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Spectral characterization of sums of
commutators II

By K.J. Dykema at Odense and N.J. Kalton') at Columbia

Abstract. For countably generated ideals, ¢ of B(#), geometric stability is neces-
sary for the canonical spectral characterization of sums of (% B(#'))-commutators to
hold. This answers a question raised by Dykema, Figiel, Weiss and Wodzicki. There are
some ideals, ¢ having quasi-nilpotent elements that are not sums of (% B(#’))-commuta-
tors. Also, every trace on every geometrically stable ideal is a spectral trace.

Introduction

Let 5 be a separable infinite-dimensional Hilbert space, and let ¢ be a (two-sided)
ideal contained in the ideal of compact operators " (#°) on #. We define the commuta-
tor subspace Com ¢ to be the set of all finite linear combinations of commutators
[A4,B]=AB— BA where A€ ¢ and Be B(H).

In the immediately preceding paper, [5] N.J. Kalton showed that, for a wide class
of ideals including quasi-Banach ideals (i.e. ideals equipped with a complete ideal quasi-
norm) Com # has the following spectral characterization. For T'e £ let 1, = 4,(T') be the
eigenvalues of T listed according to algebraic multiplicity and such that |1,| = |4, = ---.

1 n
Then Te Com ¢ if and only if diag{ > A”k} € ¢ The sufficient condition from [5] for

n
Com ¢ to have a spectral characterization in the above sense is geometric stability, i.e. the
condition that if (s,) is a monotone decreasing real sequence then diag {s,} € # if and only
if diag {(s;...s,)"/"} € Z (See the introduction of [5] for background.)

In §1 of this paper, we show that when # is a countably generated ideal, then
geometric stability is a necessary condition for this spectral characterization of Com ¢ In
particular, for every countably generated ideal, ¢ which is not geometrically stable, we
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1
find an element T, of Com ¢ for which diag {; (T + - + A“,,(T))} ¢ 7 We also give

examples of ideals for which spectral characterization of Com ¢ fails in the opposite
direction, and in an extreme way, in that ¢ has a quasi-nilpotent element that is not in
Com Y.

In §2, we show, based on an elementary decomposition result for compact operators,
that every trace, 7, on an arbitrary geometrically stable ideal, # is a spectral trace, i.e. for
every Te ¢ t(T) depends only on the eigenvalues of T and their multiplicities.

Acknowledgement. We would like to thank the referee and Jerry Kohila for some
helpful comments.

1. Countably generated ideals

Proposition 1.1. Suppose s, = s, = -+ = 0. Suppose that (1), is any sequence of
complex numbers with |2,| Z|A,| = -+ and such that |A,...A,| <s,...s, for all n. Then
there is an upper triangular operator A = (aj,); , such that s,(A) < s, for all n and a;;= 7,

for all j.

Proof. Thisis theinfinite dimensional extension of a result of Horn [3] (see Gohberg-
Krein [2], Remark II. 3.1). By Horn’s result we can find for each n an upper-triangular
matrix A" = (a$) such that a{}) = 0if max(j, k) >n, a};=A;for 1 < j<nand s5;(4") <5,
for 1<j< 0.

Now we can pass to a subsequence (B™) of (4™) which is convergent to the weak
operator topology to some operator 4 = («;;) which is upper-triangular and has a;; = /;
for all j. It remains to show that s;(4) < s; for all ;.

Fixj > 1 (the case j = 1 is well known). For each # there is a subspace E, of dimension
j—1 so that if P, is the orthogonal projection with kernel E, then ||[B™F,|| <s;. Let
{ 2] be an orthonormal basis of E,. By passing to a further subsequence we can sup-
pose that lim f;* = f, exists weakly for each 1 <k <j— 1. Let E be the span of (f,)iZ},

n— oo

so that dimE<j—1. Suppose xe E*. Then lim (x, f;")=0 for 1<k <j—1. Hence

n— o

lim [|x — B,x|| = 0. Thus | Ax|| < lim inf || B"” x|| < lim inf || B" P, x|| < s/ x||. This shows

n— oo

that s;(4) <s;. O

Let us introduce a bit of notation. Suppose u = (4;);~, and ¢ = (¢;);Z, are decreasing
sequences of positive numbers. We write ¢ < u to mean that ¢; < u; for every j. For ¢>0
we let cu denote the sequence (cu;)iZ,. We let u @ u denote the sequence

(U, g, Uy, Uy, Uy, Uy, o)
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Lemma 1.2. Letu= (u;)j~, and t = (1;);~, be sequences of positive numbers decreas-
ing to zero such that diag {t;} is in the ideal of compact operators generated by diag {u;}. Then

diag{(t,, ... ,)"/*}
is in the ideal of compact operators generated by diag {(u,u, ... u)""*} .

Proof. The hypotheses imply that there is a positive integer # and a positive number
¢ such that 7,; < cu; for every j, and we may suppose 7 is a power of 2. Hence, in order

to prove the lemma it will suffice to prove it in each of the following special cases, in turn:
@ t=u,
(i) t=cuforc>1,
(i) t=u® u.

The cases (i) and (ii) are clear. If (iii) holds then (¢, ... #,,)!/*" = (u, ... u,)*'", which
shows that diag {(z, ... 7,)'/*} is in the ideal generated by diag {(u, ... u,)'/"}, and the lemma
is proved. O

Theorem 1.3. Let ¢ be a countably generated ideal in A (H). Then the following
conditions are equivalent:

(1) 7 is geometrically stable.

(i) If Te ¢ then diag{J,} € ¢ where J, = ,(T).

1
(i) If Te Com ¢ then diag {— g+ + /ln)} € ¢, for some ordering of A, so that
(I14,1) is decreasing. "

Proof. (i) implies (iii) is proved for any ideals in [5]. That (i) implies (ii) is also
noted in [5]; this follows from the inequalities |4,(T)| < (s(T) ... s,(T))'/"

Since ¢ is countably generated there is a countable family, {u®|k e N}, of decreasing
sequences of positive numbers such that Te ¢ if and only if for some k we have s, (T) < u®
for all n= 1. Indeed, let {u®|keN}={w®|ijeN} where wi/ =;jw?), and where

wh =5 (1) + 5,(T5) + -+ +5,(T), with {T;]ie N} a countable generating set of the
ideal #

We will prove that each of (ii) and (iii) individually implies (i) by supposing that (i)
fails and showing that both (ii) and (iii) fail. If (i) fails then there is a sequence (¢,),,
such that diag{s,} e # but diag{(z,7,...1,)""} ¢ # Now for every keN, since
diag{(t,,,)7-} generates the same ideal as diag{z,}, it follows from Lemma 1.2 that

diag{((lk+1lk+2-~ ZkJrn)l/n ;O=1} ¢S
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It follows that we can find a sequence m, T co such that if m, =0 and p, =m, —m, _,
for n =1 then p,/m, - 1 and

def M 1/pn
— (&)
W, = ( I zk> > ul)

k=m,-1+1

Let w, = w, for every m, _, +1 < k =< m,. We may assume without loss of generality that
w, > w,, for every ne N. By Proposition 1.1 there is an upper triangular operator 4 € ¢
with diagonal entries a,, = w, for ke N. Now diag(w,) ¢ # by construction and hence (ii)
fails. Therefore (ii) implies (i).

We now show that also (iii) fails, which will finish the proof of the theorem. We can
choose 6, > G, > --- > 0 decreasing quickly enough so that w, — 6, > w, ., for every n and
such that, letting o, = g, for every m,,_, +1 =k < m,, we have diag(s,) € £ Define for
each ne N

Ean—1 =&, = 5 min (G,,_y — G35 02, — O2p41) -

Then for every ne N we have that ¢, > 0, that 6, — ¢, > ¢,_,; and that

Z (_1)j_18j

i=1

< . .
~— |0 ifniseven.

{6,1 if 7 is odd,

Let ()7~ be the sequence defined by

_ o, ifm, (+1<k<m,andnis odd,
= G,—(e,/p,) ifm, | +1=k=<m,andniseven,

and let (v,)7-, be the sequence defined by

a,—(e,/p,) ifm,_+1=k=<m,and nis odd,
vV, =
, ifm, | +1=<k=m,andniseven.

n

Note that (u,)7-, and (v,)7-, are decreasing sequences. Let D, =diag{y,} and
D, =diag{v,}. We will show that D, ® (—D,)e Com £ Let (/;)7-, be the eigenvalue
sequence, arranged in some order of decreasing absolute value, of the operator D; @ (— D,).

1
We will show that diag {E A+ + /1,’{)} € ¢ which by [1] shows D, ® (—D,) e Com ¢.
The sequence (1)~ is
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_ . _ €y _ €1 . - ) . )
0iy.--»01, =01+ —,...,—01+—, =0y, ..., =0y, 0, — —,...,0, — —
—_— D1 P ——— 1) P2
p, times P, times
p, times P, times
_ _ _ €rn—1 - €an-1
s Ogp—15 -5 02y 15 _O-Zn—1+ ’ > 02n—1+ 2
2n—1 2n—1
D2y times
Dan— times
— — — 82n — 82n
Oy -5 T 03y, Oy — > > Oy ’
e Pan Pan
P, times
D, times
k
Let 5, = > Z;. Then for every ne N,
i=1
, -
’72m2n,2+k—k02n—1 I=k=py-1),
ke
’ _ — 2n—1
Mmoo+ pon—1+k — (Pan-1—K)Gyy + —— 1=k=py-1)>
2n—1
, _
Momon—1+k = €201 — kO3, (1=k=ps),
ke
’ — 2n
1/’2m2,._1+p2"+k=82n*1_(p2n_k)o-2n_ (1=k=p,).
2n

Making crude (but sufficient) estimates, we get

rlémzn72+k < =

_2man-2tk | <5 1<k<p, _.),

‘2m2n_2+k = Y2n—-1 ( = _pZn 1)
‘ Mamon-at pan-1 4k <265,-4 A=k=pyu-1)s

2my,_y +Pru-1 +k

némzy._lJrk < & —
—=Pmo1 T2 1 < Gg, . +a 15k ,
‘2m2n1+k =03, 2n (1=k=p,y)
’ et S Oyp—1 + 0 1=k =p,,).

2my, 1+ pa,tk

Using diag{o,} € .# we see that diag{ A+ + A }e . Hence by [1]

D, ®(—D,)eCom 4.

Let A € # be the upper triangular operator with diagonal entries a,;, = w, as con-
structed above. Consider the operator
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T=(A+D)®(—A—D,).

Then Te Com ¢ because A @ (—A)eCom ¢ and D, ® (—D,) e Com £ Let 1, = 4,(T)
be the eigenvalues of T listed according to algebraic multiplicity and in order of decreasing
absolute value. Then

,, _
Zmon—rtk = Aamop sk T Wan—1 A=k=pr-1)s
Y _
)”2mzn72+p2n71+k - A2m2n72+pzn71+k_ W2n—1 (1 é k §p2n—1)7
, _
lzm2"_1+k zlzm“_1+k—w2n 1=k =py),

1 o -
/L2m2n_1+p2n+k_12m2"_1+p2n+k+w2n (1§k§p2n)

k
Let n,= ), 2;. Then

j=1
Namanstk = Namop_stk T KWap_y (I=k=p5,_1),
Naman—s+pan—14k = Naman—st pan—1 4k T (Pan-1— KWy, (A=k=p,, ),
Maman— 14k = Naman_1+k — KWay 1=k =py),

Nomon—1+pontk — ﬂém2",1+p2n+k_ (P2 — k)W, (1=k=p,).

1 1
We will show that diag {% A+ + /lk)} ¢ ¢ Since diag {% 11,;} € ¢ it will suffice to

1
show that diag {% (n, — 17,;)} ¢ 7. However, taking the absolute value of a subsequence of

o0

1 1
A (e — 11,’()> and using lim (p,/m,) =1, we see that diag {% (n, — 11,2)} e ¢ would

k=1 n= o

imply diag{w,} € % which would be a contradiction. Therefore

. 1 )
diag {% A+ + Ak)} ¢ 7
and hence (iii) fails. O

We will conclude by showing that it is in general impossible to characterize member-
ship in Com ¢ by considering only the eigenvalues. To this end we will construct a quasi-
nilpotent operator 7 so that 7¢ Com #;, where #; is the ideal generated by T.

We will start by considering any singly generated ideal, # Then there is a decreasing
sequence of positive numbers (,) such that Te ¢ if and only if for some C >0 and
0<a=1we have s, (T) = Cu,,.

Lemma 1.4. Let ¢ and (u,) be as above and suppose (v,)-, and (w,)-, are a pair
of real sequences such that
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(1) Wehavevlgyz>...éo;
(i1) for each k =1 the sequence (v,) is constant on the dyadic block

LR L T L VF

n n
(iil) for each ne N we have ] v, < [] wu;
k=1

k=1

(iv) for each n we have |w,| =< |u,|;

(v) for each n we have

Then there is an upper-triangular operator A € Com ¢ with a,,=w, for all n.

Proof. The proof is essentially the same as for the corresponding result for diagonal
operators in [4] and [1]. We start by setting

2k—1

=20 3w

j=2k-1
when 1< k< oo and 2¥7 1< n < 2% — 1. Notice that

|nn_'WM|§;”w2

and that, if 2" 1<n <2k —1,

n

Y m—w)

j=2k-1

X m—w)| =

j=1

= 2k”n/z

from which it follows that diag{(y, — w,)} € Com £

It therefore will suffice to show that there is an upper-triangular operator 4 in Com ¢
with a,, = n, for all n. To this end we define a sequence ¢, by setting

2k—1 2k—1

énzzzlik.E: nj::217k Z:]%

j=1 j=1

for 2871 <n < 2¥~1 By hypothesis we have |¢,| < 2v, for ever ne N. Now we note that
by Proposition 1.1, there is an upper-triangular matrix C e ¢ with ¢,, = v, for every n;
hence there is an upper-triangular matrix Be # with b,, = ¢, for ne N.



134 Dykema and Kalton, Characterization of sums of commutators 11

Now consider the isometries U;, U, defined by U, e, = e,, . ; and U, e, = e,,. Consider
the commutator [U, B, U;*]. We have

LU Uy Bl(eyy+1) = Beyy oy — Uy Be

no

[Ul*a UlB] (eZn) = BeZn

and
[UX U,Ble, = Be,.
Similarly
LU U, B]e,, = Be,,— U, Be,,
LU, Uy Bley, = Beyy iy
and

[UXU,Ble, = Be,.

1
Thus if 4 = 2 (LU, U,B]+ [Uj, U, B]) then Ae, = Be, and

1
(Aeyni1s€am+1) = (BeyyiirCamit) — 5 (Be,,e,),
(Aesps1>€2m) = (Beyyi1:€2m11)s
(Aey, 41,€1) = (Bey,1,0) =0,

(A62n>82m+1) = (BeZW €2m+1) >
1

(AeZn’ eZm) = (BeZn'«‘ eZm) - E (Benﬂ em) >
(AeZn’el) = (Blewel) = 0 .

Thus (A4e,,e,) =0 if m<n and a,, =&, =n, while if 2 "' <n <2¥ —1 with k=2

n’em

1
we have a,, = &,-1 — 3 &2 =1,. Since 4 € Com 4, this completes the proof. O

We now turn to the construction of some examples of ideals, ¢ having quasi-nil-
potents that are not sums of commutators.

Examples 1.5. Let0=p,<p, <p, < - beintegers such thatp,,, > p, + 2n2>" for
every n = 0. Let

w=2"" if 2m1<k<2m—1 (n21),

and let # be the ideal of B(#) generated by diag {u, };- ;. Then there is a quasi-nilpotent
operator, T e ¢ such that T ¢ Com ¢.
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Proof. Let q,=2n+p, and

v =227 f 2 i< k<20 —1 (n=1).

We claim that

IA

k Kk
(1) U v; U U;

for every ke N. Let log denote the base 2 logarithm. For every ne N, we have

(24n) — 1
10g< [ vj“j_1> =2m((1 =27t et 2y (—p 4+ p,)

j=29mn-1)
+ (1 — 2_pn+l7n71_2)n22n) .
But

1_2_pn+Pn71_2 < 2(1_2—pn+pn71+2n—2)

SO

(29n) -1
log< [] Uj“fl><2”"(1—2"’"+"”1“”‘2)(—17,,“+pn+2n22")<0-

Jj=24n-1)

Therefore, by induction on n, (1) holds whenever k =2 —1. But since v; <u; when
20 < j< 2P+t —1 and v; > u; when 2P+t < j < 29+t — 1, it follows that (1) holds for all
keN.

k
Let o, = Y u; and

i=1

0, = inf (jv; + o, — a;]) .
jeN

Then 0, =v,<u, and fork=2,10,—0,_,| Su,. Let w, =0, and w, =0, —0,_, (k=2).
k

Then for every k€ N we have |w,| Zu,and 0= ) w; =0, < kv,. Therefore, by Lemma
j=1

1.4 therdefis an upper triangular 4 € Com _# with diagonal elements a,, = w,. However,

also W< diag{w,} € # Let T=A — W. Then Te ¢ is quasi-nilpotent. We will show that

T¢ Com ¢ by showing W ¢ Com %

Suppose for contradiction that W e Com £ Let {4, };°-, be a rearrangement of {w, } -

1
such that |4,| = |4,| = ---. Then by [1], diag {%(Xl + o+ )»k)} € #. For every ke N we
have

k k
Y A= W

j=1 i=1

< 2ku,
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because every w; having absolute value strictly greater than u, appears in both summations

1
above. Hence diag {E wy+- -+ wk)} € 4, thus by [5], 3.1 (3) there are o >0 and ¢ >0
such that

1
2) VkeN EOkécuak.

Let k =2P"" We will find a lower bound for 0, which will contradict (2). Routine estima-
tion reveals that

(1 if j < 2mn-r
1 if2r - < j<2mm
D" Pn+1tpnt2n if2qn71§j§21—7n_1’

Jo 1o =y = { 2Tt e g am
D= Pnt1tpat3n ifzpn+n§j§2pn+2n_1’
PR L L R L
. if 2r e <

Ly . 1
Considering all cases, we find 0, =27 Pr+1Fpnt2n=1 gq %Gk =2 Paertnml ot 4 >0 be

1
arbitrary. If n is so large that 2" > o~ ! then u,, =27?*** and T 0,/u,, = 2", which grows
without bound as n — oo, contradicting (2). O

2. Spectral traces

Let ¢ be an ideal of compact operators. A trace on ¢ is a linear functional, 7: ¢ - C
that is unitarily invariant, or, equivalently, that vanishes on Com ¢ In this section, we
show that, as a consequence of [5], Theorem 3.3, every trace on a geometrically stable
ideal ¢ is a spectral trace, i.e. for every Te ¢ t(T) depends only on the eigenvalues of
T, listed according to algebraic multiplicity.

We shall use the following decomposition result, which is certainly well-known.

Proposition 2.1. Let T be a compact operator on infinite dimensional Hilbert space
H. Then T= D + Q, where D is a normal operator whose eigenvalues and multiplicities are
equal to those of T, and where Q is a quasi-nilpotent operator.

Proof. Let E; denote the closed linear span of all the root vectors for nonzero eigen-
values of T, and let P be the orthogonal projection of # onto E;. Note that £ is invariant
under T, so PTP = TP. By Schur’s Lemma (see [2], I. 4.1), there is an orthonormal basis
for E,, with respect to which PTP is upper triangular and has diagonal entries form the
list 4,(T),A,(T),.... Let D be the operator on # which on P is the diagonal part of
PTP and on (1— P)s# is zero. Then P(T — D) P is strictly upper triangular, hence is
quasi-nilpotent. Moreover, by [2], I. 4.2, (1 — P)T (1 — P) is quasi-nilpotent. Now, using
the following elementary lemma, we are done. 0O
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Lemma 2.2. Let A€ B(). Suppose that for a projection P, PAP and (1 — P)A(1 — P)
are quasi-nilpotent and (1 — P)AP = 0. Then A is quasi-nilpotent.

Proof. For convenience write P, = P and P, =1— P. Then

n—1

A"=(PAP)"+ Y (PAP)" " H(PLAP) (P AP) + (P AP,)".
k=0

Now some elementary norm estimates and the quasi-nilpotence of P, 4 P, and P, A P, show
that A4 is quasi-nilpotent. O

Corollary 2.3. Let ¢ be a geometrically stable ideal of compact operators and let
Te ¢. Then T= D + Q where D€ ¢ is normal and Q € ¢ is quasi-nilpotent.

Proof. If A, =2,(T) are the eigenvalues of T listed according to algebraic multi-
plicity, then the inequality |A;... 2| = |s,(T) ... s, (T)| and the geometric stability of ¢
imply that De ¢ O

Corollary 2.4. Let ¢ be a geometrically stable ideal and suppose t is a trace on {.
For every given T € ¢, the value T(T') depends only on the eigenvalues of T and their algebraic
multiplicities.

Proof. Using the decomposition 7= D + Q from Corollary 2.3 and the spectral
characterization of Com_¢ in [5], 3.3, it follows that Qe Com ¢ < kert. Hence
©(T)=1(D). O
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