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Abstract : We show that if a separable Banach space Z contains isometric copies of every
strictly convex separable Banach space, then Z actually contains an isometric copy of every
separable Banach space. We prove that if Y is any separable Banach space of dimension at
least 2, then the collection of separable Banach spaces which contain an isometric copy of
Y is analytic non Borel.
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1. Introduction

Many natural isometric properties (P ) of norms on Banach spaces are
hereditary. For such a hereditary property, the question naturally arises to
know whether there is a separable space U with (P ) such that the class of
spaces with (P ) coincide with the class of subspaces of U . A negative answer
is usually easy to obtain when (P ) is related with some modulus. When it is
not so, topological considerations enter into play, as in [6] where a negative
answer is obtained when (P ) denotes strict convexity (solving a problem from
[10]).

The purpose of this note is to improve on the result of [6] by showing that
a separable Banach space which contains an isometric copy of every strictly
convex separable space actually contains an isometric copy of every separable
Banach space. A by-product of our construction is that the class of spaces
which contain isometrically a given space Y is as complicated as it looks at
first sight, for every space Y .

The proof consists into constructing a tree space such that every branch
supports an isometrically universal space, and every well-founded subtree sup-
ports a strictly convex space. Since by Hurewicz’s theorem the set of well-
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founded subtrees is coanalytic non Borel, the conclusion follows from the fact
(from [3]) that the class of subspaces of a given separable Banach space is
analytic.

It should be noted that this topological approach has been recently used
(and much deepened) in isomorphic theory, where important “converse” state-
ments have been obtained. More precisely, it was shown in [1] that several
analytic families of Banach spaces have non trivial universal spaces. This
new approach from [1] has been used in particular in [5] to provide an alter-
native proof (and an improvement) of [11] and the solution of a problem of
H.P. Rosenthal [13].

The notation we use is standard. We should point out however that in the
tree construction, the set of natural numbers is denoted by ω, in agreement
with the usual notation in descriptive set theory.

2. Results

Here is the main technical result of this note.

Theorem 2.1. There exists a Banach space E(ω<ω) with a basis indexed
by finite sequences on natural numbers, such that if T is a well-founded
subtree of ω<ω, then the subspace E(T) consisting of vectors supported by
T is strictly convex, and if T is not well-founded the subspace E(T) contains
an isometric copy of every separable Banach space.

Proof. Our argument partly follows the lines of the proof of Propositions
3 and 5 in [6]. There are however two significant changes: in [6] the space
supported by the infinite branches of ω<ω is isomorphic to l1 and this is quite
crucial in the argument. Also, strict convexity is replaced in [6] by the stronger
property of uniform convexity in every direction, and a compactness argument
allows to dispense with this requirement in the present work.

The following proposition provides the subspace of E(ω<ω) supported by
each infinite branch.

Proposition 2.2. Let X be a Banach space with a monotone basis.
There exists a Banach space F with a monotone basis, which contains an
isometric copy of X, and such that

(1) If (Un) denotes the sequence of partial sum operators associated with
the basis (fn) of F and (f∗n) is the dual basis, there exist a sequence (cn)
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of strictly positive real numbers such that, for all y ∈ F ,

‖Un+1y‖2 ≥ ‖Uny‖2 + c2
n+1|f∗n+1(y)|2 .

(2) the norm of F is strictly convex on the linear span of the basis vectors.

Proof. Let (en) be a monotone basis of the Banach space X. We have
to construct an isometric linear map T from X into a Banach space with
monotone basis F , such that the norm of F is strictly convex on the space
of vectors with finite support and satisfies a weighted l2 lower estimate. The
vectors (en) will be mapped on vectors in F with disjoint infinite support. The
map T and the norm on F will be simultaneously constructed by induction.

We pick two strictly positive decreasing sequences (an) and (σn). The
choices an = 10−1.2−n and σn = 10−2n−12−2n will suffice. We require that

•
∑

an < 1 , a1 < 1/10 ,

• σn < an ,

• σn

(∑n
j=1 ξ2

j

)1/2
≤ 1

2(an − an+1)
∥∥∥∑n

j=1 ξjej

∥∥∥
X

, ξ1, . . . , ξn ∈ R .

Consider the sets D of pairs (n, k) where 1 ≤ k ≤ n, ordered by the
lexicographic ordering: (n, k) ≤ (n′, k′) if n < n′ or n = n′ and k ≤ k′. This
is of course a copy of N with (n, k) corresponding to 1

2n(n − 1) + k. We will
construct a norm on c00(D). Let (fnk) denote the basis vectors.

Let En = [e1, . . . , en] and Fn = [f11, f21, f22, . . . , fnn]. We define a linear
map Tn : En → Fn by

Tnek =
1− ak(

1− σ2
k

)1/2
fkk + 4

n∑
j=k+1

aj−1fjk .

Denote by Sn the partial sum operators on X and Sn,k the partial sum op-
erators on c00(D). Let ‖ · ‖2 be the standard Euclidean norm on c00(N) or
c00(D).

We will construct on each Fn a monotone norm pn with the properties:

• pn(Tnx) = (1− an)‖x‖X , x ∈ En ,

• pn(fjk) =
(
1− σ2

n

)1/2
, 1 ≤ k ≤ j ≤ n ,

• pn+1(y)2 = pn(y)2 + (σ2
n − σ2

n+1)‖y‖2
2 , y ∈ Fn .
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To start the induction define p1(f11) = (1− σ2
1)

1/2.
Now suppose pn has been defined and we wish to define pn+1. Let

qn(y) =
(
pn(y)2 + (σ2

n − σ2
n+1)‖y‖2

2

)1/2
, y ∈ Fn .

Note that for x ∈ En

qn(Tnx) ≤ pn(Tnx) + σn‖Tnx‖2

≤ (1− an)‖x‖X + 2σn‖x‖2

≤ (1− an+1)‖x‖X .

Thus
(1− an)‖x‖X ≤ qn(Tnx) ≤ (1− an+1)‖x‖X . (1)

Now if y ∈ Fn+1 we will define pn+1(y) as the minimum of

qn(u) + (1− an+1)
n+1∑
j=1

‖vj‖X +
(
1− σ2

n+1

)1/2
n+1∑
j=1

|ξj |

over all u ∈ Fn, v1, . . . , vn+1 ∈ En+1, ξ1, . . . , ξn+1 ∈ R so that

y = u +
n+1∑
j=1

Sn+1,jTn+1vj +
n+1∑
j=1

ξjfn+1,j . (2)

The three terms of the above equation are shown below to provide optimal
representations (where the minimum is attained) for different types of vectors
in Fn+1: if y ∈ Fn then y = u is optimal, if y = Tn+1(x) ∈ Tn+1(En+1) then
vn+1 = x provides an optimal representation, and if y = fn+1,k then ξk = 1 is
optimal (with everything else equal to 0 in each case).

First observe that if y has a representation of type (2) then

Snn(y) = u + Tn

n+1∑
j=1

vj


so that

qn(Snn(y)) ≤ qn(u) + (1− an+1)
n+1∑
j=1

‖vj‖X ,
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and hence we deduce that

qn(y) = pn+1(y) , y ∈ Fn , (3)

and

pn+1(Skj(y)) ≤ pn+1(y) , y ∈ Fn+1 , 1 ≤ k ≤ n , 1 ≤ j ≤ k . (4)

It follows easily from (4) and the definition of pn+1 that it is in fact monotone
on Fn+1. It also follows from (3) that

pn+1(fjk) =
(
1− σ2

n+1

)1/2
, 1 ≤ j ≤ n , 1 ≤ k ≤ j .

We now must prove that

pn+1(Tn+1x) = (1− an+1)‖x‖X x ∈ En+1.

Suppose y = Tn+1x has an optimal representation in the form of (2). Then

Tnx = Snny = u +
n+1∑
j=1

Tnvj .

Hence

u = Tn

x−
n+1∑
j=1

vj

 .

Let z =
∑n+1

j=1 vj . It follows from optimality that we have x− z ∈ En. Thus

1− an)‖x− z‖X ≤ qn(u) ≤ (1− an+1)‖x− z‖X .

Let us write

w =
n+1∑
j=1

Sjvj .

Again, x− w ∈ En and

y = Tn(x− w) + Tn+1w +
n+1∑
j=1

ξjfn+1,j .

It follows that
qn(u) ≤ qn(Tn(x− w)) .
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This implies that

(1− an)‖x− z‖X ≤ (1− an+1)‖x− w‖X .

Now

(Tn+1 − Tn)(x− w) =
n+1∑
j=1

ξjfn+1,j

so that
n+1∑
j=1

|ξj | ≥ 4an‖x− w‖X .

Hence

pn+1(y) ≥ (1− an)‖x− z‖X + (1− an+1)‖z‖X + 4
(
1− σ2

n+1

)1/2
an‖x− w‖X

≥ (1− an)‖x− z‖X + (1− an+1)‖z‖X + 2an
1− an

1− an+1
‖x− z‖X

≥ (1− an)‖x− z‖X + (1− an+1)‖z‖X + an‖x− z‖X

≥ (1− an+1)‖x‖X .

This shows that pn+1(Tn+1x) ≥ (1 − an+1)‖x‖X . The converse inequality is
automatic.

Finally we must show that

pn+1(fn+1,k) =
(
1− σ2

n+1

)1/2
, 1 ≤ k ≤ n + 1 .

Then if k < n + 1, we assume an optimal representation of y = fn+1,k in form
(2) and we have

1 = f∗n+1,k

n+1∑
j=k

Tn+1vj

 + ξk

or

1 = 4ane∗k

n+1∑
j=k

vj

 + ξk

where 4an < 1
2 . Thus

1 ≤ 1
2

∥∥∥∥∥∥
n+1∑
j=k

vj

∥∥∥∥∥∥
X

+ |ξk| .
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If k < n + 1 we therefore have

1 ≤ 1
2

n+1∑
j=1

‖vj‖X + |ξk| ≤
(
1− σ2

n+1

)−1/2
pn+1(fn+1,k)

from which it follows that pn+1(fn+1,k) =
(
1− σ2

n+1

)1/2.

If k = n + 1 then fn+1,n+1 = (1− an+1)−1
(
1− σ2

n+1

)1/2
Tn+1en+1 and so

pn+1(fn+1,n+1) =
(
1− σ2

n+1

)1/2
.

This completes the inductive construction.
Now we can define a norm on c00(D) by letting

‖x‖ = sup
k≥m

pk(x) , x ∈ Fm .

Then if x ∈ Fm we have

‖x‖ =
(
pm(x)2 + σ2

m‖x‖2
2

)1/2
.

Clearly this norm has all the desired properties including strict convexity on
the linear span (but not the closed linear span) of the basis vectors. We define
T : X → F (where F is the closure on c00(D) in this norm) by

Tx = lim
n→∞

TnSnx .

Then it is easy to verify that T is an isometry.
We switch to labelling D as N and the Sn,k as Un. The cn’s are readily

obtained from the σn’s, and this concludes the proof.

Let us mention that in the case X = C([0, 1]) equipped with its natural
norm (which is of course sufficient for proving the proposition), the space
X cannot contain any of the subspaces Fn. This follows from the fact that
contractively complemented subspaces of X are not strictly convex. It is
therefore quite natural that every nonzero vector from X has infinite support
in F .

We now proceed to the tree construction, where we follow the lines of [6]
but simplify it with a compactness argument.

Let ω<ω denote the set of finite sequences of natural numbers, and ωω the
set of infinite sequences. Each σ ∈ ωω is seen as an infinite branch of the tree
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ω<ω. Set X = C([0, 1]) equipped with its natural norm, let F be the space
obtained by applying Proposition 2.2 to X, and denote by ‖ . ‖F the norm we
constructed in the proof. For any σ ∈ ωω, we let Tσ be the operator from
c00(ω<ω) to F defined by

Tσ(x) =
∑
s<σ

x(s)f|s| .

We denote σ∗ = {s ∈ ω<ω; s 6< σ} and we define norms on c00(ω<ω) by

‖x‖2
σ =

∑
s∈σ∗

c2
|s|(x(s))2 + ‖Tσ(x)‖2

F

and take
|||x||| = sup

σ
‖x‖σ

as in [6].
By condition (1) in Proposition 2.2 we can add finite branches {s ≤

(n1, . . . , nk)} (terminating at some node) and the corresponding ‖x‖σ in the
definition whithout changing the value of |||x|||. Now the set of all branches
(finite or not) is a compact set in the topology induced by 2(ω<ω) and if x ∈ c00

the map σ → ‖x‖σ is continuous (actually, locally constant). By a uniform
approximation argument it is also continuous when x is in the closure of c00

with respect to ||| . |||, which we denote by E(ω<ω). Hence for all x ∈ E(ω<ω)
one has

|||x||| = max
σ

‖x‖σ .

Now if T is any subtree of ω<ω, we denote by E(T) the subspace of E(ω<ω)
consisting of vectors supported by T.

Assume first that T is well-founded, and pick x 6= 0 in E(T). There is
σ such that |||x||| = ‖x‖σ. Since σ meets the subtree T in a finite branch,
condition (2) in Proposition 2.2 shows that the norm ‖ . ‖σ restricted to E(T)
is strictly convex, and it follows that for all y 6= 0 in E(T) one has

2|||x||| < |||x + y|||+ |||x− y|||

and we have shown that the norm ||| . ||| is strictly convex when restricted to
E(T).

Assume now that T is not well-founded and let σ be an infinite branch
of T, It follows from condition (1) in Proposition 2.2 that the map Tσ is an
isometry from E(σ) onto F , and it follows that when T is not well-founded
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then E(T) equipped with the norm ||| . ||| contains an isometric copy of X and
thus an isometric copy of every separable Banach space.

For asserting that this space E(ω<ω) satisfies our initial requirements, it
now suffices to observe that any increasing map from ω<ω to the set of natural
numbers provides an ordering of the unit vectors which makes it into a basis
of E(ω<ω).

The next result is of course the motivation for the whole construction. It
provides a positive answer to Problems 2 and 3 of [6].

Corollary 2.3. Let Z be a separable Banach space which contains an
isometric copy of every strictly convex separable Banach space. Then Z is
isometrically universal, that is, Z contains an isometric copy of every separable
Banach space.

Proof. The proof follows the lines of [2], as in [6].
We rely on the frame displayed in [3], and equip the set S of closed lin-

ear subspaces of E(ω<ω) with the Effros-Borel structure, which makes it a
standard Borel space. It is easy to check (see Lemma 8 of [6]) that the map
T → E(T) from the compact set of trees on ω to S is Borel.

The relation of isometric embedding is analytic (see Lemma 7 in [6]) and
thus the set A of trees T such that E(T) is isometric to a subspace of Z
is analytic. Our assumption on Z together with Theorem 2.1 implies that
every well-founded tree belongs to A. By a classical result (see [9]) the set
of well-founded trees is not analytic. Hence there is some T0 ∈ A which is
not well-founded. But then E(T0) is isometric to a subspace of Z and it is
isometrically universal, and this concludes the proof.

Let us recall along these lines that a problem which goes back to S.
Rolewicz (Problem IX.9.4 in [12]) asks whether a separable Banach space
which contains isometric copies of every finite dimensional Banach space is
isometrically universal.

We note that the non existence of an isometrically universal space in the
class of separable strictly convex spaces, and in some other isometric classes,
readily follows from the coanalytic non Borel complexity of the corresponding
collection of spaces (see [2], [4], [8]). A number of similar statements to
Corollary 2.3, claiming that universal spaces for given classes of norms are
actually universal for all separable spaces. are likely to be true.

Corollary 3.3 from [3] asserts in particular that if Y is an infinite dimen-
sional Banach space, the set of separable Banach spaces which contain an iso-



188 g. godefroy, n. j. kalton

morphic copy of Y is analytic non Borel. Our next corollary claims that this is
true as well in the isometric case, even if Y is finite dimensional. Of course, the
word “set” below and the relevant Borel structure refer to Bossard’s theory
from [3].

Corollary 2.4. Let Y be a separable Banach space of dimension at
least 2. Then the set of separable Banach spaces which contain an isometric
copy of Y is analytic non Borel.

Proof. Assume first that Y is not strictly convex. Then Theorem 2.1
implies that Y isometrically embeds into E(T) if and only if T is not well-
founded, and the set of non well-founded trees is analytic non Borel.

On the other hand, if Y is a 2-dimensional strictly convex space, then it
is well-known that Y is not isometric to a subspace of an isometric predual
of l1. Indeed this is an easy consequence of the fact that l1 equipped with its
natural norm has countably many extreme points, through a Baire category
argument applied to the sphere of Y .

In particular, if Y is strictly convex of dimension at least 2, then Y is not
isometric to a subspace of a C(K) space with K countable. On the other
hand Y is isometric to a subspace of C(L) where L is any uncountable metric
compact set. Thus the conclusion easily follows from Hurewicz’s theorem
asserting that the set of uncountable compact subsets of [0, 1] is analytic non
Borel for the Hausdorff metric.

A straightforward consequence of Corollary 2.4 is that if Y is a separable
Banach space of dimension greater than 1, and X is a separable Banach space
which contains an isometric copy of every separable space which does not
contain an isometric copy of Y , then X contains an isometric copy of Y . In
other words, the class of separable spaces which do not contain an isometric
copy of Y has no universal element. This is the isometric version of Corollary
3.6 from [3].

This Corollary 2.4 really means that there is no way to characterize iso-
metric embeddability of Y into a separable Banach space X which would be
less complex than simply claiming the existence of the embedding. Note that
by [7] the existence of a non necessarily linear isometric embedding from a
separable Banach space into a Banach space forces the existence of a linear
one.
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