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Abstraca. The main object of the paper is to study the distance betwecn Banach spaces
introduced by Kadets. For Banach spaccs Xand y. thc lGders distancc is denned to be rhe
infimum of the Hausdorfl distance d(Bx, rr) betwecn the respoctive closed unit balls over
all isomctric linear embeddings of f and yinto a common Banach space Z. This is comparcd
with the Gromov-Hausdorff distance which is defined to be the infimum of r1(Br, Br) over
all isometric embeddings into a common metric space Z. We prove continuity typc results
for thc Kaders distance including a result that shows that this notion of distance has appli-
cations to the theory of complex interpolation.
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l. Introduction

The standard notion of distance between two Banach spaces is lhc Bonach-Ma:ur
clisttuu'e which is defined by

dBM6,Y): log inf Ill rllll r 'V T: X '- Y is an isomorphism] .

(It is usual to omit the logarithm, but for consistency we will include it). The
Banach-Mazur distancc is only finitc when X and I/ are isomorphic. The main
object of this paper is to study a measure of distance we call thc Kadets distance
and certain related notions ofdistance. The Kadets distance has natural applications
in intcrpolation theory which we explain.

We recall that if Z is a Banach space and X and Y are closed subspaces of Z the
gap or opening l(,Y. I) is dcfined as the Hausdorff distance betwcen the closed unit
balls B, and B, of X and Y i.e.

,l(X,Y): max { sup r/(_r'. B,). sup ri (,r,,Br)}.
I€8r r€ax
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If X and Y are arbitrary Banach spaces we define the Kadets distqnce

dxI,Y): 
,tnl,,4 

(U X, V Y\

where the infimum is taken over all Banach spaces Z and all linear isometric

embeddings U:X '- Z and V:Y - Z.
This distance was apparently introduced by Kadets [15] who proved for example

that limr-2 da (1r' /:) : 0. However the basic idea seems to bc implicit in some

earlier work of Krein, Krasnoselskii and Milman [20], Brown [5] and Douady

U0l. The second author studied the notion in [22] and proved that r/. satisfies lhc
triangle law but that there are non-isomorphic Banach spaces X and I for which
(tK(X,y):0 (thus dr is a "pseudo-metric"). In the same paper there is a com-

pleteness resuh: if (X,) is a sequence of Banach spaces Cauchy with respect to d(
then there is a Banach space X so that lim,- - dr(X,, X) : 0.

There is a series of papers studying the general problem of the identifying prop-

erties which are stable under small perturbations in the Kadets distance (see [2],
t5l, 1101, 1201. 122). t231.124) and [25]). Precisely a property I is called srablc

if there exists r > 0 so that if X has ii? and d*(X, f) < s then Ihas /. We refer to
the survey article [24] Chapter 6: a partial list ofstable properties includes reflcxivity,
super-reflexivily, B-convexity (nontrivial Rademacher type). the Banach-Saks

property, the alternate-signs Banach Saks property and the property of not con-

taining /,.
The Kadets distance is clearly related to the notion ofGromov-HausdorlTdistance

between metric spaces (see [11),1271: the precise definition is given in Section 2).

It is natural to introduce the Gromov-Hausdorff distance between lwo Banach

spaces Xand Ias

{lcu(X.Y): inf d (U Bx, VBy)
z.u.v

where the infimum is taken over all isometries 1.1:X - Z and V:Y ' Z inlo a

common melric space Z (here d(U Br. ,/8r.) is the Hausdorff distance between UBx

and VBr.) Thus the Gromov-Hausdorff distance is simply the nonlinear analogue

of the Kadets distance. It is not difficult to see that this definition coincides with

computing the standard Gromov-Hausdorff distance between the unit balls Bx, .8y

as metric spaces. Let us remark at this point that a related global notion was

considered in [4] and [12].
In this paper we first compare these two notions of dislance. It is worth poinling

out that one must distinguish between the case of complex scalars and real scalars.

because there are examples (t31, tt7l. [3'l]) of complex Banach spaces which are

real-isometric but not evcn complex-isomorphic. Gromov-Hausdorfl distance

cannot distinguish complex structurcs.
We show that (lor real scalars) while Gromov-Hausdorffdistance is not equivalent

to the Kadels distance, the two notions are equivalent if one restricts to Banach

.\
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spaces which are nice enough. For example if X is B-convex (i.e. has non-trivial
Rademacher type) or if X* embeds into an l4r-space then doo(X,. X) - 0 implies
dx6. X) - 0. If X is isomorphic to either (o or /a then d.E(X* X) - 0 implies
dBM(X- X) - 0. On the other hand d66Qn,lr) - 0 as p - 1 while dx(e,l):1
if p>1. The precise identification of the class on which the two distances are
equivalent is related to the notion of a ./{-space introduced in [16] (see [lg]) and
to the theory of twisted sums.

In fact for real scalars, Gromov-Hausdorff distance is equivalent to a notion of
distance analogous to the Kadets distance but allowing the superspacc Z to be a
quasi-Banach space.

These results are developed in Section 3, after some preliminary results in Section 2.
In Section 4, we then apply our techniques to prove a number of continuity-type
results for the Kadets metric. For example we show that in an obvious sense the
map X - X' is continuous for the Kadets metric. and even more one has
.lK(X*. y*) < !dx(X,I) for any pair ofBanach spaces. We also show rhat if (Xo, Xr)
is a complex Banach couple arrd Xo:lXo,Xr)" are the spaces obtained by the
(Calderori) method of complex interpolation (cf. [6]) then the map0 - & is con-
tinuous for the Kadets distance for 0 < d < l. This result is closely related to recent
work on uniform homeomorphisms between thc unit balls of two Banach spaces
using complex interpolation methods (cf. [8]). We give precise estimates here and
obtain the cstimate for | < p, ,1 < ,:,

dK(tD' t) < 2
sin@ltlp tlqll2)
sin(n(tlp+lldl2)

which improves earlier esrimares (see [15], [22]). We remark that in [23] or [2a]
(pp. 292, 303) rhere is a lower estimate dK(lr lq) > !(21tt' Z\,t).

Finally in Section 5, we make somc remarks on the topology of the pseudo-melric
space of all Banach spaces with a given density character with either notion of
distance. Wc point out that results on stability or openness of some property lead
automatically to results on complex interpolation spaces, and also show that the
continuity results of the previous section lead to new stable or open properties. We
identify the component of 1, lor the Kadets distance and raise the question of
identifying the components of /2 and co. We do not know if the sel of separable
Banach spaces is connectcd for the Gromov-Hausdorff distance. We also show lhat
if 1< p * 2 < cc the sct ofspaces isomorphic to /, is non-separable for both notions
of distance.

2. Gromov-Hausdorff distance and Kadets distance

We first recall the notion of Gromov-Hausdorff distance between metric spaces. lt
will be convenient to expand the definition to include pseudo-metric spaces. We
recall that il M is a set. a pseudo-metric on M is a map d : M x M - [0. r ) which
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a"@,b) : 
,"jl.f.n(do@. 

a'\ + d,(b', b)) + o .

We must check this is a pseudo-metric on ,4 uB. Suppose a,, a, e A arrd be B-

We check lhat d^(ar, ar) < dL@b b) + dM(ar,b). To do this suppose that (zr, Pl)
and (er, fr) e G. Then

dB(P t, b) + dB(112, b) > ds(l),. A.)

> d^(er, ar\ - 2o .

Hence

dA@-c) + dB(ir, b) + d^(d2, u) + d"(fr' b) > d^(ar,ur)-2o

which establishes our claim.

is symmetric and satisfies the triangle law' the condition d('r' 'r-) : 0, but not necess-

arily the condition r/('r' -l ) : 0 implies 't : ,l' Suppose I and B are metric spaces

(or iseudo-metric spaces) with boundcd metrics. We define thc Gromov-Hausdorff

distancc between ,4 and B denoted ttsh(A. B) to be the infimum of all e > 0 so that

there is a pseudo-metric space M and isometric embeddings i^: A "+ M and

iu:B "+ M srtch that the Hausdorff distance dM(Li'4' iaB)3tlf ''/l is any set of
iietric spaces then d, defines a pseudo-mctric on ',/{; note that drl('4, 8) : 0 does

not necessarily imply that A and B are isometric (unless they are compact)'

We will be interested in an alternative formulation- For convenience we denote

by -V(A. B) the collection ofall pairs (d'vl) ofmaps d:A - B and V\: B "+ A If
(v,, d) is suctr pair let G: G(d. Vr) be the union of the graphs of r1. @ We define

D(d, v,) to be the supremum of all quantities lltl-r(or. a) - tls(b,' b,)l over all

ar.a,e A. br. b.e B with (4,, D,) e G for i :1.2.
Inlhe speiial case when S is invertible and v) : qt '. D(,r. v') is the supremum

of all quantities trldu(bor,$ur)- do@r. a)l where ar. a, e A.

Theorem 2.1, Let A und B bountled ntetric sporcs. Then

l"h(A. B): int D (0. Yt) '
la vt.,

Proof. First suppose M is a pseudo-metric space and that I and I are isometric-

ally embeddetl in M . Let c bc the Hausdorlf distance b€twecn '4 and B Then if
o>€ we can define @:,4 -- I and 111fl "+A so that./M(4'da),dv(vb.b)<o
fot all ueA and beB. Now for (a,,b,)e G: C(d'V') we clearly have

ld^(ar. ar) - da(br b)l < 2o.

To obtain thc converse direction suppose ({, rp) given and that D(p, @): o' We

let M = Att B (disjoint union) and define a pseudo-metric d, as follows We let d-
coincide with dnonAand with r/8 on B. lf QeA and beBthen
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We can also show that cly(ar, b) < dA@t, a) + dM(ar, b). We omit the details
which are easy. Arguing symmetrically with ,4. ,B interchanged gives the conclusion
that ,L is a pseudo-metric. Clearly du@, gu) < o and tl-(ytb. b) 3 o. This shows
thar do1,(A, B) < o.

lf X and Y are Banach spaces we define the Gromov-Hausdorfl distance (lsh\,y)
to be the Gromov-Hausdorff distance betwcen their closed unit balls ,Br, Br, i.e.
de H6, Y) : dnn(Bx, B). Equivalently dcH(X. Y) is the infimum of the Hausdorff
distance d(8*, B") over all isometric embeddings of X, y into a common metric
space M. To establish this last comment, suppose d is any metric on the formal
union 8, tr Br, which coincides with the respectiye norm-distances on B, and Br.
We can extend d to XuY by defining d again to coincide with the norm-disrance
on each of Xand Iandfor xeX,),eY,

d(.{..r) : -inf - f ll.r-all, *d(u.ul+ ll.r. ullrJ.
r€ rx, r€ 8y

We leave the details to the reader.
Let us note here that our definition applies to both real and complex Banach

spaces, but there are complex Banach spaces which are real-isometric and not even
complex-isomorphic ([3], U 71, [31]). In view of this, Gromov-Hausdorff distance
is most natural for the category of real Banach spaces.

Corollary 2.2. If X und Y are Banach spaces and dor(X,Y) < o then there exist maps
$: B* --+ fl, and rp:. B, - Bx such that:

lll,x - p(r) ll, - ll.r'- @ (-r) ll" | < 2o

vheneter reBr. teBr.

The Kadets distance d^(X, I) is defined to be the infimum of the gap
l(X,Y)(: d(Bx,By)) over all linear isometric embeddings of x and y inro a
common Banach space Z. Here our definition can equally be applied to the real
or complex case. The Kadets distance is again a pseudo-metric on any set of Banach
spaces (see tt5l, t22l). We clearly have the inequality tloo(X,y) < dK(X,y).

We now give a similar formulation of the Kadets distance. Let ?,(X, Y) be the
set of all pairs of homogeneous maps <0:X -Y and V:Y - X such that
ll@(.r)lly < ll,rllrand ll Y(,r')ll, < ll,r'll" forall.r e Xand;,e L Wedefine / : /(@,Y)
to be the least constant such thal

ll 
r.-i .,,,,11, 

ll 
i,r.r- r,,ll" = 

z (i tr",rr.+i rrr,rr,,)

for all -r,. . . ., ,r:. e X and .r.,. . ... _r; e L
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ln the special case when Y: @-r (and hence @ is norm-preserving) notice / is

the least constant such that

lli.u,,ll,- ll,i',il,1.z i r.,r.

Theorem 2.3. If X,Y are Banach spaces then

dR(X.Y): inl / lY, tD\ .

lO,!/le tr

Proof. lf X and Y are isometrically embedded in Z and d(Br,Br)<o we can

construct (@, y) e .Vrwtthllx A$)lz < o llx tl, and lly - Y(l) ll' < o llyllr when-

ever xe X and / € y. It is then trivial lhat /(Q,ty) < o.

For the converse direction, let us suppose &ar (ip'ty)e 916' Y) are given and

that /(.0,Y): o. We will define Z to be the direct sum X (E Y equipped with an

equivalent norm. Precisely we de6ne

ll(a. u)llz : inr{ll,"ll, + ttr"ll, +, (,i, 11r,11, * j ttr,tt,)}

where the inimum is taken over all {-r,}il6 in Xand (1.;}i=o in y such that

a:-to*Irr+IY(1,
i=l j=r

and

p:1'oal@(-r,)+fr;.
i=l j=r

We show that ll(r,0)llz: llx llx (and then it follows similarly that ll(0, u) ll, : llull')'
Indeed suppose

z:;ro * I xt+Lv(rj)
i=l i=r

and

o:-yo+I@(-ri)+I_)i.
i=l j-l

It follows from our condition that

ll ' , ll /a , \
ll I,,+ I vry,)ll < llroll,+o( I ll .,ll,+ f llr;ll, |.
ll ,-.r i--r. llr \i- | i=t /

22
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Hence

tt.r,tt,+ I tl.r;ll,).j=r /

This shows rhar ll(u.0)llz: llullx.
Clearly the construction yields that l(X, Y) < o since ll(,r, @(,r))ll, S oll-rll, and

ll(Y(-r'), r)llz < ollrlly. tr

There is an amusing way Io interpret / (@, Y). Form the vector sequence spaces
/,(X) and /,(I) and define 6((-r,11 and P111;1) = (y(,r;)). We can consider the
pafi 16,91 e 41t1(x), /1 ( r)). Then consider the unit ball 4,(r) with the pseudo-
metric induced by the seminorm l(;,)lx : lllf=r,r,llr; similarly consider B,,,"y with
the seminorm l(1;) l" defined in the analogous way.

Then / (@, Y) : D@,h for the unit balls of /, (.{) and /,(I) equipped with the
pseudo-metrics induced by these seminorms. We leave the details to the reader.

It is natural to ask for a theorem ofthe type ofTheorem 2.3 but with @ a bijection
znd Y : tD r. This can be done at the cost of a conslant in the calculations.

Theorem 2.4. Let X and Y be a Banach spaces vith cl*(X,Y) < o < l- Then there
is a norm-presen;ing bijection Q: X - Y suth thtlt if xr, . .., x,e X then

ll,r,llx .

ProoJ. First we observe that if d((X, Y) < 1 2 rhen Xand I have the same density
character (ci f20) or f24) 6.23). We will suppose that X and I are simultaneously
embedded into a common Banach space Z wilh d(Bx, By): 6 < o. Let us pick a
maximal collection of vectors (-t,:ie I) in S, such that if lal : I and i +j then
llx,-axrll*>4o. Then there exist vectors (1,:ie1) in S" with llx, yrllr<26.
Ifye S, then there exists -re S* with ll.r,-"rll, < 2d and so there exists le l and

lal :1 such that lly -uy,llr< 8o. On the other hand if i+ j and lal :l then
lly, - ay,llr> 4(o ir).

We can now partition .tx inlo sets (,4i : i E /) such that if ,rel, and lal : l then
a,r e I and further that ll-r - ,r,ll, < 2o implies -r e ,4, while -t e l, implies that there
exists a with lal : I and ll,r a,r,ll, < 4o. We then define l; by taking one re-
presentative r from each set {a.r:lal:l} contained in ,4, with the property
llu - s,ll* 14o.

In the same way we can partition Sy inlo sets (4 : I e 1) such that if _1, € 4 and
l a l : I then al, e 4 and further that ll_y - fi llx < 2(o - d) implies _y e B, while _1 e I,
implies that there exists a with lrrl : t and ll-r'- a_rilh ( 8o. We then define B,l by
taking one representative u frorn each set {a.r,: lal :1} contained in 4 with the
property llr' _}'Lllx < 8o'.

:3

llnll, < llroll* + llr,11, *, (i

ll,a,o, ll, 
- ll,i='" ll. I 

< u. i
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It is easy to see thal the sets l;,8i have the same cardinality lor each i and so

we can define a bijection (2: S, - .S, such that O(A:): B:.9(a,r) : ao(.r) when

lal:1. If ,teSx then there exists ieland lal :1 with a,re lj. Thus g(ax)e Bi
and so ll"r - g(,r) ll, < '14o.

Thc result now follows immediately. tr

Let us give one immediate application of Theorem 2.3.

Theorem 2.5. Let X and Y be real Banath spuces oncl suppose Z is a metic lineur

spoce equippetl *'ith an inuqriant malric tlr. Suppose X and Y are linearly und isomet-

rically embedded into Z. Then d,{(X,Y) < dz(Bx, By).

Remark. Thus it would make no difference in the definition ofdx to allow Z to bc

a metric linear space instead ol a Banach space.

Remark. The proof given below can be extcnded to complex spaces, if we furthcr
assume that the metric r/. is invariant under multiplication by eid for 0 < 0 < 22.

For the real case invariance under multiplication by - 1 follows from additive

invariance sirrce d.( ,r. --l') : (/z (.\- - .t', 0) : 4 (,r, -t').

Proof Suppose o > dr(Br. Br). Then we can define @ : S, --+ B, and Y : Sr -- B,
such that ttr(x.<D(x\) < o and d1(Y 0'\.,r') < o for all ,r:, -t'. Since the metric is
translation-invariant it is clear that we can suppose @( -r): @(-r) and

@( r'): @(r'). We then cxtend @ and Y to be homogenous.
Now if ,r,...-. -r- e S* and.r',....,,t; e S, then

'\d,I F.', 1f Y(r',). t o(r,)+ f .,;].1,,+r1o.zl 4 |
\i I i t i=l t-r /

It follows that since ll,... llx : r1z (x, 0) for .r.- e X and llt ll, : dr(y,0) for .r'' e I we

have:

ll,-i, 
-, i Y(/,) 

ll- 
- 

ll 
i .,,,, * r,, ll,l.,* *,, "

From this it follows easily that ifr,,...,r.,s,....,r, are integers that

11,t.,.,, 
j *,,,,,,11,- 

ll 
r r,,,',,*,1,,',11,

= (,i'.,ir"
Clearly the same inequality then holds for rr,....r-,.rr....,rn rational and then

even real by a density argument. This implies that /(O.tY') <o. tr

Now suppose 0 < r < l. We recall that an r-norm on a real or complex vector space

X is a map ,r - ll,rll, such that:
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(1) ll-rll, > 0 if ,r * 0,

(2) llz.rllr: lrlll,rll, for ze lK.,r"eX,

(3) ll.r, + -r,ll| < ll,r,lli + ll.r,lli for,rr, .r.-2 e X.

Here lK : lR or lK : C. Notice that in [18] this is called an r-subadditive quasi-norm.
If the metric r/(,rr, ,rr) : ll,r', - -r,lli makes Xcomplcte we say that Xis an r-normed
quasi-Banach space.

Now suppose X and Y are Banach spaces (so that X and / are also r-normed
quasiBanach spaces for any 0 < r < 1). We define d,(X, y) lo be the infmum of
t|(Br, Br) over all linear isometric embeddings of X and y into an r-normed quasi
Banach space Z. Note here that the r-norm does not induce a metric on Z so this
is not covered by thc preccding theorem. Therc is, however an analogue ofTheorem
2.3 for this situation.lf (@.Y)e 91then we define /,(@, y) to be the least constant
,i, such that we have for any,\r, ..., "r, € X and -)j, ...,t; € Y that

In an exactly analogous fashion we may prove:

Theorem 2.6. If X arul Y are Bonach spuces lhen

d.(X.Y) inf /,(Y. <D) .

rO.'Ple..h

3. Comparison o[ metrics

Proposition 3.1. Suppose X qnd Y are Banuch spaces and (O,Y) e 4o(X,Y). Let
o: /(@.!P). Then

Gioen yeY there exists xe X wirh llxllx < llrllr and lly - t0(x)ll, < 2ollyll,

If xe X then ll@(x)ll,>(1 -a)ll.rllr.
If xr, ..., x,e X andli=1x1:0 then

ll f ,r,-rll <oIl..*1,.
ll r:r llY r=r

ProoJ. () Just take -r: Y(-r''). Then ll.r - Y(-r')lly :0 so that

llr @(,.)il, < ofl.rll, + llrllr) < 2ollrll,.

(2) and (3) are immediate from the definitioa of /(A,Y\. c

lli.' - r .u,,lL- 
ll,i=,,u,,-,l,,ll,l=,,(: rr-',tt;+i ttr,tr)

(1)

(2)

(3)
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ln a very sirnilar way we can establish:

Proposition 3.2. Suppose 0<r<1. Suppose X snd y are Banaeh spaces and

@,Y)e g,(x,Y). l.et o : /,(O,Y). Then

(1) Gh;enyeY there exists xeX vith llxllx< ll-yllr andlly- @(:)llr< 2'''ollyll,

(2) If xeXthen ll@(,x)lly>(1 -o')t/'ll.rllr.
(3) If xr, ..., x,e X and Li=txt:0 then

ll _1,".,11, = "( r rr,-rri)"'.

Our interest in Propositions 3.1 and 3.2 is to establish a converse.

Propmition 3.3. Let X and Y be Banach spaces and suppose @: X -+ Y is a homo-
geneous map satisfying +llxllx < ll @(r) Ilr < ll-rll* sac* that for a constant 0 < o < 1

we haue:

(1) Gioenye Y there exists xe X vtfr llrllx < llyll, and lly - @(x)ll, < ollyll,

(2) If xr,xr,xreX andll=1xr=O then

ll 
i,o., ll"=,j rr-.,rr,

Thm if Y: Y .., X is a homogeneous map satisfting llyCy)ll, < llyll, and
lly @(Y(7))ll, < ollyll, (whose existence is guaranted by (1)) we haue

l ll,x - yCy) ll, - llr - <p(.x) llr l < 6o(llx lll + llyll,).

Furthermore.for each 0<r<1 there is a unioersl constant C:C(r) such that
/,(tD,V) < Co.

(3) lf xu..., x,e X and Li=r**= 0 thrn

lli,o.,ll,=oj 1,.1,,

then /(tD,Y) < 20o.

Proof Suppose ,r e X and y e Y. Then

ll@(x) - @(y(y)) - ae - v (y))ll, < zoflxllx + llyllr).
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Hence

ll@(.r) - y - @(;r - r0)ll, < 3o(llxllx + ll/lly).

It follows that

ll@(x) - ylly < llx - P(y)lla + 3o(llxllx + ll.yllr)

and

llx - r(v)ll, < lliL(x)' vllv + 6o(llrllx + ll-vllr).

This proves the first part of the Proposition.
Notice that the same proof yields that for 0 < r < 1,

lll: - r0) lli - llr - @(-r) lli I < 6'o'(ll: ll* + llyll')r.

Now suppose 0 < r < 1 and that there is a constant r so thzi for any x r, ..., x, e X
with li=1x, : 0 we have

(3.r) 
ll,t-.u,,11"="( i rr,,rn)"'.

First suppose ),1,. .., y.e Y and Ii=,r, = o. Let u : Itl!'/or). Then

llr r,*,*, ot,rll,<z','(l rxru)"'.

Thus

ll I. 
* -.,,, 

ll, = rz"'. +,) (,-r-, ttr,ttr)"'.

Ir follows that

llullx < 2llo(u)ll, < 12, 
* tt, t + 2@( i ttnt[)"'.

\i=t /

Now suppose that .rr,--.,x-€X and yr,...,y,ef- Let l,:Il!r.! and
o : ! j= 1yr. Then

tllz-v(u)ilt ilu-o(r)llil =a'"( itt,,tt;+ i lly;llt).
\i=l i-r /

However we also have:

ll 
.'' -i ot"r 

ll, = 
z1z' *'\r' t + zoY i ttY'tl'
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and

ll'11,.
llorrr 

-.I orr,I 
ll, 

< 2.'_I tt .,tti.

Combining these we have

l,(.0,Y\ < (6'o' + 2t' + 2(21 ' tt't + 26Y)t, .

The final part of the Proposition is then immediate taking r = 1 and t = o.
For the remaining case we observe that for 0 < r< 1 (2) implies that (3.1) holds

with a constant r : Co where C depends on r. This is a well-known calculation
first observed in [16] (see also [ 8] p. 91). Suppose ,rr, . . ., -r, are nonzero in X and
.r* e X* with ll.rtllx.: l. Define a linear map I: li ) X by Ie, : -r,/ll"r,llr; then

llf ll < 1 and (2) implies that the functional l'(O = .v+1p716)) satisfies

I F(E | + C) - F(4,) - l"((z)l < 2o(|| t, ll, + ll (z ll,).

Appealing to Lemma 5.8 of [18] we have

l'. (, (,I,',) -.r .r+(<p(x,))
= 

z (L,<zt,t' ),( I rr,, rr)"'

This establishes rhe Proposirion, since IL, (2/i)t/'< cc. tr

Lcmma 3.4. Suppose t> 0. Then there exists o: d(c) > 0 ro that it X and Y are real
Banach spaces and (Q,q)e.V(Br, Br) n'ith D(Q,W) < o then rhere exists a homo-
geneous maP iD: X '- Y such that lllxll* < ll@(.x)llr < llxll, for xe x aml:

l. Giuen y e Y there exists s e X y'irh ll.rllx < lD lly azl lly - @(.r)llr < ell-r'll,

2. If xr, xr, xre X and ll=r xr: 0 thcn

llf ,,.-rll =,( i rr+rr,).
llr=r llY \&=r /

Proaf Suppose first D({,gr):o. Let $(0): ye Br. Then there exists D€8},
with lly - ull, : 1 + ll-vlly. Thus ll(rp(u)ll*> 1+llyl!-20. It follows rhat
lld(0)lly<2o. From this it follows similarly that for any xe8, we have

ll-rll, - 4a < lld(.r)ll, < ll-tll, * 4o.
Now let us assume the conclusion of the Lemma is false.
Indeed if this is so we can find a sequence of pairs of Banach spaces (X,, I.) and

pairs offunctions ( $,,rp,) with D(Q,,rp,) < 1/n2 but such that for every homogeneous
map i0: x" - y. with lll-rllx"< ll@(-x)llx" either (1) or (2) fails.
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We will in particular define 4, : X - Y to be a homogenous map such that either
@,(.r): (l + 4ln)-10,(x) or (p"(.r) = -(1 +4ln) '@,(-.r) when ll,rll,: l/r. as
long as r 2 20 we then have I ll,rll", < ll@,(.r)lly" < ll,rllx".

Now let Z be a nonprincipal ultrafilter on N. We form the ultraproducts
X*:fr(X,\and rr : f] *(y"). Thus X, can be realized as the Hausdorffquotient
of the seminormed space /, (X,) with the seminorm llr llx,: lim,.all.r,llr" where

.x : (.r,), We refer to [13] or [9] for details about ultraproducts.
Define a map Q: X, -- Yrby

aqt =

(where we defined {, (.r) :0 if ll.rllx, > 1). we may argue that O is well-defined since

('*(l')).=,

t2
- ll.r" - u" ll1- - ; Snn-

if ll.r.llx,, llu)lx"< n. The same inequality implies that O is an isometry.
lf y = g',\e l.(Y,) we can define s,: nUL(,r;/r) for all but finitely many r,. Then

llQ"G,In) - y,lnll.t" < 21n2. lt follows that g is onto.
we also note that since lld,(0)llr" < 2lnz we have O(0) : 0. It follows from the

Mazur-Ulam theorem ([21], [29]) that (2 is lincar.
Now notice that if llr,ll1,:1 thcn O(,Y): (@, (.r,)) (as elements of the ultra-

product). Since.@" is homogeneous this means that for every xeX, we have

O(x) : (o,(-r,)).
Since (l ) or (2) fails for every n 2 20 we can assume that for some set P e tll we

have (1) failing for every nePor (2) failing for every neP. If (1) fails there exists

f = ();) with l; € Sy, such that if n e P then ll1; - @,(,r,) ll > twheneverllr;111"< l.
This contradicts the fact that O is an onto isometry.

Similarly if (2) fails then there exists xr = (.rr,) for k:1,2,3 with

Ii=,ll.r*"llr,:t'!i='.r.,:0andllIi=r@,(.r*")llr">cforreP.Thiscontradicts
the linearity of O. tr

It is perhaps worth recording a result implicit in this argument:

Proposition 3.5. Suppose (X,) dnd (y") ara lvo sequenccs of real Bmuch spaces .for
thich lim,-, tl6r(X,.Y,) = O. Thcn for my non-principal ultraf lter % on N the

ultruprotlucts n,(X) and nt(Y,\ are isometric.

Now we are able to establish that for 0 < r < I we have equivalence for the mctrics
d6p and d,.

Theorem 3.6. Suppose 0 < r < 1 . Then there is a futrction .l : f,: (0,11 --+ (0, I I rlillr
lim"-n/(c) :0 such that Jir eaery pair oJ-real Banath sput'cs X and Y \t'c haaa

llr.(1..) - *(}..) ll,= l,*. -..,," 
+ 1
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2- 2i*t dea(X,y) < d,(x,y) <f(dcH6,y)).

Remark. It would be interesting to find an explicit function./ satisfying the conditions
of the theorem.

Proo{. ln fact the upper estimate follows immediately from Proposition 3.3 and
Lemma 3.4.

For the lower estimate we begin by noticing that if (tD.Y) e 46,Y) and
/,(X,Y)= o then for -yr,...,.ri€X and 1,,....-r;eI we have, by putting
r : Ii=r.r, - I j=r r(-rr,

ll.i 
.t.',1- r ,;- @(,) 

ll,< 
,''"(,_,r..,ri +,I=, rrr;ri)"'.

Since ll<P(u)ll, < llallx this implies that

ll a tr ll /a n \r,
ll2or..,l-I r;ll < llull*+t'o( i 1,,1i+ i ttrtt;)
ll i=r i=r lly \i=r t-t /

By using this and the symmetrical calculation with X, Y interchanged we obtain

ll,t', -,i-,r(,i) ll,- ll i,o,, - 2,, ll,l

= 
,',', (,i- tt.',ili +,1 il,)ili) '.

If we let{ and rp be the restrictions of <D and Y to the respective unit balls and
apply the above inequality for m*n < 2 we obtain that D(4, ip) <22i' to. tr

We now recall the definition of;f-space from [16] or [t8]. We say that a Banach
space X is a .{-space if there is a constant ,.' (we denote the best such constant by
x(X)) such that whenever/: X - IR is a homogeneous function satisfying

l/(-rr +.rr) -/(-yr) -I(x)l < ll.rrllx + ll.rrllx

there is a linear functional g:X - IR with l/(.r) -g(.r)l < rll.rll, for all .reX. It
is also natural io consider the notion of a /{o-space. We say that a Banach space X
is a lto-spuce if there is a constant Ko (we denote the best such constant by rq(X))
such that whenever J : X --+ lP is a homogeneous function, which is bounded on 8,
and satisfies

l/(.rr +,rr) -l(,r,) -./(.rz)l < ll.r, ll,+ll.rrll,
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there is a linear functional -x'eX' with ll(.r)-.r+(x)l < xoll.rll, for all -reX.
Clearly ro(X) < x(X). lf X has the Bounded Approximation Property it may be
shown that X is a l{o-space if and only lf X is a l{-space. In general however this
equivalence is not known.

It is known that a Banach space X is a l{-space if X has nonrivial type ([16])
or if X* is isomorphic to a subspace of L, (see [9]).

Theorem 3.7. Suppose 0 < r < 1. Then there is a < onstant C = C (r) so that if X is a
./$-space then for any Banach space Y, dx$,Y) < Cxo(X)d,(X,Y).

ln purtit:ular iJ X is a real :\-space then for anl sequence of Banach spaces (X,)
x'e haoe limn-nd6H6* X) :0 implies lim,-.d*(X,, X):0.

Remark. Notice that this theorem applies ifX is super-reflexive or if Xis isomorphic
to co or C(rK) for some compact Hausdorffspace. As we note later in the case when
X is isomorphic to co or /- one can show that lim,-" dB (X,, X) = 0 whenever
lim.- 

" 
dc (X", X) : 0 (again for real spaces only).

Prool Suppose @,Y) e ,46, Y), and o = /,(<0, Y). Then for .r,, .r, e X we have

ll @(.rr +.yr) - @(.r,) - @("rr) ll, < 2"- ro(ll.rr 
llx + ll.r, llx).

If lll t llr. = I then there is a linear map g: X -- IR such that

l1'* (@(.r)) - g(.r) | < 221'- | o xo(X)llxll*.

Now if fi=r.ri = 0 we obtain

I
i=l

.r'* (@(ri)) <22t'-t o xo(X) f ll-rrllx.
i=l

This in turn implies that

, ,
ll I oC*,tll <22,-LoKo(x\ I ll.rrllx.
ll i=l ll i=l

The result follows on appealing to Proposilion 3.3. tr

Example. We now show by example that the Kadets and Gromov-Hausdorff dist-
ance are not equivalent for general Banach spaces. To see this we show that
limo-rd6s(o,l):0. It is known (cf.f22)orl24))thatdx(lt,lo): I forallp > l.

We consider the Mazur map $: 8,, -* 8,, which is defined by

419; = lsgn(,1(,1,X=r
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for ( : ((.). Let 9 : 4-t and then we compute D(@,rp). We need only estimate

lll( - tlL, - lld(1) - d(r)lLl

over all (, 4 e 81,. Clearly

lll( - rllr, - ll( - llllpl < 2e - 2 -

For any a, 6 e IR we have the estimate

ll u - ble - lsgn al al? - sgn D I b l, ll < (Z' -' - I ) (l a l? + | 6 l?).

To see this note that ifs. r > 0 we have

.T, + ,e < (r + ,), < zP-t 6t' + te) .

This implies that if 0 < .$ < , then

(r -.r)P < ,e- r, < (, - s), + (2?-r- l)(.re+ (, - s)").

The requircd inequality now follows by considcring cases.

Now by summing we obtain

llli - rlli, - lld(O - d(r)lL,l < 2P - 2 -

This implies that D(A,\))<2ee -D. Hence d6r(/,,/r) < 2(20-2) - 0asp--+ 1. tr

4. Continuity of certain maps for the Nadets metric

In this section, we will establish a number of continuity-type results for thc Kadets
distance. Thus for example Theorem 4.3 below can be interpreted as saying that
the map X -- X* is continuous for the Kadets distance.

Theorem 4.1. Let Z be a Bunuch spacc and let E, F be closed subsput't:s of Z. Then

dxzlE, zlF) < 2,1(E. F) .

Remork. A somewhat diflerent version ofthis result can be found in the unpublished
manuscript [4].

Proof. Let X = ZIE and y: Z/F. Suppose o > 1(E, F). Let qx and qr be thc
respective quotient maps. If 0 > 1 we can definc a homogeneous map.fr: X - Z
such that 4x.fx: lx and ll/r.rll, < 0ll.rllr. We make a similar definition
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of/r. Finally define @:X - Y by iD(x):0-tqr7*1") and Y:y .., X by
Y(D:0-'qx.fyU).

Suppose xr,...,x_eX and, yr,...,yney. Let u:Lf=txr +I;=r y(/j). Then
I*@) -Li= t.f*(* t; - 0 tlit.h\l) € E It follows that there exists z e r'with

ll.'ll
lll,t,t L h$) - o t lf,ty,\ - zll
ll i-r i-t llz

// ' \ , \
< ol o( llallx + I ll..,ll, | + ! llr;llr I

\\ir,/j__t/

Since llull, < ti:,ll-r,ll* +I;=,llrrllr this implies that

llt**,-oi,or*,t-, ,!r,ll,=zoe (i rr,,rr, rj rrr,rr,)
ll i=r

Note ll@(a)lly < llall, so that if ,: Ii:r (p(rJ + Ii=,l, *" obtain that

llr,lly<llt/llx+(2o I(r e-1t( t ll.,ll,+ I llyrll,).
\i=l i=r /

Combined with the corresponding converse inequality this implies that

/(iL,Y) < 2o + (1 0 ') .

The result now follows. D

It is interesting to not that there is a converse to this result-

Theorem 4.2. Suppose X and Y ore Banach spaces, and suppose o > d*(X,Y). Then
there is a Banach space Z with closed subspaces E, F such that ZIE is isometric to X,
ZIF is isometric to y and /l(E, F) < o. Furthermorc E is isometric to Y and F is
isometric to X.

Prool Suppose that(O,Y) e 4(X, Y)with /(@,.1\ 3 o. We apply the construction
of Theorem 2.3. As there, we define Z to be algebraically X @ lz and then define
the norm by

ll(u.u)llz = inr(llroll, r lboll, +o i ll*,11, +, ; ttr,tt,)
\'"" i=r jt )

where the infimum is taken over all xo, .. ., x^e X and yo, . . ., y. e f such that
a: xo +f f=l-v;+Li=,v(y,) and u:yn +Ii=r@(x) +I;=11,j.
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Nowwehave / (X, I) < r, where Xisidentified with X @ {0} and Ywith {0} @ Y'

Let us compute ZIY: this is easily seen to be isometric to X since

inf ll(.r,,r')llr: ll(.r, @(.r))ll, = oll'rll,.

Similarly ZlX is isometric to I. tr

Remark. If X and )'are separable then so is Z and therc is a quoticnt map of /,
onto Z.lt may then be verified that if o > 4(X, I). X and Y can be represented

as /,iE and /,iFwhere,4 (E. F) < 2o.

Theorem 4.3. Suppose X und Y are Banach sput'cs. Then dx(X+'Y*) <2dx6.Y).

Remark. The rcverse inequality (i.e. d^(X. Y) < cd*(X*. y*)) is not valid. In ordcr

to see this consider the case X*:Y*:11.X:cu. Y= predual of/r, non-isomor-

phic to (0. Proposition 5.3 of [24] imply that .lx(X.Y) > t/2. On the other hand

da(X*. Y*) = 0.

Pr<rry' Suppose o > d*(X, t/). Then as in Theorcm 4.2, therc is a Banach space Z
and closed subspaces E, f with,l (E. F) < o and Z I E : X. Z I F = I. We then have

dtt(x.,Y*) < l(EL. F-). We now use the fact that ,1(E" F!\ < 2l(E, F) which is

well-known (cf. Theorem 3.4(d) and 3.13 of [24]); we will provide a direct proof.

lf :*eEtand ll--*llz.: I then for/el'we have l:+(.1)l < 6ll./llz. By the Hahn-
Banach theorem there exists u*eZ* wilh llu*llz.< o and :*-tr+eF'. Then

llz* - u* llz. < I + o and so /(:1 Br-\ < 2o. It follows by symmetry that

/(Et, F') < 2o. o

Theorem 4.4, lf X,Y are Banach spaces then ve haae

(1) dx(x**. Y**) < dx(x.Y)

(2) For any fxed ultrufilrer ?l on N, d*(X,Y*) < dxq,Y)

(3) dx(xl+ lx.Y** lY) < 8dx6. Y\.

ProoJ-. For (l) observe simply that X and Y are embedded into a common

Banach space Z lhen X*+,I** can be identified with X-1, f| in Z** and

/l(X t,Y!!) < /l(X,Y)- For (2) we may use a similar argument with Zr' For (3)

we use 4.2. lf o > d*(X, y) there is a Banach space Z with closed subspaces E, F
with l(8, F) < o and such that Z/E is isometric to X and Z/I is isometric to )2.

Furthermore from the construction we have Z: E + F. Consider Z**; then it is

easy to verify that l(Eu,F-r) <o.Ler Qx'.2 - X and Qt:Z - )/be the quo-

tient maps. Now suppose z**eZ+ Fr'with llz**llz-: I and that c>0. Then

Ql+ ;** e X c X ** so that there exists z e Z with ll zllz < ( + t) and Qy z = Qi* :* *.
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Thus;**-:elt11. Now pick et* e Er! with ll:**-:-c**llr..< (2+c)o. Thus
d(z***, Er! + Z) 3 2o. This and the similar inequality with E, I reversed leads to
the estimate ,,t (Z + F't, Et' + Zl < 4o. NownotethatZ**l(Z+ Faa) is isometric
to Y+*lY and Z**l(Z+ E1r) is isometric to Xx*lX. Now Theorem 4.t gives the
result. c

We now turn to complex interpolation of Banach spaces. We present an approach
which encompasses several such situations.

Let E be a complex Banach spacc and Z is an open subset of the complex plane
C which is conformally equivalent to the unit disk g. We define an interpolation
field .{ lo be a vector space of E-valued analytic functions .[: ttt --+ E equipped
with a norm ll '11,. such that .f is a Banach space and such that lhe following two
conditions hold:

(l) lf E:'41 --+ I is a conformal cquivalence then we have./'e .f if and only if
E.l e { and ll.fll, - llE-f ll".

(2) Each evaluation.f -.+ l(t) for r e'4t is bounded from .*- to E.

If .?f is an interpolation field we define for each v e tll the Banach space X* ro be
the set of ,r e ,E such that there exists./ e .ll- wirh./(rr) : ,1 equipped with thc quorient
norm ll.rll". : inf {lll ll. :/([) = .t].

This definition is easily seen to encompass the standard definitions of complex
interpolation spaces in the literature by taking qt b be the open strip
gr : {r :0 < 9lu < I }. lt also covers the interpolation method introduced by Coif-
man, Cwikel, Rochberg, Sagher and Weiss in [7].

Our main result is that the map x' --+ X. is continuous for the Kadets metric.
To state our result we introduce the pseudo-hyperbolic metric on Z.
lf (,4eQt let h(E,A\ be the pseudo-hyperbolic distance on 2 defined by
h(.t,q):lqbilch(tl, E)) where <p'.?t .-+ I is a conformal equivalence with
e(o:0.

Theorem 4.5. Let ,L be an open subset of the complex plane which is conformalll,
equivalenr to the unit disk, ancl let I be an interpolation feld on oll. Then if -i, 4 e %.

dK(Xe, x,) < Zh(t, tt) .

Proof. The argument is very similar to that of Theorem 4.1. Suppose 0 > 1 We
define a homogenous map @,: Xe - ,{ with the property that (,,: (-r; O : -r and
lldq(-r)ll. < 0ll,rll,. Define <D: X, - X, by @(x) : 0-tgrtx:41 and similarly let
V:Xo--+ X, be defined by V(y1 :0-t 0,(l: il.

Now suppose xt...-x_€Xe and, yr,...,yoeX, Let r = IEr -ri + Lj-v(y,)
and u:Li-r@(.rr)+L;=r.r;. We note that
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6afu;0 - LOlG,i0 -o-'L 0,0i;0 =o'
i= I i=r

Let g be a conform almelp ofdll o oq with @(():0'Thenthereexists/E 9r with

o,(,) -i d.(,,) - e-' i o,lr; :,tt.

Using the fact that ll/11,. = ll9111", we obtain

llrrt,l -, r ,t,,) - 0-'i /,11,< 20te(4)t(i 11*,11.+ 
j ttr,lL).

It follows that

llullo < llull,+ (2/r((,rr) +(1 - 0-),(i tt,,tL+ j ttyrll).

With the symmetrical inequality this leads to

n(o,ty\ < 2h(1,il + O - 0-'z)

and the result follows. tr

Wecan apply these results to standard interpolation couples. Let Xo, X, be a Banach

couple and let X, = [Xo, Xr]0 be the standard complex interpolation space obtained

by the Calderon method.

Corollary 4,6. II 0 < 0 < Q < 1 rhen

dK(xo,x)=rffi

Proof. Define

sh(n(z - 0)12\q\2)= 
sin,.e +ql2,'

Then 9 is a conformal mapping of the strip {z:0 < Ez < 1} onto the open unit

disk with EQ\ : 0. tr
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Comllary 4.7. Il l<p<q<cn then for the (complex) spaces ln,lrwe huoe:

dx(e, l,) < 2
sin(r(t lp - t lq)12)
sin(n(t lp + t lq) 12)'

Remark. In fact Corollary 4.7 holds for the corresponding real spaces. One way to
see this is note that the pair (@. y) of Theorem 4.4 can be constructed even in the
case 0:1 and then map real sequences to real sequenccs. o

Remark. The estimates of Corollary 4.6 improvcs on previous estimates ([15], t22l).
The best known lower estimate ([23]) is

tlxllp.lq\ > 2t ?-t - 21 q'

Remark. We can also consider complex interpolation of quasi-Banach spaces. If we
fix 0 < r < I and allow E in our definition to be an r-Banach space it is easy to
show that the map < --+ X< is continuous for the pseudo-metric r.1,. By interpolation
between /, when r < I and /, one can then see that limn-1d611(1,11) = 0 as verified
directly in the previous section.

5, The Kadets and Gromov-Hausdorff topologies
Let N bc any arbitrary but fixed cardinal. Then we may consider the pscudo-metric
space .4.- of all Banach spaces with density character at most N with the Kadets
or Gromov-Hausdorfl pseudo-metrics. We note that there are examples of non-
isomorphic Banach spaces for which dx6,Y) = 0. An easy way to construct
examples is to fi x I < s < r and take a sequence I < p, < oc with lim,-, p" = J, but

/r" +.r for all n. Then X = l,@212(o) andY: lz(lp^) satisfy 4(X, Y) :0. This
follows easily from the estimate from Corollary 4.6,

37

tl*(l r(l o). I 2&))= r rr, *##
Clearly these spaces are non-isomorphic. Ifone takes.r : 1 then one gets an example
where clu,,(X. Y) :0 but dr(X.Y):1 since /, embeds in X but not f.

We will bc interested in this section in the topology of the (pseudo-)metric spaccs
,.- with the Kadets or Cromov-Hausdorf distances (wc will sometimes use the
term metric with lhc understanding that the spaces actually considered are the
Hausdorff quotients). Wc consider a fixed cardinal N to avoid certain set-theoretic
problems; the collection of all Banach spaces fails to be a set. The most interesting
choice of s- is of course 

'-.-o 
the set of separable Banach spaces: however in computing

duals, biduals etc. it is necessary to consider larger cardinals. We observc that each
set.rs is clopen (closed and open) in any largcr 3*..
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Let .7 be a property of Banach spaces; then for each cardinal l{ we may consider

the set .r, = /* of all Xe .,B. with property ?, so that we can think of / as a set-

We will say (following [24]) that ,4 is stable if there exists a fixed z > 0 so that
Xe? and dx(X,Y)<t imply Ye?. We will say that .2 is respectively c/open.

open. closetl if (for each n-) the set Jp is lespectively clopen. open or closed for the

Kadets pseudo-metric. Obviously a stable property is clopen; also thc negation of
a stable or clopen property is also stable or clopen.

There are many known examples of stable properties. Let us list some:

(1) X is separable.

(2) X does not contain 1r.

(3) X is reflexive.

(4) X is super-reflexive.

(5) X has nontrivial type.

See [22], [23] and t241, where other stable properties are also discussed. We do

not know of any examples of clopen properties which arc not stable.

The following Proposition is trivial from Theorem 4.3 and Theorem 4.4. Notice
that this proposition was known for stable properties (cf. [24]. [2]) and for open

properties only under some restrictions (I24), l2]).

Proposition 5.1. Suppose ? is q stable (resPectil'el)' clopen, open, dosed) prcPert)';

tlrcn the prcperties ?* : {X-. X*e ?\i, !'" : {X: X**lX e.:P} and ?t : lrX: X, e 14}

for some Jixetl uln'afilter ?l on N arc also stable ( respectitell , clopen ' open ' closed ) .

Note that for (1) and (2) above this leads to new stable properties:

IX: X* is separable] and {X: X* does not contain /,}.

Let us also mention some examples of open properties:

(6) X is isomorphic to 1,.

(7) X is isomorphic to /-.

(8) X is injective.

(9) ,Y is isomorphic to co.

We refer again to 1221, 123) and [24]. In fact, in each example it is easy to show

additionally that the Kadets distance defines a topology equivalent on the set to

Ihe Banach-Mazur distance. i.e. lim,-. d.(X,, X) : 0 if and only if
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lim,-,.dry(X,, X ) : 0. Notice that we also have that the following are open
properties by Proposition 5.1 :

(10) X* is isomorphic to /,.

(1 1) Xis a 9 r-space.

Let us add to the list thc following simplc tlrthcr opcn propcrtics:

Properties 5.2. The properties "X is isonnrphk' to a subspace of ci' und "X is
isomorphic to a subspace ol l," are open.

Proof. We prove only the former assertion. Assume that X is a Banach space
with Banach-Mazur distance less than i. to a subspace of co. Suppose
dK(X,Y)<|lQ).+1). Then I/is separable. There is a separable Banach space Z
which contains X and Y isomerically so that o:l(X, Y)<1lQ)-+1). Let
T'. X --+ co be a linear operator with ll.rll, < ll frll." < l"ll,rllr. Then I may be

extended to an operator T: Z - co with ll fll < 21. (cf. [30]). If _r'e Y then there
exists -r e I with ll-rllx < ll_r'lly and ll,r - r'll, < ollr'llr. Then

ll7_r'11"" > ll7'rll.,, - 2r.ollrll, > (1 -o - D.o)llvlly.

Thus Izis also isomorphic to a subspace of(0. o

Theorem 5.3. The propertr "Ko(X) < aa" is open.

Prool Suppose X is a Banach space with ro : xo(X) < .c. Suppose d*(X,Y)< o,
where ('14 + 56 ro)o < 1. Then there exists a bijective norm-preserving homogeneous
map Q: X - Isuchthatfor-rr,...,,r,eXwehave

< t4o f llrr llx .

Now suppose./ : I - lR is a homogcneous map which is bounded on B" and
such that l/("r', + -r'r) -/(.r',) -,r(.r'z)l < ll.r',llv + ll-r'z lly. Since./ is bounded a wcak*
compactness argument shows the existence of a best approximation )'* € y* so that
sup,.,,l./(-t) --r'* (t')l: M is minimized.

Let E:.f -t*. Suppose .rr,.r2eX. Then ll(2(.rr +-\r)-O(,r1) O(,rr)ll,,
< 28o(llr,ll, + ll,r,ll,). Hence

Ie(g(-t, +,r,)) - 9(O(x,) + g(;r:))I <Q8oM+2\(llxrllx+llxzllx).

Now

lE(o(r,) + O(xr)) - e(o(-rr)) - e(o(xJ) I < llx,ll* + llx,ll,

lla 'o,,ll,- ll,i " ll.
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so that we conclude that

lq(O(x, + "rr)) - q(O(x,)) - 9(O(.rr))l < (28oM + 3)(ll-rr llx + ll.rr llx).

It follows that there exists .r' e X+ so that

lE(O(.r)) -.rr(x)l < ro(28oM+ 3)ll.xllx.

Now suppose !r,...,!,e I, and !i=rh:0. Let .r =Ii=r() t(y.). Then

ll"rllx < 14rI!=r lllr llr.
Notice that

II,p(.v*)-q(o(,ll= Ii rro-'r-)-q(o(x))-x*( i o 'tr,-,)llri '- | lfi-' \.-- )l
< rcoG't28oM)(1 + 14d), llyrlly.

Now

lE(o(,r))l< Mll-rll, <t4ou L llyrll,

so that we finally obtain

li,,',, < c f ll.rillr
t=l

where

C : (l4oM + Ko(6 + 56oM)) .

Now define a sublinear functional on I by

/r \
ptr'): inf ( I qt.ri)+('I ll.rilly: I ri :r).

\*=l *=t l-l /

Notice that if f,i=1.1'1 : 1 then

I ELri) + c I ll)ill, > (p(-r') - cll-l'llv
l=l l=l

so that p is well-defined. Let fi be any linear functional on f so that i(f') < p("t )
for all 1,. Then lr(y) < AO) + Cll"yllr and by applying to -.r' we have

[(r) > E(.r') - Cll-ylly. Thus ln(-t') - q(r)l < Cll"t ll,.
Now considering I-y*-h we see that we must have M<C and so if

(14 + 56xo)o< I we have
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M< 6to
l-l4o-56oru

and this gives an estimate for xo(Y). tr

The nolions ofstable and open properties are most naturally applied to intepolation
scales.

Proposition 5.4. Suppose (Xn, X ,) is u Banach couple and that Xo : fXo, X Jo. If :U
is a stable proper ty and there ?.rists 0 < 0 < I so lhat Xo has propert I g t hen X, has

?forerery0<d<1.

Proof. This is immediate from Corollary 4.6. tr

Remark. This can be applied to each ofthe table properties listed above. This yields

a number of results, many of which are certainly known to specialists. For the

example the case of reflexivity can be deduced from Calderoi's original paper [6].
However we feel this general framework for such a result has some interest.

Proposition 5.5. Suppose (Xn, X ) is u Bqnath couple and thut Xo : fxo. X Jo. If ?
is an open properl) qnd there e.rists 0 < 0 < I so that X6 has property 7 then there
(-rr.rr.r s > 0 so that Xa has ? for etert $ vith l0 - 0l< t.

Here we singlc out three special cases which seem to be new and of some interest:

Proposition 5.6. Supp<tse (Xo, Xr) is a Banach rcuple und thut X": fXo, Xr)'. Sup-
pose there exists 0 < 0 < 1 so tlut Xu is isomorphic to co (resPediDel)' isomorphic to
o subspace of co. resp. isomorphi( to It ) thcn lhare e.\ists t: > 0 so thut X, is isontorphic

to co (respecticel)' isomorphic to q subspu<e of co, rasp. isontorphit' to l11 .for ecery

o Vith l0 0l < 
".

Remarks. Of course, Propositions 5.4- 5.6 apply to general interpolation fields.

Proposition 5.4 suggests it is of interest to make the following definition. Let X be

an arbitrary Banach space. We will say that the (Kadets) component.6, of X is
thc intersection oI all clopen properties containing X. Clearly if (Xo, xr ) is a Banach

coupfe then for all 0 < 0. tf < I we havc that X. is in the componcnt of X0.

We first state some elementary properties of components.

hoposition 5.7. Let X be an arbitrarr Bunach space. Tlrcn:

Ye'6, iJ und only il {y:'ll x.

For eoery Y e, the d?nsit) (ho ucle[ densX = dcns l' arul dens X* : dens )'*

41

(1)

(2)
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(3) If Ye'6, ond Y, is isomorphic to y then Yteg x.

(4) IJ Y is an arbitrart Banurh spuce then.fttr uny subspa<e E ve hqte YiE @ E e Gx
if and only i/ Ye6r.

Remark. Note that (3) allows us not to specify any special norm on the spaces in (4).

Proof. (1) is elementary. For (2) note that the scts {Y:densY:densX} and

{ )z: dens Y* : densX*} are both clopen.
For (3) observe as in Proposition 6.1 of l24l that there is a family of isomorphic

copies of X Ii for 0 < I < 1. say, so that, --, { is continuous for the Kadets disr
ance. with Yo: Y.

For (4) we use Lemma 5.9 of [24]. Let Z: Y@rYlE and let 0: Y - YIE be
the quotient map. For any r e lR with, + 0 we let G, : [(r_r'. Q_r') : 1' e I]. Then it
is easy to show that lim.-,zl (G., G,) : 0 for any /€ IR. If ,:0 we define
Go: E @rYiE. Then using Lemma 5.9 of [24] we also have lim.-o I (G., Go) : 0.
Thus the map I - G, is continuous for the Kadets distance. However G, is isomorphic
to rfor all r + 0 while Go= E@rYlE. D

Proposition5.8.WeharcXe%l,iJandonlt(Xissepsrableand<ontuinsacopl'oflr.

Proof. Since the set of X which is both separable and contains a copy of /r is stable
inclusion is immediate. Conversely suppose X is any separable Banach space con-
taining a subspace Eisomorphic to /r.Then Xis in the same component as / 1@ 1XyE.
Letabekernel of a quotient map from /, onto XiE. Lel G : ((D @ lr(X E)e64.
Since the map Y --+ Y@, XiE is trivially seen to be continuous for the Kadets metric
the set {y@rxlf;IZe14,,} is connected and meets 6,, since G@r (X,E) is iso-
morphic to G. Thus 1, @,XlEe(6,, and so X e 6,,. o

Problem l. What is the component of( o? Similar techniques to the above Proposition
show that this contains all infinite-dimensional subspaces of cn. Proposition 5.7 (4)

does not help to give any other examples, since being a subspace ofcn is a three-space
property ([l]).

Problem 2. WhaI is the component of /r? This is contained in the stable set of all
separable super-reflexive spaces. We do not know if it coincides with this set. This
is related to Pisier's notion of d-Hilbertian spaces ([28]); any space which is 0-
Hilbertian for d > 0 belongs to %1,.

One can obviously introduce the notion of a Gromov-Hausdorff component in an
analogous fashion. Clearly the Gromov-Hausdorff component of X.'.4r contains
(f,r. Since the map p - /r' is continuous for the Gromov-Hausdorfl distance for
p e fl. a) we have that 

'.4 r,: '.9,,. It seems quite possible that this will correspond
with the collection of all separable Banach spaces so we ask:
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Problem 3. Is the set of all separable Banach spaces connected for the Gromov-
Hausdorffdistance? We are unable to decide if co is in 9r, so it would be interesting
to identify (4".

Let us take this opportunity to make a few remarks about the Gromov-Hausdorff
distance.

Proposition 5.9. The follow'ing propetties are open for the Gromoo-Hausdorf disrunce:

(l) X is isomorphic to to.

(2'1 X is isomorphic to 1,.

(3) ro(X) < o
(4) X has nontitial type.

(5) X has nontioial cotype.

(6) Xt has nontriDial 4)pe.

(7) X* has nontiuial cotype.

Furthermore, on the sers defned by properties (1\ and (2) Gromou-Hausdorf distance
deJines a topology equioalent to lhe Banach-Mazur distance.

Proof- (l) and (2) follow almost immediately from Theorem 3.7, and the remarks
above. In a similar way (3) follows from Theorem 3.7 and Theorem 5.3. Then (4)

follows since if X has nontrivial type then ro(X) < cc again by using Theorem 3.7.

To establish (5), (6) and (7) we use Proposition 3.5. Indeed it is immediate from
3.5 that the property "/- is finitely representable ion X" is closed for the Gromov-
Hausdorff distance. Let us establish (6) and (7) by showing that for a fixed Banach
space E the condition "E is finitely representable in X+ " is closed for the Gromov-
Hausdorff distance. Then we may take E = lr and E: l*.

To show this last statement it suflices to suppose E finite-dimensional. Then if
X, converges to X in Gromov-Hausdorff distance i.e. dcy(X", X) - 0 and E is
finitely representable in each Xj it is immediate that E is isometric to a subspace

of (flr(x,)*. Hence by Theorem 3.5 E embeds isometrically into the space xr.
Now (X*), emMs naturally into X| as a norming subspace by the identification

r*(x) : lim.r*("r,).
ne],

The space of operators :e @, Xn is naturally a dual space of E@.X, and
.g (E, (X*)r) is norming as a subspace. Hence "I : E - Xl is an isometry we can
find a net "I,: E --+ (Xi), so that ./, -- J weakr and ll"l"ll < l. By the weakt lower-
semicontinuity of the norm in Xj it follows thal for any c > 0 there exists e with
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(1 - c) lle ll, < ll"/,l[rr" < llell" for e e E. Hence -E is flnitely rePresentable in (X*),
and thus also in X*. tr

Remark. It has been conjectured by the first author that re(X)< :c might be

equivalent to the property that X* has finite cotwe.

We conclude the paper by showing that the collection ofall separable Banach spaces

is not itself separable for either the Gromov-Hausdorff or Kadets distances. More
precisely we show:

Theorem 5.10. Suppose l<p<x. urul p*2. Then the set of Bunach sparcs X
isomorphic to ln is not separable fu either lkulets or Gromor:-HctustlorfJ dislunc'es.

Proof. First notice that since ro(/r) < .. the two pseudo-metrics d^ and r/n, definc
equivalent topologies on the set 'y', of all isomorphic copies of /0. Secondly since

X --+ X* is a homeomorphism on the set of rcflexive spaccs for the Kadets pseudo-

metric it sumces to consider I < p < 2.

We shall consider spaces 1o(-6,) where each E, is a finite-dimensional Hilbert space.

Each such space is isomorphic to 1, by an old result of Pelczynski [26]. We will
prove the following Lcmma:

Lemma 5.11. There exists oo ) 0 so thdt il @) and (\) are ttro squences o-f .frttitc-
dimensional Hilhert spaces antl dx(lo(E,),lr(F))<oo then there is a bijectiott
r: N - N so thut !dtmE"< dim{,,, ( 10dimE,.

Proo-f of rhc lcmrno. We will write X : ln(8,) and Y : I nF). A typical element of X
will be denoted r : (.t,),I=r with a similar notation for I. We also adopt the

convention lhat 4 will denote a function of o satisfying lim.-o 4(o) : 0 which may
vary from occurence to occurence.

First observe that by Theorem 2.4 there exists a homogeneous. norm-preserving
bijection O : X - y with the property that if xr, ..., x, e X then

lle,
*,11,-ll-i 'll.

< 14a f llxtll, .

Suppose u, ve S, have disjoint supports, i.e. llr,l[-"llo"lh":0 for each r. Then

llu+vllx:21ip and hence ll(2(u) + (2(v)llr' > 2tto -28o. Let o(u):y and
O(v) : z. Then we have
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2rP -28o < (lll, *,tt:, *11|Y - rB)'

45

= ((! z-*rrrr +',8.)''' +(i,z "tt'r-',tr:'.)''')

= ( r (j rr" *, rt;,* lrr*-,rt?,)''')'''
/ o \rip

= ( I (ll/,lli^ + llz,lli)o'' I\[r /

< ( I -a*rlr.l.-, tt,,tt..)') '''(i ,,,r,,r* * ttaltr.t)"'.

This implies an estimate that

f i max(ll)rll'-. 11,.1;..1')"'= 2t'P-4',
\r-=r - /

and hence an estimate

/ I \ riP

(I min(llr'll'^. l,'ll,)' ) 
< 4@t.

Now suppose yeS, is supported on exactly one co-ordinate m say. kt
Q '(y): x. Then we can write x: u + v disjointly where llu ll" > ll ull*, and

llulli<ll v lli + maxllx"lll". Letw=Q(u) and z:o(v). Then since

llullr, llvll,<I we obviously have that min(llw-lln-, llz-lh-)<4.Now

lly-9(u)-a@)lb<42o
so that

lly^ - w^- z^llp^< 42o

and hence

llw^-f z^llp^> 1 - 42o .

From this we have an estimate max(llqllr-, llz.lln-) > 1 - 4. This in turn means

llull, > I - 4 and hence an estimate max ll-r,116" > 1 4-

It follows that ifo is small enough there is a unique r: n (y) so that ll'x,llt" > 1 - 4'
Now suppose that y, and y2 are both unit vectors witb the same singleton

support rr. lf n(yr) t i(yr) we will have la-'j)la '(v)llx> 2ttp-4 b:ut
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min(llyr + yzll) ! 2'''. Again for o small enough this is a contradiction. Hence
we conclude that n is a function only of m.

Applying the same technique to X and Y interchanged we obtain two maps
z: N --+ N and p: N --+ N such that if y = Ox and both are unit vectors then:

(a) if x is supported only at m then ll-r;,., 11..,",, > I 4 and

(b) if y is supported only at lll then 11.1,.;116",-, > I r.

Now if x is supported only at lz then y = z + w where ll z ll, > 1 - 4 and ll w ll, < q

are disjoint and z is supported only at z(m). Thus

llx - Q- \ (z) - a t (w)ll* < 42o

from which it follows that for o small enough we must have a(tt(m)): m and
similarly zr(p(m)) : rn. Thus n is a bijection.

Pick a maximal subset (f*)..1 of 8p- with lli* &llu^>+. Then l"/l < sdi-ri-.
Let xr be the element of X with zeros everywhere except <r in the mth position.
Suppose (eSr",-,; letz be the similarly defined element of I with exactly one
nonzero efement (. Let x : Q'I z.Then there exists ft € "/with llx - x.ll, < ! + q@).
Then

llz - Q(x) - A8 x)ll, < 42o.

Hence

1

llz-Atx)lly< z+,t@1.

Now let (rpr) be the z(a)-coordinate of O(x.). We have

I
lli - rprlL",-, < ,+ 4@\.

For o small enough this implies that (pi)r.r is a 3/4-net in 8..,-, so that

l"/l > (4/31dt'r''-'.

We conclude that dim4(-) < C dimE^ where C: log 5llog(413) S 10. This proves
the lemma. D

Proofof the theorem. For each infinite subset M of N form the splce XM: !puto'"),. M.
The lemma shows these are uniformly separated. D
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