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Symmetric norms and spaces of operators
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Abstract. We show that if ðE; k � kEÞ is a symmetric Banach sequence space then the
corresponding space SE of operators on a separable Hilbert space, defined by T A SE if
and only if

�
snðTÞ

�y
n¼1

A E, is a Banach space under the norm kTkSE
¼

���snðTÞ
�y

n¼1

��
E

. Al-
though this was proved for finite-dimensional spaces by von Neumann in 1937, it has never
been established in complete generality in infinite-dimensional spaces; previous proofs have
used the stronger hypothesis of full symmetry on E. The proof that k � kSE

is a norm re-
quires the apparently new concept of uniform Hardy-Littlewood majorization; complete-
ness also requires a new proof. We also give the analogous results for operator spaces
modelled on a semifinite von Neumann algebra with a normal faithful semi-finite trace.

1. Introduction

In 1937, von Neumann [23] or [24], pp. 205–218, showed that if k � kE is a symmetric
norm on Rn then one can define a norm on the space of n � n matrices by

kAkE ¼
���s1ðAÞ; . . . ; snðAÞ

���
E

where s1ðAÞ; . . . ; snðAÞ are the singular values of A (i.e. the eigenvalues of ðA�AÞ1=2) in
decreasing order. Surprisingly, the infinite-dimensional analogue of this result, although
well-known in special cases, has never been established in complete generality. This is the
aim of the current paper.

Consider a (real or complex) symmetric Banach sequence space E; i.e., E is a sequence
space invariant under permutations equipped with a norm k � kE such that ðE; k � kEÞ is
complete and has the property that

f A E; g�
e f � ) g A E; kgkE e k f kE :

(Here by f � we denote the usual decreasing rearrangment of the sequence j f j.) Then if H
is a separable Hilbert space we can define an associated Schatten ideal SE HLðHÞ by
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T A SE ,
�
snðTÞ

�y
n¼1

A E

with a quasi-norm

kTkSE
¼

���snðTÞ
�y

n¼1

��
E
:

In this paper we address the following natural problem. Is ðSE ; k � kEÞ a Banach
space? It is curious that this question is up to now unresolved in this generality; see for ex-
ample [28], [29], [14] and [31]. In fact it is well-known that there is a positive answer if E is
fully symmetric. For this we need the definition of Hardy-Littlewood majorization:

f �� g ,
Pn

j¼1

f �ð jÞe
Pn

j¼1

g�ð jÞ; n ¼ 1; 2; . . . :

Then E is fully symmetric provided

f A E; g� �� f � ) g A E; kgkE e k f kE :

This is equivalent to the requirement that E is a 1-interpolation space between l1 and ly
(cf. [3]). More generally a positive answer is known if E is relatively fully symmetric i.e.

f ; g A E; g� �� f � ) kgkE e k f kE :

See [5], [10] and [34]. We may note that E is relatively fully symmetric if and only if it is
a closed subspace of a fully symmetric space, for we may define F by f A F if and only if
there exists g A E such that f �� g and define

k f kF ¼ inffkgkE : g A E; f �� gg

and it can be verified that F is then a fully symmetric Banach sequence space containing E

as a closed subspace.

The same problem can be formulated in a continuous form. If E is a symmetric
Banach function space on ð0; yÞ (in the terminology of [18]) and M is a von Neumann
algebra with a faithful normal semi-finite trace t then we can define the space EðM; tÞ as
a subset of the space ~MM of measurable operators a‰liated with M by

x A EðM; tÞ , mðxÞ A E

where mðxÞðtÞ ¼ mtðxÞ are the generalized singular values of x (see e.g. [13]). The associated
quasinorm is

kxkE ¼ kmðxÞkE :

As in the discrete case it is known that EðM; tÞ is a Banach space under k � kE if E is rela-
tively fully symmetric. In this case

f �� g ,
Ðt
0

f �ðsÞ dse
Ðt
0

g�ðsÞ ds; 0 < t < y:
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We note that some authors (e.g. [19], [9] or [11]) define symmetric or rearrangement-
invariant spaces to have additional properties which imply full symmetry or relative full
symmetry. However, according to our definition above, there are examples of symmetric
Banach function spaces or sequence spaces which are not (relatively) fully symmetric. In
our earlier paper [16] we showed that for example on the Marcinkiewicz sequence space
M (sometimes denoted L1;y) of all sequences

�
f ðnÞ

�y
n¼1

such that

k f kM ¼ sup
nf1

1

logðn þ 1Þ
Pn

j¼1

f �ð jÞ < y

one can define a bounded positive symmetric linear functional j3 0 such that

j
�
ð1=nÞyn¼1

�
¼ 0:

Thus with the equivalent norm on M given by

k f k0 ¼ k f kM þ jðj f jÞ

M is not fully symmetric and further the smallest closed symmetric subspace M0 containing
ð1=nÞyn¼1 is not stable under Hardy-Littlewood majorization and therefore not fully sym-
metric. This last remark is only a special case of a result of Russu [26] and Mekler [20]
(see also [2]) who proved a similar result for a wide class of Marcinkiewicz spaces. A
more extreme example was given by Sedaev [30], who showed the existence of a symmetric
Banach function space which fails to have any equivalent relatively fully symmetric norm.
Thus the known results in the literature are far from a complete solution of the problem of
the extension of von Neumann’s result to infinite dimensions.

Our question divides into two parts. The first is the convexity problem: is the induced
quasi-norm k � kSE

on SE or EðM; tÞ a norm? The second is the completeness problem: is
space SE or EðM; tÞ complete for this (quasi-)norm? We show in this paper that both ques-
tions have a positive answer and so indeed the spaces SE and EðM; tÞ are Banach spaces.

In order to answer the convexity problem we consider a more general situation.
To simplify the discussion let us concentrate on the continuous case. Let L0ð0; yÞ de-
note the space of measurable functions whose supports are of finite measure and let
~LLy ¼ L0 þ Ly. Suppose g A ~LLy and let QðgÞ denote the convex hull of the set of functions
EðgÞ ¼ f f : f � e g�g. Then define

h f ; gi ¼ inffl > 0 : f A lQðgÞg

(and h f ; gi ¼ y if f is not in the linear span of QðgÞ).

We also introduce the concept of uniform Hardy-Littlewood majorization, which plays
a fundamental role in this paper. We write f t g (for f ; g A ~LLy) if there exists l > 1 so that
if 0 < la < b we have

Ðb
la

f �ðsÞ dse
Ðb
a

g�ðsÞ ds:
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If g A L1 þ Ly then f t g implies f �� g but not conversely. We show in Theorem 6.3
that f t g implies that h f ; gie 1 (but not necessarily f A QðgÞ) and this gives an explicit
formula for h f ; gi i.e. (Theorem 6.4):

h f ; gi ¼ lim
l!y

sup
0<la<b

Ðb
la

f �ðsÞ ds

Ðb
a

g�ðsÞ ds

:

The analogous discrete results are Theorem 5.4 and Theorem 5.5. Let us note that
h f ; gi < 1 implies f t g but in general h f ; gie 1 does not imply f t g (see Lemma 4.4
and the examples following Theorem 5.5).

To emphasize the role of uniform Hardy-Littlewood majorization let us point out
that f t g implies k f kE e kgkE for every symmetric norm k � kE while f �� g implies
k f kE e kgkE only if k � kE is fully symmetric.

These results are related to calculations of Banach envelopes of some weak type
spaces, and in a special case when gðxÞ ¼ 1=x this formula can be shown to be equivalent
to a result of Cwikel and Fe¤erman [6], [7] on the envelope of weak L1.

Now suppose as before that M is von Neumann algebra with a faithful semi-finite
normal trace t. Then if x1; . . . ; xk are measurable a‰liated with M we show (Proposition
8.6):

mðx1 þ � � � þ xkÞt mðx1Þ þ � � � þ mðxkÞ:

Here mðxÞ denotes the functions t ! mtðxÞ. This can be regarded as answering (in an
infinite-dimensional setting) a question raised by von Neumann in [23], p. 298 or [24],
p. 218. From this and our previously stated results it is easy to show that any symmetric
seminorm defined on a symmetric subspace of ~LLy induces a seminorm on the correspond-
ing subspace of ~MM; thus the convexity problem has a positive answer. The completeness
problem also uses the same approach (Theorem 8.11) and we prove some generalizations
to p-convex quasi-Banach function spaces.

Acknowledgements. We would like to thank Peter Dodds for many helpful com-
ments on the content of this paper. We also thank Aleksandr Sedaev and Yves Raynaud
for their comments on earlier drafts.

2. Functionals on spaces of measurable functions

Let J denote either N with counting measure (discrete case) or ð0; yÞ with Lebesgue
measure (continuous case). The measure of a measurable set E is denoted in either case by
jEj. We let L0 ¼ L0ðJÞ be the linear space of all measurable functions with support of finite
measure, i.e. jf f 3 0gj < y. We then consider the space ~LLy ¼ L0 þ Ly; in the discrete
case this reduces to lyðNÞ. If f A ~LLy we define the decreasing rearrangement by
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f �ðtÞ ¼ inffl : jfj f j > lgj < tg; t A J:

We will then write f @ g if f � ¼ g� and f � g if f � e g�. Note that for example in the
discrete case ð2; 1; 2; 1; . . .Þ@ ð2; 0; 2; 0; . . .Þ according to our definition.

A subset U of ~LLy will be called symmetric if f A U , g � f ) g A U and solid if
f A U , jgje j f j ) g A U .

If f ; g A L1 þ Ly (note that L1 þ Ly ¼ ly in the discrete case) we write f �� g if

Pn

k¼1

f �ðkÞe
Pn

k¼1

g�ðkÞ; n ¼ 1; 2; . . . ;

for the discrete case and

Ðt
0

f �ðsÞ dse
Ðt
0

g�ðsÞ ds; 0 < t < y;

for the continuous case. A subset U of L0 þ Ly is called fully symmetric if f A U ,
g �� f ) g A U . A fully symmetric set is automatically absolutely convex and symmetric.

Consider a functional F : ~LLy ! ½0; y�. We define the domain of F as the set
DomðFÞ ¼ f f : Fð f Þ < yg. We say that F is solid if

Fð f ÞeFðgÞ; j f je jgj; f ; g A ~LLy:

F is homogeneous if

Fðaf Þ ¼ jajFð f Þ; a A C; f A ~LLy;

and subadditive if

Fð f þ gÞeFð f Þ þFðgÞ; f ; g A ~LLy:

A homogeneous and subadditive functional k � k is called an extended-valued seminorm;
in this case k � k is a seminorm on its domain f f : k f k < yg. Conversely if E is a linear

subspace of ~LLy and k � kE is a seminorm on E we can extend the definition of k � kE by
putting k f kE ¼ y when f B E and then E ¼ Domðk � kÞ. k � kE is an extended-valued
seminorm.

A solid functional F : ~LLy ! ½0; y� is called symmetric if

Fð f Þ ¼ FðgÞ; f @ g;

or, equivalently,

Fð f ÞeFðgÞ; f � g; f ; g A ~LLy:

85Kalton and Sukochev, Symmetric norms and spaces of operators



F is called fully symmetric if DomðFÞHL1 þ Ly and

Fð f ÞeFðgÞ; f �� g; f ; g A L1 þ Ly:

Let us note at this point that the distinction between symmetry and full symmetry
can be understood in the context of interpolation. Let B1;y be the set of all linear maps
T : L1 þ Ly ! L1 þ Ly such that kTk1;y ¼ maxðkTkL1!L1

; kTkLy!Ly
Þe 1. Then it fol-

lows from the Caldéron-Mityagin Theorem [3] that if g A L1 þ Ly,

WðgÞ :¼ f f A L1 þ Ly : f �� gg ¼ fTg : T A B1;yg:

Thus a functional F with DomðFÞHL1 þ Ly is fully symmetric if and only if

FðTf ÞeFð f Þ; T A B1;y; f A L1 þ Ly:

It is then natural to consider the orbit of a fixed g A L1 þ Ly. We refer to [3], [25] and
[18] for the method of orbits in interpolation theory. For fixed g the orbit of g for this cou-
ple is Orbðg;L1;LyÞ is the linear span of WðgÞ under the norm

k f k ¼ inffkTk1;y : Tf ¼ gg:

This is simply the Marcinkiewicz space MðcgÞ of all f such that

k f kMðcgÞ ¼ sup
t>0

Ðt
0

f �ðsÞ ds

cgðtÞ
< y

where cgðtÞ ¼
Ðt
0

g�ðsÞ ds or in the discrete case

k f kMðcgÞ ¼ sup
nf1

Pn

j¼1

f �ð jÞ

cgðnÞ
< y

where cgðnÞ ¼
Pn

j¼1

g�ð jÞ.

In [1] the author considers L0ð0; yÞ as with the subadditive symmetric functional
k f k0 ¼ jsupp f j. We will refer to this functional as a G-norm since with the induced metric
L0 becomes a metric abelian group. He then considers ðL0;LyÞ as a couple. In this case if
T : ~LLy ! ~LLy is a linear operator we define kTk0;y ¼ maxðkTkL0!L0

; kTkLy!Ly
Þ where

kTk0 ¼ sup
kTf k0

k f k0

: k f k0 > 0

� �
:

We then set B0;y ¼ fT : kTk0;ye 1g. Now if g A ~LLy we have

Eg :¼ f f A ~LLy : f � gg ¼ fTg : T A B0;yg
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and so a functional F on ~LLy is symmetric if

FðTf ÞeFð f Þ; T A B0;y; f A ~LLy:

The orbit of g which we denote Xg is the smallest symmetric subspace of ~LLy and is a
complete metric abelian group under the orbit G-norm defined by

j f jg ¼ inffkTk0;y : Tg ¼ f g:

In fact ([1], Theorem 1),

j f jg ¼ inffl > 0 : f �ðtÞe lg�ðt=lÞ; 0 < t < yg:

If g satisfies the condition

g�ðt=2ÞeCg�ðtÞ; t > 0;

for a suitable constant C, this space coincides with the symmetric quasi-Banach function
space of all f such that

k f kXg
¼ sup

t>0

f �ðtÞ
g�ðtÞ < y:

Furthermore the quasinorm k � kXg
defines an equivalent topology. For example if

gðxÞ ¼ 1=x we have Xg coincides with weak L1.

Suppose 0 < p < y. Then a quasi-Banach function space or quasi-Banach sequence

space in the discrete case is a linear subspace E of ~LLy together with a solid homogeneous
map k � kE : ~LLy ! ½0; y� such that Domðk � kEÞ ¼ E, k � kE is a quasi-norm on E and
ðE; k � kEÞ is a quasi-Banach space. If k � kE is an extended-valued norm then E is a Banach

function space. E is said to be p-convex where 0 < p < y if there is a constant C so that

kðj f1jp þ � � � þ j fnjpÞ1=pkE eCðk f1kp
E þ � � � þ k fnkp

EÞ
1=p; f1; . . . ; fn A E:

If C ¼ 1 we say that E is exactly p-convex. Every p-convex quasi-Banach function space
can be given an equivalent quasi-norm so that it is exactly p-convex; if E is exactly p-convex
for any pf 1 then E is a Banach function space (i.e., k � kE is a norm).

3. Noncommutative functionals and function spaces

We now discuss the non-commutative setting. First, for simplicity we treat the case of
the von Neumann algebra LðHÞ where H is a separable Hilbert space. We will denote
by P the collection of all orthogonal projections P on H. If F : lyðNÞ ! ½0; y� is any
symmetric functional then we can unambiguously define an associated map (which we
also denote by F) F : LðHÞ ! ½0; y� by setting

FðTÞ ¼ F
�
s1ðTÞ; s2ðTÞ; . . .

�
; T A LðHÞ:
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Here the sequence
�
snðTÞ

�y
n¼1

is the sequence of singular values of T which we define by

snðTÞ ¼ inffkTðI � PÞk : P A P; rankðPÞ < ng:

If T is compact
�
snðTÞ

�y
n¼1

is the sequence of eigenvalues of jT j ¼ ðT �TÞ1=2 in decreasing
order, repeated according to multiplicity. Note that F obeys the condition

FðRSTÞeFðSÞ; kRk; kTke 1:ð3:1Þ

Conversely if F : LðHÞ ! ½0; y� satisfies (3.1) then F can be induced from a symmetric
map F : ly ! ½0; y�.

In particular if E is a symmetric quasi-Banach sequence space we can define the asso-
ciated ideal SE by setting

kTkSE
¼

���snðTÞ
�y

n¼1

��
E

and then SE ¼ fT : kTkE < yg. It may be shown that ðSE ; k � kSE
Þ is then a quasi-normed

space. This follows from the fact that

s2n�1ðS þ TÞe snðSÞ þ snðTÞ; n ¼ 1; 2 . . . :

Thus if k � kE satisfies

k f þ gkE eCðk f kE þ kgkEÞ; f ; g A ly;

we have

kS þ TkSE
e 2C

���s2n�1ðS þ TÞ
�y

n¼1

��
E
e 2C2ðkSkSE

þ kTkSE
Þ:

In the case C ¼ 1 this crude calculation only gives that kS þ TkSE
e 2ðkSkSE

þ kTkSE
Þ.

It is one of the results of this paper, but not immediately clear, that if E is a symmetric
Banach sequence space then indeed k � kSE

is actually a norm on SE and ðSE ; k � kEÞ is
complete (i.e. a Banach space). If k � kE is fully symmetric it is well-known that the ideal
SE is a Banach space (see e.g. [14]).

We next turn to a more general situation. We assume that M is a semi-finite von Neu-
mann algebra on a Hilbert space H with a fixed faithful normal semi-finite trace t and unit
element 1 (our references for the theory of von Neumann algebras are [8], [33], [35], [36]).
k � kM stands for the uniform operator norm on M. In this case we denote by P ¼ PM the
set of orthogonal projections, i.e. self-adjoint p such that p2 ¼ p.

Given a self-adjoint operator a : DomðaÞ ! H in the Hilbert space H, the spectral

measure of a is denoted by ea. We write ea
l ¼ ea

�
ð�y; l�

�
for all l A R. A linear operator

x : DomðxÞ ! H, with domain DomðxÞLH, is said to be a‰liated with M if ux ¼ xu

for all unitary operators u in the commutant M 0 of M. A self-adjoint operator a in H is
a‰liated with M if and only if eaðBÞ A M for all Borel sets BLR, or equivalently, ea

l A M
for all l A R (see e.g. [33], E.9.10, E.9.25). If x is a closed and densely defined linear opera-
tor in H with polar decomposition x ¼ vjxj, then x is a‰liated with M if and only if v A M
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and jxj is a‰liated with M (see e.g. [33], 9.29; [36], IX.2). We have v�v ¼ sðjxjÞ, where
sðjxjÞ ¼ 1� e

jxj
0 is the support projection of jxj (see e.g. [33], 9.4).

A closed and densely defined linear operator x, a‰liated with M, is called t-
measurable if there exists l > 0 such that t

�
ejxjðl;yÞ

�
< y. The set ~MM of all t-measurable

operators is a �-algebra with the sum and product defined as the closure of the algebraic
sum and product, respectively. For e; d > 0 we denote by Nðe; dÞ the set of all x A ~MM for
which there exists an orthogonal projection p A M such that pðHÞLDomðxÞ, kxpke e

and tð1� pÞe d. The sets fNðe; dÞ : e; d > 0g are a base at 0 for a metrizable Hausdor¤
vector space topology in ~MM, which is called the measure topology. Convergence with
respect to this topology is referred to as convergence in measure. Equipped with the measure
topology, ~MM is a complete topological �-algebra in which M is dense. In fact, if 0e x A ~MM,
then fxex

lglf0, which is contained in M, converges in measure to x as l!y. Furthermore,
if fxngyn¼1 is a sequence in ~MM, then

xn ! 0 in measure , t
�
ejxnjðl;yÞ

�
! 0 as n ! yEl > 0:ð3:2Þ

The proofs of these facts can be found in [13] and [22] (see also [36]).

Let x A ~MM; the generalized singular value function of x is mðxÞ : t ! mtðxÞ, where, for
0 < t < tð1Þ,

mtðxÞ ¼ inf
�

sf 0 : t
�
ejxjðs;yÞ

�
< t

�
¼ inffkxð1� eÞkM : e A P; tðeÞ < tg:

Consider M ¼ Ly
�
½0; yÞ

�
as an abelian von Neumann algebra acting via multipli-

cation on the Hilbert space H ¼ L2ð0; yÞ, with the trace given by integration with respect
to m. It is easy to see that the set of all t-measurable operators a‰liated with M consists of
all measurable functions on ½0; yÞ which are bounded except on a set of finite measure,
that is ~MM ¼ ~LLy and that the generalized singular value function mð f Þ is precisely the de-
creasing rearrangement f �.

If M ¼ LðHÞ (respectively, lyðNÞ) and t is the standard trace tr (respectively, the
counting measure on N), then it is not di‰cult to see that ~MM ¼ M. In this case, for x A ~MM
we have

mnðxÞ ¼ mtðxÞ; t A ðn � 1; n�; n ¼ 0; 1; 2; . . . :

For M ¼ LðHÞ the sequence fmnðTÞgy
n¼1

is just the sequence of singular values
�
snðTÞ

�y
n¼1

.

The trace t on Mþ extends uniquely to an additive, positively homogeneous, unitarily

invariant and normal functional ~tt : ~MMþ ! ½0; y�, which is given by ~ttðaÞ ¼
Ðy
0

mtðaÞ dt for

all a A ~MMþ (for the details see e.g. [11], Section 3). For convenience, we denote this ex-
tension ~tt again by t. An operator x A ~MM belongs to L1ðMÞ ¼ L1ðM; tÞ if and only if
kxk1 :¼ tðjxjÞ < y. If M ¼ LðHÞ as above, then L1ðMÞ is precisely the trace class. We
denote by L0ðMÞ the set of all x A ~MM for which kxk0 :¼ t

�
suppðxÞ

�
< y. Thus, it follows

from the definitions that ~MM ¼ L0ðMÞ þM.

Let us note that it is always possible to replace M by MnLyð0; yÞ and thus to en-
sure that M has no minimal orthogonal projections, i.e. is atomless and that tð1Þ ¼ y.
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Convention. Throughout the remainder of the paper M will denote an atomless
semi-finite von Neumann algebra with a faithful normal infinite trace t.

Now suppose F : ~LLyð0; yÞ ! ½0; y� is a symmetric functional. Then we can as be-
fore define F : ~MM ! ½0; y� by the formula:

FðxÞ ¼ F
�
mðxÞ

�

where mðxÞ denotes the function mðxÞðtÞ ¼ mtðxÞ for 0 < t < y. As before if E is a symmet-
ric quasi-Banach function space we can define the associated noncommutative version of E,
EðM; tÞ by defining

kxkEðM; tÞ ¼ kmðxÞkE

and then setting EðM; tÞ ¼ fx A ~MM : kxkEðM; tÞ < yg. The same questions arise as in the
discrete case: if E is a symmetric Banach function space, is EðM; tÞ a Banach space under
k � kE?

4. Uniform Hardy-Littlewood majorization

In this section we will introduce the fundamental notion of uniform Hardy-Littlewood

majorization. If f ; g A lyðNÞ we will write f t g if there exists l A N so that

Pn

j¼lrþ1

f �ð jÞe
Pn

j¼rþ1

g�ð jÞ; 0e lr < n:

If f ; g A ~LLyð0; yÞ we write f t g if there exists l > 0 so that

Ðb
la

f �ðsÞ dse
Ðb
a

g�ðsÞ ds; 0 < lae b:

(In the continuous case we can also restrict l to be an integer of course.)

Let us start with the simple observation that if f A ~LLyð0; yÞ we have

Ðb
a

f �ðsÞ ds ¼ sup
jEj¼b

inf
FHE

jF j¼b�a

Ð
F

j f ðsÞj ds:ð4:1Þ

Similarly we have

Ðb
a

f �ðsÞ ds ¼ inf
jEjea

sup
EXF¼j
jF j¼b�a

Ð
F

j f ðsÞj ds:ð4:2Þ

Similarly if f A lyðNÞ,

Pn

j¼rþ1

f �ð jÞ ¼ sup
jEj¼n

inf
FHE

jF j¼n�r

P
j AF

j f ð jÞjð4:3Þ
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and

Pn

j¼rþ1

f �ð jÞ ¼ inf
jEjer

sup
EXF¼j
jF j¼n�r

P
j AF

j f ð jÞj:ð4:4Þ

Lemma 4.1. (a) Suppose f1; . . . ; fk A lyðNÞ. Then

Pn

j¼krþ1

�
f1ð jÞ þ � � � þ fkð jÞ

��
e

Pn

j¼rþ1

�
f �
1 ð jÞ þ � � � þ f �

k ð jÞ
�
; 0e kr < n:ð4:5Þ

Thus

ð f1 þ � � � þ fkÞt ð f �
1 þ � � � þ f �

k Þ:

(b) Suppose f1; . . . ; fk A ~LLyð0; yÞ. Then

Ðb
ka

ð f1 þ � � � þ fkÞ�ðsÞ dse
Ðb
a

�
f �
1 ðsÞ þ � � � þ f �

k ðsÞ
�

ds; 0 < ka < b < y:ð4:6Þ

Thus

ð f1 þ � � � þ fkÞt ð f �
1 þ � � � þ f �

k Þ:

Proof. The proofs of (a) and (b) are very similar so we indicate the proof of (b).
For fixed a; b > 0 with ka < b we can find Fj be measurable subsets of ð0; yÞ with
jFjj ¼ a and such that j fjðtÞjf f �

j ðaÞ for t A Ej; indeed we let Fj ¼ ft : f �ðtÞ > f �ðaÞgWHj

where Hj H ft : f ðtÞ ¼ f �ðaÞg is a measurable set with jHjj þ jft : f �ðtÞ > f �ðaÞgj ¼ a. If

F ¼
Sk
j¼1

Fj then jF je ka. Now if E is any measurable set with jEj ¼ b, let G be a measur-

able subset of E with jGj ¼ b � ka and G XF ¼ j. We have, using (4.2),

Ð
G

j f1ðsÞ þ � � � þ fkðsÞj dse
Ð
G

�
j f1ðsÞj þ � � � þ j fkðsÞj

�
ds

e
Pk

j¼1

Ðb
a

f �
j ðsÞ ds

since G XFj ¼ j and jGj ¼ b � kae b � a. The lemma follows by (4.1). r

Let J ¼ N or ð0; yÞ as before. For g A ~LLyðJÞ we define QðgÞ to be the absolutely
convex hull of the set Eg ¼ f f : f � gg. It is clear that if k � k is a symmetric extended valued
seminorm on ~LLyðJÞ we have

k f ke kgk; f A QðgÞ:

We therefore introduce the Minkowski functional of QðgÞ:
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h f ; gi ¼ inffl > 0 : f A lQðgÞg;

with h f ; gi ¼ y if f B
S
l>0

lQðgÞ.

Proposition 4.2. f ! h f ; gi is a symmetric extended-valued seminorm. Furthermore

h f ; g1if h f ; g2i if g�
1 e g�

2 :

In particular, h f ; gi ¼ h f �; g�i:

Proof. It is clear that f ! h f ; gi is a solid extended valued seminorm. To prove that
it is symmetric requires us to show that if f1; f2 f 0 and f1 @ f2 then h f1; gi ¼ h f2; gi. We
can assume f1, f2 are Borel maps.

Suppose y > 1 and let ry : ½0; yÞ ! ½0; yÞ be the function defined by ryð0Þ ¼ 0 and
otherwise

ryðtÞ ¼ yn; yn
e t < ynþ1; n A Z:

Assume first that jf f1 > tgj < y for all t > 0. Then there is an invertible
measure-preserving Borel map s : J ! J so that ry � f1 ¼ ry � f2 � s. It follows that
hry � f1; gi ¼ hry � f2; gi. Thus

h f1; gie yhry � f1; gi ¼ yhry � f2; gie hyf2; gi:

Since y > 1 is arbitrary and the roles of f1, f2 can be interchanged it follows that
h f1; gi ¼ h f2; gi.

In the case when jf f1 > tgj ¼ y for some t > 0 we can find a measure preserving
Borel map s : J ! J which is not necessarily surjective so that ry � f1 e ry � f2 � s. The
argument then proceeds similarly. r

Remark. It does not seem clear whether QðgÞ is itself a symmetric set according to
our definition. However the above proposition shows that its Minkowski functional is a
symmetric functional.

We also have the following elementary properties:

Proposition 4.3. If k � k is a symmetric extended-valued seminorm on ~LLy, then

k f ke h f ; gikgk; f ; g A ~LLy;

and in particular

h f ; hie h f ; gihg; hi; f ; g; h A ~LLy:

Thus h f ; f i ¼ 0 or 1 for all f A ~LLy.

An immediate conclusion from Lemma 4.1 is that:
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Lemma 4.4. (a) If f ; g A lyðNÞ and f A QðgÞ then f t g.

(b) If f ; g A ~LLyð0; yÞ and f A QðgÞ then f t g.

Hence in either case if h f ; gi < 1 then f t g.

We now introduce an auxiliary functional. Assume that either 0e f ; g A lyðNÞ or
0e f ; g A ~LLyð0; yÞ. We define:

½½ f ; g�� ¼ inf

�
N : f e

PN
j¼1

gj; g
�
j ¼ g�

�
:ð4:7Þ

½½ f ; g�� is taken to be y if no such representation as above exists. It is clear that

½½ f1; g��e ½½ f2; g�� if f1 e f2

and

½½ f ; g1��f ½½ f ; g2�� if g1 e g2:

Lemma 4.5.

h f ; gi ¼ lim
m!y

1

m
½½mf ; g��:ð4:8Þ

Proof. For an arbitrary � > 0, let N A N, cj f 0, 1e j eN, and gj A ~LLy, 1e j eN

be such that g�
j ¼ g for 1e j eN and

f e
PN
j¼1

cjgj;
PN
j¼1

cj < h f ; giþ �:

Then, for every positive integer M, we have

Mf e
PN
j¼1

ð½Mcj� þ 1Þgj

where ½a� is the integral part of a. Consequently,

½½Mf ; g��e
PN
j¼1

ð½Mcj� þ 1Þ < Mðh f ; giþ �Þ þ N:

Conversely, for any given M A N, let K ¼ ½½Mf ; g�� and let h1; . . . ; hK f 0 be such that
h�

j ¼ g�, j ¼ 1; 2; . . . ;K and

Mf e
PK
j¼1

hj:

Then we have
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f e
PK
j¼1

1

M
hj;

and, consequently, h f ; gie
PK
j¼1

1

M
¼ 1

M
½½Mf ; g��. Hence,

h f ; gie
1

M
½½Mf ; g��e h f ; giþ �þ N

M
:

Tending M to y and keeping in mind that N is fixed and � > 0 is arbitrary, we conclude
that equality (4.8) holds. r

In the next lemma we use the notation gE for the function gwE .

Lemma 4.6. If ðEnÞyn¼1 is a sequence of disjoint measurable sets such that
S
n

En ¼ J,
then

½½ f ; g��e sup
n AN

½½ fEn
; gEn

��:

Proof. Setting, Mn :¼ ½½ fEn
; gEn

��, nf1 and M :¼ sup
n

Mn <y, we have fEn
e

PMn

j¼1

g j
n

where g j
n @ gEn

. Trivially,

fEn
e

PMn

j¼1

g j
n e

PMn

j¼1

g j
n þ

PM
j¼Mnþ1

gEn
¼

PM
k¼1

gk
n ; gk

n @ gEn
:

Hence, gk :¼
Py
n¼1

gk
n wEn

@ g. Consequently, f e
PM
k¼1

gk, gk @ g, that is ½½ f ; g��eM. r

5. The discrete case

We first prove our main result in the discrete case. We start with an elementary de-
duction from Carathéodory’s theorem.

Lemma 5.1. Suppose 0e f A c00ðNÞ and g A lyðNÞ with jsupp f jeN. Suppose

Pn

k¼0

f �ðkÞeM
Pn

k¼0

g�ðkÞ; n ¼ 0; 1; 2; . . . ;

where M A N. Then

½½ f ; g��eM þ N 2:

Proof. We can suppose both f , g are supported on f1; 2; . . . ;Ng. Since the set of all
extreme points of WðgÞ coincides with EðgÞ (cf. e.g. [4], [27]), it follows from the classical
Carathéodory’s theorem, that there are sequences gj A EðgÞ, 1e j eN 2, such that

f e
PN 2

j¼1

cjgj
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where

PN 2

j¼1

cj ¼ M:

Thus

f e
PN 2

j¼1

ð½cj� þ 1Þgj:

Hence

½½ f ; g��e
PN 2

j¼1

½cj� þ 1eM þ N 2: r

Let us define the translation Tr : lyðNÞ ! lyðNÞ by Trð f Þð jÞ ¼ f ð j þ rÞ for rf 0.

Lemma 5.2. Suppose g ¼ g� A lyðNÞ. Suppose f A c00 and jsupp f j ¼ L. Suppose

further that 0e reL and M A N are such that f �� MTrg, i.e.

Ps

k¼1

f �ðkÞeM
Psþr

k¼rþ1

gðkÞ; 0e seL:ð5:1Þ

Then

½½Tr f ; g��eM þ ðL=rÞ2:ð5:2Þ

Proof. Without loss of generality we may assume that f ¼ f �. Define x; h A lyðNÞ
by

xðnÞ ¼ f ðnr þ 1Þ; hðnÞ ¼ gðnr þ 1Þ; n A N:

We have jsupp xjeL=r and

rxðnÞe
Pnr

i¼ðn�1Þrþ1

f ðiÞ; rhðnÞf
Pðnþ1Þr

i¼nrþ1

gðiÞ; n A N:

Now, using the estimates above and assumption (5.1), we obtain the estimate

r
Pn

k¼1

xðkÞe
Pn

k¼1

Pkr

i¼ðk�1Þrþ1

f ðiÞ ¼
Pnr

i¼1

f ðiÞ

eM
Pnr

i¼1

gði þ rÞ ¼ M
Pn

k¼1

Pðkþ1Þr

i¼krþ1

gðiÞ

e rM
Pn

k¼1

hðkÞ;
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for n A N. Thus, by Lemma 5.1, we have

½½x; h��eM þ ðL=rÞ2:

Now,

Tr f ðnÞe xð½n=r� þ 1Þ; n A N;

and

gðnÞf hð½n=r� þ 1Þ; n A N:

Thus

½½Tr f ; g��e ½½x; h��eM þ ðL=rÞ2: r

Lemma 5.3. Suppose f ¼ f �, g ¼ g� A lyðNÞ are such that for some l;M A N, we

have

Pn

k¼lmþ1

f ðkÞeM
Pn

k¼mþ1

gðkÞ; 0e lm < n < y:

Suppose p A N be such that p � 1 is a factor of M and set g ¼ gðp; lÞ :¼ 1 þ 2lp. If u; v A N

satisfy gu < v, then we have

½½ f½guþ1; v�; g½uþ1; v���eMpðp � 1Þ�1 þ ðv=uÞ2:ð5:3Þ

Proof. Let N ¼ Mpðp � 1Þ�1, so that N is an integer and N > M.

For fixed u, v as in the statement of the lemma, let us introduce the function

HðrÞ :¼ M
r � 2u

r � 2lu
; r > 2lu:

Note that HðrÞ is decreasing and

lim
r!y

HðrÞ ¼ M:

If r > 2lu we have

Pr

k¼2luþ1

f ðkÞeM
Pr

k¼2uþ1

gðkÞeM
r � 2u

r � 2lu

Pr�2ðl�1Þu

k¼2uþ1

gðkÞ

so that

Pr

k¼2luþ1

f ðkÞeHðrÞ
Pr�2ðl�1Þu

k¼2uþ1

gðkÞ:ð5:4Þ

We shall define the scalar wf 2lu according to the following rules.
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If for all r A N, rf 2lu þ 1, we have

Pr

k¼2luþ1

f ðkÞeN
Pr�2ðl�1Þu

k¼2uþ1

gðkÞ;

then we set w :¼ 2lu.

Now consider the case when the inequality above fails for some rf 2lu. By (5.4) and
the properties of HðkÞ, the inequality holds for su‰ciently large rf 2lu. In this case, we
define w by the condition that wf 2lu þ 1 is the greatest integer such that

Pw
k¼2luþ1

f ðkÞ > N
Pw�2ðl�1Þu

k¼2uþ1

gðkÞ:ð5:5Þ

In particular, by (5.4) we then have

HðwÞ ¼ M
w � 2u

w � 2lu
> N;

i.e.

Mw � 2Mu > Nw � 2lNu;

or

w <
ð2lN � 2MÞ

N � M
ue 2lpue ðg� 1Þu:

Thus in either case we have

w < ðg� 1Þu < v:ð5:6Þ

Now it follows that for rfw

Pr

k¼2luþ1

f ðkÞeN
Pr�2ðl�1Þu

k¼2uþ1

gðkÞ:

Now if we re v we have using (5.5) and defining empty sums to be zero,

Pr

k¼wþ1

f ðkÞ ¼
Pr

k¼2luþ1

f ðkÞ �
Pw

k¼2luþ1

f ðkÞ

eN
Pr�2ðl�1Þu

k¼2uþ1

gðkÞ �
Pw

k¼2luþ1

f ðkÞ

eN
Pr�2ðl�1Þu

k¼2uþ1

gðkÞ � N
Pw�2ðl�1Þu

k¼2uþ1

gðkÞ

¼ N
Pr�2ðl�1Þu

k¼w�2ðl�1Þuþ1

gðkÞ:
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Thus

f½wþ1; v� �� NTwþ2u�2lug:

We rewrite this as

f½wþ1; v� �� NTuTwþu�2lug:

Now Lemma 5.2 applies

½½Tu f½wþ1; v�;Twþu�2lug��eN þ v � w

u

� 	2

:

Since v > wf 2lu this implies

½½ f½uþwþ1;uþv�;Tug��eN þ ðv=uÞ2

which gives

½½ f½guþ1; vÞ; g½uþ1;yÞ��eN þ ðv=uÞ2:

However it is clear that since jsupp f½guþ1; vÞj ¼ v � gu < v � u this also implies

½½ f½guþ1; vÞ; g½uþ1; vÞ��eN þ ðv=uÞ2: r

Theorem 5.4. Suppose f ; g A lyðNÞ. Then f t g implies h f ; gie 1.

Proof. We may suppose f ¼ f � and g ¼ g� by Proposition 4.2. Since f t g there
exists l A N so that

Pn

k¼lmþ1

f ðkÞe
Pn

k¼mþ1

gðkÞ; 0e lme n:

We now fix p; q; r A N with p > 1 and r > 1. Let u ¼ 2lp þ 1. Let Að j; kÞ denote the
set ½u j þ 1; uk� for 0e j < k.

Now we let M ¼ ðp � 1Þq and note that we can now appeal to Lemma 5.3 to deduce
that

½½ðp � 1Þq fAð jþ1;kÞ; gAð j;kÞ��e pq þ u2ðk�jÞ; 0e j < k � 1:

In particular, if n A N,

½½ðp � 1Þq fAðkþ1þðn�1Þr;kþnrÞ; gAðkþðn�1Þr;kþnrÞ��e pq þ u2r; 1e k e r:

On the other hand, by Lemma 5.1,

½½ðp � 1Þq f½1;uk �; g½1;uk ���e ðp � 1Þq þ u2r; 1e k e r:
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Let

fk ¼ f½1;uk � þ
Py
n¼1

fAðkþ1þðn�1Þr;kþnrÞ:

Then, by Lemma 4.6, we obtain

½½ðp � 1Þq fk; g��e pq þ u2r:

This implies that

h fk; gie
pq þ u2r

ðp � 1Þq :

Now

f � fk ¼
Py
n¼1

fAðkþðn�1Þr;kþ1þðn�1ÞrÞ

so that

Pr

k¼1

ð f � fkÞe f

or

Pr

k¼1

fk f ðr � 1Þ f :

Thus

hðr � 1Þ f ; gie r
pq þ u2r

ðp � 1Þq

or

h f ; gie
r
�

pq þ ð1 þ 2lpÞ2r
�

ðp � 1Þqðr � 1Þ :

Letting q ! y we have

h f ; gie
rp

ðp � 1Þðr � 1Þ ;

and then letting r ! y, p ! y we have h f ; gie 1. r

The following theorem is now almost immediate:
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Theorem 5.5. If f ; g A lyðNÞ we have

h f ; gi ¼ lim
l!y

sup
0elm<n

Pn

k¼lmþ1

f �ðkÞ

Pn

k¼mþ1

g�ðkÞ
:

Remark. Here we interpret 0=0 as 0.

Proof. Suppose

y ¼ lim
l!y

sup
0elm<n

Pn

k¼lmþ1

f �ðkÞ

Pn

k¼mþ1

g�ðkÞ
:

Assume y < y. Then for any a > y there exists l so that

sup
0elm<n

Pn

k¼lmþ1

f �ðkÞ

Pn

k¼mþ1

g�ðkÞ
< a

and so by Theorem 5.4 we have h f ; gi < a. Hence h f ; gie y.

Conversely if a > h f ; gi we have ha�1f ; gi < 1 and so by Lemma 4.4 we conclude
that a�1f t g and hence ye a. r

Examples. At this point we give two examples to illustrate the above results. Let us
give a simple example to show that it is not true that f t g implies f A QðgÞ, although it im-
plies f A ð1 þ �ÞQðgÞ for every � > 0. Define the sets A0 ¼ f1g and then Ar ¼ ½2r�1 þ 1; 2r�.
Let g be any strictly decreasing positive sequence with the property that if rf 2 then

1

jArj
P

k AAr

gðkÞ > gð2r�1 þ 2Þ:

Let

f ðkÞ ¼ 1

jArj
P

k AAr

gðkÞ; k A Ar; r ¼ 0; 1; . . . :

Then it is easily verified that f t g. Indeed f �� g and if mf 1 then

Pn

k¼2mþ1

f ðkÞe
Pn

k¼mþ1

gðkÞ; 2me n;

since if m A Ar then 2m A Arþ1.
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On the other hand suppose

f e
PN
j¼1

cjgj

where cj > 0,
P

cj ¼ 1 and gj ¼ g � sj where each sj is a permutation of N. Since

P2 r

k¼1

f ðkÞ ¼
P2 r

k¼1

gðkÞ; r ¼ 0; 1; . . . ;

and g is strictly decreasing it is clear that each sj leaves the sets ½1; 2r� invariant and hence
also the sets Ar.

Pick r such that 2r�1 > N. Then there exists k A Ar so that sjðkÞ3 2r�1 þ 1 for all
1e j eN and hence gjðkÞ < f ðkÞ for all j so that

PN
j¼1

cjgjðkÞ < f ðkÞ:

Hence f B QðgÞ and the first example is concluded.

Next we answer a question raised by Peter Dodds. As he observed if k f kE e kgkE for
all fully symmetric norms we have f �� g. However we show that if k f kE e kgkE for all
symmetric norms it does not follow that we have f t g. To do this we only need to show,
by Propositions 4.2 and 4.3, that it is not true that h f ; gie 1 implies that f t g. Define the
sets Ar as above. Define a decreasing sequence g by gð1Þ ¼ 1 and gðkÞ ¼ 21�r when k A Ar.
We next define a sequence ar ¼ �r=4ðr þ 1Þ where �r ¼G1 are chosen so that we have the
properties

sup
sf0

Ps

r¼0

ar ¼ lim sup
s!y

Ps

r¼0

ar ¼ 0

and

lim inf
Ps

r¼0

ar ¼ �y:

Then let

f ðkÞ ¼ ð1 þ arÞgðkÞ; k A Ar:

f is also a decreasing sequence. For rf 0 we have

P2 r

k¼1

f ðkÞ ¼
Pr

j¼0

aj þ r þ 1e
P2 r

k¼1

gðkÞ
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and hence by interpolation

Pn

k¼1

f ðkÞe
Pn

k¼1

gðkÞ; n ¼ 1; 2; . . . ;

i.e. f �� g. If l A N and mf 1, then for nf lm þ 1,

Pn

k¼lmþ1

f ðkÞe
�
1 þ ð4lmÞ�1� Pn

k¼lmþ1

gðkÞ;

and so combined with the case m ¼ 0 we have h f ; gie
�
1 þ ð4lmÞ�1�. Hence h f ; gie 1.

Finally let us suppose that f t g. Then for some l A N we have

Pn

k¼lmþ1

f ðkÞe
Pn

k¼mþ1

gðkÞ; 0e lm < n:

We can suppose l is a power of two, i.e. l ¼ 2s for some fixed sf 1. It follows that

Pt

r¼mþsþ1

P
k AAr

f ðkÞe
P

r¼mþ1

P
k AAr

gðkÞ; m þ s < t:

This implies that

t � m � s þ
Pt

r¼mþsþ1

ar e t � m

or

Pt

r¼mþsþ1

ar e s; m þ s < t:

Since m, t are arbitrary this contradicts the choice of the ðarÞyr¼0. This concludes the second
example.

6. The continuous case

The details for the continuous case are quite similar but require a few modifications.
We start with the analogue of Lemma 5.2.

We define the translation Tr : ~LLyð0; yÞ ! ~LLyð0; yÞ by Trð f ÞðsÞ ¼ f ðr þ sÞ for
rf 0.

Lemma 6.1. Let f ¼ f �, g ¼ g� A ~LLyð0; yÞ. Suppose jsupp f j ¼ L < y. Suppose

further that 0e reL and M A N are such that f �� MTrg, i.e.
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Ða
0

f ðsÞ dseM
Ðaþr

r

gðsÞ ds; 0e seL:ð6:1Þ

Then

½½Tr f ; g��eM þ ðL=rÞ2:ð6:2Þ

Proof. Define x; h A lyðNÞ by

xðnÞ ¼ f ðnrÞ; hðnÞ ¼ gðnrÞ; n A N:

Then jsupp xjeL=r and

rxðkÞe
Ðkr

ðk�1Þr
f ðtÞ dt; rhðkÞf

Ððkþ1Þr

kr

gðtÞ dt; k A N:

Hence

r
Pn

k¼1

xðkÞe
Ðnr

0

f ðtÞ dteM
Ððnþ1Þr

r

gðtÞ dteM
Pn

k¼1

hðkÞ

for n A N.

Thus, according to Lemma 5.1,

½½x; h��eM þ ðL=rÞ2:

Now,

Tr f e
Py
k¼1

xðkÞw½ðk�1Þr;krÞ

and

gf
Py
k¼1

hðkÞw½ðk�1Þr;krÞ;

and it follows easily that

½½Tr f ; g��eM þ ðL=rÞ2: r

Lemma 6.2. Suppose f ¼ f �, g ¼ g� A ~LLyð0; yÞ are such that for some l;M A N,
we have

Ðb
la

f ðsÞ dseM
Ðb
a

gðsÞ ds; 0 < la < b < y:
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Suppose p A N is such that ðp � 1Þ is a factor of M and set g ¼ gðp; lÞ :¼ 1 þ 2lp. If

u; v A ð0; yÞ satisfy gu < v, then we have

½½ f½gu; vÞ; y½u; vÞ��eMpðp � 1Þ�1 þ ðv=uÞ2:ð6:3Þ

Proof. As in Lemma 5.3 let N ¼ Mpðp � 1Þ�1.

For fixed u, v as before let

HðrÞ :¼ M
r � 2u

r � 2lu
; r > 2lu:

If r > 2lu we have (as in Lemma 5.3):

Ðr
2lu

f ðsÞ dseHðrÞ
Ðr�2ðl�1Þu

2u

gðsÞ ds:

Consider the equation in r > 2lu:

Ðr
2lu

f ðsÞ ds ¼ N
Ðr�2ðl�1Þu

2u

gðsÞ ds:

If this equation has a solution then it has a largest solution which we denote by w. If it has
no solution let w ¼ 2lu.

Arguing as in Lemma 5.3 we obtain the analogue of (5.6):

w <
ð2lN � 2MÞ

N � M
ue 2lpue ðg� 1Þu:ð6:4Þ

If we re v,

Ðr
w

f ðsÞ ds ¼
Ðr

2lu

f ðsÞ ds �
Ðw

2lu

f ðsÞ ds

eN
Ðr�2ðl�1Þu

2u

gðsÞ ds � N
Ðw�2ðl�1Þu

2u

gðsÞ ds

¼ N
Ðr�2ðl�1Þu

w�2ðl�1Þu
gðsÞ ds:

Thus

f½w; vÞ �� Ng½w�2ðl�1Þu; v�2ðl�1ÞuÞ:

The proof is completed as in Lemma 5.3, using Lemma 6.1. r
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Theorem 6.3. Suppose f ; g A ~LLyð0; yÞ. Then f t g implies h f ; gie 1.

Proof. We may suppose f ¼ f � and g ¼ g� by Proposition 4.2. Since f t g there
exists l A N so that

Ðb
la

f ðsÞ dse
Ðb
a

gðsÞ ds; 0 < lae b:

As in Theorem 5.4 we fix p; q; r A N with p > 1 and r > 1 and let u ¼ 2lp þ 1. Let
Að j; kÞ denote the set ½u j; ukÞ for j; k A Z with j < k. We appeal to Lemma 6.2 to deduce
that

½½ðp � 1Þq fAð jþ1;kÞ; gAð j;kÞ��e pq þ u2ðk�jÞ; 0e j < k � 1:

In particular, if n A N,

½½ðp � 1Þq fAðkþ1þðn�1Þr;kþnrÞ; gAðkþðn�1Þr;kþnrÞ��e pq þ u2r; 1e k e r:

Let

fk ¼
P

n AZ
fAðkþ1þðn�1Þr;kþnrÞ ¼ f �

P
n AZ

fAðkþnr;kþ1þnrÞ:

Then, by Lemma 4.6, we obtain

½½ðp � 1Þq fk; g��e pq þ u2r:

This implies by Lemma 4.5 that

h fk; gie
pq þ u2r

ðp � 1Þq :

Now

ðr � 1Þ f ¼ f1 þ � � � þ fr

so that

hðr � 1Þ f ; gie r
pq þ u2r

ðp � 1Þq ;

and this implies that h f ; gie 1 as before. r

Theorem 6.4. If f ; g A ~LLyð0; yÞ we have

h f ; gi ¼ lim
l!y

sup
0<la<b

Ðb
la

f �ðsÞ ds

Ðb
a

g�ðsÞ ds

:
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We remark at this point on one essential di¤erence between the discrete and continu-
ous cases. In the discrete case h f ; gi ¼ hg; f i ¼ 1 implies f �� g and g �� f and hence
f � ¼ g�. In the continuous case, let 0 < y < 1=

ffiffiffi
2

p
and consider

f ðxÞ ¼ 1=x; gðxÞ ¼
�
1 þ y sinðlog xÞ

�
=x:

Then f and g are decreasing positive functions and h f ; gi; hg; f ie 1. However h f ; f i3 0
since by the results of Cwikel and Fe¤erman [6] and Sparr [32] the set Qð f Þ is a proper
subset of weak L1 (see the next section §7 for more details). Hence by Proposition 4.3,
h f ; gi ¼ hg; f i ¼ 1.

7. Some applications to envelopes

We start with a standard and well-known lemma:

Lemma 7.1. Let g be any decreasing function on ð0; yÞ. Then the following condi-

tions are equivalent:

(i) There exist d > 0 and a constant C so that

gðsÞeCðt=sÞ1þd
gðtÞ; s > t:

(ii)

lim
l!y

sup
t>0

lgðltÞ
gðtÞ ¼ 0:

Proof. It is clear that (i) implies (ii). Pick l > 1 so that

lgðltÞe 1

2
gðtÞ; t > 0:

Then if ln�1t < se lnt where n A N, we have

gðsÞe ð2lÞ�ðn�1Þ
gðtÞe 2lðt=sÞ1þd

gðtÞ

where

d ¼ log 2

log l
: r

The proof of the following lemma is quite similar and we omit it.

Lemma 7.2. Let g be any decreasing function on ð0; yÞ. Then the following condi-

tions are equivalent:

(i) There exist d > 0 and a constant C so that

gðsÞeCðt=sÞ1�d
gðtÞ; 0 < s < t:
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(ii)

lim
l!y

sup
t>0

lgðltÞ
gðtÞ ¼ y:

Proposition 7.3. Let g A ~LLyð0; yÞ be a decreasing non-negative function which is not

identically zero. Then the following are equivalent:

hg; gi ¼ 0;ð7:1Þ

lim
l!y

sup
t>0

lgðltÞ
gðtÞ ¼ 0:ð7:2Þ

Remark. In (7.2) we take 0=0 ¼ 0 as usual.

Proof. If hg; gi ¼ 0 then there exists m > 1 so that

Ðb
ma

gðsÞ dse
1

2

Ðb
a

gðsÞ ds; 0 < ma < b:

This implies

Ðma

a

gðsÞ dsf
1

2

Ðb
a

gðsÞ ds; 0 < ma < b:

In particular g is integrable on ða;yÞ if a > 0. Let

HðtÞ ¼
Ðy
t

gðsÞ ds:

Then

tgð2tÞeHðtÞeCtgðtÞ; 0 < t < y;

where C ¼ 2ðm� 1Þ. Now H is decreasing and

H 0ðtÞ
HðtÞ e� 1

Ct
a:e: 0 < t < y;

so that t1=CHðtÞ is decreasing. This implies (7.2), since

lgðltÞ
gðtÞ e 2C

Hðlt=2Þ
HðtÞ e 2Cðl=2Þ�1=C ; l > 2; t > 0:

If we assume (7.2) then by Lemma 7.1, for some C; d > 0 we have an estimate

gðsÞeCðt=sÞ1þd
gðtÞ; s > t:
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Hence if l > 1 and 0 < la < b, we have

Ðb
la

gðsÞ dse
C

l1þd

Ðb
la

gðs=lÞ ds

¼ Cl�d
Ðl�1b

a

gðsÞ ds

eCl�d
Ðb
a

gðsÞ ds

so that hg; gi ¼ 0, i.e. (7.1) holds. r

Suppose g A ~LLyð0; yÞ is a decreasing non-negative function (which is not identically
zero). We recall that the metric abelian group Xg is the space of functions f A ~LLyð0; yÞ
such that

j f jg ¼ inffl > 0 : f �ðltÞe lgðtÞg < y:

These spaces have been studied in detail in [20], [2] and [1].

If g satisfies the condition

sup
t>0

gðt=2Þ
gðtÞ < y

then Xg is a topological vector space, which is a quasi-Banach space under the quasi-norm

k f kXg
¼ sup

t>0

f �ðtÞ
gðtÞ :

Under these circumstances we say that g is weakly regular ([21]).

A linear functional j on Xg is continuous if and only if

kjk ¼ sup
f�g

jjð f Þj < y:

Here we use the fact that, even in the non weakly regular case, if j is bounded on any set
f f : j f jg < �g then it is also bounded on f f : j f jg e 1g since there is an integer N so that if
j f jg e 1 then f ¼ f1 þ � � � þ fN with j fjjg < � for j ¼ 1; 2; . . . ;N. We also use the fact that
f f : j f jg < 1gH f f : f � ggH f f : j f jg e 1g. Thus X�

g is always identifiable as a Banach
space. Furthermore

kjk ¼ sup
f AQðgÞ

jjð f Þj:

If we define the seminorm

k f kX̂Xg
¼ sup

kjke1

jjð f Þj; f A Xg;
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then X�
g can be identified with the dual of the seminormed space ðXg; k � kX̂Xg

Þ. If g is weakly
regular, the Hausdor¤ completion of this space is usually called the Banach envelope of
Xg and denoted X̂Xg. We refer to [15] for a fuller discussion of this concept. By the Hahn-
Banach theorem it is clear that k � kX̂Xg

is simply the Minkowski functional associated to
the set QðgÞ. Hence

Theorem 7.4.

k f kX̂Xg
¼ h f ; gi ¼ lim

l!y
sup

0<la<b

Ðb
la

f �ðsÞ ds

Ðb
a

g�ðsÞ ds

; f A Xg:ð7:3Þ

Let us use this to recover two known results:

Theorem 7.5. X�
g ¼ f0g if and only if

lim
l!y

sup
t>0

lgðltÞ
gðtÞ ¼ 0:ð7:4Þ

Remark. This was first proved by A. Sparr in her thesis in 1971 [32].

Proof. The statement that X�
g ¼ f0g is, by the above remarks, equivalent to the fact

that hg; gi ¼ 0. Thus the theorem is a restatement of Proposition 7.3. r

If g A L1 þ Ly is non-negative and decreasing, we will write

cðtÞ ¼
Ðt
0

gðsÞ ds

and hðtÞ ¼ cðtÞ=t. Note that gðtÞe hðtÞ. The following theorem is essentially known; in the
case of finite measure spaces it is due to Mekler [20] and [21]. Mekler’s proof could be
modified to work in infinite measure spaces, but for completeness we give an independent
proof.

Theorem 7.6. If g A ~LLyð0; yÞ is a non-negative decreasing function, the following

conditions are equivalent:

(i) Xg is isomorphic to a Banach space.

(ii) We have g A L1 þ Ly and h A Xg or equivalently for some constant C we have

hðtÞeCgðtÞ for all t > 0.

(iii) We have

lim
l!y

inf
t>0

lgðltÞ
gðtÞ ¼ y:ð7:5Þ
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(iv) g A L1 þ Ly and

h f ; gi ¼ k f kMðcÞ; f A ~LLyð0; yÞ:ð7:6Þ

Proof. (i) ) (ii). In this case k � kXg
is equivalent to a norm and so there is a con-

stant C so that if k fjkXg
e 1 for j ¼ 1; 2; . . . ;N then

k f1 þ � � � þ fNkXg
eCN:

For any fixed t we can find rearrangements f1; . . . ; fN of g so that

f1ðtÞ þ � � � þ fNðtÞf
PN
k¼1

gðkt=NÞ

and hence

1

N

PN
k¼1

gðkt=NÞeCgðtÞ; N ¼ 1; 2; . . . ; t > 0:

Letting N ! y we obtain that g A L1 þ Ly and hðtÞeCgðtÞ.

(ii) ) (iii). In this case we have cðtÞeCtc 0ðtÞ almost everywhere and hence
t�1=CcðtÞ is increasing. Hence if l > 1,

lgðltÞ
gðtÞ f

lhðltÞ
ChðtÞ ¼ C�1 cðltÞ

cðtÞ

fC�1l1=C :

(iii) ) (iv). By Lemma 7.2 it is trivial that (7.5) implies g A L1 þ Ly. Notice also that
h f ; gif k f kMðcÞ for all f A ~LLyð0; yÞ.

Now, for any � > 0 we can choose l0 so that if lf l0 we have lgðltÞf ��1gðtÞ. Thus

Ðlt

0

gðsÞ ds ¼
Ðt
0

lgðlsÞ dsf ��1
Ðt
0

gðsÞ ds:

It follows that if b > l0a then

Ðb
a

gðsÞ dsf ð1 � �Þ
Ðb
0

gðsÞ ds

and so if la < b then

Ðb
la

f �ðsÞ ds

Ðb
a

gðsÞ ds

e ð1 � �Þ�1 sup
t>0

Ðt
0

f �ðsÞ ds

Ðt
0

gðsÞ ds

so that (7.6) holds.
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(iv) ) (i). In this case Xg ¼ f f : h f ; gi < yg coincides as a set with Mc. First we
show that g must be weakly regular so that Xg is a quasi-Banach space. Indeed if we set

FðtÞ ¼ 1

t2

Ðt
0

sgðsÞ ds

then F is decreasing and

Ðt
0

FðsÞ ds ¼
Ðt
0

1 � s

t

� 	
gðsÞ dsecðtÞ

so that F A MðcÞ. Hence for some choice of l we have

FðtÞe lgðltÞ

or

Fðt=lÞe lgðtÞ:

In particular

1

2
gðt=lÞe lgðtÞ

whence g is weakly regular. Thus Xg is a quasi-Banach space and we can apply the Closed
Graph Theorem to show that the quasi-norm topology agrees with the norm topology of
MðcÞ. In particular we have (i). r

We also note that a special case of Theorem 7.4 was found by Cwikel and Fe¤erman
[6] and [7]. They considered the case gðxÞ ¼ 1=x when Xg coincides with L1;y ¼ weak L1

and obtained the formula

k f kL̂L1;y
¼ lim

l!y
sup

b=afl

1

log ðb=aÞ
Ð

aej f ðtÞjeb

j f ðtÞj dt:ð7:7Þ

Let us show that the Cwikel-Fe¤erman formula (7.7) coincides with the formula (7.3) of
Theorem 7.4. Assume, without loss of generality, that k f kL1;y

¼ 1 so that f �ðtÞe 1=t.
Then for a < b let

Iða; bÞ ¼
Ðb
a

f �ðtÞ dt; Jða; bÞ ¼
Ð

1=bej f ðtÞje1=a

j f ðtÞj dt:

Let a ¼ infft : f �ðtÞe 1=ag and b ¼ supft : f �ðtÞf 1=bg so that

Jða; bÞ ¼
Ðb
a

f �ðtÞ dt:

Note that ae a and be b. We have
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Ða
a

f �ðtÞ dte a�1ða � aÞe 1

and

Ðb
b

f �ðtÞ dte b�1ðb � bÞe 1:

Hence

jIða; bÞ � Jða; bÞje 1

and it is clear that (7.7) and (7.3) are equivalent.

8. Applications to non-commutative function spaces

We now turn to non-commutative applications. Throughout this section M will de-
note, as before, a semi-finite von Neumann algebra with a fixed faithful normal semi-finite
trace t such that M is atomless and tð1Þ ¼ y. However, we wish to emphasize that our
results apply equally when M ¼ LðHÞ and so we will state the operator forms of our re-
sults, even though these are essentially special cases.

The first lemma is due to Wielandt [37]:

Lemma 8.1. Suppose T : H ! H is a positive operator. Then

Pn

k¼mþ1

skðTÞ ¼ sup
tr P¼n

inf
QeP

tr Q¼n�m

tr QTQ;

where P, Q are orthogonal projections.

Now let us prove the corresponding result for M:

Lemma 8.2. Suppose x A ~MMþ. Then

Ðb
a

mtðxÞ dt ¼ sup
tðeÞ¼b

inf
fee

tð f Þ¼b�a

tð fxÞ; 0 < a < b < y;

where e; f A P.

Proof. Let us prove this under the additional assumption that lim
t!y

mtðxÞ ¼ 0; the

general case follows by an approximation argument. We first prove that if tðeÞ ¼ b then

inf
fee

tð f Þ¼b�a

tð fxÞe
Ðb
a

mtðxÞ dt:

First assume x A Mþ. Then if tðeÞ ¼ b we have using [13], Lemma 4.1,
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sup
efe 0 AP
tðe 0Þ¼a

tðe 0xe 0Þ ¼
Ða
0

mtðexeÞ dt

and so

inf
ef f AP
tð f Þ¼b�a

tð fxf Þ ¼
Ðb
a

mtðexeÞ dte
Ðb
a

mtðxÞ dt:

For the general case we observe that if tðeÞ ¼ b and � > 0 there exists e 0 A P with
e 0e e and tðe 0Þ ¼ b � � and e 0xe 0 A Mþ. Thus

inf
ef f AP
tð f Þ¼b�a

tð fxf Þe
Ðb��

a��

mtðe 0xe 0Þ dte
Ðb��

a��

mtðxÞ dt:

Letting � ! 0 gives the result.

To deduce equality we note that we can find e A P so that tðeÞ ¼ b and
mðexeÞ ¼ mðxÞw½0;bÞ by [9], Lemma 2.6. In this case

Ðb
a

mtðxÞ dt ¼ min
fee

tð f Þ¼b�a

tð fxÞ: rð8:1Þ

Lemma 8.3. Suppose Tj : H ! H are positive operators for j ¼ 1; 2; . . . ; k. Then

Pn

j¼krþ1

sjðT1 þ � � � þ TkÞe
Pn

j¼rþ1

�
sjðT1Þ þ � � � þ sjðTkÞ

�
; 0e kr < n:

Lemma 8.4. Suppose xj A ~MMþ for j ¼ 1; 2; . . . ; k. Then

Ðb
ka

mtðx1 þ � � � þ xkÞ dte
Ðb
a

�
mtðx1Þ þ � � � þ mtðxkÞ

�
dt; 0 < ka < b:

We will actually need a stronger form of Lemma 8.4 which we prove below. This im-
plies both Lemmas 8.3 and 8.4.

Lemma 8.5. Suppose xj A ~MMþ for j ¼ 1; 2; . . . ; k and a1; . . . ; ak > 0 with

a1 þ � � � þ ak e 1. Then

Ðb
a

mtðx1 þ � � � þ xkÞ dte
Pk

j¼1

Ðb
aja

mtðxjÞ dt; 0 < a < b:

Proof. We prove this under the additional assumption that lim
t!y

mtðxjÞ ¼ 0 for

1e j e k. The case when this fails will then follow easily by an approximation argument.
We pick e A P with tðeÞ ¼ b and mt

�
eðx1 þ � � � þ xkÞe

�
¼ mtðx1 þ � � � þ xkÞ for 0 < te b

(again using [9], Lemma 2.6). For each j ¼ 1; 2; . . . ; k we can find ef ej A P with
tðejÞ ¼ aja and mtðejxjejÞ ¼ mtðexjeÞ for 0e te aja and
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mt

�
ðe � ejÞxjðe � ejÞ

�
¼ mtþaja

ðexjeÞ:

Pick f 0 ¼ e14� � �4ek. Then f 0 e e and tð f 0Þe a. Since M is atomless there exists f A P
with ef f f f 0 and tð f Þ ¼ a. By (8.1)

Ðb
a

mtðx1 þ � � � þ xkÞ dte t
�
ðe � f Þðx1 þ � � � þ xkÞ

�

e
Pk

j¼1

t
�
ðe � f 0Þxjðe � f 0Þ

�
e

Pk

j¼1

t
�
ðe � ejÞxjðe � ejÞ

�

¼
Pk

j¼1

Ðb
aja

mtðexjeÞ dte
Pk

j¼1

Ðb
aja

mtðxjÞ dt: r

Proposition 8.6. (i) Suppose Tj : H ! H are bounded operators for j ¼ 1; 2; . . . ; k.

Then

�
snðT1 þ � � � þ TkÞ

�y
n¼1

t

�Pk

j¼1

snðTjÞ
	y

n¼1

:

(ii) Suppose x1; . . . ; xk A ~MM for j ¼ 1; 2; . . . ; k. Then

mðx1 þ � � � þ xkÞt mðx1Þ þ � � � þ mðxkÞ:

Proof. We prove (ii). There exist partial isometries u1; . . . ; uk A M such that

jx1 þ � � � þ xkje u1jx1ju�
1 þ � � � þ ukjxkju�

k

([13], Lemma 4.3; see also [17]). This implies (ii) by Lemma 8.4. r

The following then follows immediately using Proposition 4.3 and Theorem 6.3, since
as remarked in §3 we can always replace M by MnLyð0; yÞ (see for example [11], Pro-
position 4.6 (i) for a forerunner of this result):

Theorem 8.7. Let M be any semi-finite von Neumann algebra equipped with a normal

faithful semi-finite trace t. Let k � k be a symmetric extended seminorm on ~LLyð0; yÞ. Then

x ! kmðxÞk is an extended seminorm on ~MM.

The following result can be deduced from Theorem 8.7 or proved directly using
Lemma 8.3:

Corollary 8.8. Let k � k be a symmetric extended seminorm on ly. Then

T !
���snðTÞ

�y
n¼1

�� is an extended seminorm on LðHÞ.

Proposition 8.9. Suppose j : ½0; yÞ ! ½0; yÞ is a continuous increasing concave

function. Suppose x1; . . . ; xk A ~MMþ and that a1; . . . ; ak > 0 with a1 þ � � � þ ak e 1. Then

Ðb
a

j
�
mtðx1 þ � � � þ xkÞ

�
dte

Pk

j¼1

Ðb
aja

j
�
mtðxjÞ

�
dt:ð8:2Þ
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We also have:

m
�
jðx1 þ � � � þ xkÞ

�
t m

�
jðx1Þ

�
þ � � � þ m

�
jðxkÞ

�
:ð8:3Þ

Proof. We first show that if 0 < a < b and e A P satisfies tðeÞ ¼ b we have

Ðb
a

j
�
mtðex1e þ � � � þ exkeÞ

�
dte

Pk

j¼1

Ðb
aja

j
�
mtðexjeÞ

�
dt:ð8:4Þ

For 0 < s < y let

csðtÞ ¼ minðt; sÞ; tf 0:

For 1e j e k let yj ¼ exje and then fj ¼ eyjðs;yÞ so that fj e e.

Let us observe that if s < tð fjÞ we have

Ðb
tð fjÞ

mt

�
csðyjÞ

�
dt ¼

Ðb
s

mt

�
csðyjÞ

�
dt � s

�
tð fjÞ � s

�

while if tð fjÞ < se b we have

Ðb
tð fjÞ

mt

�
csðyjÞ

�
dte

Ðb
s

mt

�
csðyjÞ

�
dt þ s

�
s � tð fjÞ

�

and we may combine these as

Ðb
tð fjÞ

mt

�
csðyjÞ

�
dte

Ðb
s

mt

�
csðyjÞ

�
dt þ s

�
s � tð fjÞ

�
; 0 < se b:ð8:5Þ

Let f ¼ f14� � �4fk and f 0 ¼ e � f . Suppose tð f Þe a. Then if g A P with ge f 0

and tðgÞ ¼ b � a, we have, using (8.5),

Ðb
a

mt

�
csðy1 þ � � � þ ykÞ

�
dte t

�
gðy1 þ � � � þ ykÞg

�
e t

�
f 0ðy1 þ � � � þ ykÞ f 0�

e
Pk

j¼1

t
�
ðe � fjÞcsðyjÞðe � fjÞ

�
¼

Pk

j¼1

Ðb
tð fjÞ

mt

�
csðyjÞ

�
dt

e
Pk

j¼1

Ðb
aja

mt

�
csðyjÞ

�
dt þ

Pk

j¼1

s
�
aja � tð fjÞ

�
e

Pk

j¼1

Ðb
aja

mt

�
csðyjÞ

�
dt:

If tð f Þ > a then, again using (8.5),

Ðb
a

mt

�
csðy1 þ � � � þ ykÞ

�
dte t

�
f 0ðy1 þ � � � þ ykÞ f 0�þ s

�
b � a � tð f 0Þ

�

e
Pk

j¼1

t
�
ðe � fjÞcsðyjÞðe � fjÞ

�
þ s

�
tð f Þ � a

�
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¼
Pk

j¼1

Ðb
tð fjÞ

mt

�
csðyjÞ

�
dt þ s

�
tð f Þ � a

�

e
Pk

j¼1

Ðb
aja

mt

�
csðyjÞ

�
dt þ s

�
tð f Þ � a

�
þ s

Pk

j¼1

�
aja � tð fjÞ

�

e
Pk

j¼1

Ðb
aja

mt

�
csðyjÞ

�
dt:

Since j is concave, it has left and right-derivatives j 0ða�Þ and j 0ðaþÞ for each a > 0
and these coincide except on a countable set. Let n be the nonnegative s-finite measure on
ð0; yÞ so that nða; bÞ ¼ j 0ðaþÞ � j 0ðb�Þ. Let k ¼ lim

t!y
j 0ðtÞ. Then

jðtÞ � jð0Þ ¼
Ðt
0

j 0ðuÞ du ¼ tj 0ðt�Þ þ
Ðt
0

nðu; tÞ du

¼ kt þ tn½t;yÞ þ
Ð

ð0; tÞ
s dnðsÞ ¼ kt þ

Ð
ð0;yÞ

csðtÞ dnðsÞ:

Let us assume first that k ¼ 0. Thus

Ðb
a

mt

�
jðy1 þ � � � þ ykÞ

�
dt ¼ jð0Þ þ

Ð
ð0;yÞ

Ðb
a

mt

�
csðy1 þ � � � þ ykÞ

�
dt dnðsÞ

e kjð0Þ þ
Pk

j¼1

Ð
ð0;yÞ

Ðb
aja

mt

�
csðyjÞ

�
dt dnðsÞ

¼
Pk

j¼1

Ðb
aja

mt

�
jðyjÞ

�
dt:

This establishes (8.4) if k ¼ 0. The case k > 0 is then easily handled by writing
jðtÞ ¼ kt þ j0ðtÞ and using Lemma 8.5.

To prove (8.2), if lim
t!y

mtðxjÞ ¼ 0 for 1e j e k, fix e with tðeÞ ¼ b so that

mt

�
eðx1 þ � � � þ xkÞe

�
¼ mtðx1 þ � � � þ xkÞ; 0 < t < b:

Then according to (8.4) we have

Ðb
a

mt

�
jðx1 þ � � � þ xkÞ

�
dte

Pk

j¼1

Ðb
aja

mt

�
jðexjeÞ

�
dt

e
Pk

j¼1

Ðb
aja

mt

�
jðxjÞ

�
dt:

The general case follows easily by approximation.

Finally for (8.3) replace a by ka where 0 < ka < b and let aj ¼ 1=k. r

116 Kalton and Sukochev, Symmetric norms and spaces of operators



Theorem 8.10. Suppose j : ½0; yÞ ! ½0; yÞ is a continuous increasing concave func-

tion.

(i) Let k � k be a symmetric extended seminorm on ly. Then if T1; . . . ;Tk A LðHÞ we

have

kjðjT1 þ � � � þ TkjÞke kjðjT1jÞk þ � � � þ kjðjTkjÞk:

(ii) Let k � k be a symmetric extended seminorm on ~LLyð0; yÞ. Then if x1; . . . ; xk A ~MM
we have

kjðjx1 þ � � � þ xkjÞke kjðjx1jÞk þ � � � þ kjðjxkjÞk:

Remark. In particular this theorem applies to jðtÞ ¼ tp when 0 < pe 1:

Proof. Using again [13], Lemma 4.3, we may find partial isometries u1; . . . ; uk so

that jx1 þ � � � þ xkje
Pk

j¼1

ujxju
�
j . Thus it su‰ces to establish the case when xj f 0. This now

follows from Proposition 8.9 (8.3). r

Theorem 8.11. (i) Let E be an r.i. p-convex quasi-Banach sequence space where

0 < p < y. Then CE is a p-convex quasi-Banach operator ideal.

(ii) Let E be an r.i. p-convex quasi-Banach function space on ð0; yÞ where 0 < p < y.

Then EðM; tÞ is a p-convex quasi-Banach operator space.

Proof. We prove this in the case of (ii). To prove (i) it is simplest to embed E into a
p-convex function space ~EE on ð0; yÞ e.g. by defining

k f k ~EE ¼
����
�� Ðn

n�1

f �ðtÞp
dt

	1=p	y
n¼1

����
E

and LðHÞ into LðHÞnLy½0; 1�.

(ii) Let us define X ¼ f f A ~LLyð0; yÞ : j f j1=p A Eg and k f kX ¼ k f 1=pkp
E . Then X is a

symmetric Banach function space on ð0; yÞ. Now

kxkEðM; tÞ ¼ kmðjxjÞpk1=p
X

and it follows that

kx þ ykp

EðM; tÞ e kxkp

EðM; tÞ þ kykp

EðM; tÞ

when 0 < p < 1 by Theorem 8.10; of course if pf 1, k � kEðM; tÞ is a norm by Theorem 8.7.
The fact that k � kXðM; tÞ is a norm implies that EðM; tÞ is p-convex.

It remains to show that EðM; tÞ is complete. We note that the injection EðM; tÞ ,! ~MM
is continuous. This follows from [11], Proposition 2.2 or the estimate
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mtðxÞe kwð0; tÞk
�1
E kxkEðM; tÞ

(see [9], Lemma 4.4). Thus any Cauchy sequence in EðM; tÞ converges in ~MM.

To establish completeness it su‰ces to show that for some 0 < beminðp; 1Þ we have
an estimate

����P
y

k¼1

xk

����
b

EðM; tÞ
e

Py
n¼1

kxnkb
EðM; tÞ; xk f 0; k ¼ 1; 2; . . . ;ð8:6Þ

whenever the right-hand side is finite. This is a non-commutative form of the socalled
Riesz-Fischer Theorem (see [12] for more details).

By the above remarks
Py
n¼1

xk converges in ~MM to some x. Note that for (8.6) to hold it

is necessary that x A EðM; tÞ. Once (8.6) is established it follows by considering the tail that

x ¼
Py
n¼1

xn in EðM; tÞ and then any series
P

yn in EðM; tÞ with
P

kynkb
EðM; tÞ < y is

convergent in EðM; tÞ, and completeness of EðM; tÞ will follow.

First suppose pf 1; in this case we take b ¼ 1=2. If g A ~LLyð0; yÞ and ae 1 we de-
fine as before g½a�ðtÞ ¼ agðatÞ. Observe that if g is decreasing

Ðb
a�1a

g½a�ðtÞ dt ¼
Ðab

a

gðtÞ dte
Ðb
a

gðtÞ dt; 0 < a < ab:

Hence

kg½a�kE e kgkE :

Let us assume
Py
k¼1

kxkk1=2
EðM; tÞ ¼ 1 and that each xk is non-zero. Let aj ¼ kxjk1=2

EðM; tÞ.

Let fk ¼ mðxkÞ and gk ¼ mðx1 þ � � � þ xkÞ. Let g ¼ mðxÞ. If l A N with lf2, and 0 < la < b

we have (using [13], Lemma 3.5)

Ðb
la

gðtÞ dt ¼ lim
n!y

Ðb
la

gnðtÞ dt:

Now we use Lemma 8.5:

Ðb
la

gnðtÞ dte
Pn

k¼1

Ðb
akla

fkðtÞ dt ¼
Pn

k¼1

Ða�1
k

b

la

f
½ak �

k ðtÞ dt

e
Pn

k¼1

a�1
k b � la

b � a

Ðb
a

f
½ak �

k ðtÞ dte
l

l� 1

Pn

k¼1

a�1
k

Ðb
a

f
½ak �

k ðtÞ dt

e
l

l� 1

Ðb
a

hðtÞ dt
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where

hðtÞ ¼
Py
k¼1

a�1
k f

½ak �
k ðtÞ:

Note here that since k f
½ak �

k kE e a2
k and

P
ak ¼ 1 we have h A E and khkE e 1. Hence

hg; hie
l

l� 1

and hence, as lf 2 is arbitrary,

hg; hie 1:

Thus g A E and kgkE e 1. This implies (8.6)

In the case p < 1 we let b ¼ p=2. Suppose
Py
k¼1

kxkkp=2
EðM; tÞ ¼ 1 and that each xk is non-

zero. Let aj ¼ kxjkp=2
EðM; tÞ. As before let fk ¼ mðxkÞ and gk ¼ mð f1 þ � � � þ fkÞ and g ¼ mðxÞ.

We now note that

Ðb
la

gðtÞp
dt ¼ lim

n!y

Ðb
la

gnðtÞp
dt:

We now use Proposition 8.9:

Ðb
la

gnðtÞp dte
Pn

k¼1

Ðb
akla

fkðtÞp dt

e
Pn

k¼1

Ða�1
k

b

la

ð f
p

k Þ
½ak �ðtÞ dte

l

l� 1

Ðb
a

hðtÞ dt

where

hðtÞ ¼
Py
k¼1

a�1
k ð f

p
k Þ

½ak �ðtÞ:

We observe that

kð f
p

k Þ
½ak �kX e k f

p
k kX ¼ a2

k

so that h A X and khkX e 1. Hence, since as before hgp; hie 1,

kxkEðM; tÞ e kgpk1=p
X e khk1=p

X e 1

and (8.6) is established. r
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Let us remark here that if E is a fully symmetric Banach function space the complete-
ness of EðM; tÞ was established first in [34], [9], [10] and [5]. In fact they prove complete-
ness under the assumption of relative full symmetry:

0e f ; g A E; f �� g ) k f kE e kgkE :ð8:7Þ

However the arguments in the above mentioned papers depend on the submajorization in-
equality

jmðxÞ � mðyÞj �� mðx � yÞ:

It is worth pointing out that there is no analogue to this inequality for uniform Hardy-
Littlewood majorization even in the commutative case. Indeed if

f ; g A L1ð0; yÞ þ Lyð0; yÞ

the inequality

j f � � g�j �� ð f � gÞ�

is well-known (see [18]). However set f ðtÞ ¼
Py
n¼0

2�nwðn;nþ1� and gðtÞ ¼
Py
n¼1

2�nwðn;nþ1�: Then

g� ¼ f �=2 and f � g ¼ wð0;1�. Thus hj f � � g�j; ð f � gÞ�i ¼ y.

In the case where p < 1 completeness is established under the Fatou condition by
Xu [38].
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18 (1977), 522–540, 717 (Russian).

[3] A.-P. Calderón, Spaces between L1 and Ly and the theorem of Marcinkiewicz, Stud. Math. 26 (1966),

273–299.

[4] V. I. Chilin, A. V. Krygin, and F. A. Sukochev, Extreme points of convex fully symmetric sets of measurable

operators, Integr. Equ. Oper. Th. 15 (1992), 186–226.

[5] V. I. Chilin and F. A. Sukochev, Symmetric spaces over semifinite von Neumann algebras, Dokl. Akad. Nauk

SSSR 313 (1990), 811–815 (Russian).

[6] M. Cwikel and C. Fe¤erman, Maximal seminorms on Weak L1, Stud. Math. 69 (1980/81), 149–154.

[7] M. Cwikel and C. Fe¤erman, The canonical seminorm on weak L1, Stud. Math. 78 (1984), 275–278.

[8] J. Dixmier, von Neumann algebras, North-Holland Math. Libr. 27, North-Holland Publishing Co., Amster-

dam 1981.

[9] P. G. Dodds, T. K. Dodds, and B. de Pagter, Noncommutative Banach function spaces, Math. Z. 201 (1989),

583–597.

[10] P. G. Dodds, T. K.-Y. Dodds, and B. de Pagter, A general Markus inequality, Miniconference on Operators

in Analysis, Sydney 1989, Proc. Centre Math. Anal. Austral. Nat. Univ. 24, Austral. Nat. Univ., Canberra

(1990), 47–57.

[11] P. G. Dodds, T. K. Dodds, and B. de Pagter, Noncommutative Köthe duality, Trans. Amer. Math. Soc. 339
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