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Gap-interpolation theorems for entire functions

By Nigel Kalron*) at Columbia and Lee Rubel at Urbana

I. Introduction

There are many theorems in classical analysis where gaps play a role. We mention
only the Miintz-Szasz Theorem [1], the Fabry Gap Theorem [10], the Banach Lacunary
Theorem [19] and the High Indices Theorem [8] as samples. In another direction, there
are many interpolation theorems for analytic functions—we mention only the Germay
Theorem [17], the Buck-Carleson-Hayman-Newman Theorem [2], and the Leontiev
Theorem [13]. The idea of this paper is to mix the two ideas——gaps and interpolation.

To be specific, the Germay Theorem (not usually called by that name since it is
such a direct corollary of the Mittag-Leffler Theorem) says that given any sequence
% =(z,) of distinct complex numbers with no finite limit point, and any sequence # = (w,)
of complex numbers, then there is an entire function f such that f(z,)=w, for all n. (If
some of the z, repeat a finite number of times, then we look at corresponding derivatives
of f at the z,.) But suppose we ask that f have the form f(z)= 3 a,z*, where 4 is a

Aed
given set of positive integers (and we do not allow any z,=0)? For certain A (like
A= N, all positive integers), this unrestricted interpolation is always possible, while for
other A (like all the even non-negative integers) it is not always possible. This question
was asked in [11] and later in [14], and some simple cases treated.

We first give some relevant definitions and notation. Then we state the main results
of this paper. The principal one provides a necessary and sufficient condition that A
works for the given sequence %. This condition is at first rather opaque, so we devote
the rest of the paper to some conclusions, of a more concrete and manageable nature,
that may be drawn from it. The last sections of the paper are devoted to the proofs of
the results.

A surprising feature of this gap-interpolation problem is that in certain circum-
stances (where we assume, say, that there are at most two z; of any given modulus) the
main consideration is diophantine approximation, i.e. how well certain real numbers can
be approximated by rational numbers. The corresponding gaps in the circumstance
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.e
mentioned above, are roughly of the size connected with 4,=e®" (with n exponents in
the chain). These are huge gaps that surpass any we have seen that naturally occur.

A word about our method of proof. In proving interpolation theorems (say the
Germay Theorem), there are three main approaches: The first is via the Mittag-Leffler
Theorem, which is in turn usually proved [18] by writing an explicit formula. The
second is via solving infinitely many linear equations in infinitely many unknowns (the
Taylor coefficients)—see [3], [1]. The third is via functional analysis - specifically the
Banach-Dieudonné Theorem (see [15], [4]). We take the third route, and adapt the main
result of [4] to the situation where gaps are introduced.

Let us mention that the arithmetic nature of A is important. For if A consisted
only, say, of odd integers, then we would have f(—1)= —f(+1) for all f of the required
form, which certainly prevents free interpolation if % contains both 1 and —1. Similar
considerations lead one to the natural necessary condition that A intersects every arith-
metic progression {gn+ p}. Our later results show that this necessary condition is far
from sufficient in many cases.

Many questions related to those we treat here can be raised. For example, suppose
we consider not entire functions, but functions that are only supposed analytic on some
specific domain G in the plane, or on some open Riemann surface G (see [5]). Or one
could pass to several complex variables. Or one could restrict the growth of the functions
involved, like considering gap-interpolation by bounded analytic functions in the unit
disc or by entire functions of exponential type. These are interesting and challenging
questions that we leave untouched.

I1. Definitions and notation

Throughout this paper, we consider sequences & =(z,) of non-zero complex num-
bers with no finite limit point. We say that % is terminating if it is indexed by
n=1,2,...,N instead of by n=1,2,... . We always index & so that |z;]=|z;,,| for
all j. For simplicity, we will suppose that z;#z; for i+ ;. We consider sequences A =(4,)
of positive integers, with 1;<4;,, for all j.

Definition. We consider certain classes Q of sequences & :
i) @, is the class of all 2,
i) Q, is the class of all terminating (i.e. finite) Z.
iit) € is the class of all & so that if |z;]=|z;,,|="--=|z;+,-,|, then r=k.

In what follows, we shall define “A is interpolating for Z” (or for Q) instead of

the more cumbersome, but more descriptive “A is an interpolating sequence of exponents
for ” (resp. for Q).

Definition. A is interpolating for & (or &£ interpolating) if for every sequence (w,)
of complex numbers, there exists an entire function f of the form

1) f@= % a2

e

such that f(z,)=w, for all n.
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Definition. A is interpolating for Q if A is & interpolating for every & in Q.
Definition. 4 is & linearly independent if the condition

N
S a,z2=0 forall Aed

n=1
implies that all 4;=0.
Definition. A is asymptotically & linearly independent if for every p>0, there
exists an N(p) so that if K=0, and if

N
Y a,z,
n=1

<Kp* forall ieda

then a,=0 for all n= N(p).

Definition. A is totally & linearly independent if it is both 2 linearly independent
and asymptotically & linearly independent,

Definition. By an arithmetic progression 4, we mean a sequence of the form
A=(@n+p),n=1,2,..., where ¢>0 and p =0 are integers.

Definition. A sequence A=(4,) is said to have positive upper density if

A 4
lim sup ) >0,

n— o

where A(n) is the number of 4; that do not exceed n.

I11. Statement of results

Theorem 1. A is interpolating for & if and only if it is totally & linearly independent.
Theorem 2. {117 A is Q, interpolating if and only if A is infinite.

Theorem 3. A is Q; interpolating if and only if A has a non-empty intersection with
every arithmetic progression A.

The next result is a structural one about those A that are Q2 interpolating.

Theorem 4. Let A be Q interpolating and let A be a sequence of positive integers
that satisfies:

2) Given any finite sequence F< A, there exists a non-negative integer t so that
F+tc A, where F+t={(f+1), fe F}. Then 4is also Q interpolating.

Theorem 5. If A n A has positive upper density for every arithmetic progression A,
then A is Q, interpolating.

Theorem 6. If

log A

k— o }'k ?

then A is not Q, interpolating.
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Theorem 7. If

| 1
4) C lim O8%s2_

k= o A
and A n A is not empty, for every arithmetic progression A, then A is Q, interpolating.
We conclude with some auxiliary results. The first is a reformulation of Theorem 1.
Theorem 1'. A is not Q interpolating if and only if either:
5) There exists a & in Q, and constants a,, . . ., a, not all zero such that
a;z}+--+a,zt=0 forall Aed
or

6) There exist a sequence & in Q, a number p >0, and a constant K so that for any
positive integer N, there is an integer m= N and complex numbers a, . .., a,, exist, with
a,*0, so that

layzt + - +a,zh | = Kp*.
Lemma 1. If A is not Q. interpolating, then either 5) holds or, for every ¢ with

0<e<1, there exist complex numbers wy,...,w, with |wj|=1 for j=1,...,m and
Iwnl=1, so that

7 bywi+ b, whi_(+wilS K.t forall leA,

where the numbers by, ..., b,_, and wy, ..., w, dépend on ¢, and where K, is independent

of A.

Lemma 2. If A is not Q interpolating, then either S) holds, or there exists an ¢ with
0 <e<1 and non-zero numbers £,, ..., &, with |E;l=1 for all j=1,...,n, so that

8) laéi+ -+ a, LIS Ket forall de A,
where the a; are not all zero.
Lemma 3. If we replace Q ., by Q, in Lemma 2, then we may choose n= k in (8).

Lemma 4. For a given sequence A and integers ¢>0,r=0, let A, ,={m:mq+reA}.
If A is Q, interpolating then so is each A, .

IV. Proof of Theorem 1

We will fix & and A. Let F be the space of all entire functions, in the topdlogy
of uniform convergence on compact sets, and let £, be the closed span in E of {z*},.4.
Let n=mn, be the projection into E ,, that is

0
n( by anz")= 3 a,zt
n=0

e A

Let L, be the linear functional of projection into E, followed by evaluation at z,, that is

L,(f)=(xf) (z,).
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We shall prove that, in the terminology of [4], the sequence {L,} is interpolating iff A
is totally linearly independent. (To say that {L,} is interpolating means that for any
given sequence {w,} of complex numbers, there exists an F e FE such that L,(F)=w, for
each n=1,2,3,....) Notice that this will prove our theorem since then f=n(F) has the
desired form f=3Y a,z*, and f(z,)=w, for all n. With the Cauchy transform
L(z)=L, (-—1~;>, we see that

A

PN Zn
L@=T S

Aed
Letting ¥, be the linear span of L;, L,,..., L,, we see from Corollary 1 of [4] that A
is interpolating iff 1) {L,} is linearly independent and ii) for every compact disk K, there
exists an integer N(K) such that if 7,e€ V, and 7, has an analytic continuation to the
complement of K, then T, € Vy,. But we see that a typical element of V, has the form

* d

gD)=3% ot
k=0 2

where
h
dk= Z amZ’r;s
m=0
and of course, the radius of convergence of the series for g(z) is
p = [lim sup|d|"/]™".

It now follows easily that A is interpolating iff it is totally linearly independent, and the
theorem is proved.

V. Proofs of Theorems 2 and 3

The proof of Theorem 2 is an immediate consequence of Theorem 1. See [11] for
a different proof.

Proof of Theorem 3. Since the & asymptotic linear independence of A is vacuously
satisfied for terminating sequences &, we need only consider Q linear independence. It
is easy, as remarked earlier, to see that a necessary condition for this is that A intersects
every arithmetic progression. To see the sufficiency, let

N
R(w= > a,z;

n=1
where the (a,) and (z,) are as in the definition of & linear independence. Now

Yoa & R

z z—z, z#*!

n=1 n u=0
as remarked in the proof of Theorem 1. By the Skolem-Lech Theorem [12], the set
M ={u:R(u)=0} is, modulo a finite set, the union .#* of finitely many arithmetic
progressions (gn +p). Since R(4)=0 for each Ae A, we see that .# intersects every
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arithmetic progression. It follows easily that .#*, as the finite union of arithmetic
progressions, must contain all sufficiently large positive integers, and hence so must 4.
But then, say, by Vandermonde determinants, all the a; must vanish, and the result is
proved.

We thank D.J. Newman for pointing out the relevance of the Skolem-Lech
Theorem. An interesting feature of this theorem is that the only known proofs depend
on p-adic analysis, even though both the hypothesis and the conclusion are quite
elementary.

VI. Proof of Theorem 4

We use Theorem 1', on assuming that 4 is not € interpolating, so that either 5)
or 6) holds for A. If 5) holds, then on choosing F=(4,,..., 4y) for any given positive
integer N, we have, for some r=¢(N)=0, and for some fixed n,

ayz{* '+ -+ a,z}*'=0 for Aed, ASN,

where, say, a,#+0. Dividing through by |z,|**', we may suppose that |z;]<1 for

i=1,...,n,and |z,]=1. We may further suppose that jg;|<1 fori=1,..., n. Now we look
at the vector

Wy=(a;2i"™, ..., a,z'™)
in the unit polydisc P={w=(w,,...,w):|w|=1,i=1,..., n}.
By the compactness of P, there exists a cluster point W= (b,.. ., b,), with |b,| +0,

of {Wy}. Then
bizf+-+bzt=0 forall AeA
so that 5) fails for A, which contradicts A being Q2 linearly independent.
On the other hand, if 6) holds for A, then given any positive integer N, we see
that there exists suitable &, p, and (a;) with 4,0 so that

la, 28 + -+ a,z2|< Ap® forall de 4.

Consequently, given any positive integer M, there exists a non-negative integer ¢ so that

layz}t + - +a,z T |= Kp*tt forall Aed with AS M.

o\
éKpl(lz l).

Now since we may, for large enough N, suppose that |z,|=p, we may again use a
compactness argument to obtain

bizt+ -+ b,z /S Kp* forall Aed,

which by Theorem 1’ (for A) implies that A is not & interpolating—a contradiction that
proves the theorem. : :

Hence

t 4
a,zy 2 i +amzm

2
zi+ .- z
|zal |zl
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VII. Proofs of the Lemmas

Proof of Lemma 1. Let Z be the sequence that satisfies 6) and then choose N so
that [z,|= p/e for all m=N. Now in 6), divide through by |z}| in each equation.

Proof of Lemma 2. Just write 7) with ¢=¢,=1/2, say, and let w,, ..., w, be those
w; with |w] <1 so that |w, |=---=|w,l=1. Say |w]=d<1 for i=1,..., k. Let
Ei=wyy; for j=1,...,n, where we set n=m—k. By the triangle inequality, with
B=max (|b,],..., b)) and a;=b,,; for i=1,...,n, we get

la &t + - +a,él< B + K, ef forall led,
and the result follows on letting ¢ =max (J, ).
Proof of Lemma 3. Obvious.

Proof of Lemma 4. First of all, let us suppose g=1. We show that if 4 is Q_
interpolating, then so is A; ,. But this follows directly from the fact that- ¥ a,z""=w,
if and only if ¥ a,zt=w,/z;. So we may suppose r=0, and we write A,=4, ,. Given
Z ={z}, let Z,={z¥} be any sequence where each z} is some g-th root of the cor-
responding z,. Now if A interpolates at &, then A, interpolates at %, because

> a (/=% a,z.

VIII. Proof of Theorem 5

Our proof uses ideas and results from the theory of locally compact abelian groups—
see [17] for basic information on this subject.

We shall suppose, by way of contradiction, that A is not Q_ interpolating, and
apply Lemma 2. By the proof of Theorem 3, we can suppose that 4 is Q, asymptotically
linearly independent, and by Lemma 2, this implies that there exists some p<1 and

constants aj, ..., a, with no @;=0, and a constant C and numbers z,,..., z, with all
|z;/=1 so that
10) layzi + - +a,z2| < Cp* forall AeA.

We will suppose that we have chosen the least positive integer K for which there are
a+0 and z, e C\{0}, k=1,2,..., K such that

K
107) > azf—0
k=1

as u runs through a set M that intersects each arithmetic progression in a set of positive
upper density. By 10), there is such a K. We now fix the {g,} and the (new) {z,}. We shall
derive a contradiction to the minimality of K.

Let T" be the torus {w=(w,,...,w,): all [w;|=1}, and set z=(z,, ..., z,). Now
T" is a compact abelian group that we shall write multiplicatively. We define

ow)y= 2 aw; for weT"
j=1

Journal fiir Mathematik. Band 316 11
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Consider the positive measure
1
ﬂN=F(52+622+"' +6ZN), N=1, 2, ey

where J,, is the unit point mass at w. By compactness of the unit ball in the weak star
topology of the space of bounded measures as the dual of the space of continuous
complex-valued functions on 7", we see that {uy} has a weak-star cluster point .
A simple argument shows that ¢ must be Haar measure on G, the closed subgroup
generated by z in 7" (Usually, G will be either the whole torus, or a “spiral” on it.)
Since o is the only possible cluster point, we see that uy converges weak-star to 0. We
now choose ¢>0 and let

¥ () =, () = min (1, - ww) .
We know that
[ W 09) duy () — [ (W) do(w) as N— oo,

But for a sequence of N in M, with N — o0,

[ () d.uzv(x)§(1—a)+-é—a=1——;—ac< 1,

where « is any positive number smaller than the upper density of A. Hence
1
c({weG:lew)l<e}) >7oz.

It follows that ¢(E)>0, where
E={weG:p(w)=0}.

We now define, for w=(w,,...,w,) in G,

XJ(W):W] j=1,2,...,fl.
We will now use a strengthened form of the Steinhaus Theorem for G, which says that
there is a neighborhood ¥V of 1 (the identity element of G) such that for every ye V,
there exists a set E,, with ¢(E ) >0, so that if x € E, then x/y € E. The usual form of

the Steinhaus Theorem just asserts that E #+0—a proof can be found for the group R
(where quotients become differences) in [7]. Here is how to prove what we need. Let

u(s) = (f; 1e(s) xx(t) do (0).
Then u is a continuous function of se€ G, with u(1)>0, and if one chooses for V a
neighborhood of 1 throughout which u >0, then the result follows.
Now we have
11) a1 (x)+azp(x)+ - +agyx(x)=0 all xekE,
so that |

as X1(¥) x1(xcy)+az i (y) 1)+ - + @k () xc(xy) =0, all yeG, all xekE.
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On changing notation, this becomes

12)  a i () 1100+ a0 (0) x2(X) + - + @, 0,(») 1(x)=0, all yeG, all xeyE.

On multiplying 11) by j;(y) and subtracting from 12), we get

@) =] 12X + - +ag[ () — i (1] xx (%) =0,

13)
all yeG, all xe En yE.

In particular, 13) holds for all ye V and all x € E,, with ¢(E,)>0.

If now %, (»)=j(3)+0 for at least one ye V and at least one k=2,3,..., N,
then we have a formula of the form 11) with K replaced by K—1, and after a little
relabelling, where the new a; are a,[7;(y) — % (»)], and so on. We could then repeat
the argument until we would arrive at an absurdity, unless (and this is therefore forced
on us) we have indices k, / with k% /in the range 1, 2,..., K and a neighborhood V of 1
in G, so that

() —0(»)=0, al yeV.

Let us write y* =y *. It follows that y*=1 on a closed and open subgroup H of G,
namely the closure of the group generated by V. The quotient G/H, being both compact
and discrete, must be finite. Hence y* takes on only finitely many values, so that
(x*)?=1 for some positive integer ¢q. Hence z,/z; is a ¢g-th root of unity, since z € G.

Let

K
14) S.(my=3Y azr*r, r=0,1,...,q—1.

k=1

For each fixed r, S,.(m) — 0 as m runs through a set M,={m:mq+re M} that still,
like M, intersects every arithmetic progression in a set of positive upper density, as may
casily be seen. We may rewrite 14) as

K
15) S (m)= 3 ap(Zf)" 2.

k=1

For simplicity, let us suppose that z; =1 (since we could otherwise divide through) and
that z,,..., z, exhaust those {z,} that are g-th roots of unity. Since all the {z} are
distinct, we know that p= ¢, since there are just ¢ such roots of unity. We write

AV =a,z+ - +a,z,,
so that 15) becomes
159 S.(my=APwr + APWE + -+ AL WR e

where the wy,. .., wg,, are distinct. Here w, =1 and the other w; come by grouping
the z# for k=p+1,..., K. We notice that K(r)<K for r=0,1,...,¢—1. This will .
contradict the minimality of K if we can show that 4{" % 0 for some one r=0,1,...,g—1.
But because p=g, this follows from Vandermonde’s determinant, and the resulting
contradiction establishes the theorem.

11*
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IX. Proof of Theorem 6

We proceed directly without invoking Theorem 1. We will construct & =(z,) with
1Zanl =12zn41l=n for all n=1,2,..., so that if w,=2z,,/z,,,,, then for some function
@ (n), we have '

16) lw,f—1|<;17 if A=Zop(n).

We will put z,,=ne*™* where the numbers x, will be constructed to have certain
properties of rapid approximation by rational numbers. Now suppose 16) holds. Then,

‘Zén - Zén#—l“ = nzlwn_ 1 Ila

so it follows that if f(z)= ¥ a,z%, then
AeA

1f@2n) —fEans)IE T lasl nilwi—1]= ¥ + ¥ ZKn*"+K,

Aed A<e@(m)  AZe(m

where K=sup{|a;|: 1 e A}, which is finite since f is entire, and K'= ¥ |a;|, which is
AeA

finite for the same reason. Surely, then, there is no such f for which, say, f(z,,) =0 and
f(zapp 1) =nn®".

Let us now construct &. We shall work on the unit circle, but use the notation of
real numbers modulo 1 as a convenience. Let us now hold »n fixed. Then

17) b—g%uglog?.n for k= (n),
k
(which we may take as the definition of ¢(n)) since the limit of the left side is infinite
as k— 0. So we start with k=¢(n), so that 1,,, =(2n)*. Now we choose y{” with
0 <y <1 so that |4, y{"| < 1/n*, where |x| means the shortest distance from 1 to e*™*
around the circle, divided by 27n. Next, take a closed interval I{® with y{” e I{” and
[(I™) = 1/(A,n*), (where I(I) denotes the length of 1), so that

1 1
A,J{’g[—nlk,?;]

Now since 4, ; =(2n)*, we have

_/1"_“_ >1
At =

so that A, J{” covers the whole circle. We now repeat the argument by choosing
¥ e If” so that |A,, y§] <1/n*** and then " < I{® with y§ e I{” and

1
rms ———
(LY)= Py

+1nlk+1 .
Similarly, we get a y{ in (0, 1) and a closed interval I{? < I{” with y{ e I{”, so that
y g 3 3 Y3 3

1
M= T and so on.
k+

2n/1k+z ’
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We let x, be the unique point that lies in all these intervals.

{xa= 0N 1"
kzo(n)
Note that as soon as 4, = @ (n),

. 1
A
et —,

and on letting the w, at the beginning of the proof be w,=e*™* we are done.

X. Proof of Theorem 7

By Lemma 3, if A satisfies our hypothesis, but is not @, interpolating, then there
exists an ¢ with 0 <e<1 and numbers K, a,, a,; z,, z, with z, £z, so that |z,| =|z,]
and

la,zt+a,z3|= K'e* forall leA.

(We can immediately exclude the case n=1, i.e. |a,z}|< K'¢*, since |z;|=1.) Dividing
through by |z,|*, we get

Iwt—A|<Ke* forall AeA,

where w=z,/z,, A= —a,/a,, and so on. Again reducing the circle to the real numbers
modulo 1, we get, for some x with 0 <x <1, and some real «,

|ix —a| < Ke* forall AeA.

Furthermore, x must be irrational, because A intersects every arithmetic progression.
For if we had x =p/q, then we could choose A large, A=0modg, so that Ax =0 mod1
so that we would have a=0 mod 1. Then choosing A=1 modq, we would have |x| < Ke?*,
so that x would be 0 (modulo 1). This would imply that z; =z,, contrary to hypothesis.

We now appeal to a theorem of Dirichlet (see [9], often proved by the Schubfach-
prinzip) that there exist infinitely many positive integers g so that for some p=p(g),

14
x__

1
== bo=1
q

For such a large ¢, pick 4,,, in A as large as possible so that 4/1,,+1§q‘ Then
Ans2>q/4. Let us look at 4, and A,—we have

— ﬂ<ﬁ<~1_ ) ) £.<A”“<_1_
A,nx 2fn q :q2= 4q3 n+1x n+1 q = q2 = q
Hence
s ix— 2x) — Gy — Ay Pl <
n+1- n n+1v n q = 2q'
But
ln+1_)“npg_1_
q q

since (p,q)=1 and 4,,, <gq.
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Hence

I/l,,.*.l-x—i,,XI z?q‘

But, by the triangle inequality (modulo 1)

At 1% = AgX| = Ay 1 X — o] + [Apx — 0] = 2Ken,

Hence

1 .
2Ke*=——— infinitely often,

j’w+ ;
which implies that
log 4 1
lim sup——Og "2 >log—,
n— /1,, &

which contradicts the hypothesis, so completing the proof, and ending the paper.
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