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Symmetric norms and spaces of operators

By N. J. Kalton at Columbia and F. A. Sukochev at Bedford Park

Abstract. We show that if (E, || - || ;) is a symmetric Banach sequence space then the
corresponding space Sr of operators on a separable Hilbert space, defined by T € % if
and only if (s,,(T))ZO:1 € E, is a Banach space under the norm || 7, = || (sn(T));il |- Al-
though this was proved for finite-dimensional spaces by von Neumann in 1937, it has never
been established in complete generality in infinite-dimensional spaces; previous proofs have
used the stronger hypothesis of full symmetry on E. The proof that || - ||, is a norm re-
quires the apparently new concept of uniform Hardy-Littlewood majorization; complete-
ness also requires a new proof. We also give the analogous results for operator spaces
modelled on a semifinite von Neumann algebra with a normal faithful semi-finite trace.

1. Introduction

In 1937, von Neumann [23] or [24], pp. 205-218, showed that if || - || ; is a symmetric
norm on R” then one can define a norm on the space of n x n matrices by

411z = l[(s1(4), - su(A)) [

where s1(A),...,s,(4) are the singular values of A4 (i.e. the eigenvalues of (A*A)l/z) in
decreasing order. Surprisingly, the infinite-dimensional analogue of this result, although
well-known in special cases, has never been established in complete generality. This is the
aim of the current paper.

Consider a (real or complex) symmetric Banach sequence space E; i.e., E is a sequence
space invariant under permutations equipped with a norm || - || such that (E,| - ||z) is
complete and has the property that

JeE g =/ = gekE gllg=flg

(Here by f* we denote the usual decreasing rearrangment of the sequence |f|.) Then if #
is a separable Hilbert space we can define an associated Schatten ideal S = ¥ (H#) by

The first author acknowledges support from NSF grant DMS-0555670; the second author acknowledges
support from the ARC.
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Te% < (/7)) €E

with a quasi-norm

1Ty, = H(Sn(T));il |
In this paper we address the following natural problem. Is (%%, || - ||z) a Banach

space? It is curious that this question is up to now unresolved in this generality; see for ex-
ample [28], [29], [14] and [31]. In fact it is well-known that there is a positive answer if E is
Sfully symmetric. For this we need the definition of Hardy-Littlewood majorization:

g(), n=12....

R

f==<g & _Xn:lf*(j)é 1
=

J

Then E is fully symmetric provided

JeE, g <<f" = geE, |glg=Iflg

This is equivalent to the requirement that E is a 1-interpolation space between ¢ and 7,
(cf. [3]). More generally a positive answer is known if E is relatively fully symmetric i.e.

figeE, g " =<=<f" = |gllg =Ilfllg

See [5], [10] and [34]. We may note that FE is relatively fully symmetric if and only if it is
a closed subspace of a fully symmetric space, for we may define F' by f € F if and only if
there exists g € E such that f << g and define

1A lr=inf{llgllz: g€ E, /<< g}

and it can be verified that F' is then a fully symmetric Banach sequence space containing £
as a closed subspace.

The same problem can be formulated in a continuous form. If E is a symmetric
Banach function space on (0, c0) (in the terminology of [18]) and .# is a von Neumann
algebra with a faithful normal semi-finite trace z then we can define the space E(.#, 1) as
a subset of the space .# of measurable operators affiliated with .# by

xeE(M,t) & ukx)ekE

where u(x)(7) = u,(x) are the generalized singular values of x (see e.g. [13]). The associated
quasinorm is

16l = [l() |-

As in the discrete case it is known that E(.#,7) is a Banach space under || - || if E is rela-
tively fully symmetric. In this case

t t
f==<g & [f(s)ds<[g*(s)ds, 0<t< o0.
0 0
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We note that some authors (e.g. [19], [9] or [11]) define symmetric or rearrangement-
invariant spaces to have additional properties which imply full symmetry or relative full
symmetry. However, according to our definition above, there are examples of symmetric
Banach function spaces or sequence spaces which are not (relatively) fully symmetric. In
our earlier paper [16] we showed that for example on the Marcinkiewicz sequence space
M (sometimes denoted .#"*) of all sequences ( f (n)):le such that

11l = S0Py 2540 <

one can define a bounded positive symmetric linear functional ¢ & 0 such that

(/’((1/”)?:1) =

Thus with the equivalent norm on M given by

A" = 17 1ar + 0(111)

M is not fully symmetric and further the smallest closed symmetric subspace M, containing
(1/m),”, is not stable under Hardy-Littlewood majorization and therefore not fully sym-
metric. This last remark is only a special case of a result of Russu [26] and Mekler [20]
(see also [2]) who proved a similar result for a wide class of Marcinkiewicz spaces. A
more extreme example was given by Sedaev [30], who showed the existence of a symmetric
Banach function space which fails to have any equivalent relatively fully symmetric norm.
Thus the known results in the literature are far from a complete solution of the problem of
the extension of von Neumann’s result to infinite dimensions.

Our question divides into two parts. The first is the convexity problem: is the induced
quasi-norm || - ||, on Y% or E(.#,t) a norm? The second is the completeness problem: is
space S or E(.,t) complete for this (quasi-)norm? We show in this paper that both ques-
tions have a positive answer and so indeed the spaces ¥z and E(.#, 1) are Banach spaces.

In order to answer the convexity problem we consider a more general situation.

To simplify the discussion let us concentrate on the continuous case. Let Ly(0, c0) de-

note the space of measurable functions whose supports are of finite measure and let

L, = Ly+ L., Suppose g € L,, and let 2(g) denote the convex hull of the set of functions
Eg)={f:f"=g"}. Then define

fig>=mnf{A>0: fei2(g)}
(and {f;g> = oo if f is not in the linear span of 2(g)).

We also introduce the concept of uniform Hardy-Littlewood majorization, which plays
a fundamental role in this paper. We write /' <2 g (for f,g € L,,) if there exists 4 > 1 so that
if 0 < la < b we have

b

b
J £ (s)ds < [g7(s)ds.

a
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If ge Ly + Ly, then f<2g implies f << g but not conversely. We show in Theorem 6.3
that f =3¢ implies that {(f;¢g» < 1 (but not necessarily f € 2(g)) and this gives an explicit
formula for {f;g) i.e. (Theorem 6.4):

[ f*(s)ds
{fig>=lim sup H—.
2= 0 0<Ja<b N
[ g7(s)ds

a

The analogous discrete results are Theorem 5.4 and Theorem 5.5. Let us note that
{f,g9y <1 implies f <2 ¢g but in general {f;¢g) < 1 does not imply /' <2 ¢g (see Lemma 4.4
and the examples following Theorem 5.5).

To emphasize the role of uniform Hardy-Littlewood majorization let us point out
that /=g implies || f||z < ||g||z for every symmetric norm || - || while f << g implies

1711z < gl only if || - | is fully symmetric.

These results are related to calculations of Banach envelopes of some weak type
spaces, and in a special case when g(x) = 1/x this formula can be shown to be equivalent
to a result of Cwikel and Fefferman [6], [7] on the envelope of weak L.

Now suppose as before that .# is von Neumann algebra with a faithful semi-finite
normal trace 7. Then if xi, ..., x; are measurable affiliated with .# we show (Proposition
8.6):

p(xr + o o) S p(oe) + e+ p().

Here u(x) denotes the functions ¢ — y,(x). This can be regarded as answering (in an
infinite-dimensional setting) a question raised by von Neumann in [23], p. 298 or [24],
p. 218. From this and our previously stated results it is easy to show that any symmetric
seminorm defined on a symmetric subspace of L., induces a seminorm on the correspond-
ing subspace of .#; thus the convexity problem has a positive answer. The completeness
problem also uses the same approach (Theorem 8.11) and we prove some generalizations
to p-convex quasi-Banach function spaces.

Acknowledgements. We would like to thank Peter Dodds for many helpful com-
ments on the content of this paper. We also thank Aleksandr Sedaev and Yves Raynaud
for their comments on earlier drafts.

2. Functionals on spaces of measurable functions

Let J denote either N with counting measure (discrete case) or (0, oo) with Lebesgue
measure (continuous case). The measure of a measurable set E is denoted in either case by
|E|. We let Ly = Lo(J) be the linear space of all measurable functions with support of finite
measure, i.e. |{f # 0}| < 0. We then consider the space L,, = Lo+ L..; in the discrete
case this reduces to /,,(N). If f € L., we define the decreasing rearrangement by
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£ =inf{4: [{If] > 2 <1}, ted.

We will then write f ~ g if f*=g¢g* and f < g if f* < g*. Note that for example in the
discrete case (2,1,2,1,...) ~(2,0,2,0,...) according to our definition.

A subset U of L., will be called symmetric if f e U, g < f = ge U and solid if
feUlgls|fl=9geUl.

If f,ge L) + L, (note that L; + L., = /., in the discrete case) we write f << ¢ if

lIA

SRS g k), n=1.2,...,
k=1 k=1

for the discrete case and

t t

[fi(s)ds < [g*(s)ds, 0<1< 0,

0 0

for the continuous case. A subset U of Lo+ L., is called fully symmetric if fe U,

g << f = g e U. A fully symmetric set is automatically absolutely convex and symmetric.

Consider a functional @ : L, — [0, co]. We define the domain of ® as the set
Dom(®) = {f : ®(f) < oo}. We say that @ is solid if

O(f) < D(g), |fI=1gl, f.9€ L.

@ is homogeneous if

D(af) = [o|®(f), a€C, feLy,

and subadditive if

O(f +9) SO(f) +D(g), f.g€Ls.

A homogeneous and subadditive functional || - || is called an extended-valued seminorm;
in this case || - || is a seminorm on its domain {f : || f|| < co}. Conversely if E is a linear
subspace of L., and || - || is a seminorm on E we can extend the definition of || - || by
putting ||f]|z = o when f ¢ E and then E =Dom(|| - ||). || - ||z is an extended-valued
seminorm.

A solid functional @ : L., — [0, o] is called symmetric if

O(f) =®(g), [~y

or, equivalently,

O(f) < D(g), f=<g f.9€Ls.
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® is called fully symmetric if Dom(®) < L; + L., and

O(f) =D(g), f=<<g, frgeli+ L.

Let us note at this point that the distinction between symmetry and full symmetry
can be understood in the context of interpolation. Let %) . be the set of all linear maps
T:Ly+ Ly — L+ Ly such that || 7], . =max(||T|[,, ., [ITl., ., ) = 1. Then it fol-
lows from the Caldéron-Mityagin Theorem [3] thatif g € L; + L,

Qlg)={feli+L,:f=<<gt={Tg:Te% .}
Thus a functional ® with Dom(®) < L; + L., is fully symmetric if and only if
(D(Tf)éq)(f)v Te@l,aovfeLl+Lm~

It is then natural to consider the orbit of a fixed g € L} + L,. We refer to [3], [25] and
[18] for the method of orbits in interpolation theory. For fixed g the orbit of g for this cou-
ple is Orb(g; Ly, L) is the linear span of Q(g) under the norm

1A =it {7, ., - T = g}-

This is simply the Marcinkiewicz space M (i) of all f such that

Jf*(S) ds
”f”M(z//g) = Stl;lop l//g( ) <o

where (1) = [ g*(s) ds or in the discrete case
0

> /()
1 ey, = 211)—%(”) < o

where i, () = ig*(j).

In [1] the author considers Ly(0, c0) as with the subadditive symmetric functional
Ilf1lo = |supp f|. We will refer to this functional as a G-norm since with the induced metric
Ly becomes a metric abelian group. He then considers (L, L.,) as a couple. In this case if
T:L, — L, is a linear operator we define [T ly o = max(| Tl —r,s 1Tz, 1, ) Where

1T }
17y = sup{ Do 71, > o).

We then set %y o, = {T : ||T||o,oo < 1}. Nowifyg e L., we have

éy ::{er,OO f<gt={Tg:TeBo .}
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and so a functional ® on L, is symmetric if
O(Tf) =D(f), TePBow, €Ly

The orbit of g which we denote %, is the smallest symmetric subspace of L, andisa
complete metric abelian group under the orbit G-norm defined by

[y =t {7l o : Tg =/}
In fact ([1], Theorem 1),
|fl, =nf{A>0: () £ 4g"(t/2),0 <t < 0}.
If g satisfies the condition
9"(1/2) = Cg*(1), >0,

for a suitable constant C, this space coincides with the symmetric quasi-Banach function
space of all f such that

S (@)

flly =sup < oo
| HIQ >0 9*(1)

Furthermore the quasinorm || - H% defines an equivalent topology. For example if
g(x) =1/x we have Z, coincides with weak L;.

Suppose 0 < p < co. Then a quasi-Banach function space or quasi-Banach sequence
space in the discrete case is a linear subspace E of L., together with a solid homogeneous
map | - ||z : Lo — [0, ] such that Dom(]| - ||;) = E, || - ||z is a quasi-norm on E and
(E, | - ||g) is a quasi-Banach space. If || - ||z is an extended-valued norm then E is a Banach
Sfunction space. E is said to be p-convex where 0 < p < oo if there is a constant C so that

AL + -+ 1L Plle < CAANE+ -+ 1HIDP, Aivees fie E.

If C =1 we say that E is exactly p-convex. Every p-convex quasi-Banach function space
can be given an equivalent quasi-norm so that it is exactly p-convex; if E is exactly p-convex
for any p = 1 then E is a Banach function space (i.e., || - ||z is @ norm).

3. Noncommutative functionals and function spaces

We now discuss the non-commutative setting. First, for simplicity we treat the case of
the von Neumann algebra ¥ (#) where # is a separable Hilbert space. We will denote
by # the collection of all orthogonal projections P on #. If @ : /,(N) — [0, co] is any
symmetric functional then we can unambiguously define an associated map (which we
also denote by @) ® : ¥ (#') — [0, oo] by setting

O(T) =D (s1(T),52(T),...), TeZL(x).
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Here the sequence (s,,(T))nw:1 is the sequence of singular values of T which we define by
so(T) =1inf{||T(I — P)|| : P € 2, rank(P) < n}.

If T is compact (s,(T ));C:1 is the sequence of eigenvalues of |T| = (T*T)"? in decreasing
order, repeated according to multiplicity. Note that @ obeys the condition

(3.1) O(RST) = @(S), IR (TN =1.

Conversely if @ : ¥ (#) — [0, oo] satisfies (3.1) then ® can be induced from a symmetric
map ® : 7/, — [0, oo].

In particular if E is a symmetric quasi-Banach sequence space we can define the asso-
ciated ideal S by setting

TNy, = || (5n(T)), 1 |

and then Sg = {7 : || T||z < oo}. It may be shown that (Y%, || - || 4, ) is then a quasi-normed
space. This follows from the fact that

S 1(S+T) Z5,(S)+5:(T), n=1,2....
Thus if || - || ; satisfies
1f +9lle = CULS e+ ll9lle), o9 €,
we have

IS+ Tl g, < 2€][ (s20-1(S + 1)), || o = 2C%(ISll 5, + 1Tl ,)-

In the case C =1 this crude calculation only gives that ||S + T'[|,, < 2(|[S|ly, + 1Tl 4,)-
It is one of the results of this paper, but not immediately clear, that if £ is a symmetric
Banach sequence space then indeed || - ||9o is actually a norm on % and (Y%, || - ||g) is
complete (i.e. a Banach space). If || - || is fully symmetric it is well-known that the ideal
S 1s a Banach space (see e.g. [14]).

We next turn to a more general situation. We assume that ./# is a semi-finite von Neu-
mann algebra on a Hilbert space ## with a fixed faithful normal semi-finite trace v and unit
element 1 (our references for the theory of von Neumann algebras are [8], [33], [35], [36]).
|| - ||l , stands for the uniform operator norm on .#. In this case we denote by # = 2, the
set of orthogonal projections, i.e. self-adjoint p such that p> = p.

Given a self-adjoint operator ¢ : Dom(a) — # in the Hilbert space #, the spectral
measure of a is denoted by e“. We write e¢ = e“((—c0, A]) for all 1 € R. A linear operator
x : Dom(x) — #, with domain Dom(x) < #, is said to be affiliated with ./ if ux = xu
for all unitary operators u in the commutant .#' of .#. A self-adjoint operator a in # is
affiliated with .# if and only if e?(B) € .# for all Borel sets B = R, or equivalently, e{ € .#
for all A € R (see e.g. [33], E.9.10, E.9.25). If x is a closed and densely defined linear opera-
tor in # with polar decomposition x = v|x|, then x is affiliated with .# if and only if v € .#
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and |x| is afﬁhated with . (see e.g. [33], 9.29; [36], 1X.2). We have v*v = s(|x|), where
s(lx|)=1- eo is the support projection of |x| (see e.g. [33], 9.4).

A closed and densely defined linear operator x, affiliated with .#, is called -
measurable if there exists 4 > 0 such that 7(ell(4, 00)) < oo. The set ./ of all t-measurable
operators is a x-algebra with the sum and product defined as the closure of the algebraic
sum and product, respectively. For ¢,0 > 0 we denote by N(e,0) the set of all x € .# for
which there exists an orthogonal projection p € .# such that p(#) < Dom(x), ||xp|| < ¢
and 7(1 — p) < 0. The sets {N(¢,0) : ¢,0 > 0} are a base at 0 for a metrizable Hausdorff
vector space topology in .#, which is called the measure topology. Convergence with
respect to this topology is referred to as convergence in measure. Equipped with the measure
topology, .# is a complete topological x-algebra in which .# is dense. In fact, if 0 < x € ./,
then {xe } 1209 which is contained in .#, converges in measure to x as 4 — oo. Furthermore,
if {x,};2, is a sequence in ./, then

(3.2) X, — 0 in measure <& r(e‘x’"(i, ©)) = 0asn— w0 Vi>0.
The proofs of these facts can be found in [13] and [22] (see also [36]).

Let x € ./; the generalized singular value function of x is u(x) : £ — ,(x), where, for
0<1<1(1),

p(x) =inf{s > 0: T(e‘x‘(s, ©)) <t} =inf{||x(1 —¢)| , : e € 2,7(e) < t}.

Consider .# = L* ([0, o0)) as an abelian von Neumann algebra acting via multipli-
cation on the Hilbert space # = L*(0, o0), with the trace given by integration with respect
to m. It is easy to see that the set of all z-measurable operators affiliated with .# consists of
all measurable functions on [0, o) which are bounded except on a set of finite measure,
that is .# = L., and that the generalized singular value function u(f) is precisely the de-
creasing rearrangement f*.

If 4 =(H) (respectively, »(N)) and 7 is the standard trace tr (respectively, the
counting measure on N), then it is not difficult to see that .# = .. In this case, for x € ./
we have

w,(x) =p,(x), ten—1,n,n=0,1,2,....

o0

For ./ = £ (A) the sequence {u,(T)}” is just the sequence of singular values (s,(7)),_,.
The trace T on ./ * extends uniquely to an additive, positively homogeneous unitarily

invariant and normal functional 7 : .#* — [0, oo], which is given by #(a) = J" u,(a) dt for

all ae 4" (for the details see e.g. [11], Section 3). For convenience, we denote this ex-
tension 7 again by 7. An operator x € .4 belongs to L,(.#) = Li(.#,7) if and only if
IIx||; == (|x|) < 0. If M = L (H) as above, then L;(.#) is precisely the trace class. We
denote by Lo(.#) the set of all x e M for which [|x]|, := z(supp(x)) < oo. Thus, it follows
from the definitions that # = Lo(.4) + M.

Let us note that it is always possible to replace .# by .# ® L.,(0, c0) and thus to en-
sure that .# has no minimal orthogonal projections, i.e. is atomless and that 7(1) = oco.
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Convention. Throughout the remainder of the paper .# will denote an atomless
semi-finite von Neumann algebra with a faithful normal infinite trace 7.

Now suppose @ : L., (0, 0) — [0, co] is a symmetric functional. Then we can as be-
fore define @ : .# — [0, oo] by the formula:

where u(x) denotes the function u(x)(#) = u,(x) for 0 < ¢t < co. As before if E is a symmet-
ric quasi-Banach function space we can define the associated noncommutative version of E,
E(,7) by defining

1€l ea, = ()| £

and then setting E(.#,7) = {xe M : ||x|| E(u,s < ©}. The same questions arise as in the
discrete case: if E is a symmetric Banach function space, is E(.#,t) a Banach space under

- 1lg?

4. Uniform Hardy-Littlewood majorization

In this section we will introduce the fundamental notion of uniform Hardy-Littlewood
majorization. If f,g € £,,(N) we will write f =2 ¢ if there exists 2 € N so that

n n
D= X g9'(), 0=ar<n
J=ir+1 Jj=r+1
If f,ge L, (0, 00) we write f <2 ¢ if there exists 1 > 0 so that

b b
[ f (s)ds < [g*(s)ds, 0<2a=<b.
Aa a

(In the continuous case we can also restrict A to be an integer of course.)

Let us start with the simple observation that if f € L., (0, c0) we have

b
(4.1) [ f*(s)ds=sup inf [|f(s)|ds.
|F|=b—a
Similarly we have
h ~ . -
(4.2) [ f*(s)ds= inf sup [|f(s)|ds.
a Elsa prp=p F
|F|=b—a
Similarly if f € 7, (N),
(4.3) > f7(j)=sup inf > |f(j)
j=r+1 \El=n F<E jeF
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and
(44) > /1) = inf sup SIf()
j=r+1 ‘E|<"€??—F 0 jeF
Lemma 4.1. (a) Suppose fi,..., fx € {(N). Then
(4.5) S (A 4 AD) S S (KD 4+ + (), 0kr<n.
Jj=kr+1 j=r+l
Thus
N4+ )=+ 1)
(b) Suppose fi,..., fi € L,(0, ). Then
b b
(4.6) [+ + /) () ds < [([i7(s)+ -+ fi5(s))ds, 0<ka<b< .
ka a
Thus

N4 )=+ 1)

Proof. The proofs of (a) and (b) are very similar so we indicate the proof of (b).
For fixed a,b >0 with ka < b we can find F; be measurable subsets of (0, co) with
|Fj| = a and such that |f;(¢)| = f;*(a) for ¢ € E}; indeed we let F; = {t: /*(1) > f"(a)} U H,
where H; < {t: f(t) = f*(a)} is a measurable set with |H;| + [{t: f*(¢) > f*(a)}| = a. If
k
F = |J F; then |F| < ka. Now if E is any measurable set with |E| = b, let G be a measur-

j=1
able subset of E with |G| = b — ka and G n F = (. We have, using (4.2),

JIfi(s) + -+ felo)lds = J(1fi()] + -+ [fe(s)]) ds
G G
b
=2 J5G)
j=la
since G N F; =0 and |G| = b — ka < b — a. The lemma follows by (4.1). O
Let J =N or (0, o) as before. For g € L..(J) we define 2(g) to be the absolutely

convex hull of the set &, = {f : f < g}. Itis clear thatif || - || is a symmetric extended valued
seminorm on L, (J) we have

1A= lgll, 1 € 2(9)-

We therefore introduce the Minkowski functional of 2(g):



92 Kalton and Sukochev, Symmetric norms and spaces of operators
{fi9>=mf{A>0:fel2g)},

with (f39> = oo if £ ¢ U 22(9).

>0

Proposition 4.2. [ — {f;g> is a symmetric extended-valued seminorm. Furthermore
391223920 if 91 =95
In particular, {f;g> = {f*;g*).

Proof. ltisclear that f — {f’; g) is a solid extended valued seminorm. To prove that
it is symmetric requires us to show that if f1, f = 0 and f; ~ f> then {f1;9> = {f2;9>. We
can assume fi, f> are Borel maps.

Suppose € > 1 and let pj, : [0, c0) — [0, 00) be the function defined by p,(0) = 0 and
otherwise

po()=0", 0"<t<0" neZ

Assume first that [{f; >¢}| < oo for all 7>0. Then there is an invertible
measure-preserving Borel map ¢:J — J so that pyo fi =pyo froa. It follows that

{ppo fi;9> = <pyo f2;9). Thus
fr39) S 0pgo fi;9) = 0<pyo fr;9> < <O0f>, 9.

Since @ > 1 is arbitrary and the roles of f;, f> can be interchanged it follows that

iig> = s 9)-

In the case when |{f; > t}| = oo for some 7 > 0 we can find a measure preserving
Borel map ¢ : J — J which is not necessarily surjective so that p,o fi; < pyo fooa. The
argument then proceeds similarly. []

Remark. It does not seem clear whether 2(g) is itself a symmetric set according to
our definition. However the above proposition shows that its Minkowski functional is a
symmetric functional.

We also have the following elementary properties:

Proposition 4.3. If || - || is a symmetric extended-valued seminorm on L., then

1A < <fs9lgll, f.g€ L,

and in particular

ihy £Lf59)4g:h), f.g,he L.
Thus {f; f>=0or 1 forall feL..

An immediate conclusion from Lemma 4.1 is that:
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Lemma 44. (a)If f,ge/(N)and f € 2(g) then [ S g.
(b) If f,ge L, (0, 0) and f € 2(g) then f = g.
Hence in either case if {f;g> <1 then f=g.

We now introduce an auxiliary functional. Assume that either 0 < f,g € /. (N) or
0=/f,9eL,(0,0). We define:

N
@) riall =int{N: £ < 3007 =07},
j=1
[[f;g]] is taken to be oo if no such representation as above exists. It is clear that

[, 9]] = [1A91] if fi £ 1

and
[[fsa1]l =2 [[f,92]] if g1 = go.

Lemma 4.5.
(48) (fr9> = Tim (i g])

Proof. For an arbitrary e > 0,let Ne N, ¢; 20,1 < j < N, and g; eL,, 1<j<N
be such that g9; =9 for1 £j < N and

N N
fézlcjgjv ZIC/‘<<f;g>+€~
j= j=
Then, for every positive integer M, we have

Mf =

e

([M¢j] + 1)g;

where [a] is the integral part of a. Consequently,

=

(M7, 4]) < 32([Me) +1) < Mg+ ) 4.

Conversely, for any given M € N, let K = [[Mf,¢]] and let h;,...,hx =0 be such that
hi=g¢%, j=12,...,K and

K
Mf <3 by
j=1

Then we have



94 Kalton and Sukochev, Symmetric norms and spaces of operators

K 1 N
<N
/= ;M
K 1 1
and, consequently, {f;g> < ZM =7 [[Mf,g]]. Hence,

fi0> S S MF g S <Fig> bet o

Tending M to oo and keeping in mind that N is fixed and e > 0 is arbitrary, we conclude
that equality (4.8) holds. [

In the next lemma we use the notation gz for the function gy.

Lemma 4.6. If (E,), is a sequence of disjoint measurable sets such that \J E, = J,
then "

[Lf591] = sup|[fE,, 9E,]]-

neN

M,
Proof. Setting, M,, := [[fE,,gE,]], n = 1 and M := sup M,, < co, we have [, < Z
where g/ ~ gg,. Trivially, " J=1

S
S

[k,

lIA
=
IA

) M M .
lgH Z Z gy ~ 9E,-
=M, + k=1

J

~.
Il
—_

0 M
Hence, g* := 3 gr]fXEn ~ ¢g. Consequently, f < kzlgk, gk ~g, thatis [[f,g]] <M. O

n=1

5. The discrete case

We first prove our main result in the discrete case. We start with an elementary de-
duction from Carathéodory’s theorem.

Lemma 5.1.  Suppose 0 < f € coo(N) and g € £,,(N) with |supp f| < N. Suppose
n
> fHk) =My g*(k), n=0,1,2,...,
k=0 k=0
where M € N. Then
[[f39]] < M+ N2,

Proof.  We can suppose both f, g are supported on {1,2,..., N}. Since the set of all
extreme points of Q(g) coincides with &(g) (cf. e.g. [4], [27]), it follows from the classical
Carathéodory’s theorem, that there are sequences g; € £(g), | < j < N2, such that

N2
/= 21 ¢igj
Jj=
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where
NZ
> =M
j=1
Thus
N 2
/= 5] + gy
J=
Hence

[lf5 9l ég[C/Hl <M+N. O

Let us define the translation 7, : 7, (N) — 7, (N) by Z,(f)(j) = f(j +r) for r 2 0.

Lemma 5.2. Suppose g =g* € (,(N). Suppose f € coo and |supp f| = L. Suppose
Sfurther that 0 < r £ L and M € N are such that f << M 7,9, i.e.

S+r

(5.1) SR EM Y gk), 0=s=L.
k=1 k=r+1
Then
(5.2) ([7:/59]] < M + (L/r).

Proof. Without loss of generality we may assume that f = f*. Define &, 7 € /. (N)
by

En) = flr+1), n(m) =glur+1), neN.
We have |supp&| < L/r and
nr (n+1)r
< S f0), mz Y gi), neN.

i=(n—1)r+1 i=nr+1

Now, using the estimates above and assumption (5.1), we obtain the estimate

kr

réaM§i f@—iﬂn

k=1 i=(k—1)r+1
nr n (k+1)r
SMy gli+r) =M, > g()
i=1 k=1 i=kr+1
n
= M3 n(k),
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for n e N. Thus, by Lemma 5.1, we have

(&7 < M+ (L/r)*.

Now,
7ef(n) = &(n/r1+1), neN,
and
g(n) 2 n([n/rl+1), neN.
Thus
[7:/,9)) < [[En)) £ M+ (L/r)%. O
, Lemma 5.3. Suppose f = f*, g =g* € (,(N) are such that for some 2, M € N, we
ave

S fR <M S gk), 0<im<n< .

k=im+1 k=m+1

Suppose p € N be such that p — 1 is a factor of M and set y = y(p,2) :== 1+ 2p. If u,ve N
satisfy yu < v, then we have

(5‘3) [[f[qurl,v];g[qul.,v]H = Mp(p - 1)71 + (U/u)z-
Proof. Let N = Mp(p—1)"', so that N is an integer and N > M.

For fixed u, v as in the statement of the lemma, let us introduce the function

r—2u
H(r)=M———- 2u.
(r) PR Y r>2u
Note that H(r) is decreasing and
lim H(r) = M.

r— o0

If > 2 u we have

r—2u r=2(A=1)u

Y. SlkysM > glk)=M g(k)
k=2Ju+1 k=2u+1 r—2u 5
so that
r i r=2(A—1)u
(5.4) >, flk)=H(r) > glk).
k=2/u+1 k=2u+1

We shall define the scalar w = 24u according to the following rules.
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Ifforallr e N, r =2 2Au + 1, we have

r=2(A=1)u

S SN Y glk),

k=2u+1 k=2u+1

then we set w := 2u.

Now consider the case when the inequality above fails for some r = 2u. By (5.4) and
the properties of H(k), the inequality holds for sufficiently large r = 2u. In this case, we
define w by the condition that w = 24u + 1 is the greatest integer such that

55) SRS SUT)
k=2Ju+1 k=2u+1
In particular, by (5.4) we then have
Hw) = Mvzv— ZZqu >,
ie.
Mw — 2Mu > Nw — 2ANu,
or
w < %u < 2ipu < (y — Du.
Thus in either case we have
(5.6) w<(y—Du<o.

Now it follows that for r = w

r r=2(A—1)u
> flk)=sN X g(k)
k=27u+1 k=2u+1

Now if w < r < v we have using (5.5) and defining empty sums to be zero,

w

> fl)y= > flk)— > f(k)
k=w+1 k=27u+1 k=2u+1
r72(/1—1)u w
=N XY oglk)— 3 f(k)
k=2u+1 k=2u+1
r—2(A=1)u w—2(A—1)u
SN Y gk)=N X g(k)
k=2u+1 k=2u+1
r=2(A=1)u
=N >  g(k).

k=w=2(A—1)u+1
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Thus
St <= NTyi0u-25u9.-
We rewrite this as
S0 <= NTuT w209

Now Lemma 5.2 applies

2
v—Ww
[[%f[uurl,u];g.erufﬂugH = N+< ” ) .

Since v > w = 2/u this implies
i1, usefs Zugl] £ N+ (v/u)’®
which gives
(Wfis1.0)3 G, 0] < N+ (v/u)’.
However it is clear that since [Supp f,u+1,5)| = v — yu < v — u this also implies
[fist,03 Giurol] N + (/). O
Theorem 5.4.  Suppose f,g € /,(N). Then f g implies {f;g> < 1.
Proof. We may suppose f = f* and g = g* by Proposition 4.2. Since f <1 g there

exists 4 € N so that

Xni flk) = Xn) g(k), 0<im<n.
k=m+1

k=Am+1

We now fix p,¢q,r € N with p > 1 and r > 1. Let u = 2Ap + 1. Let A(J, k) denote the
set [u/ +1,u*] for 0 £ j < k.

Now we let M = (p — 1)g and note that we can now appeal to Lemma 5.3 to deduce
that

(P = Dafuasr0: 9400l € pg+u** P 0<j<k—1.
In particular, if n e N,

(P = DStk 14—yt YAkt ity krnr)]] < pg+u>, 1<k <r.

On the other hand, by Lemma 5.1,

(P = Dafyw;9pel]l S (p—Dg+u”, 1=5k=r
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Let

o0
e = firun + ZlfA(kJrlJr(nfl)r,kJrnr)-
n=

Then, by Lemma 4.6, we obtain

This implies that

Now

so that

or

Thus

or

Letting ¢ — oo we have

[((p— Dafi;gl] < pg+u™.

pq + u2r

9> < :
Segy = (= 1)

"
S=Jfe= 21 Atk (n=1)r, ket 14 (1= 1))
n=

r(pg+ (1 + 2/1p)2")

{9 £

(p—1Dg(r—1)
. Vpi
i = TESCESL

and then letting r — o0, p — oo we have {f;¢> < 1. O

The following theorem is now almost immediate:

99
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Theorem 5.5. If f,g € /,,(N) we have
n
> (k)

{frg> = 11m sup —k:’tzﬁl .
H“30</Lm<n Z g*(k)

k=m+1
Remark. Here we interpret 0/0 as 0.
Proof. Suppose
> k)
k=im+1

0= lim sup o

=0 0 < im<n Z g*(k) '
k=m+1

Assume 0 < oo. Then for any o > 6 there exists 4 so that

n
> (k)
k=/m+1

sup n7<oc

0<Aim<n Z g*(k)
k=m+1

and so by Theorem 5.4 we have (f;¢g) < a. Hence {f;g)> < 0.

Conversely if o > {(f;g> we have {a~'f;g> < 1 and so by Lemma 4.4 we conclude
that «~!f g and hence 0 < «. []

Examples. At this point we give two examples to illustrate the above results. Let us
give a simple example to show that it is not true that /' <2 g implies /" € 2(g), although it im-
plies 1 € (1 + €)2(g) for every € > 0. Define the sets 49 = {1} and then 4, = [2"~! +1,2"].
Let g be any strictly decreasing positive sequence with the property that if r = 2 then

T S o > 02 +2),

Let

f(k) =

keAd,r=0,1,....
|A|k )

Then it is easily verified that f =2 g. Indeed f << g and if m = 1 then

n

> flk)= X glk), 2m=n,
k=2m+1 k=m+1

since if m € A, then 2m e A,;.
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On the other hand suppose

where ¢; >0, > ¢; = 1 and g; = g o g; where each g; is a permutation of N. Since

27 2"
> S(k)=>24g(k), r=0,1,...,
k=1 k=1

and g is strictly decreasing it is clear that each g; leaves the sets [1,2"] invariant and hence
also the sets 4,.

Pick r such that 2"~! > N. Then there exists k € 4, so that g;(k) + 2! + 1 for all
1 < j = N and hence g;(k) < f(k) for all j so that

Hence f ¢ 2(g) and the first example is concluded.

Next we answer a question raised by Peter Dodds. As he observed if || /|| ; < ||g|| for
all fully symmetric norms we have f << g. However we show that if || /|| < ||g||; for all
symmetric norms it does not follow that we have /<2 ¢. To do this we only need to show,
by Propositions 4.2 and 4.3, that it is not true that {f;¢> < 1 implies that f <1 g. Define the
sets A, as above. Define a decreasing sequence g by g(1) = 1 and g(k) = 2'~" when k € 4,.
We next define a sequence o, = €,/4(r + 1) where ¢, = +1 are chosen so that we have the
properties

N S
sup Y o, = limsup > o, =0

s=0 r=0 s—00 =0
and
N
liminf " o, = —o0.
r=0
Then let

flk)=(1+a)gk), keA,.
f is also a decreasing sequence. For r = 0 we have

or

>0 =Lo+r+15 3 (k)

k=1 k=1
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and hence by interpolation

lIA

SRS gtk), n=12,..,
k=1 k=1

le. f<<g. If feNandm =1, then forn = im + 1,

S fR) < (1+@m)Y) S glk),

k=2Am+1 k=2Am+1
and so combined with the case m = 0 we have {f;¢g> < (1 + (42m)""). Hence {f;g> < 1.

Finally let us suppose that f <1 g. Then for some 4 € N we have

o flk)=S > glk), 0=im<n.
k=/m+1 k=m+1

We can suppose 4 is a power of two, i.e. 4 = 2° for some fixed s = 1. It follows that

S OSSR Y Sek), mes<t
r=m+1keA,

r=m+s+1 ke A,
This implies that
t
t—m—s+ >, o =<t—m
r=m+s+1
or

t
oo S5, mEs<t
r=m+s+1

Since m, ¢ are arbitrary this contradicts the choice of the (),-,. This concludes the second
example.
6. The continuous case

The details for the continuous case are quite similar but require a few modifications.
We start with the analogue of Lemma 5.2.

We define the translation .7, : L, (0, 00) — L, (0, ) by Z,(f)(s) = f(r+s) for
r=0.

Lemma 6.1. Let f = f* g=g* e L,(0, ). Suppose |supp f| = L < oo. Suppose
Sfurther that 0 < r £ L and M € N are such that f << M7,g, i.e.
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a+r

(6.1) f(s)ds<M [ g(s)ds, 0<s=<L.

C—a

Then
(6.2) [17:f390) < M+ (L/r)*.
Proof. Define &,5 € £,,(N) by
En) = f(mr), n(n)=g(mr), neN.

Then |suppé| < L/r and

kr (k+1)l‘
) s [ f@d, mk)z [ g(ndy, keN.
(k=1)r kr
Hence
n nr (n+1)r n
ry k)= [fydt=M [ g(t)dt = MY n(k)
k=1 0 r k=1
for n e N.

Thus, according to Lemma 5.1,

& 7)) < M + (L))

Now,
o0
T f < kzl SR Xttke=1)r, k)
and
o0
gz kZl n(K) X e-1yr, k)

and it follows easily that
[7:f39]) M +(L/n* O

Lemma 6.2. Suppose f = [*, g=g* € L,(0, c0) are such that for some 1, M € N,
we have

b b
[ f(s)ds < M[g(s)ds, 0<la<b< .
Aa a
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Suppose p e N is such that (p—1) is a factor of M and set y=y(p,A) :=1+2p. If
u,v € (0, o) satisfy yu < v, then we have

(63) [[ﬁyuw);y[u,v)]] = Mp(p - 1)71 + (U/u)z'
Proof.  Asin Lemma 5.3 let N = Mp(p — 1)71.
For fixed u, v as before let

r—2u

m, r>2/1u

H(r):=M

If r > 2/u we have (as in Lemma 5.3):

r r—=2(A=1)u

[fls)ds<H(®r) [ g(s)ds.
2u 2u

Consider the equation in r > 24u:
r r—=2(A—1)u
[f(s)ds=N [ g(s)ds.
2u

2u

If this equation has a solution then it has a largest solution which we denote by w. If it has
no solution let w = 2Au.

Arguing as in Lemma 5.3 we obtain the analogue of (5.6):

(2AN —2M) < < (y_
(6.4) o Y= 22pu < (y — Du.
Ifw=r<,
[f(s)yds= [ f(s)ds— [ f(s)ds
w 2u 2u
r=2(A—1)u w—2(A—1)u
SN | gl)ds—N [ g(s)ds
2u 2u
r—2(A—1)u
=N [ g(s)ds.
w—=2(A—1)u
Thus

.f[w, v) <= ]vg[w—Z(/l—l)u7 v=2(A—1)u)-

The proof is completed as in Lemma 5.3, using Lemma 6.1. []
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Theorem 6.3. Suppose f,g € L..(0, ). Then f <1 g implies {f;g> < 1.

Proof. We may suppose f = f* and g = g* by Proposition 4.2. Since f <1 g there
exists 4 € N so that

b b
[ f(s)ds < [g(s)ds, 0<ia<b.
Aa a

As in Theorem 5.4 we fix p,q,r€ N with p > 1 and r> 1 and let u =24p + 1. Let
A(j, k) denote the set [u/,u*) for j k € Z with j < k. We appeal to Lemma 6.2 to deduce
that

(P — Dafari0:9ai0) < pg+u**F 0<j<k—1.
In particular, if n € N,
H(p - l)qu(k+1+(n—l)r.k+nr);gA(k+(n—l)r7k+nr)H = pg+ u2r’ l<sk=r

Let

fk - Z fA (k+14(n—1)r, k+nr) f Z fA (ke4nr, k+14nr) -

neZ neZ

Then, by Lemma 4.6, we obtain

[(p — Dafi; g)) < pg +u®.

This implies by Lemma 4.5 that

pq+ 2r
<fk7g>_—( “1)g
Now
r—=0f=f++1
so that
B pq +u”
r=1)f; g>—r(p g’

and this implies that {f;¢g)> < 1 as before. []

Theorem 6.4. If f,ge L, (0, ) we have

b
f S (s)ds
{f;9> = lim sup

A= 0 0 ja<h
g*(s) ds
o
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We remark at this point on one essential difference between the discrete and continu-

ous cases. In the discrete case {f;¢g> = <g; f> =1 implies f << ¢ and g << f and hence
f* = g*. In the continuous case, let 0 < 6 < 1/4/2 and consider

f(x)=1/x, g(x) = (1+ 0sin(logx))/x.
Then f and g are decreasing positive functions and {(f;¢>,{g; f> < 1. However {f; f> + 0

since by the results of Cwikel and Fefferman [6] and Sparr [32] the set 2(f) is a proper
subset of weak L; (see the next section §7 for more details). Hence by Proposition 4.3,

{Sfig>=Lg; f> =1
7. Some applications to envelopes
We start with a standard and well-known lemma:

Lemma 7.1. Let g be any decreasing function on (0, c0). Then the following condi-
tions are equivalent:

(i) There exist 6 > 0 and a constant C so that
g(s) < C(t/s)g(r), s>t

(i)

Proof. 1t is clear that (i) implies (ii). Pick A > 1 so that
\ 1
2g(An) = 59(1), 1> 0.

Then if A"~'t < s < A"t where n € N, we have

g(s) = 227" Vg(r) < 24(t/5) g (1)
where

_log2
~logi’

0 O

The proof of the following lemma is quite similar and we omit it.

Lemma 7.2. Let g be any decreasing function on (0, c0). Then the following condi-
tions are equivalent:

(1) There exist 0 > 0 and a constant C so that

g(s) < C(1/9)' °g(1), 0<s<t.
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A
lim sup 9(1) =

i—0 0 (1)

Proposition 7.3. Let g € L., (0, 0) be a decreasing non-negative function which is not
identically zero. Then the following are equivalent:

(7.1) {g;9> =0,

. Ag(2t)
7.2 lim su =0.
(7.2) A= 0 z>0p g(1)

Remark. In (7.2) we take 0/0 = 0 as usual.
Proof. 1If {g;g> = 0 then there exists x4 > 1 so that

b lb
Jg(s)ds = Efg(S)dS, 0 < ua < b.

na a

This implies

ua 10
Jg(s)ds = Efg(S)ds, 0 < pa < b.

In particular g is integrable on (a, o) if @ > 0. Let

H(1) = [ g(s) dbs.

Then
tg(2t) < H(t) < Ctg(t), 0<t< o0,
where C = 2(u — 1). Now H is decreasing and

H’(z)< 1
H(t) = Ct

a.e. 0 <1< oo,

so that 1'/CH(t) is decreasing. This implies (7.2), since

Ag(41)
o) =S TH)

HC2) oei) . as2, 150

If we assume (7.2) then by Lemma 7.1, for some C,J > 0 we have an estimate

g(s) £ C(t)s) g(r), s> 1.
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Hence if A > 1 and 0 < Aa < b, we have

b b
Jo(s)ds < s Tats/2)ds

ra

so that <{g;g> =0, i.e. (7.1) holds. [

Suppose g € L., (0, o0) is a decreasing non-negative function (which is not identically
zero). We recall that the metric abelian group % is the space of functions f € L., (0, o)
such that

|fl, =nf{2>0:/"(4) < Ag(0)} < 0.
These spaces have been studied in detail in [20], [2] and [1].

If ¢ satisfies the condition

aap 012

< o0
>0 g(l‘)

then % is a topological vector space, which is a quasi-Banach space under the quasi-norm

S (@)

& 0 g(1)

v

Under these circumstances we say that g is weakly regular ([21]).

A linear functional ¢ on % is continuous if and only if

el = sup lp(f)] < oo.
f=g

Here we use the fact that, even in the non weakly regular case, if ¢ is bounded on any set
{f 1/, < €} then it is also bounded on {f : |f|, < 1} since there is an integer N so that if
|fl, = 1then f = fi +--- + fy with [ fj|, < efor j=1,2,...,N. We also use the fact that
Ualfly, <y e{f =gt ={f:1fl, £1}. Thus 2 is always identifiable as a Banach
space. Furthermore

lloll = sup |o(f)l.
fe2(g)

If we define the seminorm

1/ lz = sup le(f)l, [ €y

el =1
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then 2 can be identified with the dual of the seminormed space (Zy, || - |4 ). If g is weakly
regular, the Hausdorff completion of this space is usually called the Banach envelope of
%, and denoted 5{ We refer to [15] for a fuller discussion of this concept. By the Hahn-
Banach theorem it is clear that |- ||; is simply the Minkowski functional associated to
the set 2(g). Hence

Theorem 7.4.
b
[ f(s)ds
(7.3) 1fllg, = <fs9> = lim sup %, fe2)
0<la<b fg*(S) ds

a
Let us use this to recover two known results:

Theorem 7.5. 2 = {0} if and only if

4g(A1)
7.4 lim su =0
(7.4) =0 t>0p g( )

Remark. This was first proved by A. Sparr in her thesis in 1971 [32].

Proof.  The statement that 27 = {0} is, by the above remarks, equivalent to the fact
that {g;¢g> = 0. Thus the theorem is a restatement of Proposition 7.3. []

If g e L| + L is non-negative and decreasing, we will write

W) = jg<s> ds

and A(7) = y(t)/t. Note that g(¢) < h(t). The following theorem is essentially known; in the
case of finite measure spaces it is due to Mekler [20] and [21]. Mekler’s proof could be
modified to work in infinite measure spaces, but for completeness we give an independent
proof.

Theorem 7.6. If g€ L., (0, ) is a non-negative decreasing function, the following
conditions are equivalent:

(i) %, is isomorphic to a Banach space.

(ii) We have g€ Ly + L., and he 2, or equivalently for some constant C we have
h(t) < Cy(t) for all t > 0.

(iii) We have

(7.5) fim inf 291 _
i—oo >0 ¢(t)
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(iv) ge L1+ L., and

(7.6) 39> =y, [ €Lo(0, 0).

Proof. (i) = (ii). In this case || - ||, is equivalent to a norm and so there is a con-
stant C so that if || fi[|,, = 1for j=1,2,..., N then

/i +- -+ fulla, = CN.

For any fixed ¢ we can find rearrangements fi, ..., fy of g so that

ﬁ@+m+mmzémwm

and hence

1 N
—> g(kt/N) < Cy(t), N=1,2,...,¢t>0.
Nz

Letting N — oo we obtain that g € L; + L, and A(¢) < Cy(1).

(ii) = (iii). In this case we have () < Cny’(r) almost everywhere and hence
/€y (1) is increasing. Hence if A > 1,

Ag(at) o Ah(21) c-1 Y (A1)
g(1) = Ch(z) (1)
> c1le,

(iii) = (iv). By Lemma 7.2 it is trivial that (7.5) implies g € Ly + L. Notice also that
59> 2 1 aaqy) Torall f € Lo (0, 00).

Now, for any € > 0 we can choose A so that if A = 4y we have Ag(it) = ¢ 'g(t). Thus

t

At ¢
[ g(s)ds = [Ag(is)ds = ' [ g(s) ds.
0 0 0

It follows that if b > Aga then

b b
Jg(s)ds = (1 — e)gg(s) ds
and so if Aa < b then

b ‘

J fr(s)ds J £ (s)ds
Zab < (1 _ 6)71 SupO

[ g(s) ds = Jgls)ds
a 0

so that (7.6) holds.



Kalton and Sukochev, Symmetric norms and spaces of operators 111

(iv) = (i). In this case 4, = {f : {f;9)> < o} coincides as a set with M, First we
show that g must be weakly regular so that Z; is a quasi-Banach space. Indeed if we set

then F is decreasing and
t t s
froyas = f(1-2)gts)ds = v
0

0

so that F € M (). Hence for some choice of 4 we have

F(t) = 2g(41)
or
F(t/2) < 29(1).

In particular

S90i/4) = g0

whence ¢ is weakly regular. Thus Z; is a quasi-Banach space and we can apply the Closed
Graph Theorem to show that the quasi-norm topology agrees with the norm topology of
M (). In particular we have (i). [

We also note that a special case of Theorem 7.4 was found by Cwikel and Fefferman
[6] and [7]. They considered the case g(x) = 1/x when %, coincides with L; ,, = weak L,
and obtained the formula

7.7 ;= lim su t)| dt.
(1.7) I11s,., = Jim swp o TG0

Let us show that the Cwikel-Fefferman formula (7.7) coincides with the formula (7.3)
Theorem 7.4. Assume, without loss of generality, that ||f][, =1 so that f*(1) =1/t
Then for a < b let '

of
/1.

b
I(a,b) = [ f*()dt,  J(a,b) = I 1@l
a 1/b<|f (] S1/a

Let o = inf{¢: f*(¢) < 1/a} and f = sup{z: f*(t) = 1/b} so that

J(a,b) = ff(t

Note that « < @ and f < b. We have
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[rodsaia—ms=

o

and
ff*(t) dt<b'(b—p) 1.
B

Hence

|I(a7b) _J(aab)| =1

and it is clear that (7.7) and (7.3) are equivalent.

8. Applications to non-commutative function spaces

We now turn to non-commutative applications. Throughout this section .# will de-
note, as before, a semi-finite von Neumann algebra with a fixed faithful normal semi-finite
trace 7 such that ./ is atomless and 7(1) = co. However, we wish to emphasize that our
results apply equally when .# = £ (#) and so we will state the operator forms of our re-
sults, even though these are essentially special cases.

The first lemma is due to Wielandt [37]:

Lemma 8.1. Suppose T : # — 3 is a positive operator. Then

where P, Q are orthogonal projections.
Now let us prove the corresponding result for .#:

Lemma 8.2. Suppose x € M. Then

b
Ju(x)dt = sup inf z(fx), 0<a<b< oo,
a t(e)=b [=e

o(f)=b—a
where e, [ € P.

Proof. Let us prove this under the additional assumption that tlim u,(x) = 0; the
— 00

general case follows by an approximation argument. We first prove that if 7(e) = b then

b
inf  7(fx) < [ u,(x)dr.

[=e "

«(f)=b-a

First assume x € .#,. Then if 7(e) = b we have using [13], Lemma 4.1,
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sup 7(e'xe’) = f,ut(exe) dt
exe'e?
t(e')=a

and so

it <) = [afexe)di < o)

o(f)=b-a

For the general case we observe that if 7(e) = b and e > 0 there exists ¢’ € # with
e’ <eandt(e’) =b—eand e'xe’ € 4. Thus

— b—e
>1f‘l£/ (fxf) < I (e'xe’)dr £ aL,ut(x) dt.
©(f)=b—a

Letting € — 0 gives the result.

To deduce equality we note that we can find e€? so that 7(e) =b and
p(exe) = pu(xX)x(0, by [9], Lemma 2.6. In this case

b
(8.1) [r(dt="min z(fx). O
¢ «(f)=b-a

Lemma 8.3. Suppose T; : # — A are positive operators for j=1,2,... k. Then

n

X 5Tt 4+ T) £ 3 (5(T) +-- +5(Tk), 0=<kr<n.
j=kr+1 J=r+l

Lemma 8.4. Suppose x; € My for j=1,2,... k Then

b b
Ju(xi+-+x)d gj(ﬂ[ X1)+ - +,Lt,(xk)) dt, 0<ka<b.
ka a

We will actually need a stronger form of Lemma 8.4 which we prove below. This im-
plies both Lemmas 8.3 and 8.4.

Lemma 8.5. Suppose xje/%:r for j=12,....k and oy,...,0. >0 with
oo+ +ox 1. Then

b kb
Ju(xi+ -+ xi)dt 57 [ (x)dt, 0<a<b.

a j=loa

Proof. We prove this under the additional assumption that tlirr}) w1, (x;) =0 for

1 £ j £ k. The case when this fails will then follow easily by an approximation argument.
We pick e € 2 with t(e) = b and g, (e(x; + -+ xp)e) = w,(x; + -+ xx) for 0 <1< b
(again using [9], Lemma 2.6). For each j=1,2,...,k we can find e Z¢; € # with
7(ej) = aja and p,(ejx;je;) = u,(exje) for 0 < ¢t < oya and
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1 ((e = e)xj(e — ) = ptya(exe).

Pick f"=e;v---ve, Then f' < e and 7(f’) < a. Since .4 is atomless there exists f € 2
with e = f = f" and 7(f) = a. By (8.1)

jz/lt()ﬂ —|--.-—|—xk)dt = T((@—f)(xl + "'""_xk))

a

< 3 elle— Sl f") = ilr«e— ¢y — &)
k b k b
=% [ ntesedi =3 [ nix)de O

Proposition 8.6. (i) Suppose T; : # — A are bounded operators for j =1,2,... k.
Then

Tt T = (ST

j=1 n=1
(ii) Suppose xi,...,xx € M for j=1,2,... k. Then
w(xy + - xe) Qulxg) + - 4 u(xe).

Proof. We prove (ii). There exist partial isometries uy, ..., u; € .4 such that

lxr 4 - x| S |xgfug e A g uy
([13], Lemma 4.3; see also [17]). This implies (ii) by Lemma 8.4. []

The following then follows immediately using Proposition 4.3 and Theorem 6.3, since
as remarked in §3 we can always replace .# by .#4 ® L, (0, o) (see for example [11], Pro-
position 4.6 (i) for a forerunner of this result):

Theorem 8.7.  Let ./ be any semi-finite von Neumann algebra equipped with a normal
JSaithful semi-finite trace ©. Let || - || be a symmetric extended seminorm on L..(0, ). Then

x — ||u(x)|| is an extended seminorm on M.

The following result can be deduced from Theorem 8.7 or proved directly using
Lemma 8.3:

Corollary 88. Let ||-|| be a symmetric extended seminorm on (.. Then
T — H(sn(T)) 1|| is an extended seminorm on ¥ ().

Proposition 8.9. Suppose ¢ : [0, c0) — [0, c0) is a continuous increasing concave

function. Suppose x1,...,x; € M, and that oy, ..., >0 withoy + -+ oy < 1. Then
b k b
(8.2) Jo(u(xi+-+xp)) dt < Z f o (u(x;)) dt.
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We also have:
(8.3) p(pCer + -+ xi)) 2 pp(x1)) + - - + p(p(xx)).-
Proof.  We first show that if 0 < a < b and e € 2 satisfies 7(e) = b we have
b k b
(8.4) ;1[(0(ﬂz(€x1€ + o+ exge)) dt < Z: “fa o (1 (exje)) dt.
For 0 <o < oo let
Y, () = min(t,0), t=0.

For 1 < j <k let y; = exje and then f; = e”(g, ) so that f; < e.

Let us observe that if s < 7(f;) we have

[ 1 (Vo)) dt J"u,( »)) di = o (z(f;) =)

while if 7(f;) < s < b we have

b b
({Z)ut(%(yj)) di = [ (Y (3y) di + o (s — (1))

and we may combine these as
b b
8.5 | wWo(n)dr < [m(bOp) di+o(s—=(f)). 0<ssb.
() s
Let f=fiv---vfr and f'=e — f. Suppose 7(f) < a. Then if g€ 2 with g < [’
and 7(g) = b — a, we have, using (8.5),

b
Ju (W + -+ y)dt < (g + -+ yi)g) < <(f' O+ + w0 f)

(e~ e —f) =3

J=l<(

\\);ow

:ut( ( /))d

~
I

lIA
™

I\
M=
— >
Q%w

Il
=

() i+ - o =<0 >)§i o)

N}

J=19

If (/) > a then, again using (8.5),
b

Ju e+ -+ p))de < <(f'n1 4+ ) f) +o(b—a—(f"))

a

< S t(le— HO)le - £)) + o) —a)

=1
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=3 [ o) i+ o(x(f) — a)
7=l f)
k b k

< ; aJ; 1 (W () dt + o (2(f) — a) + 0;(“/‘“ — ()
k b

<> [ (W) dt.

—_
(N}

J=1

Since ¢ is concave, it has left and right-derivatives ¢’(a—) and ¢’(a+) for each a > 0

and these coincide except on a countable set. Let v be the nonnegative o-finite measure on
(0, 00) so that v(a,b) = ¢'(a+) — ¢'(b—). Let k = tlirn\ ¢'(t). Then

o(t) — 9(0) =

S

o' (u)du = t9'(t—) + E)|£v(u, t) du

=xt+0t,0)+ [ odv(e)=xt+ [ y,(1)dv(o).
0,1) (0,

Let us assume first that x = 0. Thus

b b
[a (@1 + -+ + yx)) dt = 9(0) + (Oj | [ 1,y (31 + -+ -+ w1)) dedv(o)

—

pO) 1> [ [ () didv(o)

j=1 (0,00) %

N

w((yy)) dt.

QHQ“

k
—x e

This establishes (8.4) if x =0. The case x > 0 is then easily handled by writing
o(t) = Kt + ¢y(t) and using Lemma 8.5.
To prove (8.2), if t]irn 1, (x;) =0for 1 < j <k, fix e with 7(e) = b so that
u[(e(xl +-~~+xk)e) =u(x1+-+x), 0<t<b.

Then according to (8.4) we have

b

J (o1 4 -+ + xx)) de < é f/xt(go(ex,-e)) dt
kb
< futots

The general case follows easily by approximation.

Finally for (8.3) replace a by ka where 0 < ka < b and let o; = 1/k. [
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Theorem 8.10. Suppose ¢ : [0, 00) — [0, 00) is a continuous increasing concave func-

tion.
(i) Let || - || be a symmetric extended seminorm on {,. Then if T, ..., Ty € L(H) we
have
le(1T1 +--- + Tl = lle(ITaDI + - - + (I TeDII-
(ii) Let || - || be a symmetric extended seminorm on L, (0, o). Then if x1,...,x € M
we have

lo(lxt + -+ + 2Dl = llp(x DIl + - - + oI
Remark. In particular this theorem applies to ¢(¢) = #” when 0 < p < 1.

Proof. Using again [13], Lemma 4.3, we may find partial isometries uy,...,u; so

k
that |x; + - -+ x| = >~ wxu;. Thus it suffices to establish the case when x; = 0. This now
j=1
follows from Proposition 8.9 (8.3). [

Theorem 8.11. (i) Let E be an r.i. p-convex quasi-Banach sequence space where
0 < p < o0. Then €g is a p-convex quasi-Banach operator ideal.

(i) Let E be an r.i. p-convex quasi-Banach function space on (0, c0) where 0 < p < co.
Then E(M,7) is a p-convex quasi-Banach operator space.

Proof. We prove this in the case of (ii). To prove (i) it is simplest to embed E into a
p-convex function space E on (0, o0) e.g. by defining

el (Frora) ),

and & () into L (A) ® L,[0,1].

E

(i) Let us define X = {f € L..(0, o) : |f|"? € E} and I/ = IIL£/7||%. Then X is a
symmetric Banach function space on (0, c0). Now

1
1l s,y = )11

and it follows that
1% + Yz o) S 10z + 10z

when 0 < p < 1 by Theorem 8.10; of course if p = 1, || - ||z 4, ) is @ norm by Theorem 8.7.
The fact that || - ||y, . is @ norm implies that E(.#, ) is p-convex.

It remains to show that E(.#, 7) is complete. We note that the injection E(.#,1) — M
is continuous. This follows from [11], Proposition 2.2 or the estimate
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-1
1(x) = o, e 1%l £ a2
(see [9], Lemma 4.4). Thus any Cauchy sequence in E(.#,t) converges in ./.

To establish completeness it suffices to show that for some 0 < < min(p, 1) we have
an estimate

(8.6) <zuanMT =0, k=1,2,...,

E(M %) n=

whenever the right-hand side is finite. This is a non-commutative form of the socalled
Riesz-Fischer Theorem (see [12] for more details).

0

By the above remarks 3 x; converges in .# to some x. Note that for (8.6) to hold it
n=1
is necessary that x € E(.#, 7). Once (8.6) is established it follows by considering the tail that
0
x= Y. Xx, in E(,7) and then any series Yy, in E(.#,t) with ) ||y,,||£(” o < 00 s

n=1
convergent in E(.#,7), and completeness of E(.#,t) will follow.

First suppose p = 1; in this case we take f =1/2. If g € L, (0, 0) and o < 1 we de-
fine as before gl (¢) = ag(ar). Observe that if ¢ is decreasing

b b b
[ g (tydt = [g(t)dt < [g(t)dt, 0<a< ab.
1 a a

o ta

Hence

9" 1z < N9l -

1/2
(M ,7)

Let fi = u(xx) andgk —,u(x1 +-+x). Letg=pu(x). f Le Nwith A =22, and 0 < Ja < b
we have (using [13], Lemma 3.5)

1/2

Let us assume Z [l || £ E(#,7)"

=1 and that each x; is non-zero. Let o; = |||

b b
[ g(t)dr = lim [ g,(¢)dt
Aa =0 g

Now we use Lemma 8.5:

n oc;lb
J"gn nar= 3> | Ao di=> | 10

k=1 ala
1
<y BT MJ" - >dz<—2o<,:{r =
k_
] b
A
< h
_/1_1! (¢) dt
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where
S~ 1l
h(t) = 3 og ' fi (o).
=1
Note here that since | £;*)||,; < «? and 3oy = 1 we have s € E and |||, < 1. Hence

s

S <

and hence, as 4 = 2 is arbitrary,

{g;hy = 1.

Thus g € E and ||g||; < 1. This implies (8.6)

In the case p < 1 we let f = p/2. Suppose Z ”kap/ .- = 1 and that each x; is non-

zero. Let o = ||x,||p/ - As before let fi = (xk) and g = u(fi +---+ fi) and g = u(x).
We now note that

b b
[g(t)?dt = lim [ g,(r)" dt.
n— oo Ja
We now use Proposition 8.9:

fgn pdt<Z fﬂ(t”dt
la

=1 oy la

—]
k

f(ﬂﬂ%z ar= Lo ar

=1 Ja

o

Mx

<

bl

where

Mﬁziwﬂﬁwwﬁ

We observe that
1™ e S 1R Ny = 2
so that 7 € X and ||h||, < 1. Hence, since as before {(g”;h) < 1,

1 1
1l £ o) < NP1 < Ml <1

and (8.6) is established. []
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Let us remark here that if £ is a fully symmetric Banach function space the complete-
ness of E(.,t) was established first in [34], [9], [10] and [5]. In fact they prove complete-
ness under the assumption of relative full symmetry:

(8.7) 0=f,9eE [=<g = |[flz=l9le

However the arguments in the above mentioned papers depend on the submajorization in-
equality

u(x) — u(y)| <= pu(x = p).

It is worth pointing out that there is no analogue to this inequality for uniform Hardy-
Littlewood majorization even in the commutative case. Indeed if

fag ELI(Ov OO) +Loo(07 OO)
the inequality

=g == (f=9)

is well-known (see [18]). However set /(1) = > 27"y, oy and g(2) = >° 27"x, ,1q)- Then
n=0 '
g*=f*/2and f —g =y Thus {|f* —g*[; (f —9)")> = c0.

In the case where p < 1 completeness is established under the Fatou condition by
Xu [38].
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