Spectral characterization of sums of commutators I

By N.J. Kalton¹) at Columbia

Abstract. Suppose \mathscr{J} is a two-sided quasi-Banach ideal of compact operators an a separable infinite-dimensional Hilbert space \mathscr{H} . We show that an operator $T \in \mathscr{J}$ can be expressed as finite linear combination of commutators [A, B] where $A \in \mathscr{J}$ and $B \in \mathscr{B}(\mathscr{H})$ if and only if its eigenvalues (λ_n) (arranged in decreasing order of absolute value, repeated according to algebraic multiplicity and augmented by zeros if necessary) satisfy the condition that the diagonal operator diag $\left\{\frac{1}{n}(\lambda_1 + \dots + \lambda_n)\right\}$ is a member of \mathscr{J} . This answers (for quasi-Banach ideals) a question raised by Dykema, Figiel, Weiss and Wodzicki.

1. Introduction

Let \mathscr{H} be a separable infinite-dimensional Hilbert space, and let \mathscr{J} be a (two-sided) ideal contained in the ideal of compact operators $\mathscr{K}(\mathscr{H})$ on \mathscr{H} . We define the *commutator subspace* Com \mathscr{J} to be the closed linear span of commutators [A,B]=AB-BA where $A\in\mathscr{J}$ and $B\in\mathscr{B}(\mathscr{H})$. It has been shown by Dykema, Figiel, Weiss and Wodzicki in [3] that if \mathscr{I}_1 and \mathscr{I}_2 are any two ideals then the linear span of commutators of the form $[A_1,A_2]$ where $A_j\in\mathscr{I}_j$ for j=1,2 coincides with the commutator subspace Com \mathscr{J} where $\mathscr{J}=\mathscr{J}_1\mathscr{J}_2$.

Pearcy and Topping ([7], cf. [2]) showed that for the Schatten ideal $\mathcal{J} = \mathcal{C}_p$ when p > 1, we have $\text{Com}\,\mathcal{C}_p = \mathcal{C}_p$. They then raised the question whether

$$\operatorname{Com}\mathscr{C}_1 = \{ T \in \mathscr{C}_1 : \operatorname{tr} T = 0 \} .$$

This question was resolved negatively by Weiss [8], [9]. However, Anderson [1] showed that in the case p < 1 we have $Com \mathscr{C}_p = \{T \in \mathscr{C}_p : tr T = 0\}$.

¹) The author was supported by NSF Grant DMS-9500125.

In [6] a complete characterization of $\operatorname{Com}\mathscr{C}_1$ was obtained. It was shown that, in the case when $\mathscr{J} = \mathscr{C}_1$ is the trace-class, then $T \in \operatorname{Com}\mathscr{C}_1$ if and only if $T \in \mathscr{C}_1$ and its eigenvalues $(\lambda_n(T))_{n=1}^{\infty}$, counted according to algebraic multiplicity and arranged in some order satisfying that $(|\lambda_n(T)|)_{n=1}^{\infty}$ is decreasing, satisfies the inequality

(1.1)
$$\sum_{n=1}^{\infty} \frac{|\lambda_1 + \dots + \lambda_n|}{n} < \infty.$$

If the eigenvalue set of T is finite one may extend the sequence $\lambda_n(T)$ by including infinitely many zeroes. This extended earlier partial results in [8] and [9].

Since, for any ideal \mathscr{J} , Com \mathscr{J} is a self-adjoint subspace it is clear that if T = H + iK is split into hermitian and skew-hermitian parts then $T \in \text{Com } \mathscr{J}$ if and only if $H \in \text{Com } \mathscr{J}$ and $K \in \text{Com } \mathscr{J}$. Thus to characterize Com \mathscr{J} it is necessary only to characterize the hermitian operators in Com \mathscr{J} . In particular, the result above shows that if $T \in \mathscr{C}_1$ the condition (1.1) is equivalent to the pair of conditions that H and K each satisfy (1.1).

Recently in [3] a very general approach was developed which is applicable to any ideal. It was shown that for any ideal \mathscr{J} a hermitian operator $H \in \operatorname{Com} \mathscr{J}$ if and only if $H \in \mathscr{J}$ and the diagonal operator diag $\left\{\frac{1}{n}(\lambda_1 + \dots + \lambda_n)\right\}$ belongs to \mathscr{J} where again $\lambda_n = \lambda_n(H)$ is the eigenvalue sequence as above. Although this yields an explicit test for membership in $\operatorname{Com} \mathscr{J}$ by the process of splitting into hermitian and skew-hermitian parts, it leaves open the question whether same characterization in terms of eigenvalues extends to all operators in $\operatorname{Com} \mathscr{J}$, as in the case of the trace-class.

The aim of this paper is to show that for a fairly broad class of "nice" ideals the answer to this question is positive. The condition we impose on an ideal \mathscr{J} is that it is geometrically stable. This means that if a diagonal operator $\operatorname{diag}\{s_1,s_2,\ldots\}\in\mathscr{J}$ where $s_1\geq s_2\geq\cdots\geq 0$ then we have $\operatorname{diag}\{u_1,u_2,\ldots\}\in\mathscr{J}$ where $u_n=(s_1\ldots s_n)^{1/n}$. For any Banach or quasi-Banach ideal (i.e. an ideal equipped with an appropriate ideal quasi-norm) this condition is automatic. Under the hypothesis that \mathscr{J} is geometrically stable we show that $T\in\operatorname{Com}\mathscr{J}$ if and only if $\operatorname{diag}\left\{\frac{1}{n}(\lambda_1+\cdots+\lambda_n)\right\}\in\mathscr{J}$ where $\lambda_n=\lambda_n(T)$.

In a separate note, in collaboration with Ken Dykema [4], we show that then for arbitrary ideals \mathcal{J} this result is false and indeed there is no spectral characterization of the subspace Com \mathcal{J} .

Let us note that our results do depend in an essential way on the results of [3], in that we use their result to reduce the problem to discussion of an operator of the form T = H + iK where H, K are hermitian.

Acknowledgement. We are grateful to Ken Dykema for valuable discussion concerning the results of [3] and this problem. We would also like to thank the referee for his comments. This work was done on a visit to Odense University and the author would like to thank Niels Nielsen and the Department of Mathematics for their hospitality.

2. The key results

Let T be a bounded operator on a separable Hilbert space \mathcal{H} . We denote by $s_n = s_n(T)$, for $n \ge 1$ the singular values of T. It will be convenient to define s_n for n not an integer by $s_n = s_{[n]+1}$. With this notation we have the inequalities $s_n(S+T) \le s_{n/2}(S) + s_{n/2}(T)$ and $s_n(ST) \le s_{n/2}(S) s_{n/2}(T)$.

If T is compact we denote by $\lambda_n = \lambda_n(T)$ the eigenvalues of T repeated according to algebraic multiplicity and arranged in decreasing order of absolute value (this arrangement is not unique, so we require some selection to be made). Note that $s_n(T) = \lambda_n(|T|)$.

Let us suppose that $f: \mathbb{C} \to \mathbb{C}$ is any function which vanishes on a neighborhood of the origin. Then we can define a functional $\hat{f}: \mathcal{K}(\mathcal{H}) \to \mathbb{C}$ by the formula:

$$\widehat{f}(T) = \sum_{n=1}^{\infty} f(\lambda_n).$$

Lemma 2.1. (1) If f is continuous then \hat{f} is continuous.

- (2) If f is a Borel function then \hat{f} is a Borel function.
- (3) If f is continuous, real-valued and subharmonic then \hat{f} is plurisubharmonic on $\mathcal{K}(\mathcal{H})$, i.e. if $S, T \in \mathcal{K}(\mathcal{H})$ then

$$\widehat{f}(S) \leq \int_{0}^{2\pi} \widehat{f}(S + e^{i\theta}T) \frac{d\theta}{2\pi}.$$

- *Proof.* (1) Suppose f(z) vanishes for $|z| \le \delta$ where $\delta > 0$. If $T \in \mathcal{K}(H)$ then suppose m is the least integer such that $|\lambda_m(T)| < \delta$. Pick $\eta < \delta$ such that $|\lambda_m(T)| < \eta$ and if $m \ge 2$ then $\eta < |\lambda_{m-1}(T)|$. Now if T_n is a sequence of compact operators with $\lim_{n \to \infty} ||T_n T|| = 0$ then by results in [5] (see p. 14, 18) we can find n_0 so that an ordering $(\lambda'_k(T_n))_{k=1}^{\infty}$ of the eigenvalues of T_n such that $|\lambda'_k(T_n)| < \eta$ for $n \ge n_0$ and $k \ge m$ and $\lim_{n \to \infty} \lambda'_k(T_n) = \lambda_k(T)$ if k < m. If follows easily that $\widehat{f}(T_n) \to \widehat{f}(T)$.
- (2) Observe that the set of f such that \hat{f} is Borel is closed under pointwise convergence of sequences on \mathbb{C} . (2) follows then from (1).
 - (3) By (1) \hat{f} is continuous and it therefore suffices to show that

$$\hat{f}(S) \le \int_{0}^{2\pi} \hat{f}(S + e^{i\theta}T) \frac{d\theta}{2\pi},$$

for two finite rank operators S, T. Hence we can suppose S, T are actually $n \times n$ matrices for some n. Then the conclusion is immediate from Proposition 5.2 of [6]. \Box

We now introduce certain functionals of the above type. We define

$$v(T) = \sum_{|\lambda_n| \ge 1} 1$$
, $\mu(T) = \sum_{n=1}^{\infty} \log_+ |\lambda_n|$, and $\chi(T) = \sum_{|\lambda_n| \ge 1} \lambda_n$.

By the above lemma ν and χ are Borel functions while μ is continuous. If $|T| = (T^*T)^{1/2}$ the eigenvalues of |T| correspond to the singular values of T. Notice that if T is normal then $\nu(T) = \nu(|T|)$.

Notice also that each of the functionals μ , ν and χ are "disjointly additive" in the sense that $\mu(S \oplus T) = \mu(S) + \mu(T)$ etc. Here $S \oplus T$ represents the operator defined on $\mathscr{H} \oplus \mathscr{H}$ by $(S \oplus T)(x,y) = (Sx,Ty)$.

Lemma 2.2. For any $T \in \mathcal{K}(\mathcal{H})$ we have $0 \le \mu(T) \le \mu(|T|)$.

Proof. Suppose v(T) = n. Then $\mu(T) = \log |\lambda_1 \dots \lambda_n| \le \log |s_1 \dots s_n| \le \mu(|T|)$ (see Gohberg-Krein p. 37). \square

Lemma 2.3. If $S, T \in \mathcal{K}(H)$ then $v(|S+T|) \leq v(2|S|) + v(2|T|)$. In particular if T = H + iK with H, K hermitian then $v(H) \leq 2v(|T|)$.

Proof. These follow easily from the Weyl inequalities, that

$$s_{m+n-1}(S+T) \leq s_m(S) + s_n(T)$$
. \square

Lemma 2.4. (1) If T is a compact normal operator with T = H + iK for H, K hermitian then $|\chi(H) - \Re \chi(T)| \leq v(T)$.

- (2) If T is any compact operator and $|\alpha| \le 1$ then $|\alpha \chi(T) \chi(\alpha T)| \le v(T)$.
- (3) If $(T_i)_{i=1}^n$ are compact normal operators with $T_1 + \cdots + T_n = 0$ then

$$|\chi(T_1) + \dots + \chi(T_n)| \leq (n-1)(v(T_1) + \dots + v(T_n)).$$

Proof. (1) We have

$$\chi(H) - \Re \chi(T) = \sum_{\Re \lambda_n < 1 \le |\lambda_n|} \Re \lambda_n$$
.

The result follows immediately.

(2) For $|\alpha| = 1$ this is trivial. If $|\alpha| < 1$, we notice that

$$\alpha \chi(T) - \chi(\alpha T) = \alpha \sum_{1 \le |\lambda_n| < \alpha^{-1}} \lambda_n$$

whence the result follows.

(3) (Compare [3], Lemma 2.2.) Since each T_j is normal there exist self-adjoint projections P_j of rank $v(T_j)$ so that $\chi(T_j) = \operatorname{tr}(P_j T P_j)$ and $\|P_j^{\perp} T_j P_j^{\perp}\| < 1$. Let Q be a self-adjoint projection of rank $d \leq \sum_{j=1}^{n} v(T_j)$ whose range includes the range of each P_j . Then

$$\operatorname{tr}(QT_{j}Q) = \operatorname{tr}(P_{j}T_{j}P_{j}) + \operatorname{tr}((Q - P_{j})T_{j}(Q - P_{j}))$$

and so

$$\left| \sum_{j=1}^{n} \chi(T_j) \right| = \left| \sum_{j=1}^{n} \operatorname{tr}(Q - P_j) T_j (Q - P_j) \right|$$

$$\leq \sum_{j=1}^{n} \left(d - v(T_j) \right)$$

$$\leq (n-1) \sum_{j=1}^{n} v(T_j). \quad \Box$$

Since χ is not a continuous function on $\mathscr{K}(H)$ we will now correct it to make a continuous function. To this end we fix a nondecreasing C^{∞} -function $\varphi : \mathbb{R} \to \mathbb{R}$ such that $\varphi(x) = 0$ if $x \leq 0$, and $\varphi(x) = 1$ if $x \geq 1$. We define

$$\chi_{\varphi}(T) = \sum_{n=1}^{\infty} \lambda_n \varphi(|\log \lambda_n|)$$

where $\varphi(-\infty) = 0$. By Lemma 2.1, χ_{ϕ} is continuous.

Lemma 2.5. For any compact operator T, we have $|\chi(T) - \chi_{\sigma}(T)| \leq ev(T)$.

Proof. $\chi(T) - \chi_{\varphi}(T) = \sum_{|\lambda_n(T)| \ge 1} (1 - \varphi(\log|\lambda_n|)) \lambda_n$. Then the result follows immediately. \square

Now we define a second C^2 -function $\psi: \mathbb{R} \to \mathbb{R}$ with the properties that $\psi(x) = 0$ if $x \le 0$ and $\psi''(x) = e^x (|\varphi''(x)| + 2|\varphi'(x)|)$ for $x \ge 0$. ψ is an increasing convex function, which is linear for $x \ge 1$. Thus there is a constant $C_1 > 0$ such that $\psi(x) \le C_1 \max(x, 0)$ for all x.

We now prove a crucial lemma.

Lemma 2.6. Let $h: \mathbb{C} \to \mathbb{R}$ be defined by h(0) = 0 and $h(z) = \psi(\log|z|) - x\varphi(\log|z|)$ for $z \neq 0$. Then h is subharmonic.

Proof. Note that h vanishes on a neighborhood of the origin. In fact h is C^2 so we check $\nabla^2 h$. It is easy to check that (for $z \neq 0$),

$$\nabla^2 (\psi(\log|z|)) = |z|^{-2} \psi''(\log|z|) = |z|^{-1} (|\varphi''(\log|z|)| + 2|\varphi'(\log|z|)|).$$

We also have

$$\nabla^2 \left(x \varphi(\log|z|) \right) = 2 \frac{x}{|z|^2} \varphi'(\log|z|) + \frac{x}{|z|^2} \varphi''(\log|z|).$$

Hence $\nabla^2 h \ge 0$. \square

Theorem 2.7. Suppose $T \in \mathcal{K}(\mathcal{H})$. Suppose T = H + iK where $H = \frac{1}{2}(T + T^*)$ and $K = \frac{1}{2i}(T - T^*)$. Then there is a constant C_2 such that

$$|\chi(H) - \Re\chi(T)| \leq C_2 \mu(2|T|)$$

and

$$|\chi(K) - \Im\chi(T)| \leq C_2 \mu(2|T|)$$
.

Proof. For convenience we will define the function $F(z) = \frac{1}{2}(T+zT^*)$. For $0 \le \theta \le 2\pi$, we have:

$$F(e^{i\theta}) - \frac{1 + e^{i\theta}}{2}H - i\frac{1 - e^{i\theta}}{2}K = 0$$
.

Note that each operator is normal and we also have from Lemma 2.3 that

$$v(|F(e^{i\theta})|) \le 2v(|T|)$$
 and $v(H), v(K) \le 2v(|T|)$.

Appealing to Lemma 2.4 (3),

$$\left| \chi(F(e^{i\theta})) - \chi\left(\frac{1+e^{i\theta}}{2}H\right) - \chi\left(i\frac{1-e^{i\theta}}{2}K\right) \right| \le 12\nu(|T|).$$

On the other hand Lemma 2.4 (2) gives that

$$\left| \chi \left(\frac{1 + e^{i\theta}}{2} H \right) - \frac{1 + e^{i\theta}}{2} \chi(H) \right| \le v(H) \le 2v(|T|)$$

and

$$\left| \chi \left(i \frac{1 - e^{i\theta}}{2} K \right) - i \frac{1 - e^{i\theta}}{2} \chi(K) \right| \leq 2 v(|T|).$$

Hence

$$\left|\chi\left(F(e^{i\theta})\right) - \frac{1 + e^{i\theta}}{2}\chi(H) - i\frac{1 - e^{i\theta}}{2}\chi(K)\right| \leq 16v(|T|).$$

Integrating over θ then gives

$$\left| \int_{0}^{2\pi} \chi(F(e^{i\theta})) \frac{d\theta}{2\pi} - \frac{1}{2} (\chi(H) + i\chi(K)) \right| \leq 16 v(|T|).$$

Taking real parts we have, in particular,

$$\chi(H) \leq 2\Re \int_{0}^{2\pi} \chi(F(e^{i\theta})) \frac{d\theta}{2\pi} + 32v(|T|).$$

We now replace χ by the smoother function χ_{φ} , and using Lemma 2.5 (since e < 3):

$$\chi(H) \leq 2 \int_{0}^{2\pi} \Re \chi_{\varphi} \left(F(e^{i\theta}) \right) \frac{d\theta}{2\pi} + 44 v(|T|).$$

Let $g(z) = \psi(\log |z|)$ for $z \neq 0$ and g(0) = 0. For any operator S we can write

$$\Re \chi_{\omega}(S) = \hat{g}(S) - \hat{h}(S).$$

Note that $0 \le \hat{g}(S) \le C_1 \mu(S)$. Thus

$$\chi(H) \leq 2 C_1 \int_0^{2\pi} \mu \left(F(e^{i\theta}) \right) \frac{d\theta}{2\pi} - 2 \int_0^{2\pi} \widehat{h} \left(F(e^{i\theta}) \right) \frac{d\theta}{2\pi} + 44 v(|T|).$$

Now since h is subharmonic, the functional \hat{h} is plurisubharmonic by Lemma 2.1. Note that $\hat{h}(F(0)) = \hat{h}(T/2) = \hat{g}(T/2) - \Re \chi_{\varphi}(T/2)$. Hence, by 2.4 (2) and 2.5,

$$2\int_{0}^{2\pi} \hat{h}(F(e^{i\theta})) \frac{d\theta}{2\pi} \ge 2\hat{g}(T/2) - 2\Re\chi_{\varphi}(T/2)$$
$$\ge -2\Re\chi(T/2) - 6v(T)$$
$$\ge -\Re\chi(T) - 8v(T).$$

Hence

$$\chi(H) \leq 2C_1 \int_0^{2\pi} \mu(F(e^{i\theta})) \frac{d\theta}{2\pi} + \Re \chi(T) + 44\nu(|T|) + 8\nu(T).$$

Note that for every n we have $s_n(F(e^{i\theta})) \le s_{n/2}(T)$ so that $\mu(F(e^{i\theta})) \le 2\mu(|T|)$. We thus can simplify, using Lemma 2.2, to

$$\gamma(H) \le \Re \gamma(T) + 4C_1 \mu(|T|) + 44 \nu(|T|) + 8 \nu(T)$$
.

Now observe that $v(T) \leq (\log 2)^{-1} \mu(2T)$ so that for a suitable constant C_2 we have

$$\chi(H) \leq \Re \chi(T) + C_2 \mu(2|T|).$$

We now consider -T, iT and -iT in place of T and the theorem follows. \Box

3. The main results

Now suppose that \mathscr{J} is a two-sided ideal contained in $\mathscr{K}(H)$. We denote by Com \mathscr{J} the linear subspace of \mathscr{J} generated by all operators of the form [S,T]=ST-TS for $T \in \mathscr{J}$ and $T \in \mathscr{B}(\mathscr{H})$. It is shown in [3] that if \mathscr{I}_1 and \mathscr{I}_2 are ideals such that $\mathscr{I}_1\mathscr{I}_2=\mathscr{J}$ then Com \mathscr{J} coincides with the linear span of all [S,T] where $S \in \mathscr{I}_1$ and $T \in \mathscr{I}_2$. It is clear that if T = H + iK with H, K hermitian then $T \in \text{Com } \mathscr{J}$ if and only if $H, K \in \text{Com } \mathscr{J}$. One of the main results of [3] characterizes the hermitian operators in Com \mathscr{J} . We now state this result together with a useful rewording.

Theorem 3.1. Suppose \mathcal{J} is an ideal of compact operators on \mathcal{H} . Let N be a normal operator in \mathcal{J} , and let $\lambda_n = \lambda_n(N)$. Then the following conditions on N are equivalent:

- (1) $N \in \text{Com } \mathcal{J}$.
- (2) diag $\left\{\frac{1}{n}(\lambda_1 + \dots + \lambda_n)\right\} \in \mathscr{J}$.
- (3) There exists $T \in \mathcal{J}$ so that $\frac{1}{n} |\lambda_1 + \dots + \lambda_n| \leq s_n(T)$ for each $n \in \mathbb{N}$.
- (4) There exists $T \in \mathcal{J}$ such that for all $\alpha > 0$ we have $|\chi(\alpha N)| \leq v(\alpha |T|)$.

Proof. The equivalence of (1) and (2) for hermitian operators is proved in [3]. We will first establish the equivalence of (2), (3) and (4).

(3) clearly implies (2). We now check that (2) implies (3). For $m \ge n$ we have, by an elementary barycentric calculation,

$$\frac{1}{m}|\lambda_1 + \dots + \lambda_m| \le \max\left(\frac{1}{n}|\lambda_1 + \dots + \lambda_n|, s_n(N)\right).$$

Let $T = \text{diag}\{u_n\}$ where $u_n = \max_{m \ge n} \frac{1}{m} |\lambda_1 + \dots + \lambda_m|$. Then the above shows that $T \in \mathscr{J}$ and of course $\frac{1}{n} |\lambda_1 + \dots + \lambda_n| \le s_n(T)$.

Next we show (3) implies (4). We can assume that T in (3) satisfies $s_n(T) \ge s_n(N)$ for every n. Then if $\alpha^{-1} > s_1(T)$ we have $\chi(\alpha N) = 0$ and $\nu(\alpha | T|) = 0$. Otherwise let n be the largest integer such that $s_n(T) \ge \alpha^{-1}$. Then $\nu(\alpha | T|) = n$. Now suppose m is the largest integer so that $\nu(N) \ge \alpha^{-1}$. Then $\nu(N) \ge \alpha^{-1}$ and $\nu(N) = \alpha(\lambda_1 + \dots + \lambda_m)$.

Thus we have

$$|\chi(\alpha N)| \le \alpha |\lambda_1 + \dots + \lambda_{n+1}| + n + 1$$

$$\le (n+1) \alpha s_{n+1}(T) + n + 1$$

$$\le 2(n+1) \le 4v(\alpha |T|).$$

This yields (4) with T replaced by $T \oplus T \oplus T \oplus T$.

Now assume we have (4); we may assume T is positive. We again assume $s_n = s_n(T) \ge s_n(N)$ for all n. Now for any $n \in \mathbb{N}$ we have:

$$\frac{1}{n}|\lambda_1 + \dots + \lambda_n| \le s_n + \frac{1}{n} \left| \sum_{|\lambda_k| > s_n} \lambda_k \right|.$$

Suppose $\sigma > s_n$ is smaller than any $|\lambda_k| > s_n$. Then

$$\frac{1}{n}|\lambda_1 + \dots + \lambda_n| \le s_n + \frac{\sigma}{n}|\chi(\sigma^{-1}N)|.$$

However $|\chi(\sigma^{-1}N)| \le v(\sigma^{-1}T) < n$, so that

$$\frac{1}{n}|\lambda_1 + \dots + \lambda_n| \leq s_n + \sigma.$$

Letting σ tend to s_n yields

$$\frac{1}{n}|\lambda_1 + \dots + \lambda_n| \le 2s_n$$

so that (3) holds if T is replaced by 2T.

Finally if N = H + iK where H, K are hermitian then we have by Lemma 2.4 (1) that $|\chi(\alpha H) - \Re\chi(\alpha N)|, |\chi(\alpha K) - \Im\chi(\alpha N)| \le v(\alpha N)$. Hence N satisfies (4) if and only if both H and K satisfy (4). As remarked above, the results of [3] imply that for hermitian operators (1) and (2) and hence also (1) and (4) are equivalent. Thus (1) and (4) are also equivalent for normal operators. \square

Now let us introduce a stability condition on the ideal \mathcal{J} . We will say that \mathcal{J} is geometrically stable if whenever diag $(s_1, s_2, \ldots) \in \mathcal{J}$ with $s_1 \geq s_2 \geq \cdots$ then diag $(t_1, t_2, \ldots) \in \mathcal{J}$ where $t_n = (s_1 \ldots s_n)^{1/n}$.

We say that \mathscr{J} of compact operators is a quasi-Banach ideal (or Schatten ideal) if it can be equipped with a complete quasi-norm $T \to ||T||_{\mathscr{J}}$ so that we have the ideal property $||ATB||_{\mathscr{J}} \leq ||A||_{\infty} ||T||_{\mathscr{J}} ||B||_{\infty}$ whenever $A, B \in \mathscr{B}(\mathscr{H})$. Here we denote the operator norm of A by $||A||_{\infty}$.

Proposition 3.2. If \mathcal{J} is a quasi-Banach ideal then \mathcal{J} is geometrically stable.

Proof. We can assume for some $0 < r \le 1$ that $\|\cdot\|_{\mathscr{I}}$ is an r-norm i.e.

$$||S+T||_{\mathscr{Q}}^{r} \leq ||S||_{\mathscr{Q}}^{r} + ||T||_{\mathscr{Q}}^{r}.$$

Suppose $D = \operatorname{diag}(s_n) \in \mathscr{J}$, where $s_1 \geq s_2 \geq \cdots$. We recall our convention that $s_r = s_{[r]+1}$ where r > 0 is not an integer. Then for each $k \in \mathbb{N}$ we have $\|\operatorname{diag}(s_{n/2^k})\|_{\mathscr{J}} \leq 2^{k/r} \|D\|_{\mathscr{J}}$. Pick $\theta > 1/r$. Then by completeness the series $\sum_{k=0}^{\infty} 2^{-\theta k} \operatorname{diag}(s_{n/2^k})$ converges in \mathscr{J} . Thus $\operatorname{diag}(u_n) \in \mathscr{J}$ where $u_n = \sum_{k=0}^{\infty} 2^{-\theta k} s_{n/2^k}$. In fact $\|\operatorname{diag}(u_n)\|_{\mathscr{J}} \leq \left(\sum_{k=0}^{\infty} 2^{k(1-r\theta)}\right)^{1/r} \|D\|_{\mathscr{J}}$. Now suppose $1 \leq j \leq n$. Pick $k \in \mathbb{N}$ so that $2^{-k}n \leq j \leq 2.2^{-k}n$. Then

$$s_j \le s_{n/2^k} \le 2^{k\theta} u_n \le \left(\frac{2n}{j}\right)^{\theta} u_n$$
.

Hence

$$t_n \le 2^{\theta} n^{\theta} (n!)^{-\theta/n} u_n \le C u_n$$

for some constant C. This implies $\operatorname{diag}(t_n) \in \mathscr{J}$ and further that $\|\operatorname{diag}(t_n)\|_{\mathscr{J}} \leq C \|D\|_{\mathscr{J}}$ for some constant C depending only on r. \square

We now prove the main result of this note, which, for the special case of geometrically stable ideals, answers positively a question posed in [3]. It should be noted that in [4] it is shown that for singly generated ideals geometric stability is a necessary and sufficient condition for the equivalence of (1) and (2) in Theorem 3.3. Thus in general (1) and (2) are not equivalent.

Theorem 3.3. Suppose \mathscr{J} is a geometrically stable ideal of compact operators on \mathscr{H} (in particular this hold if \mathscr{J} is a quasi-Banach ideal). Let $S \in \mathscr{J}$ and let $\lambda_n = \lambda_n(S)$. Then the following conditions on S are equivalent:

- (1) $S \in \text{Com } \mathcal{J}$.
- (2) diag $\left\{ \frac{1}{n} (\lambda_1 + \dots + \lambda_n) \right\} \in \mathcal{J}$.
- (3) There exists $T \in \mathcal{J}$ so that $\frac{1}{n} |\lambda_1 + \dots + \lambda_n| \leq s_n(T)$ for each $n \in \mathbb{N}$.
- (4) There exists $T \in \mathcal{J}$ such that for all $\alpha > 0$ we have $|\chi(\alpha S)| \leq v(\alpha |T|)$.
- (5) There exists $T \in \mathcal{J}$ such that for all $\alpha > 0$ we have $|\gamma(\alpha S)| \le \mu(\alpha |T|)$.

Proof. We first show that $N = \operatorname{diag}(\lambda_n) \in \mathscr{J}$. Indeed we have $|\lambda_1 \dots \lambda_n| \leq s_1 \dots s_n$ where $s_n = s_n(S)$. Thus $|\lambda_n| \leq t_n = (s_1 \dots s_n)^{1/n}$ so that $N \in \mathscr{J}$ by geometric stability. Hence (2), (3) and (4) are equivalent by Theorem 3.1.

It is clear that (4) implies (5) (replace T by eT). Let us prove that (5) implies (3). We can suppose that $s_n = s_n(T) \ge s_n(S)$ for all n, and let $t_n = (s_1 \dots s_n)^{1/n}$. Then

$$|\lambda_1 + \dots + \lambda_n| \leq |\sum_{|\lambda_k| \geq s_n} \lambda_k| + ns_n$$

$$\leq s_n |\chi(s_n^{-1}S)| + ns_n$$

$$\leq s_n \mu(s_n^{-1}|T|) + ns_n$$

$$\leq s_n \sum_{k=1}^n \log(s_k/s_n) + ns_n$$

$$\leq ns_n \log(t_n/s_n) + ns_n.$$

Hence since $\log x \le x$ for all $x \ge 1$,

$$\frac{|\lambda_1 + \dots + \lambda_n|}{n} \le t_n + s_n$$

and by the geometric stability of the ideal we have (3).

To conclude the proof we establish equivalence of (1) with (5). To this end note that if S = H + iK with H, K hermitian then by Theorem 2.7, there is a constant C_2 so that, for $\alpha > 0$,

$$|\Re \chi(\alpha S) - \chi(\alpha H)|, |\Im \chi(\alpha S) - \chi(\alpha K)| \leq C_2 \mu(2\alpha |S|).$$

Now suppose first that H, K both satisfy (5) so that there are operators $T_1, T_2 \in \mathscr{J}$ with $|\chi(\alpha H)| \leq \mu(\alpha |T_1|)$ and $|\chi(\alpha K)| \leq \mu(\alpha |T_2|)$ for $\alpha > 0$. Pick an integer n > 2 C_2 and consider the operator $W = T_1 \oplus T_2 \oplus V$ where V is the direct sum of n copies of 2|S|. Then $|\chi(\alpha S)| \leq \mu(\alpha |W|)$ for all $\alpha > 0$. Conversely if S satisfies (5) for an appropriate operator T then H and K satisfy (5) for T replaced by $T \oplus V$ it follows S satisfies (5) if and only if both H and K satisfy (5). Now if $S \in \text{Com} \mathscr{J}$ then H, $K \in \text{Com} \mathscr{J}$ so that by Theorem 3.1 H, K satisfy (2)–(4) and hence also (5). Therefore (1) implies (5).

Conversely if (5) holds for S, then both H, K satisfy (5) and hence also (2)–(4); so by Theorem 3.1, H, $K \in \text{Com } \mathcal{J}$ and hence $S \in \text{Com } \mathcal{J}$ i.e. (5) implies (1). \square

References

- [1] J.H. Anderson, Commutators in ideals of trace-class operators II, Indiana Univ. Math. J. 35 (1986), 373–378.
- [2] J.H. Anderson and L.N. Vaserstein, Commutators in ideals of trace-class operators, Indiana Univ. Math. J. 35 (1986), 345–372.
- [3] K. J. Dykema, T. Figiel, G. Weiss and M. Wodzicki, The commutator structure of operator ideals, preprint 1997.
- [4] *K.J. Dykema* and *N.J. Kalton*, Spectral characterization of sums of commutators II, J. reine angew. Math. **504** (1998), 127–137.
- [5] I.C. Gohberg and M.G. Krein, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monogr. 18, Amer. Math. Soc., Providence 1969.
- [6] N.J. Kalton, Trace-class operators and commutators, J. Funct. Anal. 86 (1989), 41-74.
- [7] C.M. Pearcy and D. Topping, On commutators of ideals of compact operators, Michigan Math. J. 18 (1971), 247–252.
- [8] G. Weiss, Commutators of Hilbert-Schmidt operators II, Integral Equ. Op. Th. 3 (1980), 574-600.
- [9] G. Weiss, Commutators of Hilbert-Schmidt operators I, Integral Equ. Op. Th. 9 (1986), 877-892.

Department of Mathematics, University of Missouri, Columbia, Mo. 65211, U.S.A. e-mail: nigel@math.missouri.edu