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Spectral characterization of sums of
commutators I

By N.J. Kalton') at Columbia

Abstract. Suppose ¢ is a two-sided quasi-Banach ideal of compact operators an a
separable infinite-dimensional Hilbert space # We show that an operator Te # can be
expressed as finite linear combination of commutators [ 4, B] where 4 € ¢ and Be #(H)
if and only if its eigenvalues (4,) (arranged in decreasing order of absolute value, repeated
according to algebraic multiplicity and augmented by zeros if necessary) satisfy the con-

1
dition that the diagonal operator diag {— (A4 + -+ 4,)p is a member of # This answers
n

(for quasi-Banach ideals) a question raised by Dykema, Figiel, Weiss and Wodzicki.

1. Introduction

Let # be a separable infinite-dimensional Hilbert space, and let ¢ be a (two-sided)
ideal contained in the ideal of compact operators 7 () on #. We define the commutator
subspace Com ¢ to be the closed linear span of commutators [A, B] = AB — BA where
Ae ¢ and Be #(). It has been shown by Dykema, Figiel, Weiss and Wodzicki in [3]
that if 4, and % are any two ideals then the linear span of commutators of the form
[4,,4,] where 4;€ .4 for j=1,2 coincides with the commutator subspace Com ¢ where
F= A%

Pearcy and Topping ([7], cf. [2]) showed that for the Schatten ideal # =%, when
p > 1, we have Com%, = %,. They then raised the question whether

Com®%, ={Te%, :trT=0}.

This question was resolved negatively by Weiss [8], [9]. However, Anderson [1] showed
that in the case p <1 we have Com®%, = {T€,: trT = 0}.

1) The author was supported by NSF Grant DMS-9500125.
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In [6] a complete characterization of Com®%, was obtained. It was shown that, in
the case when # =, is the trace-class, then Te Com®, if and only if Te %, and its
eigenvalues (4,(7))>-,, counted according to algebraic multiplicity and arranged in some

order satisfying that (|4,(7)[), is decreasing, satisfies the inequality

n=1

D )44 )
(1.1) 3 M<
n=1

o0 .
n

If the eigenvalue set of T is finite one may extend the sequence 4,(7T) by including infinitely
many zeroes. This extended earlier partial results in [8] and [9].

Since, for any ideal ¢ Com ¢ is a self-adjoint subspace it is clear that if 7= H + iK
is split into hermitian and skew-hermitian parts then 7€ Com ¢ if and only if H € Com #
and K € Com # Thus to characterize Com #it is necessary only to characterize the hermitian
operators in Com # In particular, the result above shows that if 7'e 4, the condition (1.1)
is equivalent to the pair of conditions that H and K each satisfy (1.1).

Recently in [3] a very general approach was developed which is applicable to any
ideal. It was shown that for any ideal # a hermitian operator H € Com ¢ if and only if

1
He ¢ and the diagonal operator diag {_(;Ll"_ +/l,,)} belongs to ¢ where again
n

A, = 4,(H) is the eigenvalue sequence as above. Although this yields an explicit test for
membership in Com ¢ by the process of splitting into hermitian and skew-hermitian parts,
it leaves open the question whether same characterization in terms of eigenvalues extends
to all operators in Com _# as in the case of the trace-class.

The aim of this paper is to show that for a fairly broad class of “nice” ideals the
answer to this question is positive. The condition we impose on an ideal # is that it is
geometrically stable. This means that if a diagonal operator diag{s,,s,,...} € # where
§; =85, = -+ = 0then we have diag {u,, u,, ...} € # whereu, = (s,...s,)"’". For any Banach
or quasi-Banach ideal (i.e. an ideal equipped with an appropriate ideal quasi-norm) this
condition is automatic. Under the hypothesis that ¢ is geometrically stable we show that

1
Te Com ¢ if and only if diag {Z(ll + -+ /1,,)} e # where 4, = 1,(T).

In a separate note, in collaboration with Ken Dykema [4], we show that then for
arbitrary ideals # this result is false and indeed there is no spectral characterization of
the subspace Com ¢

Let us note that our results do depend in an essential way on the results of [3], in
that we use their result to reduce the problem to discussion of an operator of the form
T = H + iK where H, K are hermitian.

Acknowledgement. We are grateful to Ken Dykema for valuable discussion concern-
ing the results of [3] and this problem. We would also like to thank the referee for his
comments. This work was done on a visit to Odense University and the author would like
to thank Niels Nielsen and the Department of Mathematics for their hospitality.
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2. The key results

Let T be a bounded operator on a separable Hilbert space 5# We denote by s, = s,(T),
for n =1 the singular values of T. It will be convenient to define s, for n not an integer
by s, = 5,1+ 1- With this notation we have the inequalities s,(S+ T) <s,,,(S) +5,,,(T)
and 5,(ST) = 5,/5(S5) 8,2 (T).

If T is compact we denote by 4, = 4,(T") the eigenvalues of T repeated according to
algebraic multiplicity and arranged in decreasing order of absolute value (this arrangement
is not unique, so we require some selection to be made). Note that s,(7) = 4,(|T|).

Let us suppose that /: C — C is any function which vanishes on a neighborhood of
the origin. Then we can define a functional f: 2 (s#) — C by the formula:

A=Y 1.

Lemma 2.1. (1) If f is continuous then f is continuous.
(2) If f is a Borel function then [ is a Borel function.

(3) Iffis continuous, real-valued and subharmonic then [ is plurisubharmonic on # (#),
ie. if S,Te A (A) then

R 2n R ) d@
fS) £ [ 7(S+e"T) 5.

Proof. (1) Suppose f(z) vanishes for |z]| £ 0 where 6 > 0. If Te 2 (H) then sup-
pose m is the least integer such that |4,,(T)| <J. Pick n < such that |4, (T)| < and
if m=2 then n<|4,_,(T)|. Now if 7, is a sequence of compact operators with
lim || 7,, — T'|| = 0 then by results in [5] (see p. 14, 18) we can find n, so that an ordering

(A(T))P-, of the eigenvalues of T, such that |4(T,)| <n for n=n, and k =m and
lim 4, (7,) = 4,(T) if k < m. If follows easily that f(7,) — f(T).

n— oo

(2) Observe that the set of f such that fis Borel is closed under pointwise convergence
of sequences on C. (2) follows then from (1).

(3) By (1) f is continuous and it therefore suffices to show that

)= [ fs+ern
o 27

for two finite rank operators S, 7. Hence we can suppose S, T are actually n X n matrices
for some n. Then the conclusion is immediate from Proposition 5.2 of [6]. O
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We now introduce certain functionals of the above type. We define

W= ¥ 1w = ¥ logilhl and x(T)= ¥ 4,

[An] 21 =1 [Anlz1

By the above lemma v and y are Borel functions while p is continuous. If | T'| = (T*T)'/?
the eigenvalues of | T'| correspond to the singular values of 7. Notice that if T is normal
then v(T) =v(|T|).

Notice also that each of the functionals u, v and y are ““disjointly additive” in the
sense that u(S@A T) = u(S) + u(T) etc. Here S @ T represents the operator defined on
A DA by (SOT)(x,y)=(Sx,Ty).

Lemma 2.2. For any Te A (#) we have 0 = u(T) = u(|T)).

Proof. Suppose v(T)=n. Then u(T)=log|i,... 4,| Zlogl|s,...s,| = u(|T]) (see
Gohberg-Krein p.37). O

Lemma 2.3. If S,Te X (H) then v(|S+T|) Z<vQ2|S|)+vQ2|T|). In particular if
T=H+ iK with H, K hermitian then v(H) Z2v(|T).

Proof. These follow easily from the Weyl inequalities, that
sm+n—1(S+ T)és (S)+Sn(T) O

Lemma 2.4. (1) If T is a compact normal operator with T= H + iK for H, K her-
mitian then |y (H) — Ry (T)| = v(T).

(2) If T is any compact operator and |a| £ 1 then |ay(T) — y(aT)| < v(T).
(3) If (T))j-, are compact normal operators with T; + --- + T, =0 then
(T + -+ 2 (TH =D (T) + - +v(T)).

Proof. (1) We have

(H)=Ry(T)y= Y R,

RAn< 1< |An]
The result follows immediately.

(2) For |a| =1 this is trivial. If || <1, we notice that

oy (T)—x@T)=o Y 4,

1=|an|<a™!

whence the result follows.
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(3) (Compare [3], Lemma 2.2.) Since each 7 is normal there exist self-adjoint pro-
jections P; of rank v(T}) so that y(T;) = tr (P, TP) and || P T; P || < 1. Let Q be a self-adjoint

projection of rank d < )  v(T;) whose range includes the range of each P,. Then
j=1

tr(QT,0) = tr(P,T; ) + tr((Q — P)T,(Q — P))

and so

Y M| =] ¥ w@-P)TQ~P)

lIA

Y (-1

<n-1) Y v(T). o

Since y is not a continuous function on % (H) we will now correct it to make a
continuous function. To this end we fix a nondecreasing C*-function ¢ : R — R such that
e(x)=01f x<0, and ¢(x) =1 if x = 1. We define

X(p(T) = Z )"n(p(Hogj'nD
n=1

where ¢(—o0) =0. By Lemma 2.1, g, is continuous.
Lemma 2.5. For any compact operator T, we have |y (T) — y,(T)| < ev(T).

Proof. 1(T) = 1,(T) = > (1—@(log|4,)4,. Then the result follows imme-
diately. O [2n(T) 21

Now we define a second C?-function y : R — R with the properties that y(x) = 0 if
x<0and p”(x) =e*(|@"(x)| + 2|@'(x)|) for x = 0. y is an increasing convex function,

which is linear for x =1. Thus there is a constant C; > 0 such that p(x) < C,max(x,0)
for all x.

We now prove a crucial lemma.

Lemma 2.6. Leth:C — R be defined by h(0) =0 and h(z) = p(log|z|) — xp (log]|z])
for z=+0. Then h is subharmonic.

Proof. Note that i vanishes on a neighborhood of the origin. In fact 4 is C? so we
check V?h. It is easy to check that (for z # 0),

V2(p(loglz)) = |z " (loglz]) = |z|" ' (l¢" (log|z])| + 2| ¢’ (log|z])]) -

We also have

X x
V2 (xg(log|z]) = 2W<P’(10g|2|) + W@’ (log|z]).
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Hence V2h=0. O

1
Theorem 2.7. Suppose Te H (H). Suppose T = H + iK where H = §(T+ T*) and

1
(T —T%*). Then there is a constant C, such that
i

K=—
2

| (H) =Ry (T)| = C,u[TY)

and

1 (K) =32(T)| = Cu2|TY).

1
Proof. For convenience we will define the function F(z)=-(T+ zT*). For
2
00 <2m, we have:

1 i0 1— i0
+e H_i e

FiG_
(e") 7 7

Note that each operator is normal and we also have from Lemma 2.3 that
v(IF())=2v(IT]) and v(H),v(K)=2v(T]).

Appealing to Lemma 2.4 (3),

) 1 i0 1 _ oi®
‘X(F(e‘e))—x< +2€ H>—X<i 26 K>‘§12v(|T|).

On the other hand Lemma 2.4 (2) gives that

‘X<1+e“’H>_ 1+ei9X(H)‘ Sv(H)=2v(T))

2 2
and
.1—€i6 .1—€i9
‘x(z 7 K)—l 7 1K) =2v(T)).
Hence
‘ 14" 1—e
‘X(F(e’”))— 5 1(H) —i——(K)| £16v(T]).

Integrating over 6 then gives

2n

]

0

=16v(T]).

o do 1
X(F(e‘e))E—E(X(HHix(K))
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Taking real parts we have, in particular,
2n 0 d@
A(H) Z2R [ y(F(e ))ﬂ +32v(|T)).
0
We now replace y by the smoother function g, and using Lemma 2.5 (since e < 3):

2n ) d@
1(H)=2 | qu,(F(e’G))ﬂ +44v(IT)).

Let g(z) = w(log|z]|) for z + 0 and g(0) = 0. For any operator S we can write
Ry, (S) = &(S) —h(S).

Note that 0 < g(S) < C, u(S). Thus
2n o d0 S oy d0
((H)=2C, | u(F(e) 5 =2 ] h(F@E™) o +44v(T)).
o m o 2n

Now since / is subharmonic, the functional / is plurisubharmonic by Lemma 2.1. Note
that 7 (F(0)) = h(T/2) = ¢(T/2) — Ry, (T/2). Hence, by 2.4 (2) and 2.5,

27 N ) d@
2 [ h(F() 5 2 28(T/2) = 2%, (T/2)

v

—2Ry(T/2) — 6v(T)
> —Ry(T)—8v(T).

Hence

2n ) d@
2(H)=2C, | M(F(e‘e))ﬂ + Ry (T) +44v(T)) + 8v(T).

Note that for every n we have s,(F(¢'’)) <'s,,,(T) so that u(F(e")) <2u(|T]). We thus
can simplify, using Lemma 2.2, to

A(H) = Ry(T) +4C,u(|T)+44v(T)) +8v(T).
Now observe that v(7) < (log2) ' u(2T) so that for a suitable constant C, we have
1(H) =Ry (T)+ Cou2|T)) .

We now consider — 7, iT and —iT in place of T and the theorem follows. O
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3. The main results

Now suppose that ¢ is a two-sided ideal contained in 2#"(H). We denote by Com ¢
the linear subspace of _# generated by all operators of the form [S,7]=ST—TS for
Te ¢ and Te #(A). It is shown in [3] that if .4 and .% are ideals such that 4.9, = ¢
then Com # coincides with the linear span of all [.S, 7] where Se€ .4, and T e .%. It is clear
that if T= H + iK with H, K hermitian then 7€ Com ¢ if and only if H, Ke Com ¢ One
of the main results of [3] characterizes the hermitian operators in Com ¢ We now state
this result together with a useful rewording.

Theorem 3.1. Suppose ¢ is an ideal of compact operators on H#. Let N be a normal
operator in ¢, and let 2, = 1,(N). Then the following conditions on N are equivalent:

(1) NeCom ¢
: 1,
2 dlag{;(/ul +o 4 )vn)}ej.
1
(3) There exists Te ¢ so that —|A,+ -+ 4,| = 5,(T) for each ne N.
n

(4) There exists Te ¢ such that for all « > 0 we have |y (aN)| Zv(a|T|).

Proof. The equivalence of (1) and (2) for hermitian operators is proved in [3]. We
will first establish the equivalence of (2), (3) and (4).

(3) clearly implies (2). We now check that (2) implies (3). For m = n we have, by an
elementary barycentric calculation,

1 1,
_|j’1+ +;"m| émax<_|/t1+ +}"nlosn(N)>
m n

. 1
Let T = diag {u,} where u, = max—|4, + -+ + 4,,|. Then the above shows that 7€ # and
m>=n M

1
of course — |4, + - + 4,| = 5,(T).
n

Next we show (3) implies (4). We can assume that 7 in (3) satisfies s,(7) = s,(N)
for every n. Then if o™ !> s,(T) we have y(«N)=0 and v(x|T|) = 0. Otherwise let n be
the largest integer such that s,(7) = «~'. Then v(x| T |) = n. Now suppose m is the largest
integer so that s, (N)=a"!. Then 1<m<nand y(aN)=a(ly+ -+ 4,).

Thus we have
[x(@N)| S o|iy+ -+ 24, (| +n+1
S(m+Doas, (T)+n+1
S2m+1D)=Z4v(©@|T)).
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This yields (4) with T replaced by T®@TH® TP T.

Now assume we have (4); we may assume 7 is positive. We again assume
s,=5,(T)=s,(N) for all n. Now for any ne N we have:

, 1
[+ ] S5y —

T Al

[Z1c] > sn

S| =

Suppose ¢ > s, is smaller than any |4,| > s,. Then
1 a 1
_|)“1+“.+/1n|§sn+_|x(o- N)|
n n

However |y (6 *N)|<v(6™'T) <n, so that

1
ZMI—# e+ A Ss, 0.
Letting ¢ tend to s, yields

1
_|/11+.“+ln|§2sn
n

so that (3) holds if T is replaced by 2T.

Finally if N = H + iK where H, K are hermitian then we have by Lemma 2.4 (1) that
lx(aH)— Ry(@N)|,|x(2K)—Iy(aN)| < v(eN). Hence N satisfies (4) if and only if both
H and K satisfy (4). As remarked above, the results of [ 3] imply that for hermitian operators
(1) and (2) and hence also (1) and (4) are equivalent. Thus (1) and (4) are also equivalent
for normal operators. O

Now let us introduce a stability condition on the ideal # We will say that ¢ is geo-
metrically stable if whenever diag(s,,s,,...) € # with s, = s, = --- then diag(¢,,?,,...) € ¢
where 1, = (s, ...s,)'"

We say that ¢ of compact operators is a quasi-Banach ideal (or Schatten ideal) if it
can be equipped with a complete quasi-norm 7 — ||T'||, so that we have the ideal pro-
perty [|[AT B, = || A1, [Tl 41| Bll, whenever 4, Be (). Here we denote the operator
norm of A4 by ||4]|,.

Proposition 3.2. If ¢ is a quasi-Banach ideal then ¢ is geometrically stable.
Proof. We can assume for some 0 <r =1 that || ||, is an r-norm i.e.

IS+TN% =I1ISI + Tl
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Suppose D = diag(s,) € #, where s; =5, = ---. We recall our convention that s, = s, ;

where r >0 is not an integer. Then for each ke N we have ||diag (s, ,1) || , < 2"7(| D] ;.

Pick 0> 1/r. Then by completeness the series Y 2~ diag (8,/2%) converges in £ Thus

0 k=0 o0 1/r
diag(u,) € # whereu, = Y 27%s, .. In fact ||diag(u,)|| , < ( Y 2"‘1’9’> | D]l ,. Now
k=0 k=0

suppose 1 < j<n. Pick ke N so that 27%n < j <2.27%n. Then

2n\’
Sjésn/2k§2k6un§<7 u, .

Hence
0_.0 -0
1, £2°n°(n!)"%"u, < Cu,

for some constant C. This implies diag(z,) € .# and further that ||diag(z,)[| , < C | D|| , for
some constant C depending only on r. 0O

We now prove the main result of this note, which, for the special case of geometrically
stable ideals, answers positively a question posed in [3]. It should be noted that in [4] it
is shown that for singly generated ideals geometric stability is a necessary and sufficient
condition for the equivalence of (1) and (2) in Theorem 3.3. Thus in general (1) and (2)
are not equivalent.

Theorem 3.3. Suppose ¢ is a geometrically stable ideal of compact operators on H
(in particular this hold if ¢ is a quasi-Banach ideal). Let S€ ¢ and let A, = A,(S). Then the

following conditions on S are equivalent:

(1) Se Com ¢
. 1, ,
2) dlag{Z(Aﬁ- —I—A,,)}ej.
1
(3) There exists Te ¢ so thal;lll—l— o4+ 2, =,(T) for each ne N.

(4) There exists T e ¢ such that for all o« > 0 we have |y (aS)| Z v(x|T)).
(5) There exists Te ¢ such that for all « > 0 we have |y («S)| < u(a|T).

Proof. Wefirstshow that N = diag(4,) € # Indeed we have|4,... 4,| < s, ... s, where
s, =5,(S). Thus |A,| < t,= (s;...5,)"/" so that Ne ¢ by geometric stability. Hence (2), (3)
and (4) are equivalent by Theorem 3.1.

It is clear that (4) implies (5) (replace T by eT'). Let us prove that (5) implies (3).
We can suppose that s, =s,(T) = 5,(S) for all n, and let ¢, = (s,...s,)'". Then

[t A=Y Al +ns,

[ =

< syl x(sy ')+ ns,
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< 5,005, 1T ) + s,

é Sy Z log (Sk/sn) + nsn

k=1
< ns,log(t,/s,) + ns,.
Hence since logx < x for all x > 1,
4+
—n| é tn+sn
n

and by the geometric stability of the ideal we have (3).

To conclude the proof we establish equivalence of (1) with (5). To this end note that
if S =H+ iK with H, K hermitian then by Theorem 2.7, there is a constant C, so that,
for o >0,

Ry (@S) — (o H)|, [Ty (aS) — x(@K)| = Con(2afS]) .

Now suppose first that H, K both satisfy (5) so that there are operators 7;,7, € #
with |y (e« H)| = p(x|T;]) and |y («K)| = u(x|T,|) for « > 0. Pick an integer n >2C, and
consider the operator W=T,® T, ® V where V is the direct sum of n copies of 2|S|.
Then |y (a«S)| = u(x|W]) for all o > 0. Conversely if S satisfies (5) for an appropriate
operator T then H and K satisfy (5) for T replaced by T@® V' it follows S satisfies (5) if
and only if both H and K satisfy (5). Now if Se€ Com ¢ then H, Ke Com ¢ so that by
Theorem 3.1 H, K satisfy (2)—(4) and hence also (5). Therefore (1) implies (5).

Conversely if (5) holds for S, then both H, K satisfy (5) and hence also (2)—(4); so
by Theorem 3.1, H, Ke Com _# and hence S e Com ¢ i.e. (5) implies (1). O
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