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Abstract
We show that the class of subspaces of c0(N) is stable under Lipschitz
isomorphisms. The main corollary is that any Banach space which
is Lipschitz-isomorphic to c0(N) is linearly isomorphic to c0(N). The
proof relies in part on an isomorphic characterization of subspaces of
c0(N) as separable spaces having an equivalent norm such that the
weak-star and norm topologies quantitatively agree on the dual unit
sphere. Estimates on the Banach–Mazur distances are provided when
the Lipschitz constants of the isomorphisms are small. The quite
different non-separable theory is also investigated.

1 Introduction

Banach spaces are usually considered within the category of topological
vector spaces, and isomorphisms between them are assumed to be contin-
uous and linear. It is however natural to study them from different points
of view, e.g. as infinite dimensional smooth manifolds, metric spaces or
uniform spaces, and to investigate whether this actually leads to different
isomorphism classes. We refer to [JoLS] and references therein for recent
results and description of this field. Some simply stated questions turn out
to be hard to answer: for instance, no examples are known of separable
Banach spaces X and Y which are Lipschitz isomorphic but not linearly
isomorphic. It is not even known if this could occur when X is isomorphic
to l1. The main result of this work is that any separable space which is Lip-
schitz isomorphic to c0(N) is linearly isomorphic to c0(N). Showing it will
require the use of various tools from non-linear functional analysis, such as
the Gorelik principle. New linear results on subspaces of c0(N) will also be
needed.

We now turn to a detailed description of our results. Section 2 contains
the main theorems of our article (Theorems 2.1 and 2.2), which contribute
to the classification of separable Banach spaces under Lipschitz isomor-
phisms. These results are non-linear. However, their proof requires linear
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tools such as Theorem 2.4 which provides a characterization of linear sub-
spaces of c0(N) in terms of existence of equivalent norms with a property of
asymptotic uniform smoothness. This technical property is easier to handle
through the dual norm, which is such that the weak* and norm topologies
agree quantitatively on the sphere (see Definition 2.3). The main topo-
logical argument we need is Gorelik’s principle (Proposition 2.7) which is
combined with a renorming technique and with Theorem 2.4 for showing
(Theorem 2.1) that the class of subspaces of c0(N) is stable under Lipschitz-
isomorphisms. It follows (Theorem 2.2) that a Banach space is isomorphic
to c0(N) as soon as it is Lipschitz-isomorphic to it. The renorming tech-
nique is somewhat similar to “maximal rate of change” arguments which
are used for differentiating Lipschitz functions (see [P]).

We subsequently investigate extensions of the separable isomorphic re-
sults of section 2 in two directions: what can be said when the Lipschitz
constants of the Lipschitz isomorphisms are small? What happens in the
non-separable case? These questions are answered in the last three sections.
For reaching the answers, we have to use specific tools, since the proofs are
not straightforward extensions of those from section 2.

Section 3 deals with quantitative versions of Theorem 2.2. These state-
ments are “nearly isometric” analogues, in the case of c0(N), of Mazur’s the-
orem which states that two isometric Banach spaces are linearly isometric.
Indeed we show that a Banach space X is close to c0(N) in Banach–Mazur
distance if there is a Lipschitz-isomorphism U between X and c0(N) such
that the Lipschitz constants of U and U−1 are close to 1 (Propositions 3.2
and 3.4). Proposition 3.2 relies on an examination of the proof of Gorelik’s
principle in the case of c0(N) and on an unpublished result of M. Zippin
([Z3]), while Proposition 3.4 uses the concept of a K-space from [KaR].

The non-separable theory is studied in sections 4 and 5. It is shown
in [JoLS, Theorem 6.1] that if 1 < p < ∞, any Banach space which is
uniformly homeomorphic (in particular, Lipschitz isomorphic) to lp(Γ) is
linearly isomorphic to it, for any set Γ. But in the case of co(Γ) (i.e. in
the case p = ∞), this situation happens to be quite different. Indeed
there are spaces which are Lipschitz isomorphic to c0(Γ) with Γ uncount-
able but not linearly isomorphic to a subspace of that space (see [DGZ2]
and Examples 4.9). The gist of the last two sections is that the separable
theory extends to the class of weakly compactly generated spaces (that is,
to spaces X which contain a weakly compact subset which spans a dense
linear subspace) but not further. Section 4 is devoted to characterizing



800 G. GODEFROY, N. KALTON AND G. LANCIEN GAFA

subspaces of c0(Γ) by the existence of certain equivalent norms, that is,
to extend Theorem 2.4 to the non-separable case. It so happens that the
quantitative behaviour of the equivalent asymptotically uniformly smooth
norms on X, which does not really matter in the separable case, is crucially
important in the non-separable situation (Lemma 4.2). Knowing this, we
characterize, both isomorphically (Theorem 4.4) and almost isometrically
(Proposition 4.5) subspaces of c0(Γ). We also obtain satisfactory classifi-
cation results for C(K)-spaces, when some finite derivative of the compact
space K is empty. More precisely, we show that K is an Eberlein com-
pact and K(ω0) is empty if and only if C(K) is linearly isomorphic to some
space c0(Γ) (Theorem 4.8), while the same equivalence holds with “Lip-
schitz isomorphic” if we drop the requirement that K is Eberlein (The-
orem 4.7). Projectional resolutions of identity play a leading role in this
fourth section. The last section 5 contains the extension of our main results
Theorems 2.1 and 2.2 to the non-separable frame, which holds under the
assumption of weakly compact generation (Corollary 5.2). We also provide
characterizations of the spaces c0(Γ), as well as some additional remarks
about the non-separable results. Our statements proved under the assump-
tion dens(X) = ω1 (Theorems 4.4 and 4.8, results from section 5) can be
extended with similar proofs to the case dens(X) < ℵω0 . It is plausible
that cardinality restrictions are not necessary.

A similar theory can be developed for uniform homeomorphisms. This
is the subject of the forthcoming paper [GKL2]. Some results of [GKL2]
and of the present paper have been announced in [GKL1].

Notation. We denote by BX , respectively SX , the open unit ball, respec-
tively the unit sphere of a Banach space X. If V is a uniformly continuous
map from a Banach space X to a Banach space Y , we denote, for t > 0,
ω(V, t) = sup{‖V x1 − V x2‖, ‖x1 − x2‖ ≤ t} its modulus of uniform conti-
nuity. Two Banach spaces X and Y are Lipschitz isomorphic if there is a
bijective map U from X onto Y such that U and U−1 are both Lipschitz
maps whenX and Y are equipped with the metric given by their norm. The
word “isomorphic”, when used alone, will always mean linearly isomorphic.
The Lipschitz weak-star Kadec–Klee property (in short, LKK∗) is defined
in Definition 2.3, and in Definition 4.1 in the non-separable case. We re-
fer to the discussion that follows Definition 2.3 for the relation between
this notion and V. Milman’s moduli from [M], and for related terminology.
Specific notions which are used in the non-separable sections 4 and 5 are
recalled after Definition 4.1.
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2 Separable Isomorphic Results

The aim of this section is to prove our main results.
Theorem 2.1. The class of all Banach spaces that are linearly isomorphic
to a subspace of c0(N) is stable under Lipschitz isomorphisms.

When dealing with c0(N) itself, we obtain a more precise theorem.
Theorem 2.2. A Banach space is linearly isomorphic to c0(N) if and only
if it is Lipschitz isomorphic to c0(N).

The proof of these theorems will require the use of a characterization
of subspaces of c0(N) in terms of equivalent norms, and a non-linear ar-
gument which relies mainly upon the Gorelik principle. We first establish
the somewhat technical renorming characterization, and for this purpose
we need to introduce some notation. The following definition is consistent
with the terminology of [KnOS]; see also [DilGK] and references therein.
Definition 2.3. Let X be a separable Banach space. The norm of X is
said to be Lipschitz weak-star Kadec–Klee (in short, LKK∗) if there exists
c in (0, 1] such that its dual norm satisfies the following property: for any
x∗ in X∗ and any weak∗ null sequence (x∗n)n≥1 in X∗ (x∗n

w∗−→ 0),
lim sup ‖x∗ + x∗n‖ ≥ ‖x∗‖+ c lim sup ‖x∗n‖ .

If the above property is satisfied with a given c in (0, 1], we will say that
the norm of X is c-LKK∗. If it is satisfied with the optimal value c = 1, we
will say that the norm of X is metric-KK∗.

Let us make it clear that the above notion is a property of the norm of
X which is actually checked on the dual norm, the reference to X being
contained in the use of the weak* topology. In this paper, it will in practice
be easier to work with dual norms. However, it is appropriate to reformulate
the above definition in terms of the norm of X. This can be done using
a modulus which has been introduced in 1971 by V. Milman ([M]), and
which we recall now. If x ∈ SX and Y is a linear subspace of X, we let

ρ(τ, x, Y ) = sup
{
‖x+ y‖ − 1 ; y ∈ Y , ‖y‖ ≤ τ

}
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and then
ρ(τ, x) = inf

{
ρ(τ, x, Y ) ; dim(X/Y ) <∞

}
and finally

ρ(τ) = sup
{
ρ(τ, x) ; x ∈ SX

}
.

In Milman’s ([M]) notation, ρ(τ, x) = δ(τ ;x,Bo). In [JoLPS], Banach
spaces which satisfy that ρ(τ) = o(τ) when τ tends to 0 are called asymp-
totically uniformly smooth. An easy duality argument shows that the norm
of X is Lipschitz weak-star Kadec–Klee if and only if there exists τ0 > 0
such that ρ(τ0) = 0. In fact, Lemma 2.5 below shows that if the norm of X
is c−LKK∗ then ρ(c) = 0 and it follows from [KaW] that the norm of X is
metric−KK∗ if and only if ρ(1) = 0. Hence, following the terminology of
[JoLPS], spaces which enjoy the LKK∗ property should be called asymp-
totically uniformly flat. Although this latter terminology is certainly more
descriptive, we will keep using in the statements the Lipschitz weak-star
Kadec–Klee terminology since we crucially use the dual presentation and
the parameter c.

The following theorem asserts that having an equivalent LKK∗ (or if
preferred, asymptotically uniformly flat) norm is an isomorphic character-
ization of the subspaces of c0(N). The precise quantitative version of this
result is the following.

Theorem 2.4. Let c in (0, 1] and X be a separable Banach space whose
norm is c-Lipschitz weak-star Kadec–Klee. Then, for any ε > 0, there is a
subspace E of c0(N) such that dBM (X,E) ≤ 1/c2 + ε; where dBM (X,E)
denotes the Banach–Mazur distance between X and E.

Proof. The following lemma gives a dual formulation of the notion of LKK∗

norm.

Lemma 2.5. Let c in (0, 1] and X be a separable Banach space with a
c-Lipschitz weak-star Kadec–Klee norm, then X has the property m∞(c),
namely

max
(
‖x‖, 1

2−c lim sup ‖xn‖
)
≤ lim sup ‖x+xn‖ ≤ max

(
‖x‖, 1

c lim sup ‖xn‖
)
,

whenever (xn) is a weakly null sequence in X (xn
w−→ 0).

Proof. Let x in X and (xn) ⊂ X with xn
w−→ 0. Without loss of generality,

we may assume that lim ‖xn‖ and lim ‖x+ xn‖ exist with lim ‖xn‖ > 0.
We will first prove the right-hand side inequality. For n ≥ 1, pick y∗n in X∗

so that ‖y∗n‖ = 1 and y∗n(x+xn) = ‖x+ xn‖. Passing to a subsequence, we
may assume that y∗n

w∗−→ y∗ and lim ‖y∗n − y∗‖ exists. Then, it follows from
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our assumption that
c lim ‖y∗n − y∗‖ ≤ 1− ‖y∗‖ .

Notice now that ‖x+ xn‖ = y∗n(x+ xn) = y∗n(x) + y∗(xn) + (y∗n − y∗)(xn).
So we have

lim ‖x+ xn‖ ≤ ‖y∗‖ ‖x‖+
(1− ‖y∗‖) lim ‖xn‖

c
≤Max

(
‖x‖, 1

c
lim ‖xn‖

)
.

For the left-hand side inequality, we only need to show that lim ‖x+xn‖ ≥
1

2−c lim ‖xn‖. So we select now x∗n in X∗ with ‖x∗n‖ = 1 and x∗n(xn) = 1

and we assume that x∗n
w∗−→ x∗ and lim ‖x∗n − x∗‖ exists. Again , we have
c lim ‖x∗n − x∗‖ ≤ 1− ‖x∗‖ .

Since (x∗n−x∗)(xn)→ lim ‖xn‖, we also obtain lim ‖x∗n−x∗‖ ≥ 1 and there-
fore ‖x∗‖ ≤ 1−c. We can write x∗n(x+ xn) = ‖xn‖+ (x∗n − x∗)(x) + x∗(x).
So, passing to the limit we obtain lim ‖x + xn‖ + (1 − c)‖x‖ ≥ lim ‖xn‖.
Then we conclude by using the fact that ‖x‖ ≤ lim ‖x+ xn‖. �

Remark. The best constant 1/(2 − c) is not crucial for the proof of
Theorem 2.2 that will be achieved with the trivial value 1/2. However it
will be used in the proof of Proposition 3.2 and it helps us to relate this
with Theorem 3.2 in [KaW] which states, in the particular case p =∞, that
a space satisfying the property m∞ = m∞(1) embeds almost isometrically
into c0(N).

Our next lemma is the analogue of Lemma 3.1 in [KaW].
Lemma 2.6. (i) If F is a finite dimensional subspace of X and η > 0, then
there is a finite dimensional subspace U of X∗ such that

∀(x, y) ∈ F × U⊥
(1− η) Max

(
‖x‖, 1

2‖y‖
)
≤ ‖x+ y‖ ≤ (1 + η) Max

(
‖x‖, 1

c‖y‖
)
.

(ii) If G is a finite dimensional subspace of X∗ and η > 0, then there is
a finite dimensional subspace V of X such that
∀(x∗, y∗) ∈ G× V ⊥ (1− η)

(
‖x∗‖+ c‖y∗‖

)
≤ ‖x∗ + y∗‖ ≤ ‖x∗‖+ ‖y∗‖ .

Proof. Since the norm of X is LKK∗, X∗ is separable. Then the proof is
identical with the proof of Lemmma 3.1 in [KaW]. �

We will now proceed with the proof of Theorem 2.4, which is only a
slight modification of the proof of Theorem 3.2 in [KaW]. So let 0 < δ < 1/3
and pick a positive integer t such that t > 6(1 + δ)/c3δ. Let also (ηn)n≥1
be a sequence of positive real numbers satisfying

0 < ηn <
δ
2 ,

∏
n≥1

(1− ηn) > 1− δ and
∏
n≥1

(1 + ηn) < 1 + δ .
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Finally, let (un)n≥1 be a dense sequence in X. Following the ideas of
Kalton and Werner, we then construct subspaces (Fn)n≥1, (F ′n)n≥1 of X∗

and (E(m,n))1≤m≤n of X so that
(a) dimFn <∞, dimE(m,n) <∞ for all m ≤ n.
(b) F ′n ⊆ [u1, . . . , un]⊥ ∩

⋂
j≤k<nE(j, k)⊥ is weak∗-closed and X∗ =

F1 ⊕ · · · ⊕ Fn ⊕ F ′n.
(c) F ′n = Fn+1 ⊕ F ′n+1.
(d) If x∗ ∈ F1 + · · ·+ Fn and y∗ ∈ F ′n+1, then

(1− ηn)
(
‖x∗‖+ c‖y∗‖

)
≤ ‖x∗ + y∗‖ ≤ ‖x∗‖+ ‖y∗‖ .

(e) If x ∈ (F1 + · · ·+ Fn)⊥ and y ∈
∑

j≤k<nE(j, k), then

(1− ηn)Max
(
‖x‖, 1

2‖y‖
)
≤ ‖x+ y‖ ≤ (1 + ηn) Max

(
‖x‖, 1

c‖y‖
)
.

(f) (F1 + · · ·+Fm−1 +F ′n)⊥ ⊆ E(m,n) and E(m,n) ⊆ (F1 + · · ·+Fm−2)⊥
if 1 ≤ m ≤ n.

(g) If x∗ ∈ Fm + .. + Fn, then there exists x ∈ E(m,n) so that ‖x‖ ≤ 1
and x∗(x) ≥ c(1− δ)‖x∗‖.

Now, as in [KaW], we define, for 0 ≤ s ≤ t− 1
Ts : Ys = c0

(
E(4(n− 1)t+ 4s+ 4, 4nt+ 4s+ 1)n≥0

)
→ X

and
Rs : Zs = c0

(
E(4nt+ 4s+ 2, 4nt+ 4s+ 3)n≥0

)
→ X

by Ts((yn)n≥0) =
∑
yn and Rs((zn)n≥0) =

∑
zn. And also

T : Y = `∞
(
(Ys)t−1

s=0
)
→ X and R : Z = `∞

(
(Zs)t−1

s=0
)
→ X

by

T (ξ0, . . . , ξt−1) =
1
t

t−1∑
s=0

Tsξs and R(ξ0, . . . , ξt−1) =
t−1∑
s=0

Rsξs .

Then we get

∀ξ ∈ Ys ,
1− δ

2
‖ξ‖ ≤ ‖Tsξ‖ ≤

1 + δ

c
‖ξ‖ ,

∀ξ ∈ Zs ,
1− δ

2
‖ξ‖ ≤ ‖Rsξ‖ ≤

1 + δ

c
‖ξ‖ ,

‖T‖ ≤ 1 + δ

c
and ‖R‖ ≤ 1 + δ

c
.

Still following [KaW] we can also show that if x∗ in X∗ satisfies R∗sx∗ = 0,
then ‖T ∗s x∗‖ ≥ c(1− δ)‖x∗‖. Then a Hahn–Banach argument yields

∀x∗ ∈ X∗ ‖T ∗s x∗‖ ≥ c(1− δ)‖x∗‖ − 2
(
c+

1 + δ

c(1− δ)

)
‖R∗sx∗‖ .

Since δ < 1/3 and c ≤ 1, we have
∀x∗ ∈ X∗ ‖T ∗s x∗‖ ≥ c(1− δ)‖x∗‖ − 6

c‖R
∗
sx
∗‖ .
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Therefore

∀x∗ ∈ X∗ ‖T ∗x∗‖ ≥ c(1−δ)‖x∗‖ − 6
ct
‖R∗x∗‖ ≥

[
c(1−δ)−6(1+δ)

c2t

]
‖x∗‖.

Thus, for our initial choice of t we obtain
∀x∗ ∈ X∗ ‖T ∗x∗‖ ≥ c(1− 2δ)‖x∗‖ .

Since we have on the other hand that ‖T‖ ≤ 1
c (1 + δ), we get that

d(X,Y/ kerT ) <
1 + δ

c2(1− 2δ)
.

As a c0-sum of finite dimensional spaces, Y embeds almost isometrically
into c0(N). Then, by Alspach’s theorem [Al], so does Y/ kerT . This con-
cludes our proof. �

What makes the above proof quite technical is that we do not assume
any approximation property on the space X. Indeed, Theorem 2.4 is much
easier to show through a skipped blocking argument when the space X is
assumed to have a shrinking FDD. Now, using [JoR] and the simple fact
that being a subspace of c0(N) is a three-space property, the general case
follows. This alternative approach from [JoLPS] does not provide however
the same isomorphism constants.

We now turn to non-linear theory. First we state a slight modification
of the Gorelik Principle as it is presented in [JoLS].
Proposition 2.7 (Gorelik’s principle). Let E and X be two Banach spaces
and U be a homeomorphism from E onto X with uniformly continuous
inverse. Let b and d two positive constants and let E0 be a subspace of
finite codimension of E. If d > ω(U−1, b), then there exists a compact
subset K of X such that

bBX ⊂ K + U(2dBE0) .

Proof. We recall a fundamental lemma due to E. Gorelik [Go] and that can
also be found in [JoLS].
Lemma 2.8. For every ε > 0 and d > 0, there exists a compact subset A
of dBE such that, whenever Φ is a continuous map from A to E satisfying
‖Φ(a)− a‖ < (1− ε)d for any a in A, then Φ(A) ∩E0 6= ∅.

Now, fix ε > 0 such that d(1− ε) > ω(U−1, b). Let K = −U(A), where
A is the compact set obtained in Lemma 2.8. Consider now x in bBX and
the map Φ from A to E defined by Φ(a) = U−1(x + Ua). It is clear that
for any a in A, ‖Φ(a) − a‖ < (1 − ε)d. Then, it follows from Lemma 2.8
that there exists a ∈ A so that U−1(x+ Ua) ∈ 2dBE0 . This concludes our
proof. �
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We can now proceed to prove Theorem 2.1.
Proof of Theorem 2.1. Let U be a Lipschitz isomorphism from a subspace
E of c0 onto the Banach space X. Theorem 2.4 indicates that we need
to build an equivalent LKK∗ norm on X. This norm will be defined as
follows. For x∗ in X∗, set

|||x∗||| = sup
{
|x∗(Ue− Ue′)|
‖e− e′‖ ; (e, e′) ∈ E ×E , e 6= e′

}
.

Since U and U−1 are Lipschitz maps, ||| ||| is an equivalent norm on X∗. It
is clearly weak∗ lower semicontinuous and therefore is the dual norm of an
equivalent norm on X that we will also denote ||| |||.

Consider ε > 0, x∗ ∈ X∗ and (x∗k)k≥1 ⊂ X∗ such that x∗k
w∗−→ 0 and

||x∗k|| ≥ ε > 0 for all k ≥ 1. Fix δ > 0 and then e and e′ in E so that
x∗(Ue− Ue′)
‖e− e′‖ > (1− δ)|||x∗||| .

By using translations in order to modify U , we may as well assume that
e = −e′ and Ue = −Ue′. Since E is a subspace of c0, it admits a finite
codimensional subspace E0 such that

∀f ∈ ‖e‖BE0 ‖e+ f‖ ∨ ‖e− f‖ ≤ (1 + δ)‖e‖ . (2.1)
Let C be the Lipschitz constant of U−1. By Proposition 2.7, for every b <
‖e‖/2C there is a compact subset K of X such that bBX ⊂ K+U(||e||BE0).
Since (x∗k) converges uniformly to 0 on any compact subset of X, we can
construct a sequence (fk) ⊂ ||e||BE0 such that

lim inf x∗k(−Ufk) ≥
ε‖e‖
2C .

We deduce from (2.1) that x∗(Ufk +Ue) ≤ (1 + δ)‖e‖ |||x∗||| and therefore
x∗(Ufk) ≤ 2δ‖e‖ |||x∗|||. Using again the fact that x∗k

w∗−→ 0, we get that

lim inf(x∗ + x∗k)(Ue− Ufk) ≥ (1− 3δ)‖e‖ |||x∗|||+ ε‖e‖
2C .

Since δ is arbitrary, by using the definition of ||| ||| and (2.1), we obtain
lim inf |||x∗ + x∗k||| ≥ |||x∗||| + ε

4C . This proves that ||| ||| is LKK∗, and
concludes the proof of Theorem 2.1. �

Theorem 2.2 is easily deduced from Theorem 2.1 through the use of two
classical results.
Proof of Theorem 2.2. We only need to prove the “if” part. So let X be a
Banach space which is Lipschitz isomorphic to c0(N). Theorem 2.1 asserts
that X is linearly isomorphic to a subspace of c0(N). Besides, it is known
that the class of all L∞ spaces is stable under uniform homeomorphisms
([HeM]) and that a L∞ subspace of c0(N) is isomorphic to c0(N) ([JoZ]).
This establishes Theorem 2.2. �
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Note that although Theorems 2.1 and 2.2 are non-linear results, it is
critically important that the Banach space X is Lipschitz isomorphic to
a linear subspace of c0(N). In fact, given any separable Banach space Y ,
there is a bi-Lipschitz map between Y and a subset of c0(N) ([A]).

3 Quantitative Results

Recall that for λ ≥ 1, a Banach space X is said to be L∞λ if for every
finite dimensional subspace E of X, there is a finite dimensional subspace
F of X, containing E and such that dBM (F, `dimF

∞ ) ≤ λ. If X is L∞λ for
some λ ∈ [1,+∞), then it is said to be L∞ (see [LiT]). We already used the
fact ([JoZ]) that a subspace of c0(N) is isomorphic to c0(N) if and only if
it is L∞. Combining this with Theorem 2.4, we get that if a separable L∞
space admits a LKK∗ norm, then it is isomorphic to c0(N). The following
statement gives a quantitative estimate on the linear isomorphism.
Proposition 3.1. There exists a function F : [1,+∞)× (0, 1]→ [1,+∞)
such that if X is a separable L∞λ space with a c-Lipschitz weak-star Kadec-
Klee norm, then

dBM
(
X, c0(N)

)
≤ F (λ, c) .

Moreover F (1, 1) = 1 and F is continuous at (1, 1).

Proof. Let us first mention that for values of λ and c close to 1, the result
follows directly from a work of M. Zippin [Z3], who proved that if X is a
L∞µ subspace of c0 with µ < 7/6, then

dBM
(
X, c0(N)

)
≤ µ2

µ2 − 2µ3 + 2
.

Then, it is easily checked that in our setting, if we assume moreover that
λ/c2 < 7/6, we get

dBM
(
X, c0(N)

)
≤ λ2

2c6 + λ2c2 − 2λ3 .

For the general case we do not have an explicit function F . We will
just reproduce an argument by contradiction used in [GL, p. 261]. Indeed,
if there is no such function, then there exist (λ, c) in [1,+∞)× (0, 1] and a
sequence (Xn) of separable L∞λ spaces with a c − LKK∗ norm such that,
for all n ≥ 1, dBM (Xn, c0(N)) ≥ n. But the space Y =

(∑
⊕Xn

)
c0

is L∞
with a LKK∗ norm and thus by Theorem 2.4 and [JoZ] it is isomorphic
to c0(N). So, the Xn’s being uniformly complemented in Y , their Banach–
Mazur distance to c0(N) should be bounded, a contradiction. �

We will now give two quantitative versions of Theorem 2.2.
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Proposition 3.2. There exists a function F : (1,+∞) → (1,+∞) such
that limλ→1+ F (λ) = 1 and such that if U : X → c0(N) is a bi-Lipschitz
map with Lip(U) · Lip(U−1) = λ, then dBM (X, c0(N)) ≤ F (λ).

Proof. Let En = {x = (x(i))i≥0 ∈ c0(N); x(i) = 0 if i > n}. We set
A = BEn . It is easily seen that if Φ : A → c0(N) is a continuous map
such that ‖a − Φ(a)‖ ≤ 1 for all a ∈ A, then there exists a0 ∈ A such
that Φ(a0)(i) = 0 for all i ≤ n. Indeed, if π : c0(N) → En is the natural
projection and F (a) = a − π(Φ(a)), then F (A) ⊆ A and by Brouwer’s
theorem, there is a0 ∈ A with F (a0) = a0. Hence |Φ(a0)(j)| ≤ 1 for all
j > n, and thus Φ(a0) ∈ BFn , where

Fn =
{
x ∈ c0; x(j) = 0 if j ≤ n

}
.

If we now reproduce the proof of Gorelik’s principle (Proposition 2.7), using
the compact set A and the space Fn defined above (with an appropriate
choice of n), we find in the notation of the proof of Theorem 2.1 that for
any b < (‖e‖/Lip(U−1)), there is a compact subset K of X such that

bBX ⊂ K + U
(
‖e‖BFn

)
and it follows that the norm ||| . ||| is λ−1−LKK∗. Now Theorem 2.4 shows
that the distance from (X, ||| . |||) to the subspaces of c0(N) is at most λ2.
Since the distance between the original norm ‖ . ‖ of X and ||| . ||| is less
than λ, it follows that the Banach–Mazur distance from (X, ‖ . ‖) to the
subspaces of c0(N) is at most λ3.

We now observe the following:
Fact 3.3. There is a function F0 : (1,+∞)→ (1,+∞) with limλ→1+ F0(λ)
= 1, and such that if X satisfies the assumptions of the proposition, then
X is an L∞F0(λ) space.

Proof. By the ultrapower version of the local reflexivity principle, X∗∗ is
isometric to a 1-complemented subspace of some ultrapower (X)U . We
set Z = (c0)U . Clearly, there is a bi-Lipschitz map Ũ : (X)U → Z
with Lip(Ũ) · Lip(Ũ−1) = λ. It follows that there are maps f : X∗∗ → Z
and g : Z → X∗∗ with Lip(f) · Lip(g) = λ and g ◦ f = IdX∗∗ . By
[HeM, Lemma 2.11], there is g̃ : Z∗∗ → X∗∗ extending g and such that
Lip(g̃)=Lip(g). The space Z∗∗ is isometric to the dual of an L1-space,
hence it is a P1 space (see [LiT, p. 162]). Since g̃ ◦ f = IdX∗∗ , it fol-
lows that if M is a metric space, N a subspace of M and ψ : N → X∗∗

a Lipschitz map, there exists a Lipschitz extension ψ : M → X∗∗ with
Lip(ψ) ≤ λLip(ψ). In particular, X∗∗ is isometric to a linear subspace Y
of l∞(Γ) on which there exists a Lipschitz projection P with Lip(P ) ≤ λ.
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Since X∗∗ is 1-complemented in its own bidual, it follows from [Li, Corol-
lary 2 to Theorem 3] that there exists a linear projection π : l∞(Γ) → Y
with ‖π‖ ≤ λ. Therefore, X∗∗ is a Pλ space.

By [LiR, see p. 338]), X∗∗ is therefore a L∞10λ space, and so is X. More-
over ([Z1,2] and [B, Th. 13]), when F is a finite dimensional P1+ε space
with ε < 17−8, then if we let ν = ε1/8 (see [B])

dBM (F, ldim(F )
∞ ) ≤ 1 + 6ν

(1− 6ν)(1− 17ν)
.

In the above notation, any finite dimensional subspace of Y is contained,
up to δ > 0 arbitrary, in a space π(G), where G is isometric to a finite
dimensional l∞. Such an F is Pλ; therefore ([B, Theorem 13]) guarantees
the requirement limλ→1+ F (λ) = 1. �

We now proceed with the proof of Proposition 3.2. We know that
(X, ‖ . ‖) is a L∞F0(λ) space whose Banach–Mazur distance to the subspaces
of c0(N) is at most λ3. Any L∞µ subspace H of c0(N) is isomorphic to c0(N)
([JoZ]) and by using contradiction (see [GL, p. 261]) we show the existence
of a function F1(µ) such that dBM (H, c0) ≤ F1(µ). Finally according to
([Z3]), there is such a function F1 which satisfies limµ→1+F1(µ) = 1 (see
proof of Proposition 3.1 above). For any ε > 0, X is (λ3 + ε) isomorphic
to a subspace Gε of c0(N) which is a L∞µ space with µ = (λ3 + ε)F0(λ); the
existence of F as claimed in the proposition clearly follows. �

Using the techniques from [KaO] and the notion of a K-space ([KaR]),
we can actually extend Proposition 3.2 to arbitrary equivalent renormings
of c0(N).

Proposition 3.4. Let Y be a Banach space which is linearly isomorphic to
c0(N). Then for any ε > 0, there is δ > 0 such that if X is a Banach space
and U : X → Y is a bi-Lipschitz onto map with Lip(U) ·Lip(U−1) < 1 + δ,
then dBM (X,Y ) < 1 + ε.

Proof. The proof relies heavily on [KaO], from which we take the following
notation: if dM (E,F ) denotes the Hausdorff distance between two subsets
E and F of a metric space M , the Kadec distance (introduced in [Kad])
dK(X,Y ) between two Banach spaces X and Y is

dK(X,Y ) = inf
{
dZ(U(BX), V (BY ))

}
,

where the infimum is taken over all linear isometric embeddings U, V of
X,Y into an arbitrary common Banach space Z.

The Gromov–Hausdorff distance dGH(X,Y ) is the infimum of the Haus-
dorff distances dM (BX , BY ) over all isometric embeddings of X and Y into
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an arbitrary common metric space M . By [KaO, Th. 2.1], we have

dGH(X,Y ) ≤ sup
{1

2‖Φ(x)−Φ(x′)‖Y − ‖x− x′‖X ; x, x′ ∈ BX
}

where Φ : BX → BY is a bijective map.
It follows easily that for any η > 0, there is δ > 0 such that if there

is U : X → Y a Lipschitz isomorphism with Lip(U) · Lip(U−1) < 1 + δ,
then dGH(X,Y ) < η. Obviously, one has dGH(X,Y ) ≤ dK(X,Y ) (and
in general these two distances are not equivalent: for instance ([KaO]),
limp→1+ dGH(`p, `1) = 0 while dK(`p, `1) = 1 for all p > 1). We recall that
a Banach space E is a K0-space ([KaR]) if there exists K0 > 0 such that
whenever f : E → R is a homogeneous function which is bounded on BE
and satisfies ∣∣f(x+ x′)− f(x)− f(x′)

∣∣ ≤ ‖x‖+ ‖x′‖
then there exists x∗ ∈ E∗ such that∣∣f(x)− x∗(x)

∣∣ ≤ K0‖x‖ , ∀x ∈ E .
It is shown in [KaR] that c0(N) is a K0-space. By [KaO, Theorem 3.7], if E
is a K0-space and (En) is such that lim dGH(En, E) = 0, then lim dK(En, E)
= 0.

Since Y is a K0-space as isomorphic to c0(N), for any α > 0 there is
η > 0 such that dGH(X,Y ) < η implies dK(X,Y ) < α. Let Z be a Banach
space which contains isometric copies of X and Y with dZ(BX , BY ) < α.
We may and do assume that Z is separable. By Sobczyk’s theorem, Y is
linearly complemented in any separable super-space Z, and the norm of the
projection πZ is bounded independently of Z. It easily follows that given
ε > 0, there is α > 0 such that if dZ(BX , BY ) < α then dBM (X,Y ) < 1+ε.
Indeed, the restriction to X of πZ provides the required linear isomorphism.
This concludes the proof. �

4 Subspaces of c0(Γ)

We now consider non-separable spaces. It turns out that the non-separable
theory looks quite different. In this section we first establish non-separable
analogues of Theorem 2.4 for characterizing subspaces of c0(Γ) spaces, then
we determine which compact spaces K are such that the Banach space
C(K) is linearly or Lipschitz isomorphic to a c0(Γ) space. It turns out that
the two properties are distinct in the non-separable case, and this leads to a
bunch of natural non-separable spaces which are Lipschitz but not linearly
isomorphic to c0(Γ).
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As will be clear in the sequel, the techniques that we develop are sepa-
rably determined. So we adopt the following definition:
Definition 4.1. Let X be a Banach space, and let c ∈ (0, 1]. The norm
‖ ‖ of X is c-Lipschitz weak-star Kadec–Klee if its restriction to any sep-
arable subspace of X is c-Lipschitz weak-star Kadec–Klee in the sense of
Definition 2.3. If c = 1, we say again that the norm is metric weak-star
Kadec–Klee.

We now recall classical terminology from non-separable Banach space
theory. A projectional resolution of identity (in short, P.R.I.) is a well-
ordered sequence of norm-one projections which allows to “break” a non-
separable Banach space into smaller subspaces, that is, into spaces whose
density character is smaller. We refer to [DGZ1, Chapter VI] or [Di] for a
precise definition and basic properties of projectional resolutions of identity.
A projectional resolution of identity (Pα) is said to be shrinking when (P ∗α)
is a P.R.I. on X∗. A Banach space X is weakly compactly generated (in
short, w.c.g.) if it contains a weakly compact subset which spans a dense
linear subspace. By [AmL], every w.c.g. space has a projectional resolution
of identity.

We now state and prove two lemmas which lead to our non-separable
analogue of Theorem 2.4.
Lemma 4.2. Let X be a Banach space. If ‖ ‖ is a metric weak-star Kadec–
Klee norm on X, then (X, ‖ ‖) has a shrinking projectional resolution of
identity, and thus X is weakly compactly generated.

Proof. By [FG, Th. 3], it suffices to show that (X, ‖ ‖) is an M -ideal in
its bidual. But [HWW, Cor. III.1.10] asserts that to be an M -ideal in its
bidual is a separably determined property. So let Y be a separable subspace
of X and π : Y ∗∗∗ → Y ∗ be the canonical projection. Pick t ∈ Y ∗∗∗ with
‖t‖ = 1, and write t = y∗ + s with s ∈ Kerπ = Y ⊥. By definition of an
M -ideal, what we need to show is that

‖t‖ = ‖y∗‖+ ‖s‖ . (4.1)
There is a net (y∗α) in BY ∗ such that t = lim y∗α in (Y ∗∗∗, w∗) and then
y∗ = lim y∗α in (Y ∗, w∗). Since ‖t− y∗‖ = ‖s‖, we have

lim inf ‖y∗α − y∗‖ ≥ ‖s‖
and since ‖ ‖ is metric-KK∗, this implies that ‖y∗‖ ≤ 1−‖s‖ = ‖t‖ − ‖s‖.
This shows (4.1) since ‖t‖ ≤ ‖y∗‖+ ‖s‖ by the triangle inequality. �

Lemma 4.3. Let X be a Banach space with a c-Lipschitz weak-star Kadec–
Klee norm. For every x ∈ X, there exists a separable subspace E of X∗
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such that if y ∈ E⊥ ⊂ X, one has

max
(
‖x‖, ‖y‖2−c

)
≤ ‖x+ y‖ ≤ max

(
‖x‖, ‖y‖c

)
.

Proof. It clearly suffices to show that for any ε > 0, there is F ⊂ X∗

separable such that if y ∈ F⊥

(1− ε) max
(
‖x‖, ‖y‖

2− c

)
≤ ‖x+ y‖ ≤ (1 + ε) max

(
‖x‖, ‖y‖

c

)
.

Assume, for instance, that for any separable F , there is y ∈ F⊥ such that

‖x+ y‖ > (1 + ε) max
(
‖x‖, ‖y‖c

)
.

We construct inductively an increasing sequence (Fn) of separable sub-
spaces of X∗, and (yn) in X such that for all n ≥ 1,

(i) if u ∈ span{x, y1, . . . , yn}, then ‖u‖ = sup{|f(u)| ; ‖f‖ ≤ 1 , f ∈ Fn}.
(ii) yn+1 ∈ (Fn)⊥.
(iii) ‖x+ yn+1‖ > (1 + ε) max(‖x‖, ‖yn+1‖/c).

We let G = span{x, (yj)j≥1}. Since the weak∗ and norm topologies coincide
on SG∗ , it follows from (i) that D = ∪n≥1(Fn)|G is dense in (G∗, ‖ ‖). Then
(ii) implies that yn

w−→ 0. But now (iii) contradicts Lemma 2.5. This
proves the lemma, since we can clearly proceed along the same lines with
the left-hand side of the inequality. �

We now state and prove an analogue to Theorem 2.4 for non-separable
spaces. To avoid dealing with singular cardinals, we limit ourselves to the
case where the density character of X, denoted by dens(X), is equal to ω1.
It is plausible that this restriction is irrelevant.

Theorem 4.4. Let X be a Banach space such that dens(X) = ω1. Then
X is weakly compactly generated and X has an equivalent Lipschitz weak-
star Kadec–Klee norm if and only if X is isomorphic to a subspace of c0(Γ),
where |Γ| = ω1.

Proof. The natural norm of c0(Γ) is metric-KK∗ and every subspace of
c0(Γ) is w.c.g. ([JZ], see also [DGZ1, Chapter VI]).

Conversely, if X is w.c.g. and has a c − LKK∗ norm, then X is a
w.c.g. Asplund space and thus ([F], see also [DGZ1, Th. VI.4.3]) X has a
shrinking P.R.I. (Pα)α≤ω1 . Using Lemma 4.3, we construct by induction
on α, ordinals λα < ω1 such that λα < λα+1 and such that if Pλα(x) = x
and Pλα(y) = 0, then

max
(
‖x‖, ‖y‖

2− c

)
≤ ‖x+ y‖ ≤ max

(
‖x‖, ‖y‖

c

)
.
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If we let Xα = (Pλα+1−Pλα)(X), then X is isomorphic to
(∑
⊕Xα

)
c0

. By
Theorem 2.4, the spaces Xα are (uniformly in α) isomorphic to subspaces
of c0(N); this concludes the proof. �

We now provide a nearly isometric result. It follows from Lemma 4.2
and Theorem 4.4 that any space X with dens(X) = ω1 which has a metric-
KK∗ norm is isomorphic to a subspace of c0(Γ) with |Γ| = ω1. However, a
much better result is available, namely:

Proposition 4.5. Let X be a Banach space. The following assertions are
equivalent:

(i) The norm of X is metric weak-star Kadec–Klee.
(ii) For any ε > 0, there is a subspace Xε of c0(Γ), with |Γ| = dens(X),

such that dBM (X,Xε) < 1 + ε.

Proof. (ii)⇒ (i) easily follows from the fact that the natural norm of c0(Γ)
is metric-KK∗.

(i) ⇒ (ii) relies on

Fact 4.6. If X has a metric-KK∗ norm, there exists a P.R.I. (Pα) on X
such that for any α < dens(X), if (x, y) ∈ X2 are such that Pα(x) = x and
Pα(y) = 0, then ‖x+ y‖ = max(‖x‖, ‖y‖).

Indeed by Lemma 4.2 we know that X is w.c.g. Then Lemma 4.3 shows
that for all x ∈ X, there is Ex ⊂ X∗ a separable subspace such that
‖x+y‖ = max(‖x‖, ‖y‖) for every y ∈ (Ex)⊥. We now use the technique of
[DGZ1, Lemma VI.2.3]: using the same notation, we prove along the same
lines that if A ⊂ X and B ⊂ X∗ are subsets with density ≤ ℵ, there exist
norm closed subspaces [A] ⊂ X and [B] ⊂ X∗ such that

(i) A ⊂ [A], B ⊂ [B].
(ii) dens([A]) ≤ ℵ, dens([B]) ≤ ℵ.
(iii) For all x ∈ [A], ‖x‖ = sup{f(x) ; f ∈ [B] , ‖f‖ ≤ 1}.
(iv) For all x ∈ [A], Ex ⊂ [B].
(v) For all f ∈ [B], for all s ∈ S, supLs |f | = supLs∩[A] |f |.

Note that [DGZ1, Lemma VI.2.4]) shows that X = [A] ⊕ [B]⊥, while the
choice of Ex and (iv) shows that ‖x+y‖ = sup(‖x‖, ‖y‖) for all x ∈ [A] and
y ∈ [B]⊥. Fact 4.6 now follows by a simple transfinite induction argument,
as in [DGZ1, Theorem VI.2.5].

Finally, Proposition 4.5 follows immediately by transfinite induction
from Fact 4.6, since Theorem 2.4 proves it in the separable case and allows
us to start the induction. �
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Theorem 2.4 shows in particular that a separable Banach space has
an equivalent LKK∗ norm if and only if it has an equivalent metric-KK∗

norm, hence the distinction between the two notions is purely isometric for
separable spaces. Our next two statements show that it is not so in the
non-separable case, since certain spaces are w.c.g. while others are not.

Theorem 4.7. Let K be a compact space. The following assertions are
equivalent:

(i) The Cantor derived set of order ω0 of K is empty.
(ii) C(K) is Lipschitz isomorphic to c0(Γ), where Γ is the density char-

acter of C(K).
(iii) C(K) admits an equivalent Lipschitz weak-star Kadec–Klee norm.

Proof. (i) ⇒ (ii) was proved in [DGZ2] and the argument for the converse
can be found in [JoLS (Theorem 6.3)]. The equivalence between (i) and
(iii) follows easily from the proof of [L, Theorem 3.8]. �

It should be noted that the equivalent conditions of Theorem 4.7 are also
equivalent to the assertion that C(K) is uniformly homeomorphic to c0(Γ)
(see [JoLS, Theorem 6.3]). This follows also from [GKL2] where it is shown
that the condition “Sz(X) = ω0” is stable under uniform isomorphisms in
full generality.

Our next statement provides the topological condition which allows “lin-
earizing” the Lipschitz isomorphism from Theorem 4.7.

Theorem 4.8. Let K be a compact space such that dens(C(K)) = ω1.
The following assertions are equivalent:

(i) K is an Eberlein compact and its Cantor derived set of order ω0 is
empty.

(ii) C(K) is linearly isomorphic to c0(Γ), where |Γ| = ω1.
(iii) C(K) admits an equivalent metric weak-star Kadec–Klee norm.

Proof. (i) implies (ii): Since K is Eberlein, C(K) is w.c.g. (see [DGZ1,
Chapter VI]). By compactness, K(ω0) = ∅ implies that there is n in N such
that K(n) = ∅. We proceed by induction on n. If n = 1, K is finite and the
implication is obvious. Assume it holds when L(n) = ∅ and pickK such that
K(n+1) = ∅. We let L = K ′ and X = {f ∈ C(K) : f|L = 0}. The space
X is clearly isometric to c0(K \ L); while C(K)/X is isometric to C(L),
and thus isomorphic to a c0(Γ) space by our assumption. We observe now
that X is complemented in C(K), since any c0(I) space is 4-complemented
in any w.c.g. space X with dens(X) = ω1. For checking this, let us call
Y a subspace isometric to c0(I) of such a space X. Using the notation of
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[DGZ1, section VI.2], we can choose the map ϕ : X∗ → XN from [DGZ1,
Lemma VI.2.3] in such a way that for any s ∈ S and any f ∈ X∗:

(i) supLs |f | = sup{|f(x)|; x ∈ ϕ(f) ∩ Ls}.
(ii) supY ∩Ls |f | = sup{|f(x)|; x ∈ ϕ(f) ∩ Ls ∩ Y }.
(iii) spanϕ(f) ∩ Y = {x ∈ c0(I); supp(x) ⊆ If}, where If is a countable

subset of I.

Then [DGZ1, Lemma VI.2.4 and Th. VI.2.5] provide a P.R.I. (Pα) on
X such that for all α ≤ ω1:

1) Pα(Y ) ⊆ Y .
2) There exists Iα ⊆ I such that Pα(x) = ΠIα(x) for all x ∈ Y .

By Sobczyk’s theorem, c0(N) is 2-complemented in any separable super-
space. We consider (Pα) which satisfies 1) and 2) above. Since (Pα+1 −
Pα)(c0(I)) = c0(Iα+1 \ Iα), there is a projection

Πα : (Pα+1 − Pα)(X)→ (Pα+1 − Pα)(c0(I))
such that ‖Πα‖ ≤ 2. Let Π′α = Πα(Pα+1 − Pα) and Π =

∑
Π′α. It is easily

checked that Π is the required projection from X onto Y with ‖Π‖ ≤ 4.
To conclude the proof of (i) ⇒ (ii), we simply observe that since X is

complemented in C(K), we have that
C(K) w X ⊕ C(L) w c0(K \ L)⊕ c0(Γ) .

(ii) implies (iii) is clear since the natural norm on c0(Γ) is metric-KK∗.
(iii) implies (i): By Lemma 4.2, any Banach space which has a metric-

KK∗ norm has a shrinking P.R.I. and thus is w.c.g. The condition K(ω0)=∅
follows immediately from Theorem 4.7. �

Examples 4.9. There exist ([CP]; see [DGZ1, section VI.8]) compact
spaces such that K(3) = ∅ (hence C(K) is Lipschitz isomorphic to c0(Γ))
but there is no continuous one-to-one map from (BC(K), w) to (Bc0(Γ), w)
and thus no linear continuous injective map from such a C(K) to any c0(Γ).
Therefore Theorems 2.1 and 2.2 do not extend to the non-separable case.
In fact, each compact space K such that K(ω0) = ∅ but K is not Eber-
lein provides an example and some of these are quite simple (see [DGZ1,
Example VI.8.7]).

5 Characterizations of c0(Γ). Additional Remarks

In this last section we use the above non-separable techniques for charac-
terizing c0(Γ) spaces by showing that they are the only L∞ spaces which
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are “optimally smooth”. This leads in particular to the extension of our
main results to non-separable w.c.g. spaces (Corollary 5.2). We also gather
some remarks on the non-separable theory. We begin with

Proposition 5.1. Let X be a Banach space such that dens(X) = ω1. The
following assertions are equivalent:

(i) X is linearly isomorphic to c0(Γ), with |Γ| = ω1.
(ii) X is a L∞ space with an equivalent metric weak-star Kadec–Klee

norm.
(iii) X is a weakly compactly generated L∞ space with an equivalent

Lipschitz weak-star Kadec–Klee norm.
Proof. It is obvious that (i) implies (ii) and (iii).

(iii) implies (i): We use the notation from the proof of Theorem 4.4.
Through an easy separable exhaustion argument we can ensure that the
spaces Xα are (uniformly in α) L∞ spaces. By restriction, they have (uni-
formly in α) LKK∗ norms. Hence by Proposition 3.1 they are uniformly
isomorphic to c0(N). This clearly implies (i).

(ii) implies (iii) follows immediately from Lemma 4.2. �

We can now prove an extension of Theorems 2.1 and 2.2 to certain non-
separable spaces. Examples 4.9 above show that it is necessary to assume
that the spaces are w.c.g. On the other hand, the restriction on the cardi-
nality of Γ aims at avoiding technicalities and it is probably unnecessary.

Corollary 5.2. Let X be a weakly compactly generated Banach space,
and let Γ be a set with with |Γ| = ω1. Then

(i) If X is Lipschitz isomorphic to a subspace of c0(Γ), then it is linearly
isomorphic to a subspace of c0(Γ).

(ii) If X is Lipschitz isomorphic to c0(Γ), then it is linearly isomorphic
to c0(Γ).

Proof. The proof of Theorem 2.1 shows that if X is Lipschitz isomorphic
to a subspace of c0(Γ), then X has an equivalent LKK∗ norm. Indeed
the LKK∗ property is separably determined by definition and an easy
exhaustion argument shows that if E is any separable subspace of X, there
is a separable space F with E ⊂ F ⊂ X and F is Lipschitz isomorphic
to a subspace of c0(Γ). Now (i) follows from Theorem 4.4 and (ii) from
Proposition 5.1 and the fact that being a L∞ space is stable under Lipschitz
isomorphisms ([HeM]). �

Our next statement provides an extension of [GL, Th. IV.1] (see also
[HWW, p. 134]) to non-separable spaces.
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Proposition 5.3. Let X be a L∞ space with dens(X) = ω1 which is
isomorphic to an M -ideal in its bidual equipped with its bidual norm.
Then X is isomorphic to c0(Γ) where |Γ| = ω1.

Proof. Since X is an M -ideal in X∗∗, it is w.c.g. and it admits a shrinking
P.R.I. (Pα)α≤ω1 by [FG, Th. 3]. Let λ ∈ R be such that X is L∞λ . For
any sequence (x∗n) in X∗ with ‖x∗n‖ = 1 and w∗ − limx∗n = 0, there exists
α < ω1 such that

(a) P ∗α(x∗n) = x∗n for every n ≥ 1.
(b) Pα(X) is a L∞λ space.

Since Pα(X) is a separable L∞λ space which is M -ideal in its bidual, we have
by [GL, Remark 1, p. 261] that dBM (Pα(X), c0(N)) ≤M , where M = M(λ)
depends only upon λ. It follows that there exists a cluster point to the
sequence (x∗n) in (X∗∗∗, w∗), say G, such that d(G,X∗) ≥ A > 0, where A
depends only on M (that is, on λ).

If now (x∗n) ⊂ BX∗ and w∗−limx∗n = x∗, with ‖x∗n−x∗‖ ≥ ε, there is, by
the above, G in BX∗∗∗ with d(G,X∗) ≥ Aε and G = w∗− limU(x∗n− x∗) in
(X∗∗∗, w∗). Since G+x∗ = w∗−limU x∗n, one has 1 ≥ ‖G+x∗‖ = ‖G‖+‖x∗‖
and it follows that ‖x∗‖ ≤ 1−Aε. Recapitulating, we have shown that any
separable subspace of X is A− LKK∗. Finally, Proposition 5.1 yields the
conclusion. �

Remarks 5.4. 1) It is clear that any quotient space of c0(Γ) has a metric-
KK∗ norm, namely the quotient norm. Therefore Proposition 4.5 shows
that Alspach’s theorem [Al] extends to arbitrary c0(Γ) spaces. That is,
any quotient space of c0(Γ) is isomorphic to a subspace of c0(Γ), and
the isomorphism constant can be made arbitrarily close to 1. Similarly,
Fact 4.6 shows that Johnson–Zippin’s theorem [JoZ] extends to arbitrary
c0(Γ) spaces. That is, a L∞ subspace of a c0(Γ) space is itself isomorphic
to a c0(Γ1) space.

2) Since Lemma 4.3 only uses separable subspaces of X, the proofs of
Theorem 4.4 and Proposition 4.5 provide: let X be a Banach space. If for
every separable subspace Y of X, dBM (Y, {subspaces of c0(N)}) = 1, then

dBM
(
X, {subspaces of c0(Γ)}

)
= 1 .

Now consider a w.c.g. space X with dens(X) = ω1 and such that every sep-
arable subspace of X is isomorphic to a subspace of c0(N). An argument by
contradiction shows the existence of an upper boundM > 0 for the Banach–
Mazur distance of any separable subspace of X to the subspaces of c0(N).
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Then we get that X is isomorphic to a subspace of c0(Γ). Examples 4.9
show that we cannot dispense with the assumption “X w.c.g.” in this case.

3) An alternative approach to show Proposition 5.3 consists into proving
(with the same notation) that the sequence (x∗n−x∗) has a cluster point G
in (X∗∗∗, w∗) with d(G,X∗) ≥ Aε for some constant A > 0, by extracting
first a subsequence which is (ε/2)-separated, then a further subsequence
which is (Kε)-equivalent to the unit vector basis of `1 for some constant
K > 0. Indeed, by [LeS], X∗ is isomorphic to `1(Γ) and thus it has the
strong Schur property. Now we can pick a w∗-cluster point G to that
subsequence in (X∗∗∗, w∗) to reach our conclusion. The interest of this
alternative route lies in the fact that in the separable case, it provides a
proof of [G-L, Th. IV.1] which relies on Proposition 3.1 instead of using
Zippin’s converse to Sobczyck’s theorem ([Z4]).

4) It is not difficult to show (using an argument from [An]) that if X
has an equivalent LKK∗ norm, then there is an equivalent norm on X∗∗

such that X is an M -ideal in X∗∗. But this norm is in general not the
bidual norm of its restriction to X: indeed it follows from [L] that for any
K scattered compact set with K(ω0) = ∅, C(K) has an equivalent LKK∗

norm; but such spaces are not in general w.c.g. (see Examples 4.9).

References

[A] I. Aharoni, Every separable metric space is Lipschitz equivalent to a
subset of c0, Israel J. Math. 19 (1974), 284–291.

[Al] D. Alspach, Quotients of c0 are almost isometric to subspaces of c0, Proc.
Amer. Math. Soc. 76 (1979), 285–288.

[AmL] D. Amir, J. Lindenstrauss, The structure of weakly compact sets in
Banach spaces, Ann. of Math. 88 (1968), 35–46.

[An] T. Ando, A theorem on non-empty intersection of convex sets and its
application, J. Approx. Theory 13 (1975), 158–166.

[B] S.J. Bernau, Small Projections on `1(n), Longhorn notes, The University
of Texas, 1983/84.

[CP] K. Ciesielski, R. Pol, A weakly Lindelöf function space C(K) without
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G. Godefroy, Equipe d’Analyse, Université Paris VI, Boite 186, 4, place Jussieu,
F-75252 Paris cedex 05

N.J. Kalton, University of Missouri, Columbia, MO 65211, USA
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