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On subspaces of L' which embed into ¢,

By G. Godefroy at Paris, N.J. Kalton at Columbia and D. Li at Orsay

I. Introduction

The subspaces of LP(1 < p < oo, p + 2) which are nearly isometric to subspaces of 7,
have recently been characterized in [17]. If X is a closed subspace of

LA([0,1]) (1<p<o0,p*2),

then the unit ball By of X is compact in the metric induced by the L'-norm |}.}}, if and
only if for any ¢ > 0, there exists a subspace X, of £,(N) =/, such that d(X, X,) <1+ ¢
([17], Th. 5.4).

In the present work, we address the corresponding question when p = 1. Specific
difficulties occur in that setting, namely the conditionality of the Haar basis in L,, the non-
reflexivity of the spaces involved, and the failure of the local convexity in the spaces
L%(0 = g <1). These obstructions lead us to assume the approximation property, to consider
w*-closed subspaces of #,, and to assume local convexity of the topology t,, of convergence
in measure on ||.||,-bounded sets (note that by Hélder’s inequality, t,, coincide with the
topologies induced by L, ¢ <1, on ||.]|;-bounded sets). Examples show that we cannot
dispense with the local convexity assumption.

Our main result (Theorem 3.3) asserts that the unit ball B, of a subspace X of L’
with the approximation property is compact and locally convex for the topology of con-
vergence in measure if and only if for any ¢ > 0, there exists a w*-closed subspace X, of
71 (N) such that d(X, X,) <1+ &. These two conditions are also shown to be equivalent to
the fulfillment of the unconditional metric approximation property and the 1-strong Schur
property.

As consequence of Theorem 3.3 we obtain a satisfactory description of the subspaces
of L' whose unit ball is compact locally convex in measure (see Corollary 3.5). However
there exist subspaces of L! whose unit ball is compact but not locally convex in measure
(Theorem 4.1). Our construction follows the lines of an example from [2]. An alternative
approach, which consists into replacing the p-stable random variables used in [2] by
simpler random variables with the same “tail”’, was provided by M. Talagrand [28] who
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kindly allowed us to reproduce it here. The basic idea for constructing such “twisted”
spaces is the concept of ““needle points” introduced in [23]. We refer to [18] for recent
progress related to this technique. How pathological the subspaces of L' whose unit ball
is 7,-compact can be is not clear (see Question 2).

We now turn to a detailed description of our results. Section 2 is devoted to investi-
gating, for nicely placed subspaces of L' (i.e. for subspaces whose unit ball is ,-closed
in L), the structure of the space X* of linear forms on X whose restriction to By is 1,,-
continuous. This space is an M-ideal in its bidual, and is nearly a subspace of ¢, (N) when
By is t,-compact (Proposition 2.1). It is a predual of X when X has the unconditional
metric approximation property (Proposition 2.4), and also when By is 7,-compact locally
convex (Lemma 2.7). In fact, any separable space with the unconditional metric approxi-
mation property and not containing ¢,(N) is the dual of a u-ideal (see Proposition 2.8).

Section 3 starts with a representation lemma for the duals of subspaces of ¢, (N) with
the metric approximation property (Lemma 3.1). A consequence of this lemma is that a
subspace of ¢, (IN) with the metric approximation property is isomorphic to a quotient of
¢, (N) if and only if its dual embeds into L' (Proposition 3.2). We do not know whether
this partial converse to the Alspach-James theorem ([1], [14]) holds without assuming
(MAP) (Question 1). Theorem 3.3 provides an analogue for p =1 of [17], Theorem 5.4.
Corollary 3.5 somehow means that the subspaces of L' whose unit ball is t,-compact
locally convex are close to the “trivial ones”, that is, to w*-closed subspaces of copies of
¢, generated in L' by a sequence of disjoint indicator functions.

Section 4 provides examples of subspaces of L' whose unit ball is 7, -compact but
not locally convex (Theorem 4.1). The constructions rely heavily on the weak and strong
laws of large numbers, and their proofs. The properties of the spaces we construct are
gathered in Theorem 4.2. They are in particular subspaces of L! with the 1-strong Schur
property, which embed into #, isomorphically but not nearly isometrically, and whose
unconditional constant is exactly 3. We conclude our work with two open problems.

Notation. We denote by L! = L1 (Q, X, P) a separable L*-space of some probability
P. The topology of convergence in measure is denoted 7,,. It is defined by the distance

dn(f.8) = !)If—gl/(lﬂf—gl)dp-

A subspace X of L! is nicely placed (see [8], [13]) if its unit ball is 7, -closed in L!. The
bidual L*** of L! can be written

L'™=1'®, L}
where @; means that
N+ sll = lfull +{Is]]
forallue L! and se L!. We denote by n = L'** — L! the projection with kernel L} (some-
times called the Hewitt-Yoshida projection) obtained by applying the Radon-Nikodym

theorem on the spectrum of L®. We recall that X is nicely placed if and only if r (X*++) = X
([4]; see [13]). If X is nicely placed, we denote
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X* = {x*eX* x}y, is1,-continuous} .

The space X * is a closed subspace of X *. We denote by B, the closed unit ball of a Banach
space ¥, and by w* the weak-star topology on Y*. The w* topology on #, (N) is always
the weak-star topology associated to its natural predual ¢, (N). The subspaces we consider
are always norm-closed.

An approximating sequence {R,} on a Banach space X is a sequence of finite rank
operators such that lim||x — R, x|| = 0 for all xe X. A separable space X has the uncon-
ditional metric approximation property (UMAP) if there exists an approximating sequence
on X such that lim{|7/— 2R || = 1 (see [5]). The 1-strong Schur property is defined before
Theorem 3.3. We refer to [13] for M-ideal theory and the part of isometric theory of
Banach spaces which is relevant to our study. Our reference for the classical notions of
Banach space theory is [20].

Part of the results of the present paper have been announced in [31].

Acknowledgement. This work was done while the first and last-named authors were
visiting the Department of Mathematics of the University of Missouri at Columbia. It is
their pleasure to express their warmest thanks to the Department of Mathematics of
U.M.C. for its hospitality and support.

I1. Preliminary results

Let X be a nicely placed subspace of L1, i.e. a subspace whose unit ball is t,,-closed in
L!. We denote

X* = {x*e X*; x}y, is 1,-continuous} .
With this notation, we have -

Proposition 2.1. The space X* is an M-ideal in its bidual. If moreover By is t,-com-
pact, then for any ¢ > 0, there exists a subspace Y, of c(N) such that dist(X *Y)<1i+e

Proof. We identify X ** with X+ < L'**. Since X is nicely placed, we have (see [8],
[13])
X** = XO,X,

with X; = X+t~ L}, and by [9], Lemma 1.2
X*=(X),.
We denote
Z=X"=x""
and
Y=ZnX=(X"),.

4 Journal fir Mathematik. Band 471
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The space Y is nicely placed since

By = Byn[[{x*71(0); x*e X*}].

Thus we have

1) Ytt=Y@®, (Y LY.
We claim that

2 Z=Y® X,.

Indeed, Z contains Y and X|. On the other hand, any x** € Z can be written x** = x + s**,
with x e X and s**e X, and then x = x** —s**eZnX =Y.

By (1), we have
X/Y)** =(X/Y) @, (X,/Y,)
with Y, = (Y*++~ L}). We claim that (X,/Y,) is w*-closed. Let Q = X — X/Y be the quotient
map, and let (¢,) be an ultrafilter in (X, /Y,) with ||7,|| <1 and 7 = w* — lim(z,). Pick (x**)
in By_such that Q**(x}*) = t,, and let x** = w* — lim (x}*).

Clearly, x** € Z. Hence by (2), x** = y + s** with y € Y and s** € X,. We have now

t=Q"(x*) =00+ 0**(**)
= Q**(s**)

hence e Q**(X,) = (X,/Y,), and the Banach-Dieudonné theorem concludes the proof of
the claim.

We have now that (X/Y) is the dual of an M-ideal, namely the space
X/ Y) s (X/Y)*.
If we identify (X/Y)* with Y' £ X*, we can write
X,/ Y =Y (X)) =((XH* nx*)=Xx*

and thus X * is an M-ideal in its bidual Y.

Let us assume now that B, is 7,,~-compact. By the above, we can identify

(X*)*=Xx/Y.

Let (v,) be a sequence in (X/Y) such that lim(}{v,}|) exists and w* — lim(v,) = 0. Let (x,)

be a bounded sequence in X such that Q(x,) = v,. We still denote (x,) a 7,-convergent
subsequence, and x = 1, — lim(x,).
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For any x* e X *, we have
x*(x) =limx*(x,) = limx*(v,) =0
hence x €Y. Since 1,, — lim(x, — x) = 0, we have for any ue X and any yeY

lim{lu+y+ (x,— 0l = lu+ yll + lim]| x, — x|
2 1@l +1lim||v,l,

therefore
im || Q) + v,[l 2 | Q@) + lim|jv, ||,
that is, for any ve (X *)* = X/Y,
3) lim|{o + v,{| Z flv]| + lim o, .
Condition (3) means that X * satisfies the property (m¥) defined in [17]. It follows that
X* has the property (m) (see [19], proof of Prop. 2.3). Indeed let {x,} be a sequence in
X* with w—lim(x,) = 0. We pick xe X* and x* e (X*)* with ||x*|| =1 such that
llx, + X1l = x3 (x, + x).

We may and do assume that w* — lim (x}*) = x*. By (m}), we have

12 Tim |lx*]] = ||x*]| + Tm [[x} — x*||
and since
Tim | x, + x|} = Tm [x* + (cf — )] (x, + %)

= Tl—l'i'l_ [(x: - x*) (xn) + X* (x)] 5
it follows that

lim || x, + x|| < max(lim ||x, |, | x]}) -
On the other hand, we clearly have
)l < lim|lx + x,|| < Hmflx+ x,|l -
Pick y* e (X *)* with ||y¥|| =1 such that
Y (xn) =[xl -
We may and do assume that w* —lim(y¥) = y*. By (m}), we have
fim || ¥ — y* || S 1ly*1l + HEmlyy — y* |l

=lim|lyrfl £1

and thus
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lim || x, || = Tim (7% — y*)(x,,)
= lim (y — y*) (x, + X)
< Tmlix, + x| .
We proved that for all x e X* and any sequence (x,) in X * with w — lim(x,) = 0, we have
lim || x, + x| = max (|| x||, lim || x, |}) .

This means that the space X* satisfies the property (m_) defined in [17], and then an
application of [17], Th. 4.5 concludes the proof. O

Throughout this section, we use the notation X, = X+~ L! with X a nicely placed
subspace of L.

Lemma 2.2. For any xoe X (Bx,)*s there exists a net (x) in By such that:
@) 7,—lim(xp) =0,
(i) w—lim(x;) = x,.

Proof. 1t follows from [4] (see [13]) that for any x** € By , any w*-neighbourhood
W of x** in By.., and any t,-neighbourhood ¥ of 0 in By, one has ¥ W+ §.

Since x, belongs to the w*-closure of By , it follows that ¥~ U + @ for any w-neigh-
bourhood U of x, in By and any t,-neighbourhood ¥V of 0, and this is a restatement of
Lemma 2.2. O

Lemma 2.3. Let X be a nicely placed subspace of L* with the bounded approximation
property. Let (R,) be an approximating sequence of finite rank operators, and let
o =lim||I—2R,||. Then

Xn(By)* = («—1)/2.By.

Proof. Pick xoe Xn (Bx,)*, and let (x;) be a net in By satisfying the conditions of
Lemma 2.2. We put

Zg=Xo— Xg.
Since lim(zz) = 0, we have for any k =1
) li;n IRy zpll = 0.

Pick ¢ >0, and fix kK =1 such that {[x, — R x,|| <& and ||/ —2R,|| < a + &. By (4), we
have

li;n N —=2R)(xog —25) — (xg —2R, xo — 2g)|| = 0
and thus

En—ﬂ“(1~ 2R (xg —zp) — (—xo —zp)|l = 26,
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hence
Timy [1(7 ~ 2 R,) (xo — 2) Il = 10 + 2,1l < 2¢,
therefore

B [l xo + 2,11 < @ + ) Tl xo — 2,11 + 2¢,

and since € > 0 is arbitrary

(5) ﬁﬁllxo+2ﬂ|l§afﬁllxo—2gli
Observe now that x, — z; = x,, and x, + z; = 2x, — x;. Since 1,, — lim (xz) = 0, we have
lim|2x — x4l = [| 2ol + Tim | x, |

Therefore (5) implies that
1201l + im|| x| < alim|]x,]l,
that is,
[x%oll £ (0= 1)/2.Im x| < (@~ 1)/2. T

The following application of Lemma 2.3 should be compared with Prop. 2.8, to be
shown below.

Proposition 2.4. Let X be a subspace of L* with the unconditional metric approxima-
tion property. Then we have X+ = X @ X,, with X, = (X+* n L}) a w*-closed subspace of
X*+. Hence X = (X *)* is the dual of an M-ideal.

Proof. By [10], Cor. 6.13 and Prop. 8.2, any subspace X of L! with (UMAP) is
nicely placed. Let us outline a direct proof. The following claim is implicitely in [5]:

Claim 2.5. Let Z be a separable Banach space with (UMAP) which does not contain
co(N). Then there exists a projection P = Z** — Z such that |I1—- 2P| = 1.

Proof of Claim 2.5. By [5], Proof of Th. 3.8, if X has (UMAP) there is an approxi-
mating sequence (7,) such that I, 7, =T, if k > n =1 with

+

[TWI-2TH=y<ww

n=1
which implies that if we let 4, =7, — T, _,(n 2 1) with T, = 0, then
N

Y siAi”;Ngl,sizil} <v.

i=1

(6) sup {

Since Z P ¢, (N), (6) shows that

Px** = ||| = lim Ty*x**
N—-+x
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exists for all x** e Z**. Since (7,) is an approximating sequence, we have P? = P, and
lim||7—2T7,|| =1 implies that ||[I—2P||=1. 0O

We now return to the proof of Proposition 2.4. Let P = X** — X be the projection
provided by Claim 2.5. We have to show Ker(P) € L. Pick s = a+ ¢ in Ker(P) with
IIsll =1, ae L' and o€ L!. 1t suffices to show ||a|| = 1.

Pick § > 0 arbitrarily. Since se Ker(P), we have ||x + s}| = || x — s|| for any xe X.
The local reflexivity principle now provides a net (x,) in By such that

@) w* —lim(x,) = s,
®) lx,—all =1 +d)llall
for all o, and for all xe X

) lim (|l x + x,f| = flx = x,[[) = 0.

Pick f*e X* with || f*{|=1 and f*(s)>1—46. By (7) we may and do assume that
f*(x,)>1—¢ for all a. For a given «,, there exists by (9) «, such that
1 Xag + Xg Il =0 = Mgy — X, I
Hence
1 Xa — X, I 2 f* (g + X4,) — 0
=2-36.
But by (8), we have
20+ 9ol 2 Nl x,, — all + |1x,, — all
2 (1% = X, I
=22-36

and this shows [|g|| =1 since 6 > 0 is arbitrary. We have shown that X is nicely placed,
that is, X'+ =X @, X,.

To conclude the proof of Proposition 2.4, we observe that we may apply Lemma 2.3
with o = 1 since X has (UMAP), hence

(10) By *nX=1{0}.

By (10), By, is w*-closed. Indeed, let v = x + s be in B_x,*, with x € X and s € X,. Since
llvl] 2 ||s]l, we have (—s5) € By, and thus x/2 = (f—5)/2 belongs to (B_x'*mX), hence
x =0 and ve By, The Banach-Dieudonné theorem then shows that X, is w*-closed.
Finally, X* = (X,), (see [9], lemma 1.2) hence X, = (X *)* and X = (X *)*, with X* an
M-ideal in its bidual. 0
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Lemma 2.6. For any nicely placed subspace X of L', the following sets are identical:
XnBy* = ({V"; V1,-openin By,0eV}
= () {conv!'!(V); V t,-open in By,0eV}.
Proof. In the above notation, the inclusion
Xn By = {F"}
is immediate from Lemma 2.2 and the inclusion
N (7" o)

follows from Mazur’s theorem. To prove the last inclusion, pick x, e N conv! (V). If
Xo XN (BXS)*, there is f* € X* such that

S*(xo) >y =sup{f*(t);te By }.
Since x, € ﬂ conv''!(V), we can find a sequence (x,) in By such that
(11) lim f*(x,) 2 f*(xo)
and
(12) dp(x,,0) 27",

By (12) and [4] (see [13]), every w*-cluster point ¢ of (x,) in X** belongs to X,. But by
(11), f*(&) = f*(xy) > v, a contradiction. 0O

Lemma 2.6 is used below for comparing t,, with locally convex topologies in By.

Lemma 2.7. Let X be a nicely placed subspace of L. The following assertions are
equivalent:

(i) There exists a locally convex Hausdorff topology on X which is coarser than t,,
on B,.

(ii) By is a(X, X *)-compact.

(iii) {0} is the intersection of the convex t,-neighbourhoods of 0 in By.

If moreover By is 1,-compact, then the above conditions are also equivalent to:

(iv) The weak topology of X is finer than t,, on By.

(V) There exists a locally convex Hausdorff topology which coincides with t,, on By.

(vi) O has a basis of t,-neighbourhoods in By consisting of convex sets.
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When the conditions (iv), (v), (vi) are satisfied, we say that By is 1,-compact locally
convex.

Proof. (i) = (iii) is clear and (ii) = (i) follows from the definition of X *.
(iii) = (ii): We pick x e B,\{0}. By (iii), there exists a convex T, -neighbourhood ¥

of 0 in By such that (x/2) ¢ V. We claim that x ¢ !"l. Indeed if not denote (x,) a sequence
in ¥ such that lim| x — x,|| = 0. Since (x — x,)) € V' for n large enough, and

x/2=(x,+(x—x,))/2
we have (x/2) e V' by convexity of ¥V, a contradiction. We have therefore shown that
(13) {0} = N {7"; ¥ convex t,-neigh. of 0 in By}

and thus
() {coav!"|(V); ¥ t,-open in By, 0 ¥’} = {0} .

Hence by Lemma 2.6 we have
(10) Xn B, * = {0}
and (10) implies like in the proof of Proposition 2.4 that X = (X *)*, which is (ii).
(iv) = (i1): By Lemma 2.2, (iv) implies (10), and (ii) follows as above.
The implications (v) = (vi) and (vi) = (iii) are obvious.
We now assume that By is 1,,-compact.

(i) = (v): By definition of X ¥, the topology 1, is finer than the topology ¢ (X, X *)
on B,, and thus these two topologies agree by compactness.

(v) = (iv): By compactness, 7, agrees on B, with the topology of pointwise con-
vergence on the space of 7,-continuous linear forms, and that topology is coarser than
the weak topology. O

Let us mention an amusing consequence of Lemma 2.7. Let us call “a weak topo-
logy” on X a topology of pointwise convergence on a separating subspace of X*. Then,
if X is a subspace of L* such that B, is t,-compact, the topology t,, coincides on B, with
a weak topology, if and only if it is coarser on B, than some weak topology, if and only
if it is finer on B, than some weak topology.

We conclude this section with a general result on spaces with (UMAP) which do
not contain ¢, (N).

Proposition 2.8. Let X be a separable Banach space not containing c,(N) with the
unconditional metric approximation property. Then X** = X @, X,, where X, is a w*-closed
subspace of X** such that ||x + s|| = ||x — si| for all xe X and all s€ X,.
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Proof. We let X = Ker(P), where P is the projection provided by Claim 2.5. It
remains to show that X, is w*-closed. This amounts to show that X By * = {0}. Pick
Xo€ XN B *. By local reflexivity, there exists a filter (x,) in By such that

Xo = w — lim(x,)
and forall xe X

(14) Hm(jlx + x| = [lx—x,[) =0

Since X has (UMAP) and w — lim(x, — x,) = 0, the proof of (5) (see the proof of Lemma
2.3) shows that for all ye X,

(15) lim (|| y + (xo = X = lly = (o = x)1) = 0.
Pick now n 2 1. By (14) and (15), we have

B || 2nx0 — x| = Fm |20 — D)x + (xp — %)
= Tim|| (21 — 1) x, — (xp — )l
= TmI2(1 - 1)xo + x|
= Tmli201 - D)xo— x|l

hence lim||2nx, — x,|| = lim|| x,|| for any n =1 and it follows that x, = 0. O

Remark 2.9. By [10], Cor. 9.3, Proposition 2.8 implies that a separable space not
containing ¢, (N) with (UMAP) actually has the commuting (UMAP). Therefore, Pro-
position 2.8 answers positively [10], Question 8. In fact, it has recently been shown ([11])
that any separable Banach space with (UMAP) has the commuting (UMAP). More pre-
cisely, if a separable Banach space X has (UMAP), then there exists an approximating
sequence (R,) such that lim||7/—2R, || =1and R,R,=R,R, =R, if k> n.

II1. Main results
We start with a representation lemma for the duals of certain subspaces of ¢, ().
Lemma 3.1. Let V be a subspace of c,(N) with the metric approximation property.
Then for any n > 0, there exists a sequence {E,} of finite-dimensional subspaces of V* and

a (w* — w*)-continuous linear map

T=V*> (L®E,),
such that for all x*e V'*

A=mlx* = ITx*)| = A +mlix*|.

Proof. Pick & > 0, to be chosen later. Since V < ¢, (N) has (MAP), there exists ([6])
an approximating sequence {S,; k 2 0} with S, = 0 such that if R, = S, — S, _,,
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N

2 &R,

j:

1) sup {

CN21, |s|—1}§1+8/2.

Since V* 3 ¢;(N), (1) and Bessaga-Pelczynski’s theorem imply that

in the strong operator topology, and this implies that for all x* e V'*,
Y. RI(x*)

2 lim {sup{ nz k}} =0.
k—+w ]=k

We now use a “skipped blocking™ argument (see [3]).

Claim 3.2. Forany a, > O0andany k, 21, there exists k, > k, such that for allk 2 k,
and all u,ve By

ZR(u)+ Z R;(v)

j=k2

<1+¢/2+a,.

Indeed since the R;s are finite rank operators, there is k; € N such that for all i 2 k}

ki

2 Ry

i=1

€)

<a1

where (e}*) denotes the coordinate functionals. By (2), there is k, > k, such that for all
k=k,and all i <k;

k
2. Rf M

j=k2

)

<a1

and then Claim 3.2 follows from (1), (3) and (4).

We proceed along the lines of the proof of Claim 3.2 to find k, > k, such that for
all k 2k, and all w,ve By,

k1
(5) Z R;(u) + Z R | <1+¢/2+a,
j=k3
k2
(6) Z R;(w) + Z R <1+e/2+a.
ji= J=k3

Picking a, > 0, we then find k, > k, such that for all £ = k, and all u,v, we B, (5) and
(6) are still true with k, substituted to k,, and moreover

kx k3

ZR(u)+ Y. R+ Z R;(w)

j= j=k2 j=ka

<1l+¢g/240,+a,.
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Continuing along these lines, with o, > 0 such that ) a, <¢/2, we show the existence of
a sequence k, <k, <k, ... such that if we let

then for all 1 <a,<b;<a,<b, <+ <ag,<byand all u,u,,...,u, in By,

I3
3 (T~ T)w)

<1l+eg,

it follows that for any x*e V'*

(M (1+e)

¢
2 (L —TH )
i=1

14
2 X N@ = THEII

We first prove Lemma 3.1 when V* has a finite cotype ¢ by the technique of [17], Proof
of Th.5.2. Let B, =T, ,, — T, and pick e N, > 1 to bechosen later. For0 S s <t — 1, let

A,= Y B,

Jj=s(mod.t)

W, = y B,.
k—1)t+s<j<kt+s

Pick x* e V* with || x*|j = 1. By (1), for all |A,| =1,

t—1
Y AAXM [ A +e),
=0

s

thus

t—1 1/q
( 2 HA;"(x*)H"> <C,(1+e=C,

therefore

t—1
Yo NAXxMI s Cet e
=0

s

By (7) and the triangular inequality, we have for all 5,0 S s <11,

1l 4X (x9S f 1WA S A+ (1 + [ 42N -
Summing up on s, we get )
(—Cri s TS IHAGIS A+ o1+ Cem),
that is, e
®) t—crinsl 5T Ima el s+ 9+ Crmt).

[ Y=0s=0
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We set now E; = W.*(V'*), and we define

T=V*> ()Y ®E. ),

k,s

by

1
T(x*) = (; W,;';<x*>)

k,s

Fore > 0 and ¢ > 1 suitably chosen, (8) implies that T satisfies the conclusion of Lemma 3.1.

If V* has no finite cotype, then (see [29]) it contains arbitrarily close copies of any
finite-dimensional space. Since V is arbitrarily close to quotients of C, ([17], Th. 4.2.; see
[15]), there is a (w* — w*)-continuous map Q*: V* —» C* with

T =n/DNx*N=NR* M = A +n/2)[|x*|)

for all x* e V*. Lemma 3.1 in the case when }* has no finite cotype clearly follows from
these two facts. O

Note that Lemma 3.1 means that any subspace of ¢, (N) with the metric approximation
property is arbitrarily close to a quotient of a ¢,-sum of its finite-dimensional quotients.

By [1], [14], any quotient of ¢,(N) is arbitrarily close to subspaces of ¢,(N). The
following application of Lemma 3.1 addresses the question of the converse. It is an open
problem to know whether Proposition 3.2 holds true without assuming that X has the
approximation property.

Proposition 3.2. Let X be a subspace of ¢, (N) with the metric approximation property.
Then:

(i) X* is isometric to a subspace of L* if and only if for any ¢ >0, there exists a
quotient X, of cy(N) such that d(X, X,) <1+ ¢.

(ii)) Pick K> 1. Then X is A-isomorphic to a quotient of cy(N) for some A < K if and
only if X* is u-isomorphic to a subspace of L' for some u< K.

Proof. If X*isisometric to a subspace of L! then for any finite dimensional subspace
E of X* and any 6 > 0, there exists k = 1 and a subspace V of the k-dimensional £} space
such that d(E, V) <1+ 6. Therefore by Lemma 3.1 there exists for any ¢ > 0 a (w* — w*)-
continuous map

T,: X* > /,(N)
with (1 — g)||x*|| ST, x*|| £ (1 + ¢)|| x*|| for all x* € X*. The result follows by taking X,
to be the predual of T,(X*) equipped with the norm induced by £, (N).

For the converse implication, we observe that dist(X*, X*) <1+ ¢ and X}* is iso-
metric to a subspace of £, (N). A standard ultraproduct argument concludes the proof of
(). The proof of (ii) is similar and will be ommitted. O
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The following theorem provides in particular the analogue for p = 1 of the theorem
of Kalton and Werner ([17], Th. 5.4). Let us recall that a Banach space X is said to have
the 1-strong Schur property if for any é € (0, 2] and any ¢ > 0, all normalized §-separated
sequences in X contain a subsequence which is (2/d + ¢)-equivalent to the unit vector basis
of /,. With this notation, one has

Theorem 3.3. Let X be a closed subspace of L' with the approximation property. The
following assertions are equivalent:

(1) The unit ball By of X is t,,-compact locally convex.

(ii) The space X has the unconditional metric approximation property and the 1-strong
Schur property.

(iiiy For any & > 0, there is a quotient Y, of ¢, (N) such that d(X,Y,*) <1 +e.

Proof. (i) = (iii): If (i) is satisfied, then by Lemma 2.7 the space X is isometric
to the dual of X*. By Proposition 2.1 there exists for any & >0 a subspace Z, of ¢y(N)
such that d(X¥, Z,) < (1 + ¢)!/? and thus d(X, Z*) < (1+ ¢)*/%. Since X has (AP), Z}* is
a separable dual with (AP) hence it has (MAP) (see [20], Th.1.e.15) and thus Z, has
(MAP). Now we may apply Proposition 3.2 to Z, to obtain a quotient Y, of ¢,(N) with

d(Z,Y,)< (1 +¢?
and then

dX,Y*) 2d(X,Z).d(ZrY)<(1+¢).
(iii) = (ii): By [1], there exists for any « > 0 a subspace Z, , of ¢,(N) such that
d(Y, Z,)<1+a.
Since X has (AP), Y.* and therefore ¥, have (MAP) as above. By [5], Y, has the commuting
(MAP) hence if « < 2 the space Z, , satisfies the assumptions of [12], Cor. 4.5 and thus
it has (MAP). It follows by [10], Th. 9.2 that Z, , has (UMAP) if « € (0, 2) and this easily
implies that ¥, has (UMAP). Another application of [10], Th.9.2 shows that ¥.* has
(UMAP), and it follows that X has (UMAP).

The 1-strong Schur property for X easily follows from (iii) and the fact that sub-
spaces of /1(N) satisfy this property.

(i) = (i): Since X has (UMAP), it is nicely placed by Proposition 2.4. Thus By is
7,-closed. The 7, -compactness of By follows from

Lemma 3.4 ([24]). Let Z be a subspace of L*. The following assertions are equivalent :
(i) The unit ball B, of Z is t,-relatively compact in L.

(i1) Z has the 1-strong Schur property.
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We give for completeness the proof of the implication (ii) = (i) which we use.

Proof of Lemma 3.4. (ii) = (i): By the subsequence splitting lemma any bounded
sequence { f,} in L' contains a subsequence { f,} such that f, = u, + d,, with {u,} equi-
integrable and {d,} a disjoint sequence. We keep this notation throughout the proof.

We claim that any sequence { f,} in B, has a subsequence { f, = u, + d,} such that
{u,} is norm-convergent. If not, there is a sequence { f, = u, + d,} with || f/]| =1 for all
n, {u,} a-separated with « > 0, and 5 = lim||d, || exists. Since Z has the Schur property,
necessarily # > 0.

Thereis N 2 1 such that { f,; n =2 N} is (/2 + 2n) separated. Indeed, pick § > 0 such
that foralln=1 and Ee X,

P(E)<d= ||uldP<a/12.
E

Let {E;; j = 1} be disjoint sets supporting {d,}, and pick N = 1 such that

P(| E)<é

izN
and
ld;llzn—a/12 forallj=ZN.

Let E= () E; Thenif j, k2 N, j*k,
jzN
Hﬁl_f;”l: “uj_uk'*‘dj_dk}d[p’*' fluj_ukldP
E Ee
z (gl +ldel| —a/6) +a—a/6
2@2n—-2a/6)+a—a/6=2n+0a/2.

Since Z has the 1-strong Schur property, there exists a subsequence { f," = u, + d,} of
{f/} which is f = 2/(2n + «/4)-equivalent to ¢;. Obviously, n <1/8.

Let ¢ =(B~'—n)/3, and K21 be such that ||d,|| <n + ¢ for all n 2 K. Since {u,}
is equi-integrable, there exist scalars 4,, 4,, ..., 4, such that

and

It follows that

Bl=

L
Z '{jflélﬂ'
i=1
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L
> Adi,

i=1

L
Y. AU

j=1

Se+(m+e)=n+2e¢
and this contradicts our choice of ¢ and shows (ii) = (i) in Lemma 34. O

Coming back to Theorem 3.3 we have shown that if (ii) is satisfied then By is t,,-
compact. By Proposition 2.4 we also have that By is ¢ (X, X *)-compact. By Lemma 2.7
it follows that (i) holds true. This concludes the proof of Theorem 3.3. O

The spaces which satisfy the conditions of Theorem 3.3 can be characterized with
approximation conditions.

Corollary 3.5. Let X be a subspace of L' with the approximation property. The follow-
ing assertions are equivalent:

(1) By is 1,-compact locally convex.

(i) There is a sequence {R,} of finite rank operators such that lim|| f— R, f || = 0 for
all fe X, im||I—2R,|| =1, every R, is (1,, — ||.||)-continuous on By, and for any ¢ >0,
there exists n = 1 such that

du(f,R,f) <
for all fe By.

(ili) X is nicely placed, and there is a sequence {R,} of finite rank operators such that
lim|| R,|| = 1 and for any ¢ > 0, there exists n =2 1 such that

dn(f, R, f) <
Jor all fe By.

(iv) X is nicely placed, and for any € > 0, there is a sub o-field Z_ of X generated by
disjoint sets such that

d,(f,Bg, f) <e
Sor all f€ By.

Proof. (i) = (ii): By Theorem 3.3, X has (UMAP) and by Lemma 2.7 we have
X = (X*)*, with X* M-ideal in X*. It follows by [10], Th. 9.2 that X has (UMAP) with
conjugate finite rank operators. That is, there is a sequence 7, of finite rank operators on
X* such that lim|{x — 7, x|| = 0 for all xe X*, lim||7—27,|| =1 and lim{{ f— T*f|} =0
for all fe X. Pick {x,; k 21} a dense sequence in X *. Since t,, coincide with ¢ (X, X *) on
By, there exist for all >0, § = 6(¢) > 0 and N = N(¢) =2 1 such that if f, ge B, and

{x, f—g>)=<o forallk=N,
then

dn(f,8)<e.
Now (ii) follows with R, = T;*.
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(ii) = (iii) since by Proposition 2.4 any subspace of L' with (UMAP) is nicely placed.
(i) = (iv): Itisclassical and easily checked that for any finite-dimensional subspace

Fof L' and any é > 0, there exists a sub o-field X, of X generated by finitely many disjoint
sets such that

llg —Es,gll <dllgll
for all g e F. Now (iv) follows from (iii) by applying this observation to F = R,(X).

(iv) = (i): If we let ¥, = E; (L"), then the unit ball of Y, is t,-compact. Thus it
follows from (iv) that By is 1,,-compact.

To show that By is 1,,-locally convex, it suffices by Lemma 2.7 to show that the weak
topology is finer than t,, on By. To prove this, observe that we may assume without loss

of generality that X, is generated by finitely many sets. Pick now (x,) in B, with

w—lim(x,) = x, .
We have

(9) dm(xm xO) _S-_ dm(xaa [EEE xa) + dm([EZ,: xa’ [EEE xO)
+ d(E5, X0, x0)

<2e+d, (ks x,, E5 xo) -
But we have

w —lim (E, x,) = Eg_xq
and the space E; (L') is finite dimensional. It follows that

(10) lim || E, xo — Eg, Xoll = 0.

Since ¢ > 0 is arbitrary, (9) and (10) imply that
T, — lim(x,) = x, .
This shows (i) and concludes the proof. O

Our next statement is essentially Theorem 3.3 in the (much simpler) atomic case. We
provide a simple proof.

Corollary 3.6. Let X be a subspace of ¢,(N) with the approximation property. Then
X has the unconditional metric approximation property if and only if X is w*-closed.

Proof. 1f X has (UMAP), then by Proposition 2.5 (or by [10], Th. 6.9) we have
11 X=X, X Ncy)

and (11) means that X is w*-closed. Conversely if X is w*-closed, we have X = X¥ with
X, a quotient of ¢, (N). By Theorem 3.3 (iii) = (ii), the space X has (UMAP). O
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It follows from [27] that £, (N) contains w*-closed subspaces failing (AP), Corollary
3.7 below should be compared with the main result of [22] (itself extending a result from

[16]).

Corollary 3.7. Let X be a subspace of L. If X has the 1-strong Schur property, and
if for any € > 0, X is (1 + ¢)-isomorphic to a (1 + &)-complemented subspace of a space with
a (1 + ¢)-unconditional (FDD), then for any 6 > 0, X is (1 + &)-isomorphic to a subspace of
£, (N).

Proof. Tt suffices to observe that the assumptions clearly imply that X has (UMAP),
and to apply Theorem 3.3. O

We conclude this section with two simple facts.

Proposition 3.8. Let X be a nicely placed subspace of L,. We denote m = X** - X
the projection with kernel (X**~L!). Then

(1) = is (w* —1,,) sequentially continuous on By.. if and only if X has the Schur pro-
perty,

(ii) © is (Ww* —1,,) continuous on By.. if and only if By is 1,,-compact locally convex.

Proof. (1) Since X'** is a subspace of L** and L* has the Grothendieck property,
any w*-convergent sequence (x**) in X ** is weakly convergent, and thus 7z (x}*) is weakly
convergent. If X has the Schur property, n(x**) is then norm-convergent and thus z,,-
convergent, hence n is (w* —1,,) sequentially continuous. Conversely if n is (w* —1,,)
sequentially continuous on By.., any weakly convergent sequence in By is 7,-convergent,
and therefore norm-convergent since it is equi-integrable.

(i) If = is (w* — 1,,) continuous on By.. then clearly By is 7,,-compact. Since 7 is the
identity on its range By, the weak topology is finer than 7,, on By and by Lemma 2.7, By
is 7,,-locally convex. Conversely if By is 7,-compact locally convex, then n coincide with
the canonical projection from (X*)*** onto (X *)* = X, and the (w* — 1,,) continuity of
n on By.. follows since the topologies t,, and o (X, X *) coincide on By. O

Proposition 3.9. Let X be a subspace of L' with the approximation property and
whose unit ball is t,-compact. Then the following statements are equivalent:

(1) By is t,-compact locally convex.

(ii) For any ¢ > 0, there exists a subspace Y, of £,(N) such that d(X,Y,) <1+ ¢.

Proof. (i) = (ii) follows immediately from Theorem 3.3.

(ii) = (i): Denote by J, = X — Y, an isomorphism such that ||/ ]|. [/, ]| <1+¢,
and by n: X** - X the L-projection. Let P, = J,nJ,”!: Y,** > Y,. It follows from [13],
Lemma 1V.1.4, and the w*-closedness of the L-complement of ¢, in /** that

(12) lim (sup {llyli; v Y. Byerpy D=0

5 Journal fiir Mathematik. Band 471
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and (12) and the Banach-Dieudonné theorem easily imply that Ker(x) is w*-closed. Since
Ker(n), = X*, it follows as above that X = (X *)* and (i) holds. O

IV. Examples

We first exhibit examples showing that we cannot dispense in Theorem 3.3 with the
assumption that 7, is locally convex on Bj.

Theorem 4.1. There exist subspaces X of L' such that By is t,-compact, but not
locally convex. That is, X * fails to separate X and By does not satisfy the equivalent conditions
of Lemma 2.7.

Proof. We will actually provide two examples of this phenomenon. Our first con-
struction relies heavily on the proof of [2], Th.1.2. Upon reading this construction, M.
Talagrand ([28]) produced the second (and simpler) approach, and he kindly allowed us
to reproduce it here.

Example 4.1.1. We work for convenience with Q = [0,1]" equipped with the natural
product probability P.

Foreachpe(1,2],weletY, e L'([0,1]) be a symmetric p-stable r.v. so that || Yii=1
and whose characteristic function Yp satisfies

7,(t) = exp(—c,|1|P)

for some ¢, > 0. Then ([2], Lemma 1.8) we have

1) lim ¢, =0,
) T, — lim (¥,) = 0.
p—1

For each jeN we let Z; =Y, om;, where m; = [0,1]N — [0,1] is the jth coordinate map,
and p; > 1 will be chosen later. The Z/s are symmetric p;-stable independent elements of
LY(Q) with || Z;||, = 1.

Set now X; =|Z;| and U; = X; - 1.

The space X is

X =span'" {1, {U};,,}

with a proper choice of the p/s.
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IfZ,, Z,, ..., Z, are p-stable, then {Z,,1 <i <k} is isometrically equivalent to the
canonical basis of ¢ : (see [2], p-61). By [2], Lemma 1.5 there is a constant X which is
independent of the choice of the p;s, and such that

ll

3) K™! £K

1

n
Lyl =
j=1 1

n
> % Z;
j=1

IEAY
j=1
for all n 2 1 and scalars (o;). Following [2], we observe that if
4) V=% a0,
k=1
withp, =p,=--=p,=pand ||V, £1, we have for all reR

P01 = [T 1X~1) (@]
k=1

n

= [1 Z[ (a0

k=1
= n Zk(akt)
k=1

since Z; is symmetric. Hence for all 7€ [—1,1] we have by (3)

®) 70l z exp(—c,,(é1 [ad"lti"))
2 exp(—c,K?).
By (1) and (5), there exists fof any 0 > 0 some a > 0 such that p e (1,1 4+ «) implies
(7)) >1-9

for all te{—1,1]. By [2], Lemma 1.6, it follows that for any ¢ > 0, there is a > 0 such
that pe (1,1 + «) implies

6) 1,, — dist(V, span[1]) < ¢

for all ¥ as in (4) with ||V ||, < 1. Observe that o = a(¢) does not depend upon n. By the
weak law of large numbers, we have

1 n

— X;] -1

n (2:1 l) I

We choose the p;s as follows: by (6) and (7), there exists a strictly increasing sequence
(b)in N with b, = 1,and p, > 1 with lim(p,) = 1, such thatif wedenote /;, = [b;, b, )N N,
and if we pick Z; to be p,-stable if i e [;, then

%) lim

n-=+w

=0.

1
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(a) for all Vespan{U,iel} with ||V =1,

(8) 1, — dist (¥, span(1)) <27,
(b)

1 1
©) ‘m(igkXi)—“ 1<E'

Note that by (2) we have
(10) T, — lim(X;) =0.

The space X is now well-defined. Let us check that By is t,,-compact. First, since the Us
are independent with mean zero, the sequence {U;; i =1} is 2-unconditional and thus
B = {1} u{U;i=1} is a C-unconditional basis of X, for some Ce€ R (in fact C = 3, see
Proposition 4.2 below).

Any Ve X has a unique expansion on 4, denoted
V=a,(V)1+ Y o(V)U,.
i=1
For any sequence {¥,} in By, there is a subsequence, still denoted {¥,}, such that

(11) lim o (V) = 4,

exists for all j = 0. Since 4 is boundedly complete, we can define

W=oa,1+ ) U
=1

J

and We X, with ||W|| £ C. An application of (8) to (C ™! V) shows that for any ¢ > 0, we
can find k(¢) =1 such that for all Ve By

(12) rm—dist( E:O aj(V)Uj,span(ﬂ))<

Ji=bic(e)

S| o

It follows from (11) and (12) that there exists N(¢) € N such that for all # > N(¢)

1, — dist (V, — W, span{1]) <e.

We can therefore write
(13) V.=W+9y,1+H,
with (y,) scalars and

(14) T, —lim(H,)=0.



Godefroy, Kalton and Li, Subspaces of L' which embed into ¢, 65

By (13) and (14), we have lim|y,] <1 + C. Therefore there exists y scalar and a subse-
quence {F,'} of {¥,} such that

T, — im(V)y =W+ 91.

Clearly (W +y1)e X. Moreover ||W+ 71|, £1, since |||, is 7,, — L.s.c. This shows the
T,-compactness of By.

Finally we have

Ten{x*"10); x*e X*}.
Indeed for any x* € X* we have by (9)

x*(1) = ligxllkl”( Y x*(X).

iGIk

But by (10) and x* € X *, we have lim x*(X;) = 0, hence x*(1) = 0.

Example 4.1.2 ([28]). This self-contained approach is similar but aims at avoiding
the use of the crucial inequality (3). We work as above on Q = [0,1]™ and write re Q as
t=(1;). We let

Ut) = qtf 7' =1 =W (1)

where g € (0,1) is a parameter that will be chosen small enough later. Observe that W, has
mean zero for all ¢ > 0. We claim that if U;(¢) = W,(¢,) for 1 £i<n with g€ (0,1/2) and

Y oo Ul £1
i=1 1
then
(15) S=Z|ail”1_“§1000.
In order to see this, we let
_ PR
(16) %="10s
and define
and

Ai=)4; B =4\4].

j*i

We compute

f sign(a,.)(i ajUj)a'P;]ail [UdP— Y |ol| | UdP|

B; =1 By j*i B;

and by independence
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JUAP = [1,..1,,UdP =P((4)) | U;dP
B; i

i

9
> — ap
251U
9
== 17— 1) ds
10(f)(q )
9 3
=2 (29— a)=> 2 g%
lo(al al)—sal

since Za,. <1/10 by (16) and g€ (0,1/2) so a? ~! > 3. Using independence as above, we
find

[UdP = (] UdP).P(4,n () 42),
B; A§

£+1
c+]
hence
|| UdPI<P4)| | U;dP)|
B; A5
<aql | UdP| < g;af.
45
So we have
. " 1
[ sign(@) (Y, «;U)dP 2 7 lulaf— a; () lo;la).
B; j=1 j*i
Since
121 Yy U 2 Y jsign(ai)( ) “jUj>dP
i=1 1 i=1 B; i=1
it follows that
12 “ .
123 3 jalar—( 3 1a0)( £ 1n1a1)
=1 i=1 i=1

But we have

Z l“i'l/l_q Sl-4a

; Ja = =1 =
L Jlef == dgg = Tor

therefore
S<10Y1-eq09t -4

1
which shows (15) since ¢ < X

We claim now that if
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Y=3 o0
with
3 o M1 79 < 1000
for some g €(0,1/4), then

) Y=Y, +Y4+Y,
where

(18) P(Y,+0)<Kq,

(19) 1Tl < Kq,

(20) Y;eR1,

there and below, K denotes a universal constant (which may differ from line to line).

Indeed let
b= qla|'t "1
so that
21) Y b;<1000¢
and define
Y, =30 Uil sy
and with
Z;=Uly .,
let
Y, = L a(Z - (€Z)1)
and

v, =00 o, EZ)T.

With this notation, (17) and (20) are clear and (18) follows from (21). To show (19), we
estimate

E(Z-EZ)) =E(Z*) - E(Z)?
where Z = W 1,,,,, b = gla|'/' "7 with |«| < 1000 and ¢ € (0,1/4).
1
E(Z2) = [(g21? 2~ 2g19" 1 + 1)dt
b

_a

= TR, P BTN
q—1 I
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2 2

q q

= -1 - p2a—1 q__
741 741 +2b7—b

and
1 2
(EZ)? = (j(qzq—l — 1)dt> = (b - b?)?
b
=b? 4 b2 —2p1*1,
We claim that
(22) E((Z—-EZ)?) < Kg*b?1~ 1!,

Indeed we have
¢ 7
g—1 2¢g-1

(23) [E((Z—[EZ)2)=2 b2l (1 —b9)2 —b—b%242b17!

2

q _
< 2 __pra-14gpatt
=173, +

since (2g — 1) < 0. We observe now that
(24) patl éququ_l )

Indeed
q2b2q—1 = bq+1(q2bq—2) — bq+1(qq‘a[(q—2)/(l—q))
and we have
g2 exp(—1/e)

and
-2
B = =< > —3
1—g¢
hence
la]f=2107°.

This shows (24). Since g (0,1/4), we have
2

25) 9 pr-1gpg2p2-0
1-2¢q -

and (22) follows from (23), (24) and (25). We now come back to the proof of (19). By
(22), we have

[E(Yzz) = Z aiZ[E((Zi - [EZi)Z)
< Kq*Y a?b}e!
= Kg*¢* ' Yo} |y 7
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= Kq'* 20 a1
= Kq
and (19) is shown. Note that (19) implies
(26) Kq'? 2|V, 2 s, -
We can now conclude by following the lines of the proof of Example 4.1.1. Pick k=21 a

positive integer. Using (15), (18), (20) and (26), we find ¢, € (0,1/4) such that if 0 < g < ¢,
and U,(t) = W,(t,), we have for any n 21 and any («;) with

that

@7) rm—dist<( z aiUi>,1]> <27k,

Fixing g = ¢, (0, ¢,), we find by the weak law of large numbers =1 such that if

1 n
- 11
n<i;1Xl)

The inequalities (27) and (28) are identical to (8) and (9) in the construction of example
4.1.1. Itis now clear that we can achieve the construction along the previous lines, by letting

1
(28) < T

1

U(t) = W, (&)

with g; = ¢, for ie[¢,, ¢, ;) With (c,) properly chosen. O
A careful examination of Examples 4.1.1 and 4.1.2 provides the following statement.
Theorem 4.2. There exists a subspace X of L* which satisfies the following conditions:
(1) The unit ball By of X is t,,-compact. In particular X has the 1-strong Schur property.
(2) 1, belongs to the weak closure of any t,-neighbourhood of 0 in By.
(3) For any approximating sequence {R,} of finite rank operators, one has

lim|[/— 2R, 2 3.

(4 X has a monotone unconditional basis with unconditional constant C = 3.

(5) X is isomorphic to an ¢,-sum of finite dimensional spaces. In particular X is iso-
morphic to a subspace of ¢,.

(6) There exists o> 1 such that d(X,Y) > « for any subspace Y of £,.
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Note that (2) implies that By is not 7,-locally convex, that (3) implies that the un-
conditional constant of any unconditional basis is at least 3, and that (4) implies that X
has the metric approximation property.

Proof. The space X constructed in Example 4.1.1 satisfies (1). By (9), (10) and
Lemma 2.6 we have (2) and also

1oe XN By *

and then Lemma 2.3 shows (3).
For showing (4), we use the classical

Fact 4.3. If X and Y are independent random variables and E(Y) =0, then
X+ Yl 2 X1,

Indeed we have

X+ Yl =[x+ ylduxy(x)duy(y)
2 (] (x4 y)duy(¥)|dug(x)
2 [x|duy(x) =1 X1l .

We observe now that the basis 4 = {1} U{U;;i =1} consists of independent r.v. with
E(U,) = 0, hence if 0 < k <n we have by Fact 4.3 and with U, =1

> U

i=0

S

k
DAY
j=o

hence 4 is a monotone basis. If now ¢;e {—1, 1} and if we let, as in the proof of Lemma
2(a) in [25]

X= Z g, U
{i;e0¢i = 1}

and
Y= Y g o U .

{i;e08: =~ 1}
Then applying again Fact 4.3:
Y anUl =lIlX+Y],
i=0 1
S IHXN + Yl

=2 X + 1 X =T,
s3jlxX-rl,
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Therefore the unconditional constant of # is at most 3, and thus is exactly 3 by condition
(3). This shows (4).

Finally, condition (5) follows from (1), (4) and [16], Appendix, and (6) follows from
Proposition 3.9. 0O

Remark 4.4. We have no example of a subspace of L satisfying the conditions of
Theorem 4.2 and which is isomorphic to #,. Let us outline why the above technique fails
to provide isomorphic copies of #,. Clearly we may replace (9) by

29 =0.

|Ik| R

iely

By [2], p. 62, we have for some absolute constant K

o o]z

with the X;'s independent and p-stable. To ensure (29), we must therefore pick n = n(p)
such that

(30) lim n(p).e ?? ' = +o0.

p—1

Thus if the spaces t’p’“”), with n(p) satisfying (30), are not uniformiy complemented in iso-
morphs of ¢;, the construction provides a space which is not isomorphic to ¢,. Applying
[26] (see [29], p.259) to £?, with p~' + ¢~ ' = 1, shows that if X is isomorphic to /, and

n=X - {0
P

is a projection, then
(31) dist (£, /7®) < C[1 + log||=|17"*|| =]

But we have (see [29])
dist (4%, /) = k'™ 5.
Therefore if n(p) satisfies (30) we have

lim (fpn(p), fln(p)) = 4+ 00

p—1
and this contradicts (31). It follows that our Examples 4.1.1 are not isomorphic to 7;.

Note that this conclusion would also follow from (30) and the uniqueness, up to
equivalence, of the unconditional basis of £, (see [20]).

Our last statement is a simple observation on (UMAP) for natural spaces which
could qualify for this property.
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Proposition 4.5. (1) Let X a separable predual of a von Neumann algebra. Then X
has (UMAP) if and only if X is isometric to (X @ N(H,)),, where the Hs are finite dimen-
sional Hilbert spaces.

(2) The Hardy space H' (D) fails (UMAP).
(3) There exist infinite subsets A of Z such that Ly (T) has (UMAP). .

Proof. It follows from [7], Theorem VII. 8, that a predual of a von Neumann
algebra has the Radon-Nikodym property if and only if it is isometric to an ¢,-sum of
spaces N (H,) of nuclear operators on Hilbert spaces H;. By Proposition 2.8 any separable
space not containing ¢, (N) with (UMAP) is a separable dual and therefore has the (RNP).
Since (UMAP) is clearly stable under contractive projections, (1) will follow if we show
that N(H) fails (UMAP) when H is an infinite-dimensional separable Hilbert space. To
see this, we denote {e,,n = 1} an orthonormal basis of H, and we let

I, =e,®e,+e,Qe,+¢,Qe,.
An easy computation leads to

lle, ®e; + Tn”x(m= ‘/5

and
lle;® e, — T, ”K(H) =1.
Clearly
w—lim(7,) =0

in the space K(H) of compact operators on H although
lim(lle,®e, + Tl —lle,®e, — 1) + 0

and by the proof of Lemma 2.3 this shows that K(H) fails (UMAP). It now follows from
[10], Th.9.2, that N(H) = K(H)* fails (UMAP).

To prove (2), we exhibit as above a sequence ( f,) in H'(D) such that w — lim( f,) = 0
but (| f+ £, || f— £, |I) fails to converge to 0 for some fe H'(D). For doing so we reproduce
an argument from [30]: for any n =1, we have

11+ 2e™ +e*™||; = ||2(1 + cosnt) |, =2

while
11— 2e™ — &2, = |21 + isin(ro) |,
and since
11 + isin(rr)| 2 1+ (/2 — 1)sin?(nr)
we have

liminf||1 — 2¢&™ — &*™|| > 2

and this concludes the proof of (2).
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We denote e,(z) = z" for ne Z and ze T. For proving (3), we observe the

Fact 4.6. Let F be a finite subset of Z, and pick ¢ > 0. Then there exists an odd
integer N such that if A, = {(2k + 1) N; k € Z}, then for all fe L(T), ge L} _(T),

(32) If+ell=d+9llf—gl.

Fact 4.6 is shown by approximating an &/3-net of the unit ball of LL(T) by step
functions (up to ¢/3), by checking (32) when f is a step function (using the fact that
11+ gll; = 1l1 — gll; when g is odd) and by picking N large enough.

To construct A such that L} (T) has (UMAP), we proceed by induction. We pick
¢, > 0 with lim (¢,) = 0. For any finite subset F of Z, we denote by = the projection from
L'(T) to L}(T) whose restriction to trigonometric polynomials satisfies

np (3 ae) =3 a,e,.

neF

Starting with n, = 0, we find N, = 1 such that (32) is satisfied with F; = {n,} and ¢ = ¢,.
We let n, = N, and F, = {n;,n,}. We find N, 2 1 such that (32) is satisfied with

F,={n,n,} and e¢=g,,

and we let ny = N, N,. If F, = {n,,...,n} is constructed, we pick N, such that (32) is
satisfied with F, and ¢ = ¢,, and we let n, ., = N N, --- N,. If we let now

A= {n;

siz1)
we clearly have for all k=1
11— 275, llps < (1+ )

and this shows (UMAP) for L} since {n; k =1} is an approximating sequence for this
space.

Note that it follows from Proposition 4.5.2 and [10], Th. 8.3, that the space
K(%(T)/A4o(D))

of compact operators on the natural predual €(T)/4,(D)(= VMO) of H'(D) is not an
h-ideal in the space L(%(T)/A,(D)) of bounded operators.

We do not know how lacunary an infinite subset A of Z such that L% (T) has (UMAP)
must be. Note that it follows from [10], Th. 9.2, and its proof that if L (T) has (UMAP)
then there exists an approximating sequence R, of convex combinations of the operators
C.(f) = f* g, of convolution with Fejer kernels such that lim||/—2R,[| = 1. It follows
that L3 (T) has (UMAP) for any subset S of A.

We conclude our work with two questions.



74 Godefroy, Kalton and Li, Subspaces of L' which embed into ¢,

Question 1. Let X be a subspace of ¢, (N) such that X* is isomorphic to a subspace
of L'. Is the space X isomorphic to a quotient of ¢, (N)?

Note that Proposition 3.2 provides a positive answer when we assume that X has
(MAP). By [21], there exists a subspace X of €(w®) such that X* embeds into L! but
not into £;.

Question 2. Does there exist a subspace X of L' whose unit ball By is compact for
the topology 1,, of convergence in measure but which fails the Radon-Nikodym property?

By [2], this question has a positive answer if we replace “compact” by “relatively
compact”. Note that according to [2], there exists a subspace of L' with a t,,-relatively
compact unit ball and the R.N.P., but which does not embed into ¢;.

The most ambitious problem in this direction would be to find X in L' with By t,,-
compact and Ext(By)=@. Let us mention that such a space would satisfy X* = {0}.
Indeed, since X** = X @, X, and Ext(By) =0, we would have Ext(By..) = X,. Then
applying Krein-Milman theorem to By.. would show that X| is w*-dense in By.., and
then X* = (X,), implies X * = {0}. Let us recall that although there exists Banach spaces
Z such that B, is compact for a t.v.s. topology but has no extreme point ([23]), it is not
known whether there exists a separable Banach space with this property. Actually, Theorem
4.1 provides the first examples of separable Banach spaces whose unit ball is compact but
not locally convex for a Hausdorff topological vector space topolgy.
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