ^ k < N) the natural basis elements
of UN. We shall use the idea of IRN-valued submartingales and supermartingales; these
have obvious meaning with respect to the ordering denned above. In addition, standard
scalar convergence theorems can be applied co-ordinatewise to produce the same
theorems for RN.

For l < i < N , let Fs be a continuous map F<:[0,oo) —» [0,<x>) which is strictly increas-
ing, strictly concave and satisfies F;(0) = 0, Fj(l) = l. Then Ft is also subadditive since

(s,f>0).

Hence we may define an absolute F-norm on UN by

11x11=1 (̂1*. I) (xeUN). (2.0.1)
i = l

Now, for xelRN, define
a(x) = inf{max(||y||,||z||):x=i(y + z)}. (2.0.2)

We shall need the following properties of o\

LEMMA 2.1. (a) If xeUN and x>0 then there exist y, zeUN with y>0, z>0 ,

(b) For x, yeUN,

|cr(x)-cr(y)|<||x-y||, (2.1.1)

o-(x)<||x||. (2.1.2)

(c) If x >0 and o-(x) = ||x|| = 1 then, for some k, we have x = ek.
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Proof, (a) is an easy consequence of a compactness argument. For (b) (2.1.1),
observe that if x =\{z + z') then

so that o-(y)<<r(x) + ||y-x|| and so (2.1.1) follows. (2.1.2) is an immediate consequence of
the definition of cr.

We are grateful to the referee for the following short proof of (c). Suppose x^O,
||x||=l, Xj >0 and x ;>0 where ij=j. We show <T(X)<1.

Since Ft is concave, it has left and right derivatives at xf, ax and a2, say, with
0 < a 2 S a , . Similiarly F; has left and right derivatives at x;, /3t and /32 with 0 < ^ 2 — P\-
For small r>0,

||x - tfae, - a2e,)||< ||x||+ t (" "iPi + /32a2)
s 11*11-

Hence <T(X)<1.
We conclude that if o-(x) = 1 then x = ek for some k, 1 < k < N.

Now let 7r(x) = xa+ . . . +xn (xeUN).

THEOREM 2.2. Suppose aeUN, a > 0 and Ti(a) = l. Then there are disjoint Borel
subsets E1,...,EN of [0,1) with X.(Ei) = ai ( l < i < N ) and a scalar valued dyadic
supermartingale &„ (0 ̂  n < °°) such that

O<0n(t)sl (0sKl,0sn<co), (2.2.1)

lim dn{t) = 0a.e. (2.2.2)

and if

"» = * ( £ !*,«. I»-) (0<n<oo) (2.2.3)

then

un(t)>0n(t)a (0<r<l,0<n<cc), (2.2.4)

| |MB(0-eB(0oNl(0st<l>0sn«»). (2.2.5)

Proo/. To start observe

IHI=I Fi(aj)S77(a) = l.
i = l

Define ao(0 = «o ^or 0 s f < l , where 0 < a o < l and | |ao« | | = l ; then let wo(t) = aoa,
O ^ K l . We then define inductively sequences (wn:ns0) , (w*:n>l) , (a n :n>0) of
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functions on [0,1), where

wn (n > 0) and w* (n > 1) are RN-valued and S8n-measurable, (2.2.6)

an (n > 0) is IR-valued and S8n-measurable, (2.2.7)

wn(t)>0 (0<r<l ,n>0),

w*0)s0 (0<f<l,n>0), (2.2.8)

an(0>0 (0<f<l,n>0),

(2.2.9)

), (2.2.10)

||wn(r)||=l (0<t<l ,n>0), (2.2.11)

||w*+1(0Na(wn(r)) (0<t<l ,n>0) . (2.2.12)

Indeed suppose Wy, w* and â  have been chosen for / < n. Then

where ||bn,fc||=l, and bn,k>0. Choose y 2 k - i , y 2 k s 0 so that max(||y2k_1||, ||y2fc||) = (7(fcn,
and bnk =Ky2k-i + y2k) (see Lemma 2.1(a)). Now define

w*+i(0 = yk (teDn+hk).

Then (2.2.9) and (2.2.12) are clear. Since

||w*+i(0Nl (0<r<l),

we can determine an+t to be 28n+1-measurable so that <*„+!> 0 and

Now define

and clearly (2.2.11) holds.
Observe that

and if m > n

( m \

X g(afc|S8J a. (2.2.13)
k=n+l /

Hence wn is a submartingale and it is clearly bounded. Thus lim wn(r) = woo(0 exists
almost everywhere, and ||w,»(0||~ 1 a-e. "~*~
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The real-valued submartingale (TT ° wn : n > 0) is uniformly bounded and converges to
» a.e. Hence

7r(w.(t)) dt = lim ir(wn(t)) dt
Jo n—»«> J oo

[ n(Wo(t))dt+t [ ak(r)dr
Jo k = i Jo

by (2.2.13) since 7r(a) = 1. Hence

Jo k = l

and so (a.e.) I a k (0<°° . Thus an(t) -» 0 a.e. and ||wB+1(f)- vv*+1(f)|| -» 0 a.e. Hence
l|w*+1(t)l|-» 1 and <r(wn(t))-» 1 a.e. By Lemma 2.1(b), <r is continuous and so (a.e.)

As w^O^O, we conclude that
N

»(f)= Z IE^J a.e.,w»

where Elt..., EN are disjoint Borel sets with Ex U . . . U EN = [0,1).
Now define u,, = ^(Wc | S8n). Then, since {wn} is uniformly bounded and wn

a.e.,
un = lim |

= wn

where 6nS:0 is S8n-measurable. Since (wn) is a submartingale, (0n) is a supermartingale.
As un - wn -» 0 a.e., we have 0n -» 0 a.e. As i r ( w j s l a.e., ir(un)s 1 a.e. and so 8n ^ 1
a.e. Also ||un-0na|| = | |wj= 1. Finally observe

= I A(Ef)e,

Hence
N

= I A(JE.) =

= a0+60.

Thus K(Ei) = ai ( l < i < N ) , and the proof is complete.
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In fact we shall not use Theorem 2.2; instead we use its "finite" version.

THEOREM 2.3. Under the same hypotheses as Theorem 2.2, given e >0, there is a finite
dyadic martingale (v0, u , , . . . , um) with

vo(t) = a (0<Kl ) , (2.3.1)

I M O N l + e (0<f<l). (2.3.2)

For l < n < m - l , there is a positive 2ftn-measurable function <frn with <f>n^l and

||«n(r)-<k,(0a||£l + e ( 0 s r < l ) . (2.3.3)

Proo/. Suppose 0<S 0 <5 is chosen so that ||2Soa||<|e and ||(1 — S Q ) " 1 ^

whenever ||x||<l.
Let un, 6n be chosen as in Theorem 2.2 and select m so that

Define

vm = (l-8T\um-ema)

and

vn = %{vm | »„) (0<n<m).

Then ||um||<l + e and

= (1 - S)-'(i^ - $na) + (1 - S)-'(eB-

Define

Then 0<</)n<Gn<l and

Un-(/.na = ( l - 5 r 1 ( u n - 0 n a ) + 5 ( 1 - S r ' c M

and so

||w,,-^Ba||sl + i e + | e = l + e.

3. Main results. We now turn to the general infinite-dimensional problem.

LEMMA 3.1. Suppose X is an F-space with a strictly concave F-norm. Suppose x o ^0
and that x0eco{x:||x||<S}. Then there is a finite dyadic martingale un (0<n<m) with

= *o, and

IM0N25 (0<r<l), (3.1.1)
lk(0NI|xo|| + 25 (OsKl.OsnSm). (3.1.2)
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Proof. There exist y 1 ; . . . , y N E X with y ^ O ( l < i < N ) , ||yj||<8 and xo =
a ,y ,+ . . . +aNyN, where a f > 0 and ar + a2+ . . . + a N = 1.

For 0 ^ t <°°, define

Then F, is strictly concave. Define the absolute norm on UN by

I N = f F,(|&,|).

Now, by Theorem 2.3, there is a finite IRN-valued dyadic martingale ( i ) , :0£n£m) with
(taking e = 1)

and

lk(0-*«(0a||s2 (0sKl,0<n<m),

where 0<4>n(r)sl. Define T:RN -> X by

Tb=l ky,
i = l

Then

* I IM

Now let un = Tun. Then u0(f) = x0 and ||um(f)||<25. Also

THEOREM 3.2. Suppose X is an F-space with trivial dual, and that xoeX. Then there is
a dyadic martingale (un: n^O) with uo(t) = xo and

max |k(r)| | -> 0 as n -» «. (3.2.1)
Osr<l

Proof. As explained in the introduction we may suppose that the F-norm on X is
strictly concave (passing to an equivalent F-norm does not affect (3.2.1)). The hypotheses
guarantee that the convex hull of any neighborhood of zero is X. The construction is
inductive, based on Lemma 3.1. To start the construction we may find a finite martingale
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( u ^ O s n s N j ) so that uo(t) = xo, | |uNl(0N£WI and ||«n(0||^2||x0|| ( l < n < N , ) , by
applying Lemma 3.1 with S=3||xo|| if XQ^O (the case xo = 0 is trivial).

Suppose now we have defined (un : 1 < n :£ Nk) so that

KOH^'IM (l̂ /ssk), (3.2.2)
Ik (ON 2©'IW (N/<n<Ni+1,lS;:Sk-l). (3.2.3)

We shall show how to extend to a finite dyadic martingale (u, :Bn<JVi ( + 1) so that
(3.2.2) and (3.2.3) hold for / < k + l and ; < k respectively.

We have

"Nk(0 = y, (reDNt,,).

For each y,, there is a finite martingale (u | , :0^n<M) with

Here M may be taken independent of / by simply extending the martingale where
necessary by adding further terms equal to the last term of the sequence.

Now let JVk+1 = Nk + M and define

uNk+i = v[(2"*t-l + l) (teDNJ.

It is now easy to verify that conditions (3.2.2) and (3.2.3) hold where applicable.
Continuing in this way we clearly have (3.2.1) for the (infinite) martingale («„).

The step from Theorem 3.2 to our main result is a very simple one if X is a
quasi-Banach space or more generally is exponentially galbed (see Turpin [8]). In such
space there is a natural correspondence between curves with uniform zero derivative and
dyadic martingales converging uniformly to 0. In a general F-space a little more sublety is
required in the proof of the main theorem.

THEOREM 3.3. Suppose X is an F-space with trivial dual and that x0, x1 e X. Then there
is a curve g :[0,1] -* X with g(0) = x0, g(l) = x1 and

lim g ) - g =0 uniformly for 0<s, t < l . (3.3.1)
| ,_s |_0 t — S

In particular g'(t) = 0 for 0 s t < 1.

Proof. It suffices to suppose x0 = 0. Then there is a dyadic martingale (i^ : n > 0) with

max |
0SK1
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Choose No = 0. Since each u,, has finite range it is possible to choose a strictly
increasing sequence of positive integers {Nk : k s l ) so that

\\2Nr^(uk(t)-uk_1(t))\\^2'-kei (3.3.2)

for O ^ / s k - l , O s t < l . Each fe[0,1) has a unique binary expansion

where each T, is zero or one and T; = 0 infinitely often. Now define

vM = uk(i TNI2-').

k k

(Recall that uk is constant on the interval £ T N j 2" '< r<I TNJ2~' + 2 ~ \ ) Then we
observe that vk is a S8Nt-martingale, with ' = 1 ' = 1

max
OsKl

=f vk(t)dt=\ uk(t)dt = x1.
Jo Jo

In fact we observe that
%W I ®Nk-i) = Uk-!. (3.3.3)

For k > l and 0 < f < l , we define

gk(0= vk(s)ds
Jo

(the integrand is simple). Then each gk is continuous and from (3.3.3) we have

Now suppose that 0 < f < l and that 2l^2N*t<2l + l, where / is an integer. Then

&(0-fc-i(0= f (vk(s)-vk^(s))ds
J2l/2Nt

= (r-2I(2-N'))(«k(0-»k-i(0). (3-3.4)
Equally, if 2/ + l<2N"f <2l + 2,

gfc(0-&-i(0 = ((2f + 2)2-"'-0(«k(0-tJfc-i(0). (3.3.5)

Combining these results, we have

max
Osr<i

0SK1
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Hence (gk) converges uniformly to a continuous function g on [0,1], and g(0) = 0,

Now suppose 0 < s < t < 1. Then there is a least integer n so that for some integer I we
have 2"s</</ + l<2"f. Clearly 2""1r-2n-1s<2 and 2"r-2"s>l . Hence 2~n<t-s<
4.2"n and n>log2 l/(f-s).

Now suppose Nk_!<n<Nk, where l<k<oo. Suppose lt is the least integer not less
than 2"s and l2 is the greatest integer not greater than 2"t. Then

2It(gk-,(0 - &-i(l22-)) = (2"r- y «fc_1(/22-),

2"(&-,(Ji2-")-gfc_1(s)) = (/1-2"s)«k_1(/12-"),

2B(gk_1(i2-") - gk_,((i -1)2-) ) = »„_,((* - 1)2-).

Hence

l|2B(gk-,(/22-")-gfc-1(J12-"))||s(/2-/1)ek_1

and

However /2-/!<2n(r-s)<4 so that / 2 - / ! + 2<5. Hence

^"(gk-iW-gk-^sWllsSek.!. (3.3.6)

Now

2"(gk(0- gk-i(0) = 2-N'p(«k(0 - «k_,(0),

where 0 < p < l , by (3.3.4) and (3.3.5). Hence

\\2n(gk(t)-gk-i(t))\\^ek + ek^. (3.3.7)

A similar inequality holds for s.
If r>k

2"(gr(f) - gr_!(()) = 2"-N'P(vr(t) - v^t)),

where O ^ p ^ l , and so

< max | |2N '-N-(ur(0-^^
0SK1

by (3.3.2). Hence

\\2n(g(t)-gM)\\^(Z 2k-)ek = ek. (3.3.8)

A similar inequality holds for s.
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Combining (3.3.6), (3.3.7) and (3.3.8) and the similar results for s we obtain

and hence

l|g(0-g(s)H

where Nk >log2l/( t-s) . Hence g has the properties specified in the theorem.

Every F-space X has a unique maximal linear subspace with trivial dual; this
subspace is closed. Let us call this maximal subspace the core of X. If core (X) = {0}, it
does not necessarily follow that X has a separating dual; for a detailed investigation of related
ideas see Ribe [3]. We conclude with a simple corollary.

COROLLARY 3.4. Suppose X is an F-space and xeX. In order that there exists a curve
g: [0,1] -» X with g(0) = 0, g(l) = x and g'(t) = 0 for 0 < t < 1 if is necessary and sufficient
that xecore(X).

Proof. If x ecore(X) the existence of g is given by Theorem 3.3. Suppose conversely
such a g exists and let Y be the closed linear span of {g(f):O^ t<1}. Suppose <£ is a
continuous linear functional on Y. Then (<f>°g)'(t) = O ( 0 < f < l ) and hence by the Mean
Value Theorem <£(g(f)) = O ( 0 < t < l ) . Thus <f> = 0 and so Y<=core(X); in particular
xecore(X).
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